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Cognitive impairment is a frequent but underrecognized complication of 
neurodegenerative and traumatic central nervous system disorders. Although research 
on Alzheimer’s disease (AD) revealed that microglial triggering receptor expressed 
on myeloid cells 2 (TREM2) plays a critical role in inhibiting neuroinflammation 
and improving cognition, its contribution to cognitive impairment following spinal 
cord injury (SCI) is unclear. Evidence from AD shows that TREM2 drives microglial 
activation, promotes pathological protein clearance, and disease-associated microglia 
(DAM) formation. SCI patients also experience declines in attention, memory, 
and other functions, yet the specific mechanism of these processes remains 
unclear. In SCI, microglia and TREM2 are involved in inflammation and repair, 
but their relationship with higher cognitive functions has not been systematically 
examined. We infer that TREM2 might connect injury-induced neuroinflammation 
in the SCI with cognitive deficits, providing a new treatment target. Artificial 
intelligence (AI) offers an opportunity to accelerate this endeavor by incorporating 
single-cell transcriptomics, neuroimaging, and clinical data for the identification 
of TREM2-related disorders, prediction of cognitive trajectories, and applications 
to precision medicine. Novel approaches or modalities of AI-driven drug discovery 
and personalized rehabilitation (e.g., VR, brain–computer interface) can more 
precisely steer these interventions. The interface between lessons learned from 
AD and SCI for generating new hypotheses and opportunities for translation.
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1 Introduction

Cognitive impairment is a common complication in neurodegenerative and traumatic CNS 
(CNS) disorders (Jessen et al., 2014; Wang C. et al., 2022; Mathys et al., 2023). Memory, attention, 
and executive impairments in Alzheimer’s disease (AD) are well-known phenomena strongly 
contributing to the overall disease process (Leuzy et al., 2024; Nasb et al., 2024; Peña-Bautista et al., 
2024; Reyes et al., 2025). Also, spinal cord injury (SCI) patients often suffer from problems with 
attention, learning, and memory, which affect the ability to rehabilitate and life quality 
(Pasipanodya et al., 2021; Shabany et al., 2022; Vaccaro et al., 2022; Yang et al., 2023; Li Y. et al., 
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2024; Welkamp et al., 2024). These findings indicate cognition to have a 
critical impact on neurological outcome in various situations.

As the resident immune cells of the CNS, microglia are important 
in shaping cognitive functions (Haure-Mirande et  al., 2022; Shi 
K. et al., 2022; Shi Q. et al., 2022). Besides immune surveillance, they 
are involved in synaptic pruning, neurogenesis, and circuit remodeling 
(Bellver-Landete et al., 2019; Zhou et al., 2020; Brennan et al., 2022; 
Choi et al., 2023). Impaired microglial activity has been proposed to 
be  linked to impairment of cognitive function, indicating that 
immune–neural interaction may be a shared mechanism common in 
different diseases (Zhang et al., 2022).

One major advance is the identification of TREM2 (triggering 
receptor expressed on myeloid cells 2) as a key regulator of microglial 
functions (Haure-Mirande et al., 2022; Shi K. et al., 2022; Shi Q. et al., 
2022). In AD, genetic variants in TREM2 increase disease risk, and 
functional studies show that TREM2 signaling promotes microglial 
responses, enhances clearance of pathological proteins, and influences 
cognitive outcomes (Jiang et al., 2014; Fracassi et al., 2023; Huang 
et al., 2023; Li et al., 2023). These findings highlight TREM2 as both a 
mechanistic driver and a therapeutic target.

Cognitive impairment in SCI gradually receives more attention, 
although the mechanisms of the process are not well understood (Craig 
et al., 2017; Sachdeva et al., 2018; Li et al., 2020; Alcántar-Garibay et al., 
2022). Research has mostly focused on systemic inflammation, chronic 
pain, and mood disorders (Jure and Labombarda, 2017; Molina-
Gallego et al., 2024), and the role of unique immune pathway proteins 
such as TREM2 has been less well researched (Craig et  al., 2017; 
Sachdeva et al., 2018; Li et al., 2020; Alcántar-Garibay et al., 2022). This 
gap restricts our mechanistic knowledge and therapy development.

