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Neural stem cells (NSCs) hold significant potential in neural regenerative

medicine, yet research faces multiple challenges such as cellular heterogeneity,

unclear microenvironment interactions, and low clinical translation efficiency.

In recent years, the rapid development of artificial intelligence (AI) technologies

has provided new ideas and tools to address these issues. This paper reviews the

current applications of AI in fundamental NSCs research, including intelligent

identification, deep learning-driven subtype analysis, spatial microenvironment

deconstruction, and dynamic analysis of neural differentiation. Additionally,

we discuss several key AI technologies not yet applied to NSCs research,

such as generative adversarial networks, graph neural networks, and self-

supervised learning, as well as their potential applications in cell classification,

interaction network analysis, and morphological feature extraction. Although

AI technologies show great promise in NSCs research, challenges remain

regarding data quality, model robustness, and interpretability. Therefore,

future research should focus on establishing high-quality standardized

multimodal data platforms and integrating biological knowledge to enhance

model interpretability, thereby deepening the understanding of NSCs

biological characteristics and differentiation mechanisms and advancing

personalized therapies.

KEYWORDS

neural stem cells, artificial intelligence, deep learning, machine learning, computational
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1 Introduction

Neural stem cells (NSCs) are a type of multipotent cells present in both the
embryonic and adult central nervous system, possessing self-renewal capacity and the
ability to differentiate into neurons, astrocytes, and oligodendrocytes (Kriegstein and
Alvarez-Buylla, 2009; Nam et al., 2015; Reynolds and Weiss, 1992). They demonstrate
revolutionary potential in neural regenerative medicine, capable of repairing neuronal
loss in neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases through
transplantation (Deokate et al., 2024; Olanow et al., 2003), promoting neural pathway
reconstruction after spinal cord injury and stroke (Jiang et al., 2017; Tang et al., 2017),
and providing alternative cell sources for glial cell injury-related diseases like multiple
sclerosis (Encinas and Fitzsimons, 2017; Mouhieddine et al., 2014). However, current
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research faces multiple bottlenecks: (1) Challenges in cell 
identification and heterogeneity: NSCs lack specific molecular 
markers, making it diÿcult to precisely isolate quiescent and 
activated subpopulations, and their dierentiation potential often 
shifts after in vitro expansion (e.g., reduced neuronal dierentiation 
capacity) (Ð. ̆ang et al., 2019; Encinas and Fitzsimons, 2017; Nam 
et al., 2015); (2) Unclear mechanisms of dierentiation control and 
microenvironmental interactions: the regulation of dierentiation 
by growth factor combinations is stochastic, and inflammatory 
microenvironments significantly inhibit transplanted cell survival 
(Deokate et al., 2024; Encinas and Fitzsimons, 2017; Mouhieddine 
et al., 2014); (3) Low eÿciency of clinical translation: human NSC 
samples are scarce, animal models fail to fully replicate human 
disease phenotypes, and transplanted cell survival rates are low 
(<10%) with side eects such as dyskinesia (Deokate et al., 2024; 
Nam et al., 2015; Olanow et al., 2003); (4) Barriers to multi-scale 
data integration: there is a lack of unified analytical frameworks for 
cross-omics, imaging, and electrophysiological data, and reliance 
on manual processing leads to low eÿciency and high bias 
(Pathan et al., 2022; Ramakrishna et al., 2020). In recent years, 
the rapid development of artificial intelligence (AI) technologies 
has provided new ideas and tools to address these challenges. In 
this review, we will focus on the current applications of AI-related 
technologies in NSCs research. 

2 The paradigm shift in NSCs basic 
research driven by AI 

Currently, artificial intelligence technology in neural stem cell 
research is primarily focused on intelligent identification and 
localization of neural stem cells, precise determination of their 
subtypes, analysis of the microenvironment (niche) surrounding 
neural stem cells, elucidation of the dynamic dierentiation 
processes, and early-stage prediction of their fate decisions. These 
studies cover the core areas of neural stem cell research and 
have advanced the in-depth understanding of their biological 
characteristics and functional mechanisms (Figure 1). 

