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Neural stem cells (NSCs) hold significant potential in neural regenerative
medicine, yet research faces multiple challenges such as cellular heterogeneity,
unclear microenvironment interactions, and low clinical translation efficiency.
In recent years, the rapid development of artificial intelligence (Al) technologies
has provided new ideas and tools to address these issues. This paper reviews the
current applications of Al in fundamental NSCs research, including intelligent
identification, deep learning-driven subtype analysis, spatial microenvironment
deconstruction, and dynamic analysis of neural differentiation. Additionally,
we discuss several key Al technologies not yet applied to NSCs research,
such as generative adversarial networks, graph neural networks, and self-
supervised learning, as well as their potential applications in cell classification,
interaction network analysis, and morphological feature extraction. Although
Al technologies show great promise in NSCs research, challenges remain
regarding data quality, model robustness, and interpretability. Therefore,
future research should focus on establishing high-quality standardized
multimodal data platforms and integrating biological knowledge to enhance
model interpretability, thereby deepening the understanding of NSCs
biological characteristics and differentiation mechanisms and advancing
personalized therapies.
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1 Introduction

Neural stem cells (NSCs) are a type of multipotent cells present in both the
embryonic and adult central nervous system, possessing self-renewal capacity and the
ability to differentiate into neurons, astrocytes, and oligodendrocytes (Kriegstein and
Alvarez-Buylla, 2009; Nam et al., 2015; Reynolds and Weiss, 1992). They demonstrate
revolutionary potential in neural regenerative medicine, capable of repairing neuronal
loss in neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases through
transplantation (Deokate et al., 2024; Olanow et al., 2003), promoting neural pathway
reconstruction after spinal cord injury and stroke (Jiang et al., 2017; Tang et al., 2017),
and providing alternative cell sources for glial cell injury-related diseases like multiple
sclerosis (Encinas and Fitzsimons, 2017; Mouhieddine et al., 2014). However, current

01 frontiersin.org


https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2025.1696943
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2025.1696943&domain=pdf&date_stamp=2025-11-21
mailto:sxmulpf@sxmu.edu.cn
https://doi.org/10.3389/fncel.2025.1696943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncel.2025.1696943/full
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/

Lietal.

research faces multiple bottlenecks: (1) Challenges in cell
identification and heterogeneity: NSCs lack specific molecular
markers, making it difficult to precisely isolate quiescent and
activated subpopulations, and their differentiation potential often
shifts after in vitro expansion (e.g., reduced neuronal differentiation
capacity) (Pang et al., 2019; Encinas and Fitzsimons, 2017; Nam
etal, 2015); (2) Unclear mechanisms of differentiation control and
microenvironmental interactions: the regulation of differentiation
by growth factor combinations is stochastic, and inflammatory
microenvironments significantly inhibit transplanted cell survival
(Deokate et al., 2024; Encinas and Fitzsimons, 2017; Mouhieddine
et al., 2014); (3) Low efficiency of clinical translation: human NSC
samples are scarce, animal models fail to fully replicate human
disease phenotypes, and transplanted cell survival rates are low
(<10%) with side effects such as dyskinesia (Deokate et al., 2024;
Nam et al., 2015; Olanow et al., 2003); (4) Barriers to multi-scale
data integration: there is a lack of unified analytical frameworks for
cross-omics, imaging, and electrophysiological data, and reliance
on manual processing leads to low efficiency and high bias
(Pathan et al., 2022; Ramakrishna et al., 2020). In recent years,
the rapid development of artificial intelligence (AI) technologies
has provided new ideas and tools to address these challenges. In
this review, we will focus on the current applications of Al-related
technologies in NSCs research.

2 The paradigm shift in NSCs basic
research driven by Al

Currently, artificial intelligence technology in neural stem cell
research is primarily focused on intelligent identification and
localization of neural stem cells, precise determination of their
subtypes, analysis of the microenvironment (niche) surrounding
neural stem cells, elucidation of the dynamic differentiation
processes, and early-stage prediction of their fate decisions. These
studies cover the core areas of neural stem cell research and
have advanced the in-depth understanding of their biological
characteristics and functional mechanisms (Figure 1).