The question at the core of this review is whether mechanistic 
insights from AD, including those addressing microglial TREM2, may 
inform pathways leading to cognitive dysfunction post-SCI. Cognitive 
impairment following SCI has been stably demonstrated in both 
animal and human studies (Craig et al., 2017; Sachdeva et al., 2018; Li 
et al., 2020; Alcántar-Garibay et al., 2022), with activation of microglia 
in the hippocampus and prefrontal cortex implicated in the induction 
of a chronic, low-grade neuroinflammatory state that impairs synaptic 
homeostasis and neuronal plasticity (Jure et al., 2017; Yu et al., 2024). 
TREM2 mutations clearly lead to cognitive decline in AD patients 
(Jiang et  al., 2014; Fracassi et  al., 2023; Li et  al., 2023). Yet again, 
sensitizing evidence directly connecting TREM2 mutations with 
post-SCI cognitive impairments is still absent; such linkage currently 
constitutes an inferred hypothesis based on the mechanistic overlap 
of AD and SCI. In line with this, the present review will (1) bring 
together consolidated knowledge from AD and SCI concerning 
microglial TREM2 and cognition, and (2) comment on the role of 
artificial intelligence (AI) in assisting hypothesis  generation and 
translational breakthroughs in this nascent field.

Here, we propose that the empirical knowledge in AD can provide 
important clues for exploring the role of the TREM2 signaling 
pathway-mediated microglial cell response in cognitive impairment 
following SCI. We also review the potential role of AI to expedite 
progress by integrating multimodal datasets, discovering therapeutic 
targets, and guiding individualized rehabilitation. Collectively, this 

framework can integrate neuroimmunology with cognition and 
computation for the development of translational strategies.

2 Cognitive dysfunction and microglial 
TREM2 in Alzheimer’s disease

2.1 Cognitive dysfunction in AD

To understand the potential contribution of TREM2 in SCI-related 
cognitive deficits, it is necessary to first summarize its established role 
in AD. Cognitive impairment is a typical symptom of AD, consisting 
most prominently of amnesia and executive deficits (Collij et al., 2024). 
Patients with AD commonly experience declines in encoding and 
retrieving information, problem-solving, as well as monitoring goal-
directed behavior (Bäckman et al., 2004; Moguilner et al., 2024). These 
impairments are caused by neuropathological features such as tau 
pathology, synaptic loss, and network dysfunction, which mainly affect 
the integrity of cognitive circuits (Lin et al., 2022, 2025; Hu et al., 2024).

2.2 TREM2 as a regulator of microglial 
function in AD

TREM2 is a transmembrane receptor that is mainly expressed on 
microglia of the CNS, where it has an essential role in the regulation 
of microglial activation, phagocytosis, as well as inflammatory 
responses (Li et al., 2022; Li Z. et al., 2024; Yan et al., 2022). Through 
these functions, TREM2 promotes the ability of microglia to respond 
to neuronal injury and maintain CNS homeostasis (Kobayashi et al., 
2016; Nugent et al., 2020).

In AD, TREM2 has been identified as a critical regulator in 
neuroimmune processes that maintain cognitive function (Li et al., 
2022). Functionally (Figure 1), TREM2 promotes the clearance of 
deposited amyloid-β (Aβ) plaques and relieves neuronal toxicity 
(Nugent et  al., 2020). Additionally, TREM2 can drive the 
transformation of baseline microglia into “disease-associated 
microglia” (DAM) phenotype, which upregulates the phagocytosis of 
Aβ and other microglial responses (Nugent et  al., 2020). These 
microglial responses are associated with maintenance of synaptic 
integrity and cognition in experimental models (Wang S. et al., 2022).

Genetic investigations further emphasize the importance of 
TREM2 for cognitive functions (Rachmian et al., 2024). Rare TREM2 
variants are strongly associated with increased risk for AD, and 
individuals who carry these mutations show an earlier age of onset or 
more severe cognitive decline than noncarriers (Peng et al., 2023). 
Taken all together, these observations place TREM2 as both a key 
regulator of microglial activity and as a potential drug target to 
prevent cognitive impairment in AD (Jia et al., 2025).