2.1 AI-enabled intelligent recognition 
techniques for NSCs 

Neural stem cells play a critical role in nervous system 
development, regeneration, and repair, making their precise 
localization and identification crucial. Traditional cell identification 
methods are often limited by the scarcity of cells and significant 
individual variability, posing challenges to the accurate localization 
of NSCs. With the advancement of AI technologies, especially the 
application of machine learning (ML) algorithms, new solutions 
have emerged for the automated recognition of NSCs. 

Dumitru et al. (2025) in their analysis of adult hippocampal 
samples, first performed preliminary screening of cells using 
antibody labeling of the proliferation marker Ki67, followed by 
deep recognition and classification of cell features through ML 
algorithms, successfully identifying proliferative neural progenitor 
cells. This technological breakthrough overcame the limitations 
of traditional methods and eectively addressed the challenges of 

precise localization caused by low cell numbers and high individual 
variability (Dumitru et al., 2025). Hailstone et al. (2020) employed 
supervised ML algorithms to develop CytoCensus, which, trained 
by user clicks on cell centers, enables automatic identification, 
counting, and quantification of division behaviors of NSCs and 
their derivatives without relying on specific cell markers or 
custom programming. Mateo et al. (2015) used ML methods 
to identify gene regulatory features associated with NSCs self-
renewal, dierentiation, and quiescent states. Ogi et al. (2019) 
modeled hyperspectral data using ML to achieve non-destructive 
classification of neurons and glial cells, providing a novel approach 
for precise cell type identification. 

In the study of early neurogenesis in the zebrafish forebrain 
(telencephalon), Stringer et al. (2021) used the ML-based 3D cell 
segmentation algorithm Cellpose, to quantify the total number of 
progenitor cells and neurons during the first phase of telencephalon 
development, particularly focusing on how NSCs transition from 
proliferative divisions to neurogenic divisions (Casas Gimeno et al., 
2023). Smith et al. (2017) applied the CoNTexT ML algorithm to 
exon expression array data to determine the regional characteristics 
and developmental maturity of NSCs in both 2D and 3D cultures. 

The application of these AI-related technologies provides 
strong support for the intelligent identification of NSCs and lays the 
foundational groundwork for further NSC research. Importantly, 
these approaches have transformed our understanding by enabling 
quantitative analysis of NSC behavior within their native tissue 
context. Nevertheless, the eectiveness of these tools can be 
influenced by factors such as the requirement for high-quality 
annotated data for training (Hailstone et al., 2020; Stringer et al., 
2021) and potential sensitivity to complex tissue architectures 
and imaging conditions, which may impact generalizability across 
diverse experimental settings. 

2.2 Deep learning-driven in-depth 
analysis of NSCs subtypes 

Neural stem cells are crucial components in nervous system 
development and regeneration. Based on developmental stages, 
anatomical locations, and molecular characteristics, NSCs can 
be classified into dierent subtypes, which exhibit significant 
dierences in dierentiation capacity and function. Dierent NSCs 
subpopulations express specific markers such as Sox2, Pax6, and 
Nestin, but their expression levels show notable heterogeneity. For 
example, cells with high Sox2 expression tend to maintain a stem 
cell state, whereas cells with high Pax6 expression are more prone 
to dierentiate into neurons. This dierence in dierentiation 
potential provides important clues for understanding neural 
development and regeneration (Galiakberova and Dashinimaev, 
2020). Functionally, NSCs can be divided into quiescent NSCs 
(qNSCs) and activated NSCs (aNSCs). qNSCs are in the G0 phase, 
primarily rely on lipid oxidation for metabolism, and highly express 
adhesion molecules (such as genes related to the Notch pathway), 
thereby maintaining their stem cell characteristics (Ding et al., 
2020; Yu et al., 2024). In contrast, aNSCs shift their metabolism 
toward mitochondrial oxidation, can initiate neurogenesis, and 
can be further subdivided into pre-activated and proliferative 
states (Dimitrakopoulos et al., 2022; Ding et al., 2020). Eectively 
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FIGURE 1 

The main application directions of artificial intelligence in NSCs research at present. NSCs, neural stem cells. 

distinguishing between quiescent and activated NSC subtypes 
helps deepen the understanding of neurogenesis and the dynamic 
regulatory mechanisms of stem cells, thereby promoting research 
into neural regeneration and repair. 