2.1 Al-enabled intelligent recognition
techniques for NSCs

Neural stem cells play a critical role in nervous system
development, regeneration, and repair, making their precise
localization and identification crucial. Traditional cell identification
methods are often limited by the scarcity of cells and significant
individual variability, posing challenges to the accurate localization
of NSCs. With the advancement of Al technologies, especially the
application of machine learning (ML) algorithms, new solutions
have emerged for the automated recognition of NSCs.

Dumitru et al. (2025) in their analysis of adult hippocampal
samples, first performed preliminary screening of cells using
antibody labeling of the proliferation marker Ki67, followed by
deep recognition and classification of cell features through ML
algorithms, successfully identifying proliferative neural progenitor
cells. This technological breakthrough overcame the limitations
of traditional methods and effectively addressed the challenges of
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precise localization caused by low cell numbers and high individual
variability (Dumitru et al., 2025). Hailstone et al. (2020) employed
supervised ML algorithms to develop CytoCensus, which, trained
by user clicks on cell centers, enables automatic identification,
counting, and quantification of division behaviors of NSCs and
their derivatives without relying on specific cell markers or
custom programming. Mateo et al. (2015) used ML methods
to identify gene regulatory features associated with NSCs self-
renewal, differentiation, and quiescent states. Ogi et al. (2019)
modeled hyperspectral data using ML to achieve non-destructive
classification of neurons and glial cells, providing a novel approach
for precise cell type identification.

In the study of early neurogenesis in the zebrafish forebrain
(telencephalon), Stringer et al. (2021) used the ML-based 3D cell
segmentation algorithm Cellpose, to quantify the total number of
progenitor cells and neurons during the first phase of telencephalon
development, particularly focusing on how NSCs transition from
proliferative divisions to neurogenic divisions (Casas Gimeno et al,,
2023). Smith et al. (2017) applied the CoNTexT ML algorithm to
exon expression array data to determine the regional characteristics
and developmental maturity of NSCs in both 2D and 3D cultures.

The application of these Al-related technologies provides
strong support for the intelligent identification of NSCs and lays the
foundational groundwork for further NSC research. Importantly,
these approaches have transformed our understanding by enabling
quantitative analysis of NSC behavior within their native tissue
context. Nevertheless, the effectiveness of these tools can be
influenced by factors such as the requirement for high-quality
annotated data for training (Hailstone et al., 2020; Stringer et al,
2021) and potential sensitivity to complex tissue architectures
and imaging conditions, which may impact generalizability across
diverse experimental settings.

2.2 Deep learning-driven in-depth
analysis of NSCs subtypes

Neural stem cells are crucial components in nervous system
development and regeneration. Based on developmental stages,
anatomical locations, and molecular characteristics, NSCs can
be classified into different subtypes, which exhibit significant
differences in differentiation capacity and function. Different NSCs
subpopulations express specific markers such as Sox2, Pax6, and
Nestin, but their expression levels show notable heterogeneity. For
example, cells with high Sox2 expression tend to maintain a stem
cell state, whereas cells with high Pax6 expression are more prone
to differentiate into neurons. This difference in differentiation
potential provides important clues for understanding neural
development and regeneration (Galiakberova and Dashinimaev,
2020). Functionally, NSCs can be divided into quiescent NSCs
(gNSCs) and activated NSCs (aNSCs). QNSCs are in the GO phase,
primarily rely on lipid oxidation for metabolism, and highly express
adhesion molecules (such as genes related to the Notch pathway),
thereby maintaining their stem cell characteristics (Ding et al.,
2020; Yu et al,, 2024). In contrast, aNSCs shift their metabolism
toward mitochondrial oxidation, can initiate neurogenesis, and
can be further subdivided into pre-activated and proliferative
states (Dimitrakopoulos et al., 2022; Ding et al., 2020). Effectively
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The main application directions of artificial intelligence in NSCs research at present. NSCs, neural stem cells.

distinguishing between quiescent and activated NSC subtypes
helps deepen the understanding of neurogenesis and the dynamic
regulatory mechanisms of stem cells, thereby promoting research
into neural regeneration and repair.