3 Cognitive dysfunction and microglial 
TREM2 in spinal cord injury

3.1 Overlooked cognitive dysfunction after 
SCI

Based on AD findings, we next consider whether the analogous 
mechanisms may apply to SCI, while noting the limited direct 

Abbreviations: AD, Alzheimer’s disease; AI, Artificial intelligence; Aβ, amyloid-β; 

CNS, central nervous system; DAM, disease-associated microglia; SCI, Spinal cord 

injury; TREM2, triggering receptor expressed on myeloid cells 2.

https://doi.org/10.3389/fncel.2025.1705069
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Wu et al.� 10.3389/fncel.2025.1705069

Frontiers in Cellular Neuroscience 03 frontiersin.org

evidence. Although SCI has conventionally been regarded as a 
disorder characterized by motor and sensory dysfunction, there is 
now accumulating literature to indicate that cognitive impairment 
is an important but under-recognized consequence (Craig et al., 
2017; Sachdeva et al., 2018; Li et al., 2020; Alcántar-Garibay et al., 
2022). Attention, working memory, and processing speed are often 
impaired in patients with SCI, which can interfere with 
rehabilitation and daily life quality (Craig et al., 2017; Sachdeva 
et al., 2018; Li et al., 2020; Alcántar-Garibay et al., 2022). In addition 
to the cognitive decline, such components as chronic pain, sleep 
disturbances, and mood disorders often worsen cognitive load and 
function outcome (Widerström-Noga, 2017; Eller et al., 2022; Wu 
et al., 2023).

The specific mechanisms of cognitive impairment after SCI 
remain poorly understood (Welkamp et al., 2024). Previous research 
in SCI has largely focused on systemic inflammation, secondary injury 
cascades, and psychosocial factors, and ignored molecular drivers of 
cognitive impairment (Brennan et  al., 2022, 2024). Nevertheless, 
clinical neuroimaging evidence indicates that SCI may produce 
structural and functional changes in the brain, such as disrupted 
connections within prefrontal and hippocampal networks, which are 
important for attention, memory, and executive function (Jure and 
Labombarda, 2017; Welkamp et al., 2024). These data suggest that SCI 

has consequences beyond the damage in the spinal cord, affecting the 
wider networks that participate in cognitive processes.

Considering the dependence of microglia for modulating 
cognitive function in other neurologic diseases, it is possible that 
microglial pathways also participate in the impaired cognition process 
after SCI (Jure et al., 2017). In particular, molecules such as TREM2, 
which regulate microglial activation and synaptic remodeling in AD, 
may play a similar role in SCI (Gao et al., 2023; Zhao C. et al., 2025). 
Investigating TREM2-mediated pathological processes in the context 
of SCI could provide effective strategies for exploring the 
pathophysiology of cognitive impairment and identifying therapeutic 
targets as well as developing corresponding drugs for mitigating these 
often-overlooked deficits.

Clinical and neuroimaging studies suggest that SCI can bring 
substantial changes to brain network connectivity and functional 
activation patterns, specifically within regions implicated in attention 
and memory (Jure et al., 2022; Qin et al., 2025). Regardless of the causes, 
the mechanisms of cognitive impairment in AD and SCI may partially 
overlap (Jure et  al., 2017; Oveisgharan et  al., 2018). Substantial 
neuroinflammation can disrupt neural circuit remodeling and synaptic 
plasticity due to the prolonged activation of brain microglia (Jure et al., 
2017; Oveisgharan et al., 2018; Doorduijn et al., 2019; Deng et al., 2024). 
Changes in neurotransmitter signaling, dendritic spine density, and 

FIGURE 1

TREM2 signaling pathway in Alzheimer’s Disease and its link to cognitive dysfunction. This diagram illustrates the role of TREM2 in Alzheimer’s disease 
(AD) pathology and its association with cognitive dysfunction. In AD, activating antibodies or ligands (including amyloid-beta plaques) can activate 
TREM2. This activation triggers downstream signaling pathways, including the PI3K-AKT, RAS-RAF-MEK-ERK, and PLCγ pathways. These pathways are 
involved in critical cellular processes, such as Aβ plaque phagocytosis, degradation, and the modulation of neuroinflammation, all of which influence 
the progression of cognitive decline in AD. The activation of TREM2 and its signaling also plays a role in microglial cell activation and neuronal 
interactions, ultimately impacting the neurodegenerative process.
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synaptic connectivity also continue to hinder the ease of information 
transfer (Bäckman et al., 2004; Moguilner et al., 2024). Altogether, these 
findings suggest that immune-mediated synaptopathies and circuit 
changes may represent a common pathological substrate for impaired 
cognition in both neurodegenerative and traumatic CNS disorders.