Dulken et al. performed an in-depth analysis of NSC subtypes 
using Monocle ordering and found that aNSCs can be further 
subdivided into specific subgroups, including aNSC-early, aNSC-
mid, and aNSC-late, each characterized by distinct surface 
markers and key intracellular regulators. This finding provides 
a new perspective on the functional diversity of NSCs (Dulken 
et al., 2017). Xie et al. developed a tool named scAIDE, an 
unsupervised deep learning clustering framework for single-cell 
RNA sequencing (scRNA-seq) data, aimed at identifying rare and 
potential cell types. To overcome the high noise in the data, 
scAIDE first combines an autoencoder imputation network with 
an anchor-based embedding network (AIDE) to learn eective 
data representations, then applies random projection hashing 
combined with a k-means algorithm to detect rare cell types. 
In a large dataset containing 1.3 million neural cells, scAIDE 
successfully identified 64 clusters mapped to 19 potential cell 
types, including NSCs and progenitor cells. Moreover, scAIDE was 
able to identify three distinct developmental trajectories of NSCs, 
providing important insights into the dierentiation process of 
NSCs (Xie et al., 2020). Chen et al. (2018) used Monte Carlo Feature 
Selection (MCFS) to analyze gene expression data from three 
NSC subtypes—quiescent NSCs (qNSCs), activated NSCs (aNSCs), 
and neural progenitor cells (NPCs)—to identify their molecular 
characteristics and classification markers. After selecting key gene 
expression features with the MCFS algorithm, they combined these 
with a Support Vector Machine (SVM) to construct a predictive 
model, which was evaluated using ten-fold cross-validation. The 
model achieved a high classification accuracy with a Matthews 
correlation coeÿcient (MCC) of 0.918. Additionally, the MCFS 
algorithm generated classification rules distinguishing the three 
subtypes, revealing subtype-specific gene expression patterns and 
their dynamic changes during NSCs lineage dierentiation (Chen 
et al., 2018). Chen et al. (2024) employed ML-based algorithms to 
construct a consensus brain cell atlas with annotated cell types, 
demonstrating the presence of neural progenitor subpopulations 
in the brain. The application of these AI technologies has not 
only enabled high-precision classification of NSCs subtypes but 
also elucidated their gene expression features, providing new 
insights into the molecular basis of neural development. These 
methodologies have significantly refined our conceptual framework 

by revealing a continuum of NSC activation states (Dulken 
et al., 2017) and complex developmental trajectories25, thereby 
enhancing the understanding of NSC heterogeneity in neural 
development. A key consideration in leveraging these powerful 
tools is addressing challenges such as the inherent noise and batch 
eects in single-cell data that can complicate the discernment of 
true biological variation (Xie et al., 2020), and the recognition 
that trajectory inference models might oversimplify the dynamic, 
potentially non-linear nature of NSC state transitions in vivo. 

2.3 ML-driven deconstruction of the 
NSCs spatial microenvironment 

The function and fate of NSCs are significantly influenced 
by their microenvironment, and understanding the spatial 
microenvironment these cells reside in is crucial for revealing 
their biological characteristics and regenerative capacity. Cell 
interactions, signaling, and spatial distribution within the 
microenvironment play key roles in NSCs self-renewal and 
dierentiation. With the advancement of ML technologies, 
researchers are now able to more precisely map and analyze NSC 
behaviors within complex microenvironments. 