Dulken et al. performed an in-depth analysis of NSC subtypes
using Monocle ordering and found that aNSCs can be further
subdivided into specific subgroups, including aNSC-early, aNSC-
mid, and aNSC-late, each characterized by distinct surface
markers and key intracellular regulators. This finding provides
a new perspective on the functional diversity of NSCs (Dulken
et al, 2017). Xie et al. developed a tool named scAIDE, an
unsupervised deep learning clustering framework for single-cell
RNA sequencing (scRNA-seq) data, aimed at identifying rare and
potential cell types. To overcome the high noise in the data,
scAIDE first combines an autoencoder imputation network with
an anchor-based embedding network (AIDE) to learn effective
data representations, then applies random projection hashing
combined with a k-means algorithm to detect rare cell types.
In a large dataset containing 1.3 million neural cells, scAIDE
successfully identified 64 clusters mapped to 19 potential cell
types, including NSCs and progenitor cells. Moreover, scAIDE was
able to identify three distinct developmental trajectories of NSCs,
providing important insights into the differentiation process of
NSCs (Xie et al., 2020). Chen et al. (2018) used Monte Carlo Feature
Selection (MCFS) to analyze gene expression data from three
NSC subtypes—quiescent NSCs (qNSCs), activated NSCs (aNSCs),
and neural progenitor cells (NPCs)—to identify their molecular
characteristics and classification markers. After selecting key gene
expression features with the MCFS algorithm, they combined these
with a Support Vector Machine (SVM) to construct a predictive
model, which was evaluated using ten-fold cross-validation. The
model achieved a high classification accuracy with a Matthews
correlation coefficient (MCC) of 0.918. Additionally, the MCES
algorithm generated classification rules distinguishing the three
subtypes, revealing subtype-specific gene expression patterns and
their dynamic changes during NSCs lineage differentiation (Chen
et al, 2018). Chen et al. (2024) employed ML-based algorithms to
construct a consensus brain cell atlas with annotated cell types,
demonstrating the presence of neural progenitor subpopulations
in the brain. The application of these AI technologies has not
only enabled high-precision classification of NSCs subtypes but
also elucidated their gene expression features, providing new
insights into the molecular basis of neural development. These
methodologies have significantly refined our conceptual framework
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by revealing a continuum of NSC activation states (Dulken
et al, 2017) and complex developmental trajectories25, thereby
enhancing the understanding of NSC heterogeneity in neural
development. A key consideration in leveraging these powerful
tools is addressing challenges such as the inherent noise and batch
effects in single-cell data that can complicate the discernment of
true biological variation (Xie et al, 2020), and the recognition
that trajectory inference models might oversimplify the dynamic,
potentially non-linear nature of NSC state transitions in vivo.

2.3 ML-driven deconstruction of the
NSCs spatial microenvironment

The function and fate of NSCs are significantly influenced
by their microenvironment, and understanding the spatial
microenvironment these cells reside in is crucial for revealing
their biological characteristics and regenerative capacity. Cell
interactions, signaling, and spatial distribution within the
microenvironment play key roles in NSCs self-renewal and
differentiation. With the advancement of ML technologies,
researchers are now able to more precisely map and analyze NSC
behaviors within complex microenvironments.