3.2 TREM2 as a potential regulator in 
SCI-induced neuroinflammation and 
dysfunction

Microglial TREM2 was identified as a critical modulator for 
neuroinflammation and cognitive function in AD, whereas its 
involvement in SCI remains largely unknown (Gao et al., 2023; Zhao 
T. et al., 2025). SCI can induce microglial activation not only at the 
lesion site but also in supraspinal regions, which may have a dual effect 
in chronic inflammation and neuronal damage (Milich et al., 2021; 
Gong et  al., 2023; Skinnider et  al., 2024). Given TREM2’s role to 
modulate microglial phagocytic activity, inflammatory cytokine 
release, and synaptic remodeling (Kobayashi et al., 2016; Li et al., 2022; 
Li Z. et al., 2024; Yan et al., 2022), it is reasonable to speculate that the 
cognitive performance following SCI may also be  modulated by 
TREM2 (Figure 2).

Data from AD support the idea that TREM2 has been shown to 
drive the conversion of microglia into DAM that are involved in the 
clearance of cellular debris and maintenance of the synaptic integrity, 
which are critical for improving cognitive capacity (Nugent et al., 
2020; Wu et al., 2022; Parhizkar et al., 2023; John et al., 2025; Zhu 
et al., 2025; Wu et al., 2022; Parhizkar et al., 2023; John et al., 2025; 
Zhu et al., 2025). It should be stressed that these are hypothesis-driven 
extrapolations, as there is little experimental or  clinical SCI-specific 
cognition-related data on TREM2. Therefore, the discussion 
below  should be  read as a conceptual comparison rather than 
evidence-based. If we extend these findings to SCI, it can be speculated 
that TREM2-related microglial responses may reduce maladaptive 
inflammation, ameliorate synaptic plasticity in cortical and 
hippocampal circuits, and ultimately prevent attention and memory 
deficits. Such a mechanistic model offers a new insight into the cellular 
substrates of SCI-induced cognitive deficiency.

4 Therapeutic implications of 
targeting TREM2 in SCI

Investigating TREM2 in the context of SCI also opens avenues for 
therapeutic innovation (Gao et al., 2023; Zhao T. et al., 2025). By 

FIGURE 2

Hypothetical mechanism of TREM2 in spinal cord injury-induced cognitive dysfunction. This figure illustrates a hypothetical model. Although microglial 
activation after spinal cord injury (SCI) is well established, the specific pathways through which these cells exert their functions remain unclear. This 
diagram shows a potential mechanism for cognitive dysfunction following SCI. While research on TREM2’s role in SCI is limited, we hypothesize that 
TREM2 may play a role in SCI-related cognitive impairment. SCI leads to myelin debris produced and microglial activation. TREM2 could be involved in 
clearing myelin debris at the injury site, and may also contribute to other changes in the brain following SCI, potentially influencing neuroinflammation, 
neuronal survival, and cognitive function, similar to its role in Alzheimer’s disease.
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targeting TREM2, it may be possible to modulate microglial activity 
in a way that both reduces chronic neuroinflammation and enhances 
cognitive resilience (Yan et  al., 2022; Li Z. et  al., 2024). These 
approaches can potentially complement current rehabilitation 
paradigms, providing precision medicine guidelines. In addition, 
when AI is used for analyzing multimodal datasets (single cell 
transcriptomics, neuroimaging, and clinical cognitive outcomes), it 
will help speed up the discovery of these TREM2-related mechanisms/
facilitate the potential intervention points that could open vistas 
towards next-generation therapies (Kalaga and Ray, 2025; Liu X. et al., 
2025). While most research stresses protective roles of TREM2, other 
studies also indicate that TREM2 activation may potentially exacerbate 
inflammation or impair recovery after SCI (Zhao T. et al., 2025). These 
findings highlight the need for context-specific investigations.

