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Introduction

The auditory system enables animals to navigate and interpret their acoustic

environment through sophisticated neural computations. This process begins with the

conversion of sound waves into electrical signals in the cochlea and culminates in complex

encoding of location and context in central brain regions. Each stage relies on specialized

cellular and synaptic mechanisms. Understanding these mechanisms, their development,

changes with experience and age and susceptibility to disease, is key to comprehending

both normal hearing and auditory dysfunction. This Research Topic explores the cellular

and synaptic specializations underlying hearing, focusing on the resilience of synaptic

transmission, developmental and age-related changes, and the modulatory influences that

fine-tune auditory circuits. By bringing together diverse methods and perspectives across

different processing stages, the studies in the present Research Topic contribute to a refined

picture of the molecular and cellular machinery required for proper auditory function and

its vulnerabilities, advancing the state of the art.

Specialization in the auditory system

The peripheral auditory system employs sophisticated preprocessing to optimize

neural encoding. In the cochlea, the vast dynamic range of audible sounds is compressed

by three orders of magnitude for inner hair cell transduction (Rhode, 2007). Kondylidis

et al., using optical coherence tomography, demonstrate that this compression occurs

progressively along the basilar membrane in an intensity-dependent manner, optimizing

the signal for neural transduction.

As signals ascends to the brainstem, they are further processed by synapses

adapted for speed and temporal precision. As reviewed by Keine and Englitz, these

synapses share common features, including large presynaptic terminals, fast-gating AMPA

receptors, and a repertoire of voltage-gated ion channels that enable high-frequency

synaptic transmission.

This high-frequency firing, however, places immense metabolic demands on the

system, particularly for replenishing synaptic vesicles (SV). Addressing this challenge,
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Pizzi et al. explore the metabolic cost of this precision at an

inhibitory brainstem synapse critical for sound localization. Their

findings reveal that even the fundamental process of SV refilling

requires auxiliary mechanisms beyond the canonical vesicular

ATPase proton pump to keep pace with the relentless demand. This

suggests that sustaining high-frequency signaling requires unique,

and perhaps still undiscovered, molecular solutions.

Ototoxicity, aging and hearing loss

Despite its sophisticated design, the auditory system is

vulnerable to trauma and aging (Howarth and Shone, 2006; Kujawa

and Liberman, 2009; Gold and Bajo, 2014). Cochlear synaptopathy,

or ‘hidden hearing loss’, involves damage to the synapse between

inner hair cells (IHC) and spiral ganglion neurons occurring

before hair cell loss. This explains why individuals with normal

audiograms may struggle to hear in noisy environments.

Environmental toxins pose another significant threat,

particularly for children and pregnant women (Tiwari et al., 2012;

Olufemi et al., 2022). Bhatia et al. provide compelling evidence that

chronic lead exposure induces cochlear synaptopathy and synapse

loss without affecting outer hair cells (OHC). Through proteomic

analysis, they identified proteins involved in the synaptic vesicle

cycle as key targets of lead-induced ototoxicity.

Noise trauma, a common insult, can inflict similar damages and

is particularly prominent in elderly individuals (Cunningham and

Tucci, 2017). Oestreicher et al. show that even a single moderate

noise exposure causes significant and persistent loss of IHC ribbon

synapses in the high-frequency area of the cochlea. Intriguingly,

they found that the remaining synapses compensated this loss by

increasing their neurotransmitter release, indicating the presence

of a potent compensatory mechanism and suggesting that ribbon

counts alone may not fully predict synaptic output.

Further exploring the dose-dependent damage of acoustic

trauma leading to cochlear synaptopathy, Blum et al. demonstrate

that presynaptic ribbons are more susceptible to noise trauma than

their postsynaptic partners, identifying the presynaptic element as

the more fragile component of this first auditory synapse.

These studies naturally lead to the question of therapeutic

intervention. Hemachandran et al. explored the potential to

promote cochlear synapse regeneration after excitotoxic or noise-

induced damage. They demonstrate both in vitro and in vivo

that stimulating cyclic AMP signaling effectively promotes the

regeneration of IHC ribbon synapses and restores partial function.

This work identifies the cAMP/PKA pathway as a promising

target for minimally invasive therapies aimed at reversing

cochlear synaptopathy.

Complementing this outlook, the mini-review by Slika and

Fuchs summarizes the powerful genetic tools, from viral vectors to

CRISPR, now being used to study and potentially manipulate the

olivocochlear efferent system for therapeutic gain.

Development, maintenance, and
plasticity

A central question in developmental neuroscience is

the interplay between genetically encoded programs and

activity-dependent refinement in shaping neural circuits.

Challenging long-held assumptions about activity-dependence

(Hubel and Wiesel, 1964; Blankenship et al., 2009; Kirkby et al.,

2013; Wang and Bergles, 2015), Lessle et al. investigate the

maintenance of the calyx of Held, a giant presynaptic terminal

in the medial nucleus of the trapezoid body (MNTB) known for

its temporal fidelity (von Gersdorff and Borst, 2002; Borst and

Soria van Hoeve, 2012; Joris and Trussell, 2018). By selectively

silencing neurotransmission after synapse maturation, they

found that its fundamental structure, including active zone

number and postsynaptic AMPAR composition, remained

remarkably intact even after weeks of inactivity. This suggests

the existence of a robust, genetically encoded program for

maintaining this highly specialized synapse, largely independent of

ongoing activity.