Marymonchyk et al. (2025) mapped an accurate spatiotemporal
atlas of NSCs functional responses induced by multiple niche cell
types within the subventricular zone NSCs niche of the adult mouse
brain and utilized ML to predict interactions between NSCs and
specific niche cell types. This study provides important data support
for understanding the dynamic behavior of NSCs within their
microenvironment (Marymonchyk et al., 2025). Sun et al. (2025)
developed “spatial ageing clocks,” a ML-based tool trained on a
single-cell resolution spatial transcriptomic atlas of 4.2 million cells
in the mouse brain, covering 20 age groups and two regenerative
interventions. This tool identifies spatial and cell type-specific
transcriptomic features of aging and regeneration, revealing that
NSCs exhibit a significant “pro-rejuvenating proximity effect” on
neighboring cells—meaning their spatial positioning can markedly
suppress aging phenotypes in surrounding cells. This effect could
not be captured by traditional non-spatial analyses and represents
the first quantification of NSCs-mediated regenerative regulation
within tissue microenvironments, highlighting the critical value of
Al in deciphering spatial functions of rare cell types (Sun et al,
2025). Spatial Genomic Analysis (SGA) is a quantitative single-cell
transcriptome analysis method that uses single-molecule imaging
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of up to one hundred gene transcripts, applicable to various in situ
applications, and capable of identifying subpopulations within the
dorsal neural tube neural crest niche ( ).
developed a ML-based image analysis pipeline
to identify single-cell contours from 3D image stacks and defined a
neural crest stem cell niche centered around the dorsal midline.
The application of these ML techniques enables a clearer
depiction of the spatial environment of NSCs, revealing their
interactions with surrounding cells and their effects on tissue
regeneration and aging and providing an important theoretical
foundation and technical support for future precise interventions
targeting NSCs functions. A profound insight from this line of
research is the demonstration of non-cell-autonomous functions
of NSCs, as evidenced by the “pro-rejuvenating proximity effect”
( ), which underscores their role in modulating tissue
homeostasis beyond cell-autonomous activities. When applying
these spatial analysis techniques, it is important to consider
current limitations, including the resolution and molecular capture
efficiency of spatial technologies that may affect the delineation of
fine-scale interactions ( ), and the computational
challenges associated with integrating heterogeneous spatial
datasets.

2.4 ML-driven deconstruction of neural
differentiation dynamics

Neural differentiation is fundamental to nervous system
development and regeneration. A deep understanding of its
dynamic regulatory mechanisms is crucial for elucidating the
pathology of neurodevelopmental diseases and developing
regenerative medical therapies. However, neural differentiation
efficiency varies significantly among different cell lines, and
its regulatory mechanisms are complex and diverse, making
comprehensive analysis challenging with traditional experimental
methods. Therefore, employing advanced ML approaches to
systematically deconstruct neural differentiation dynamics has
become an important means to advance research in this field.

applied the ML pipeline CellBiAge to
analyze single-cell transcriptomic data, accurately classifying
the age of individual cells in the mouse brain and successfully
capturing the promoting effect of exercise on the regenerative
capacity of proliferative NSCs in the subventricular zone (SVZ).

developed a ML model to capture and
predict the complex relationships among 5-methylcytosine
(5-mQC), (5-hmC), and
accessibility (ChrAcc), enabling prediction of past, present, and

5-hydroxymethylcytosine chromatin
future chromatin accessibility states and thereby elucidating

neural progenitor differentiation processes.

employed a ML-based non-linear feature selection
method, HSIC Lasso (Hilbert-Schmidt Independence Criterion
Lasso), to analyze genome-wide DNA methylation data of
32 human induced pluripotent stem cell (hiPSC) lines in the
undifferentiated state along with their neural differentiation
efficiencies. They successfully identified 62 CpG sites significantly
associated with neural differentiation efficiency from the entire
epigenome, establishing for the first time a predictive model

of neural differentiation capacity based on epigenetic features
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of undifferentiated hiPSCs. This provides key biomarkers for
efficiently screening cell lines suitable for neural differentiation
studies ( ).