5 AI-assisted strategies for discovery 
and translation

5.1 Computational approaches for 
mechanism discovery and therapy design

With these mechanistic  understandings in hand, we  now 
consider AI as a potential catalyst for discovery and translation (Liu 
et al., 2024b, 2025c). AI offers great potential to expedite the discovery 
of microglial targets in cognitive impairment from SCI (Kalaga and 
Ray, 2025). Leveraging on big-data resources derived from single-cell 
transcriptomics, proteomics, brain imaging, and cognitive clinical 
data can connect TREM2-high expressed microglial subpopulations 
with inferred functional states and predictions of their potential 
consequence for synapse plasticity and neural circuit performance 
(Liu X. et  al., 2025). Such analyses may reveal novel cellular and 
molecular pathways connecting SCI-induced neuroinflammation with 
cognitive impairment (Table 1).

In addition to mechanism discovery, AI has potential in guiding 
the direction for therapeutic development (Liu et al., 2020; Fang et al., 
2022). Deep learning and computational modeling can promote high-
throughput virtual screening of small molecules or biologicals 
targeting TREM2 activity for prioritizing candidates with desirable 
efficacy and safety profiles (Fang et  al., 2022; Liu X. et  al., 2025). 
Furthermore, AI-based predictive models can predict patient-specific 
cognitive trajectories to design precision interventions for each SCI 
patient according to molecular and clinical biomarkers (Möhle et al., 
2021; Trivedi et al., 2023; Calderone et al., 2024; Kale et al., 2024; 
Bitsch et al., 2025; Noh et al., 2025).

AI can also strengthen cognitive rehabilitation approaches (Lee 
et  al., 2023; Liu et  al., 2025a). Brain–computer interfaces, virtual 
reality platforms, and adaptive neurofeedback systems can 
be integrated with AI models to dynamically adjust training programs 
according to real-time cognitive performance and microglial 
biomarker profiles, leading to adaptive neurofeedback systems 
modifying training programs (Lee et al., 2023; Kishikawa et al., 2024; 
Yoo et al., 2024; Liu et al., 2025b; Noh et al., 2025). These approaches 
could enable tailored interventions to the enhancement or suppression 
of neural plasticity and immune-mediated responses that may 
be  dovetailed in an attempt to best optimize individual recovery 
therapies (Kale et  al., 2024). For example, a group proposed an 
AI-based motion analysis for rehabilitation in patients with SCI (Lee 
et al., 2023). Another group verified  the machine learning models for 
prediction after cervical SCI (Kishikawa et al., 2024), whereas some 
researchers used neural networks to detect neuropathic pain 
signatures following SCI (Deulofeu et al., 2024). In TREM2-related 
biology, some studies applied interpretable deep learning to represent 
microglial activation states in AD and is a methodological blueprint 
for SCI (Trivedi et al., 2023). In contrast  to classical statistics, these 
methods enable to combine high-dimensional data and to make 
prediction for individual-patient, that constitutes an 
exceptional feature.

TABLE 1  TREM2’s role in Alzheimer’s disease (AD)/spinal cord injury (SCI) and AI-assisted opportunities.

Aspect Alzheimer’s disease 
(AD)

Spinal cord injury 
(SCI)

AI-assisted opportunities Key references

Pathological context
Aβ/Tau deposition; synaptic 

loss

Inflammatory cascade, 

brain–spinal crosstalk, 

circuit remodeling

AI can integrate imaging + omics to 

identify shared pathological features

Mathys et al. (2023), Peña-

Bautista et al. (2024), Leuzy 

et al. (2024), and Craig et al. 

(2017)

Microglial response

TREM2 drives DAM 

phenotype, enhances clearance, 

neuroprotection

Widespread activation; 

TREM2 may regulate 

inflammation and plasticity

AI can identify 

TREM2 + subpopulations and track 

state transitions

Jiang et al. (2014), Li et al. 