This inherent stability, however, is fine-tuned by other factors

during development. While MNTB neurons typically receive a

single calyx of Held input in adults, multiple calyces make contact

to MNTB neurons during development (Hoffpauir et al., 2006;

Rodríguez-Contreras et al., 2008; Holcomb et al., 2013; Sierksma

et al., 2017). Chokr et al. explored the role of the classical

complement cascade, a part of the innate immune system, in

pruning and elimination of immature calyceal inputs. They found

that C1q, the initiating molecule of this cascade, is expressed

by microglia during the period of synapse elimination. While

its absence did not prevent pruning, it resulted in a subtle but

significant speed-up of auditory signal transmission, pointing

to a nuanced role for immune-related molecules in fine-tuning

auditory processing.

Developmental insults can have profound and lasting

consequences on the auditory system. Mansour and Kulesza

investigated the consequences of in utero exposure to valproic acid

(VPA), an animal model relevant to autism spectrum disorder

(ASD), which is often associated with auditory dysfunction

(Moore et al., 2000; Bromley et al., 2013; Hernández-Díaz et al.,

2024; Pack et al., 2024; Bolton et al., 2012; Christensen et al.,

2013; Ramezani et al., 2019; Mansour et al., 2021). Their work

reveals the near-complete obliteration of a specific glycinergic

projection from the MNTB to the auditory thalamus, highlighting

the vulnerability of specific auditory pathways to developmental

disruptions and pointing to potential thalamic processing deficits

in this ASD model.

The balance between structural stability and plasticity

continues into adulthood and is profoundly impacted by

aging (Ingham et al., 1998; Syka, 2002; Ouda et al., 2015).

Rosskothen-Kuhl et al. address how the age at the onset of deafness

influences central auditory organization. Using Fos mapping

after cochlear implant stimulation, they demonstrate that rats

deafened as young adults show rapid degradation of brainstem

tonotopy, resembling neonatally deafened animals. In contrast, rats

deafened as adults largely preserved their tonotopic organization.

This suggests that the reduced plasticity of the aging brain, while

limiting adaptation, may also confer some resilience that protects

established neural circuits from maladaptive reorganization

following injury.

While age-related changes in IHC and spiral ganglion neurons

are well documented, relatively little is known about the impact of

age on the efferent system (Adams and Schulte, 1997; Suryadevara

et al., 2001; Bovee et al., 2024). Steenken et al. provide a detailed

analysis of age-related changes in the olivocochlear efferent system
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of the gerbil cochlea. While confirming an overall decline in

efferent terminals, they found that innervation density remained

largely intact, implying a parallel degeneration of efferents and

their targets. Another key finding was the increased prevalence

of “orphaned” OHCs (lacking efferent input) in aged animals,

suggesting that medial olicocochlear degeneration may precede

OHC loss.

The degradation of the peripheral auditory system during

aging or following cochlear damage is often compensated by

downregulation of inhibition in the central auditory system

(Caspary et al., 2008; Richardson et al., 2012; Caspary and

Llano, 2018). Mellott et al. focus on the inferior colliculus (IC),

a major integration hub, uncovering a significant age-related

upregulation of dense core vesicles (DCVs), particularly during

middle age. As DCVs contain neuromodulators and neurotrophins,

this finding suggests an increase in modulatory capacity, possibly

to compensate for the declining peripheral input or GABAergic

inhibition. Notably, terminals containing DCVs appeared to be

preferentially spared from age-related synapse loss.

Molecular and neuromodulatory
complexity

A deeper understanding of auditory circuit function requires

dissecting its immense molecular and chemical diversity. Using

the power of next-generation RNA sequencing (Macaulay

and Voet, 2014; Svensson et al., 2018), Maraslioglu-Sperber

et al. provide a high-resolution molecular and functional

profile of neurons in the mouse lateral superior olive

(LSO). They successfully correlate transcriptomic signatures

with electrophysiological properties, delineating the two

principal neuron types: ascending principal neurons (pLSOs)

and descending lateral olivocochlear (LOC) neurons. The

identification of hundreds of differentially expressed genes,

including novel markers and specific ion channel subunits,

offers a powerful resource for dissecting LSO circuitry

and function.

Beyond the primary excitatory and inhibitory transmitters,

neurons in the auditory system are influenced by neuromodulators

that shape their function (Burger and Kopp-Scheinpflug, 2022).

The review by Zhang and Burger focusses the rapidly growing

knowledge on cholinergic modulation throughout the auditory

pathway, with an emphasis on brainstem and midbrain nuclei.

They detail the diverse array of nicotinic and muscarinic receptors

and their multifaceted roles in shaping fundamental auditory

computations, from gain control and noise protection to synaptic

plasticity, underscoring the dynamic chemical landscape that

governs our perception of sound.

Conclusion and future directions

Collectively, this diverse set of 16 studies helps to advance our

understanding of the auditory brainstem from a simple series of

relays into a highly dynamic and sophisticated processing hub.

The Research Topic highlights a theme: The very specializations

that enable reliable signal transmission with sub-millisecond

precision go alongside profound vulnerabilities. Yet, this fragility is

counterbalanced by numerous protective, modulatory, and plastic

mechanisms that are themselves shaped by development, insult,

and age.

The path forward is illuminated by the innovative approaches

showcased in this Research Topic. The high-resolution molecular

atlases generated by techniques like single-cell sequencing are

invaluable for designing targeted pharmacological or genetic

interventions. Similarly, a deeper understanding of the brain’s

own compensatory strategies could lead to therapies that move

beyond simple acoustic amplification, aiming instead to protect and

restore synaptic fidelity. The surprising resilience of giant synapses

to inactivity, the nuanced roles of neuro-immune interactions,

and the paradoxical effects of aging on plasticity all open new

avenues of investigation. Ultimately, this Research Topic might

help to move beyond treating the downstream consequences

of hearing loss and instead learn to preserve, repair, and even

enhance the remarkable artwork of precision that is found in the

auditory system.
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