These ML techniques demonstrate powerful data mining
and predictive capabilities in deciphering neural differentiation
dynamics. They not only reveal critical epigenetic markers
associated with differentiation efficiency but also achieve precise
modeling of cellular age and chromatin states, offering essential
tools and theoretical foundations for understanding neural
development mechanisms and optimizing stem cell differentiation
strategies. The significant advancement here lies in the ability
to integrate multi-scale data to link pre-existing molecular
signatures, such as epigenetic states in undifferentiated cells
( ), with their future differentiation potential,
thereby offering a predictive, systems-level perspective on NSC
fate determination. To fully leverage these models, awareness of
their limitations is essential, including their dependence on high-
quality, longitudinally sampled data that can be resource-intensive
to acquire ( ; ), and the fact that
they often yield correlative predictions that necessitate further
experimental validation to establish causative mechanisms.

2.5 Early non-invasive prediction of
differentiation fate mediated by deep
learning

Neural stem cells differentiation has long faced several key
challenges. First, the differentiation process is highly complex
and uncontrollable: NSCs differentiate into neurons, astrocytes, or
oligodendrocytes through dynamic gene networks and interactions
with microenvironmental factors. Traditional experiments require
5-7 days to verify results via immunofluorescence or Western blot,
which is time-consuming and inefficient ( ;

; ). Second, early morphological
clues during differentiation (<48 h), such as cell body contraction
and nuclear displacement, though indicative of fate, are difficult
to quantify precisely by manual observation ( ).
Additionally, clinical translation is hindered by the randomness of
differentiation direction, leading to unstable neuron proportions
after transplantation ( ). Therefore, early prediction
of NSC differentiation direction could overcome time window
limitations, accelerate cell therapy development, and provide a basis
for personalized neural regeneration.

developed a model based on the Xception
convolutional neural network to detect very subtle morphological
changes in bright-field single-cell images. This approach enables
highly accurate prediction of neuron/glial fate within only 0.5-
1 day after differentiation initiation, much faster than the
traditional 5 days using label-free bright-field images. They
also introduced class activation mapping (CAM) to localize
key decision regions at the cell edges and internal details,
providing morphological clues for differentiation mechanisms
( ). Forster applied deep learning to characterize
developmental changes in neural progenitor cells by accurately
identifying and quantifying different cell types (including radial
glia, neurons, astrocytes, and oligodendrocytes) in migration
regions, demonstrating robustness against typical confounding
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factors ( ). used Raman
spectroscopy to obtain biochemical feature data during NSC
differentiation and applied ML for data processing and model
building to distinguish NSCs from neurons. This enabled real-
time, accurate tracking of NSC differentiation at the single-
cell level, offering an efficient strategy for clinical applications
( ). employed the Google
Cloud AutoML Vision platform to develop a ML model based
on calcium spark waveform images, analyzing ATP-triggered
calcium responses in human induced pluripotent stem cell-derived
NSCs (iNSCs) and achieving high-precision classification of iNSC
calcium response waveforms. This capability marks a paradigm
shift toward recognizing early biomechanical and morphological
changes as determinative events in fate commitment (

). A crucial aspect of employing these advanced prediction
tools involves navigating their limitations, such as the “black box”
nature of deep learning models where the underlying biological
mechanisms can remain elusive despite techniques like CAM (

), and potential constraints in model generalizability

across different cell lines and culture conditions.

These deep learning technologies ( ) enable rapid,

non-invasive prediction of NSC differentiation fate, significantly

shortening traditional detection times, achieving high-precision

automated identification, and advancing neural differentiation
research and clinical applications.

With the rapid development of AI technologies, many
techniques successfully applied in fields outside of NSCs research
show great potential for advancing studies in this area. The
following are several key AI technologies that have not yet
been widely applied to NSCs research, along with their potential
applications ( ).

Generative Adversarial Networks (GAN) are deep learning
models used to generate new data by producing synthetic samples
that resemble real data during training.
utilized conditional GANs (CGAN) to study the segmentation of
cancer stem cells in phase-contrast imaging. Similarly, in NSC
research, GANs can be employed to generate high-quality cell
images, assisting researchers in analysis when data are scarce.
Moreover, GAN can be used for data augmentation by generating
cell images with various transformations, thereby improving the
robustness and accuracy of models. This approach could be
particularly valuable when integrated with the early fate prediction
methods discussed in section 2.5 “Early non-invasive prediction
of differentiation fate mediated by deep learning potentially
enabling researchers to explore causal relationships between
specific morphological features and differentiation outcomes,
thereby moving beyond correlative analyses to testable causal
hypotheses.

