AUTHOR=C Pradeep Raja , S Vigneshwaren , Parrthipan B. K. , Babu S. , Kathik Babu N. B. , Mensah Rhoda Afriyie TITLE=Additive manufacturing of polymers and composites for sustainable engineering applications JOURNAL=Frontiers in Chemical Engineering VOLUME=Volume 7 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/chemical-engineering/articles/10.3389/fceng.2025.1722765 DOI=10.3389/fceng.2025.1722765 ISSN=2673-2718 ABSTRACT=Additive manufacturing has rapidly emerged as a transformative and inherently sustainable technology in engineering. It enables the fabrication of components with minimal or near-zero material wastage. While additive manufacturing was initially focused on metals, it now includes polymers, ceramics, composites, and biomaterials, providing an efficient platform to produce sustainable materials. This review provides a comprehensive overview of additive manufacturing techniques for non-metal materials and emphasises their potential to minimise waste, promote resource circularity, and support sustainable production. Particular attention is given to polymer-based techniques such as fused deposition modelling, stereolithography, and selective laser sintering. These techniques offer design flexibility, reduced material wastage, and compatibility with recycled and bio-based feedstocks. This review highlights the major advantages and practical applications of polymer-based materials in biomedical engineering, microelectronics, flame-retardant and conductive systems, and multifunctional composites. While most limitations are presently observed in flame-retardant systems, a comparative discussion is also provided for the other application domains to maintain balance across the sections. Additionally, emerging research on sustainable and bio-derived polymers such as PLA and PHB reinforced with carbonised biomass or eco-friendly conductive fillers is introduced to emphasise environmentally responsible pathways for developing next-generation conductive materials. Overall, this review highlights additive manufacturing as a sustainable pathway for material valorisation and innovation within waste-to-material and waste-to-energy frameworks.