Marymonchyk et al. (2025) mapped an accurate spatiotemporal 
atlas of NSCs functional responses induced by multiple niche cell 
types within the subventricular zone NSCs niche of the adult mouse 
brain and utilized ML to predict interactions between NSCs and 
specific niche cell types. This study provides important data support 
for understanding the dynamic behavior of NSCs within their 
microenvironment (Marymonchyk et al., 2025). Sun et al. (2025) 
developed “spatial ageing clocks,” a ML-based tool trained on a 
single-cell resolution spatial transcriptomic atlas of 4.2 million cells 
in the mouse brain, covering 20 age groups and two regenerative 
interventions. This tool identifies spatial and cell type-specific 
transcriptomic features of aging and regeneration, revealing that 
NSCs exhibit a significant “pro-rejuvenating proximity eect” on 
neighboring cells—meaning their spatial positioning can markedly 
suppress aging phenotypes in surrounding cells. This eect could 
not be captured by traditional non-spatial analyses and represents 
the first quantification of NSCs-mediated regenerative regulation 
within tissue microenvironments, highlighting the critical value of 
AI in deciphering spatial functions of rare cell types (Sun et al., 
2025). Spatial Genomic Analysis (SGA) is a quantitative single-cell 
transcriptome analysis method that uses single-molecule imaging 
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of up to one hundred gene transcripts, applicable to various in situ 
applications, and capable of identifying subpopulations within the 
dorsal neural tube neural crest niche (Lignell and Kerosuo, 2002). 
Lignell et al. (2017) developed a ML-based image analysis pipeline 
to identify single-cell contours from 3D image stacks and defined a 
neural crest stem cell niche centered around the dorsal midline. 

The application of these ML techniques enables a clearer 
depiction of the spatial environment of NSCs, revealing their 
interactions with surrounding cells and their eects on tissue 
regeneration and aging and providing an important theoretical 
foundation and technical support for future precise interventions 
targeting NSCs functions. A profound insight from this line of 
research is the demonstration of non-cell-autonomous functions 
of NSCs, as evidenced by the “pro-rejuvenating proximity eect” 
(Sun et al., 2025), which underscores their role in modulating tissue 
homeostasis beyond cell-autonomous activities. When applying 
these spatial analysis techniques, it is important to consider 
current limitations, including the resolution and molecular capture 
eÿciency of spatial technologies that may aect the delineation of 
fine-scale interactions (Sun et al., 2025), and the computational 
challenges associated with integrating heterogeneous spatial 
datasets. 

2.4 ML-driven deconstruction of neural 
differentiation dynamics 

Neural dierentiation is fundamental to nervous system 
development and regeneration. A deep understanding of its 
dynamic regulatory mechanisms is crucial for elucidating the 
pathology of neurodevelopmental diseases and developing 
regenerative medical therapies. However, neural dierentiation 
eÿciency varies significantly among dierent cell lines, and 
its regulatory mechanisms are complex and diverse, making 
comprehensive analysis challenging with traditional experimental 
methods. Therefore, employing advanced ML approaches to 
systematically deconstruct neural dierentiation dynamics has 
become an important means to advance research in this field. 

Yu et al. (2023) applied the ML pipeline CellBiAge to 
analyze single-cell transcriptomic data, accurately classifying 
the age of individual cells in the mouse brain and successfully 
capturing the promoting eect of exercise on the regenerative 
capacity of proliferative NSCs in the subventricular zone (SVZ). 
Guerin et al. (2025) developed a ML model to capture and 
predict the complex relationships among 5-methylcytosine 
(5-mC), 5-hydroxymethylcytosine (5-hmC), and chromatin 
accessibility (ChrAcc), enabling prediction of past, present, and 
future chromatin accessibility states and thereby elucidating 
neural progenitor dierentiation processes. Sekiya et al. 
(2022) employed a ML–based non-linear feature selection 
method, HSIC Lasso (Hilbert-Schmidt Independence Criterion 
Lasso), to analyze genome-wide DNA methylation data of 
32 human induced pluripotent stem cell (hiPSC) lines in the 
undierentiated state along with their neural dierentiation 
eÿciencies. They successfully identified 62 CpG sites significantly 
associated with neural dierentiation eÿciency from the entire 
epigenome, establishing for the first time a predictive model 
of neural dierentiation capacity based on epigenetic features 