Graph Neural Networks (GNN) are deep learning models
designed to handle graph-structured data, effectively capturing
relationships and structural information among nodes.

found that GNN outperform traditional ML
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methods in predicting drug-gene interactions within the RTK-
VEGF protein family during periodontal regeneration. Likewise,
in NSC research, GNN can be applied to analyze cell-cell
interaction networks, revealing the dynamic behaviors of NSCs
within their microenvironment. For example, GNN can help
identify signaling pathways between different cell types, thereby
improving understanding of how NSCs self-renew and differentiate
in specific microenvironments. By constructing dynamic models of
the NSC niche interactions described in section “2.3 ML-driven
deconstruction of the NSCs spatial microenvironment,” GNNs
could provide insights into how network perturbations propagate
through the cellular microenvironment, potentially identifying
critical regulatory nodes that control NSC fate decisions at a
systems level.

Geometric Deep Learning (GDL) is a deep learning approach
for processing non-Euclidean data such as point clouds and meshes,
effectively capturing complex shapes and structural information.
The three-dimensional (3D) morphology of cells, arising from
intricate cell-environment interactions, serves as an indicator of
combined GDL with
attention-based multiple instance learning pipelines to characterize
the 3D shapes of cells and nuclei. In NSC research, GDL can
similarly be used to analyze morphological changes of cells and

cell state and function.

identify features at different developmental stages. When applied
to complement the subtype analysis in section “2.2 Deep learning-
driven in-depth analysis of NSCs subtypes,” GDL could help
establish meaningful correlations between cellular morphology and
molecular identity, potentially enabling image-based prediction of
NSC states and functional potential.

Self-supervised learning (SSL) is a technique that automatically
learns effective feature representations from unlabeled data. This
approach has demonstrated strong performance in fields such
as image processing and natural language processing and is
especially suitable for biomedical scenarios where labeled data is
scarce. developed a deep learning model
based on SSL for automated diagnosis and precise classification
of neuroblastoma. In NSCs research, SSL can similarly leverage
large amounts of unannotated cell images or single-cell sequencing
data to automatically extract key features such as cell morphology
and gene expression, thereby reducing reliance on expensive and
time-consuming manual annotation and improving the model’s
generalization ability and robustness. Applied to the differentiation
dynamics discussed in section “2.4 ML-driven deconstruction of
neural differentiation dynamics,” SSL could facilitate the discovery
of novel differentiation trajectories or intermediate states that may
be overlooked by supervised approaches, thereby providing a more
comprehensive understanding of NSC lineage commitment.

Reinforcement Learning (RL) in cell biology research can
achieve precise regulation and functional enhancement of cell
behavior through dynamic interaction between agents and the
environment, continuously optimizing experimental strategies
based on feedback signals. used deep RL to
infer intercellular interactions and collective cell behavior in tissue
morphogenesis from 3D delayed images, in order to examine cell
migration. In NSCs research, RL can be used to optimize cell
culture conditions, differentiation induction schemes, and drug
screening processes. When combined with the early prediction
capabilities described in section “2.5 Early non-invasive prediction
of differentiation fate mediated by deep learning,” RL could enable
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TABLE1 Summary of Al Technologies applied in NSC research.