(2022), Shi Q. et al. (2022), 

Fracassi et al. (2023), and John 

et al. (2025)

Downstream pathways
PI3K/Akt, Wnt/β-catenin, SYK, 

mTOR

Potential involvement in 

inflammation, lipid 

metabolism, autophagy

AI-based network modeling can predict 

novel therapeutic targets

Nugent et al. (2020), Li et al. 

(2022), Peng et al. (2023), 

Zhao T. et al. (2025), and John 

et al. (2025)

Cognitive outcomes Memory and executive decline
Deficits in attention, 

memory, processing speed

AI predictive models can combine 

imaging + clinical data for prognosis

Bäckman et al. (2004), Jure 

et al. (2022), Li Z. et al. (2024), 

and Welkamp et al. (2024)

Therapeutic prospects
TREM2-targeted drugs under 

development

Early-stage exploration, 

limited validation

AI-driven drug repurposing, precision 

rehab (VR, BCI)

Jia et al. (2025), Liu X. et al. 

(2025); Noh et al. (2025), and 

John et al. (2025)
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Collectively, AI-augmented methods provide a complementary 
environment to connect basic mechanistic insights with translational 
and clinical practices (Deng et al., 2020; Perosa et al., 2021; Pancholi 
et  al., 2024; Tao et  al., 2024). By combining both computational 
resources and neuroimmunological experience, these approaches 
could hasten the discovery of new TREM2-directed interventions and 
enhance cognitive recovery in SCI patients.

5.2 Challenges and future directions in 
AI-driven neuroimmunology

Although research on TREM2 has revealed how microglia are 
regulated, some obvious challenges still exist when applying these 
findings to understand cognitive impairment after SCI (Gao et al., 
2023; Zhao T. et al., 2025). First, direct experimental evidence of a role 
for TREM2 in cognition following SCI is lacking (Zhao T. et al., 2025), 
and knowledge remains scarce and needs to be  filled by targeted 
preclinical studies. Second, the heterogeneity of SCI patients (e.g., 
level and severity of lesion, age, and comorbidities) leads to a lack of 
common biomarkers and therapeutic targets (Welkamp et al., 2024). 
Third, current bio-verification of computerized AI-based predictions 
is only available in the context of standardized (multi-)modal data 
types and more complicated computational processing pipelines that 
have not been broadly validated across the SCI research community 
(Deulofeu et  al., 2024; Habibi et  al., 2024; Daungsupawong and 
Wiwanitkit, 2025). Fourth, AI also faces barriers, including limited 
availability of high-quality multimodal datasets, lack of reproducibility 
across cohorts, and difficulties in regulatory validation for clinical use 
(Liu et al., 2024a).

More work remains for modest investigation of the TREM2 role 
with post-SCI cognitive outcomes, which may be carried out in animal 
models, single cells at the molecular level, as well as patients by means 
of longitudinal clinical studies (Španić Popovački et al., 2023; Zhang 
et al., 2023, 2025). Furthermore, interdisciplinary approaches fusing 
neuroimmunology with cognitive neuroscience and computational 
modelling are required to help design predictive personalized 
treatments (Pereira et  al., 2022; Kale et  al., 2024). For instance, 
AI-driven drug discovery and patient stratification, as well as adaptive 
rehabilitation programs, have emerged as very promising options to 
translate mechanistic insights into clinical interventions (Fang et al., 
2022; Liu X. et al., 2025). The field can thus progress toward more 
specific approaches to treat cognitive dysfunction in SCI patients.

6 Summary and outlook

Cognitive impairment is an important but relatively unappreciated 
complication of SCI and has far-reaching effects on patient outcome 
and quality of life. Given that microglial TREM2 is a known modulator 
of neuroinflammation and cognition in AD, it provides an attractive 
target for mechanistic studies relevant to SCI. Merging insights from 
AD and SCI research conceptualizes how TREM2-dependent 
microglial responses can affect attention, memory, and executive 
function following CNS injury.

AI could further improve this framework by helping to define 
TREM2-related pathways, drug discovery, and personalized cognitive 
rehabilitation. Connecting neuroimmunology, the cognitive sciences, 
and AI-led therapeutics, we provide a perspective on new avenues for 

both mechanistic knowledge and translational impact. Prospective 
investigations in this category will be able to improve cognitive status 
and the general recovery process for SCI by focusing on TREM2.
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