of undierentiated hiPSCs. This provides key biomarkers for 
eÿciently screening cell lines suitable for neural dierentiation 
studies (Sekiya et al., 2022). 

These ML techniques demonstrate powerful data mining 
and predictive capabilities in deciphering neural dierentiation 
dynamics. They not only reveal critical epigenetic markers 
associated with dierentiation eÿciency but also achieve precise 
modeling of cellular age and chromatin states, oering essential 
tools and theoretical foundations for understanding neural 
development mechanisms and optimizing stem cell dierentiation 
strategies. The significant advancement here lies in the ability 
to integrate multi-scale data to link pre-existing molecular 
signatures, such as epigenetic states in undierentiated cells 
(Sekiya et al., 2022), with their future dierentiation potential, 
thereby oering a predictive, systems-level perspective on NSC 
fate determination. To fully leverage these models, awareness of 
their limitations is essential, including their dependence on high-
quality, longitudinally sampled data that can be resource-intensive 
to acquire (Sekiya et al., 2022; Yu et al., 2023), and the fact that 
they often yield correlative predictions that necessitate further 
experimental validation to establish causative mechanisms. 

2.5 Early non-invasive prediction of 
differentiation fate mediated by deep 
learning 

Neural stem cells dierentiation has long faced several key 
challenges. First, the dierentiation process is highly complex 
and uncontrollable: NSCs dierentiate into neurons, astrocytes, or 
oligodendrocytes through dynamic gene networks and interactions 
with microenvironmental factors. Traditional experiments require 
5–7 days to verify results via immunofluorescence or Western blot, 
which is time-consuming and ineÿcient (Liu et al., 2013; Wang 
and Barres, 2000; Wang et al., 2012). Second, early morphological 
clues during dierentiation (<48 h), such as cell body contraction 
and nuclear displacement, though indicative of fate, are diÿcult 
to quantify precisely by manual observation (Zhu et al., 2021). 
Additionally, clinical translation is hindered by the randomness of 
dierentiation direction, leading to unstable neuron proportions 
after transplantation (Zhu et al., 2021). Therefore, early prediction 
of NSC dierentiation direction could overcome time window 
limitations, accelerate cell therapy development, and provide a basis 
for personalized neural regeneration. 

Zhu et al. (2021) developed a model based on the Xception 
convolutional neural network to detect very subtle morphological 
changes in bright-field single-cell images. This approach enables 
highly accurate prediction of neuron/glial fate within only 0.5– 
1 day after dierentiation initiation, much faster than the 
traditional 5 days using label-free bright-field images. They 
also introduced class activation mapping (CAM) to localize 
key decision regions at the cell edges and internal details, 
providing morphological clues for dierentiation mechanisms 
(Zhu et al., 2021). Forster applied deep learning to characterize 
developmental changes in neural progenitor cells by accurately 
identifying and quantifying dierent cell types (including radial 
glia, neurons, astrocytes, and oligodendrocytes) in migration 
regions, demonstrating robustness against typical confounding 
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factors (Förster et al., 2022). Geng et al. (2021) used Raman 
spectroscopy to obtain biochemical feature data during NSC 
dierentiation and applied ML for data processing and model 
building to distinguish NSCs from neurons. This enabled real-
time, accurate tracking of NSC dierentiation at the single-
cell level, oering an eÿcient strategy for clinical applications 
(Geng et al., 2021). Hanafusa et al. (2023) employed the Google 
Cloud AutoML Vision platform to develop a ML model based 
on calcium spark waveform images, analyzing ATP-triggered 
calcium responses in human induced pluripotent stem cell-derived 
NSCs (iNSCs) and achieving high-precision classification of iNSC 
calcium response waveforms. This capability marks a paradigm 
shift toward recognizing early biomechanical and morphological 
changes as determinative events in fate commitment (Zhu et al., 
2021). A crucial aspect of employing these advanced prediction 
tools involves navigating their limitations, such as the “black box” 
nature of deep learning models where the underlying biological 
mechanisms can remain elusive despite techniques like CAM (Zhu 
et al., 2021), and potential constraints in model generalizability 
across dierent cell lines and culture conditions. 