Al technology

ML-based
recognition

Automated NSC counting,
localization, and division

tracking

Quantitative analysis of NSC
proliferation dynamics and
spatial distribution in tissues

Sensitive to image qua.lity;
requires expert annotation;

performance varies across tissue

types

10.3389/fncel.2025.1696943

Key applications Biological insight Limitations / References
gained challenges

Casas Gimeno et al., 2023;
Dumitru et al., 2025; Hailstone
etal., 2020

DL-based subtype
analysis

Identification of NSC subtypes
and developmental trajectories

Revealed continuum of NSC
states and molecular
heterogeneity underlying
differentiation capacity

Requires large datasets;
computational intensity; batch
effect sensitivity; may
oversimplify dynamics

Chen et al., 2018; Dulken et al.,
2017; Xie et al., 2020

Key Al technologies not yet applied to NSC research.

ML for spatial Mapping NSC-niche Uncovered non-cell-autonomous Computationally intensive; Marymonchyk et al., 2025; Sun
analysis interactions; analyzing spatial mechanisms (e.g., limited by resolution and etal., 2025
transcriptomics pro-rejuvenating effect of NSCs) coverage of spatial technologies
ML for Modeling epigenetic regulation; Linked pre-programmed Limited by sample size and Sekiya et al., 2022; Yu et al,,
differentiation predicting differentiation epigenetic patterns and external temporal resolution of data; 2023
dynamics efficiency stimuli to NSC fate predictions are often correlative
DL for fate Early morphology-based fate Demonstrated that early Limited generalizability across Zhu et al., 2021
prediction classification biomechanical cues precede conditions; lack of mechanistic
molecular commitment in explanation; "black box" problem
differentiation
GAN GNN GDL SSL RL WL
% % ’ = gl
Generative Adversarial Graph Neural Geometric Deep Self-supervised i i
Networks Network Leaming learning Learning learning
Image G i I fon Network ical Analysis  Feature Extraction  Strategy Optimization Data Fusion
Generate high-quality Reveal cell-to-cell Analyze three-dimensional Automatically extract key ~ Optimize culture and Integrate multi-source
cell images and alleviate interaction networks i of cells i iation strategies data to interpret cell states
data scarcity
FIGURE 2

adaptive optimization of differentiation protocols in real-time,
potentially uncovering optimal temporal sequences of cues that
maximize differentiation efficiency toward specific lineages.

Multimodal learning (MML) aims to integrate information
from different types of data—such as images, gene expression,
spatial transcriptomics, and electron microscopy images—to
construct more comprehensive cellular representation models.
Khodaee et al. (2025) developed a MML model that can explore
genotype-phenotype relationships in human transcriptomics at the
cellular level. NSCs research also involves various heterogeneous
data types, and traditional single-modality analyses struggle to
reveal the complex cellular states and functional relationships.
Through MML, morphological, molecular, and spatial information
can be integrated to deeply investigate NSCs developmental
trajectories, microenvironmental influences, and differentiation
fates. This approach could unify the spatial context from
section “2.3 ML-driven deconstruction of the NSCs spatial
microenvironment” with molecular profiles from section “2.2
Deep learning-driven in-depth analysis of NSCs subtypes” and
morphological data from section “2.5 Early non-invasive prediction
of differentiation fate mediated by deep learning,” creating unified
models that bridge genetic information with functional outcomes
across multiple biological scales.
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This summary highlights the potential applications, biological
insights, and synergistic opportunities with established methods
presented by these emerging Al technologies (Table 2). Integrating
these tools with current approaches has the potential to overcome
prevalent challenges in the field, such as data scarcity and limited
model interpretability, thereby shedding new light on neural stem
cell biology. Importantly, the path to successful application involves
addressing key hurdles like data quality and algorithm robustness,
which are discussed in the subsequent section.

4 Challenges faced: data quality,
model robustness, and
interpretability

Although AI technology shows great potential in NSCs
research, its application still faces multiple challenges, particularly
in terms of data quality, model robustness, and interpretability.
First, data quality and standardization issues are key bottlenecks
limiting AI model performance. NSCs experimental data often
come from various high-throughput technologies such as single-
cell RNA sequencing, proteomics, and microscopy imaging. These
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TABLE 2 Potential of emerging Al technologies in NSC research.