These deep learning technologies (Table 1) enable rapid, 
non-invasive prediction of NSC dierentiation fate, significantly 
shortening traditional detection times, achieving high-precision 
automated identification, and advancing neural dierentiation 
research and clinical applications. 

3 Key AI technologies not yet 
applied to NSC research 

With the rapid development of AI technologies, many 
techniques successfully applied in fields outside of NSCs research 
show great potential for advancing studies in this area. The 
following are several key AI technologies that have not yet 
been widely applied to NSCs research, along with their potential 
applications (Figure 2). 

Generative Adversarial Networks (GAN) are deep learning 
models used to generate new data by producing synthetic samples 
that resemble real data during training. Aida et al. (2020) 
utilized conditional GANs (CGAN) to study the segmentation of 
cancer stem cells in phase-contrast imaging. Similarly, in NSC 
research, GANs can be employed to generate high-quality cell 
images, assisting researchers in analysis when data are scarce. 
Moreover, GAN can be used for data augmentation by generating 
cell images with various transformations, thereby improving the 
robustness and accuracy of models. This approach could be 
particularly valuable when integrated with the early fate prediction 
methods discussed in section 2.5 “Early non-invasive prediction 
of dierentiation fate mediated by deep learning,” potentially 
enabling researchers to explore causal relationships between 
specific morphological features and dierentiation outcomes, 
thereby moving beyond correlative analyses to testable causal 
hypotheses. 

Graph Neural Networks (GNN) are deep learning models 
designed to handle graph-structured data, eectively capturing 
relationships and structural information among nodes. Yadalam 
et al. (2024) found that GNN outperform traditional ML 

methods in predicting drug-gene interactions within the RTK-
VEGF protein family during periodontal regeneration. Likewise, 
in NSC research, GNN can be applied to analyze cell–cell 
interaction networks, revealing the dynamic behaviors of NSCs 
within their microenvironment. For example, GNN can help 
identify signaling pathways between dierent cell types, thereby 
improving understanding of how NSCs self-renew and dierentiate 
in specific microenvironments. By constructing dynamic models of 
the NSC niche interactions described in section “2.3 ML-driven 
deconstruction of the NSCs spatial microenvironment,” GNNs 
could provide insights into how network perturbations propagate 
through the cellular microenvironment, potentially identifying 
critical regulatory nodes that control NSC fate decisions at a 
systems level. 

Geometric Deep Learning (GDL) is a deep learning approach 
for processing non-Euclidean data such as point clouds and meshes, 
eectively capturing complex shapes and structural information. 
The three-dimensional (3D) morphology of cells, arising from 
intricate cell–environment interactions, serves as an indicator of 
cell state and function. De Vries et al. (2025) combined GDL with 
attention-based multiple instance learning pipelines to characterize 
the 3D shapes of cells and nuclei. In NSC research, GDL can 
similarly be used to analyze morphological changes of cells and 
identify features at dierent developmental stages. When applied 
to complement the subtype analysis in section “2.2 Deep learning-
driven in-depth analysis of NSCs subtypes,” GDL could help 
establish meaningful correlations between cellular morphology and 
molecular identity, potentially enabling image-based prediction of 
NSC states and functional potential. 

Self-supervised learning (SSL) is a technique that automatically 
learns eective feature representations from unlabeled data. This 
approach has demonstrated strong performance in fields such 
as image processing and natural language processing and is 
especially suitable for biomedical scenarios where labeled data is 
scarce. Ramesh et al. (2024) developed a deep learning model 
based on SSL for automated diagnosis and precise classification 
of neuroblastoma. In NSCs research, SSL can similarly leverage 
large amounts of unannotated cell images or single-cell sequencing 
data to automatically extract key features such as cell morphology 
and gene expression, thereby reducing reliance on expensive and 
time-consuming manual annotation and improving the model’s 
generalization ability and robustness. Applied to the dierentiation 
dynamics discussed in section “2.4 ML-driven deconstruction of 
neural dierentiation dynamics,” SSL could facilitate the discovery 
of novel dierentiation trajectories or intermediate states that may 
be overlooked by supervised approaches, thereby providing a more 
comprehensive understanding of NSC lineage commitment. 

Reinforcement Learning (RL) in cell biology research can 
achieve precise regulation and functional enhancement of cell 
behavior through dynamic interaction between agents and the 
environment, continuously optimizing experimental strategies 
based on feedback signals. Wang et al. (2022) used deep RL to 
infer intercellular interactions and collective cell behavior in tissue 
morphogenesis from 3D delayed images, in order to examine cell 
migration. In NSCs research, RL can be used to optimize cell 
culture conditions, dierentiation induction schemes, and drug 
screening processes. When combined with the early prediction 
capabilities described in section “2.5 Early non-invasive prediction 
of dierentiation fate mediated by deep learning,” RL could enable 
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TABLE 1 Summary of AI Technologies applied in NSC research. 

AI technology Key applications Biological insight 
gained 

Limitations / 
challenges 

References 

ML-based 

recognition 

Automated NSC counting, 
localization, and division 

tracking 

Quantitative analysis of NSC 

proliferation dynamics and 

spatial distribution in tissues 

Sensitive to image quality; 
requires expert annotation; 
performance varies across tissue 

types 

Casas Gimeno et al., 2023; 
Dumitru et al., 2025; Hailstone 

et al., 2020 

DL-based subtype 

analysis 
Identification of NSC subtypes 
and developmental trajectories 

Revealed continuum of NSC 

states and molecular 

heterogeneity underlying 

dierentiation capacity 

Requires large datasets; 
computational intensity; batch 

eect sensitivity; may 

oversimplify dynamics 

Chen et al., 2018; Dulken et al., 
2017; Xie et al., 2020 

ML for spatial 
analysis 

Mapping NSC-niche 

interactions; analyzing spatial 
transcriptomics 

Uncovered non-cell-autonomous 
mechanisms (e.g., 
pro-rejuvenating eect of NSCs) 

Computationally intensive; 
limited by resolution and 

coverage of spatial technologies 

Marymonchyk et al., 2025; Sun 

et al., 2025 

ML for 

dierentiation 

dynamics 

Modeling epigenetic regulation; 
predicting dierentiation 

eÿciency 

Linked pre-programmed 

epigenetic patterns and external 
stimuli to NSC fate 

Limited by sample size and 

temporal resolution of data; 
predictions are often correlative 

Sekiya et al., 2022; Yu et al., 
2023 

DL for fate 

prediction 

Early morphology-based fate 

classification 

Demonstrated that early 

biomechanical cues precede 

molecular commitment in 

dierentiation 

Limited generalizability across 
conditions; lack of mechanistic 

explanation; "black box" problem 

Zhu et al., 2021 

FIGURE 2 

Key AI technologies not yet applied to NSC research. 

adaptive optimization of dierentiation protocols in real-time, 
potentially uncovering optimal temporal sequences of cues that 
maximize dierentiation eÿciency toward specific lineages. 