Al technology Key applications in

NSC research

Expected biological

insights

10.3389/fncel.2025.1696943

Integration potential with section “2 The
paradigm shift in NSCs basic research
driven by Al” methods

GANs Data augmentation; Synthetic Causal relationships between With section “2.5 Early non-invasive prediction of
image generation morphology and cell fate differentiation fate mediated by deep learning”: Testing causality
in fate determination
GNNs Dynamic modeling of cell-cell Systems-level understanding of With section “2.3 ML-driven deconstruction of the NSCs spatial
interactions niche regulation microenvironment”: Predicting niche perturbation effects
GDL 3D morphological analysis Linking cell shape to functional With section “2.2 Deep learning-driven in-depth analysis of
potency NSCs subtypes”: Defining morpho-molecular subtypes
SSL Unsupervised feature learning Discovering novel NSC states and | With section “2.4 ML-driven deconstruction of neural
trajectories differentiation dynamics”: Identifying differentiation
heterogeneity
RL Optimization of culture Decoding temporal rules of With section “2.5 Early non-invasive prediction of
conditions differentiation differentiation fate mediated by deep learning”: Dynamic
protocol optimization
MML Multi-scale data integration Unified models connecting With sections “2.2 Deep learning-driven in-depth analysis of
genotype to phenotype NSCs subtypes”/“2.3 ML-driven deconstruction of the NSCs
spatial microenvironment”/“2.5 Early non-invasive prediction of
differentiation fate mediated by deep learning”: Cross-modal
data correlation

data typically suffer from high noise levels, significant batch
effects, limited sample sizes, and strong heterogeneity. Noise
and sequencing errors can introduce bias during model training,
affecting prediction accuracy and stability. Moreover, inconsistent
data standards across different laboratories and platforms further
complicate data integration and model generalization. Therefore,
effective preprocessing, standardization, and quality control of
NSCs data are fundamental to improving AI model reliability.

Second, the robustness of models faces significant challenges.
The complexity and diversity of NSCs data cause model
performance to degrade when confronted with noise, missing
data, or distribution shifts. Existing models are often sensitive
to data perturbations and lack sufficient generalization ability,
making it difficult to handle data variations arising from different
experimental conditions or clinical settings. Furthermore, models
tend to overfit or produce unstable predictions when dealing with
small sample sizes, high-dimensional, and heterogeneous data. To
improve model robustness, it is necessary to design more effective
regularization strategies, employ reinforcement learning methods,
and utilize adversarial training techniques to enhance model
stability and generalization across various complex environments.

Finally, the "black-box" nature of AI models limits their
application in both clinical and basic research. Many deep learning
models have complex structures and opaque decision-making
processes, making it difficult for researchers to understand the
reasoning logic and key driving factors behind their predictions.
This not only affects the credibility of scientific discoveries but
also hinders the adoption of AI technologies in clinical diagnosis
and treatment. As NSCs research moves toward clinical translation,
model interpretability and transparency become increasingly
important. Developing explainable AI (XAI) methods will help
enhance trust in research findings, facilitate interdisciplinary
collaboration, and promote clinical adoption.

Looking ahead, advancing AI applications in the NSCs
field hinges on building high-quality, standardized multimodal

Frontiers in Cellular Neuroscience

data platforms to ensure data reliability and consistency. At
the same time, integrating biological knowledge into hybrid
models is necessary to enhance model robustness and biological
interpretability. Promoting innovations in explainable AI (XAI)
technologies will improve model transparency and credibility,
fostering closer integration between basic research and clinical
applications, while strengthening interdisciplinary collaboration
and data sharing.

Although current applications of AI technologies in NSC
research remain relatively limited, these emerging techniques
are expected to play increasingly significant roles as they
continue to develop and mature. By integrating advanced
technologies such as GNN, GAN, and GDL et.al, researchers
will be able to achieve a more comprehensive understanding
of the biological characteristics, differentiation mechanisms, and
regenerative potential of NSCs. This not only provides new tools
for basic research but also opens up new possibilities for clinical
applications and personalized therapies.
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