Multimodal learning (MML) aims to integrate information 
from dierent types of data—such as images, gene expression, 
spatial transcriptomics, and electron microscopy images—to 
construct more comprehensive cellular representation models. 
Khodaee et al. (2025) developed a MML model that can explore 
genotype-phenotype relationships in human transcriptomics at the 
cellular level. NSCs research also involves various heterogeneous 
data types, and traditional single-modality analyses struggle to 
reveal the complex cellular states and functional relationships. 
Through MML, morphological, molecular, and spatial information 
can be integrated to deeply investigate NSCs developmental 
trajectories, microenvironmental influences, and dierentiation 
fates. This approach could unify the spatial context from 
section “2.3 ML-driven deconstruction of the NSCs spatial 
microenvironment” with molecular profiles from section “2.2 
Deep learning-driven in-depth analysis of NSCs subtypes” and 
morphological data from section “2.5 Early non-invasive prediction 
of dierentiation fate mediated by deep learning,” creating unified 
models that bridge genetic information with functional outcomes 
across multiple biological scales. 

This summary highlights the potential applications, biological 
insights, and synergistic opportunities with established methods 
presented by these emerging AI technologies (Table 2). Integrating 
these tools with current approaches has the potential to overcome 
prevalent challenges in the field, such as data scarcity and limited 
model interpretability, thereby shedding new light on neural stem 
cell biology. Importantly, the path to successful application involves 
addressing key hurdles like data quality and algorithm robustness, 
which are discussed in the subsequent section. 

4 Challenges faced: data quality, 
model robustness, and 
interpretability 

Although AI technology shows great potential in NSCs 
research, its application still faces multiple challenges, particularly 
in terms of data quality, model robustness, and interpretability. 
First, data quality and standardization issues are key bottlenecks 
limiting AI model performance. NSCs experimental data often 
come from various high-throughput technologies such as single-
cell RNA sequencing, proteomics, and microscopy imaging. These 
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TABLE 2 Potential of emerging AI technologies in NSC research. 

AI technology Key applications in 
NSC research 

Expected biological 
insights 

Integration potential with section “2 The 
paradigm shift in NSCs basic research 
driven by AI” methods 

GANs Data augmentation; Synthetic 

image generation 

Causal relationships between 

morphology and cell fate 

With section “2.5 Early non-invasive prediction of 
dierentiation fate mediated by deep learning”: Testing causality 

in fate determination 

GNNs Dynamic modeling of cell-cell 
interactions 

Systems-level understanding of 
niche regulation 

With section “2.3 ML-driven deconstruction of the NSCs spatial 
microenvironment”: Predicting niche perturbation eects 

GDL 3D morphological analysis Linking cell shape to functional 
potency 

With section “2.2 Deep learning-driven in-depth analysis of 
NSCs subtypes”: Defining morpho-molecular subtypes 

SSL Unsupervised feature learning Discovering novel NSC states and 

trajectories 
With section “2.4 ML-driven deconstruction of neural 
dierentiation dynamics”: Identifying dierentiation 

heterogeneity 

RL Optimization of culture 

conditions 
Decoding temporal rules of 
dierentiation 

With section “2.5 Early non-invasive prediction of 
dierentiation fate mediated by deep learning”: Dynamic 

protocol optimization 

MML Multi-scale data integration Unified models connecting 

genotype to phenotype 

With sections “2.2 Deep learning-driven in-depth analysis of 
NSCs subtypes”/“2.3 ML-driven deconstruction of the NSCs 
spatial microenvironment”/“2.5 Early non-invasive prediction of 
dierentiation fate mediated by deep learning”: Cross-modal 
data correlation 

data typically suer from high noise levels, significant batch 
eects, limited sample sizes, and strong heterogeneity. Noise 
and sequencing errors can introduce bias during model training, 
aecting prediction accuracy and stability. Moreover, inconsistent 
data standards across dierent laboratories and platforms further 
complicate data integration and model generalization. Therefore, 
eective preprocessing, standardization, and quality control of 
NSCs data are fundamental to improving AI model reliability. 

Second, the robustness of models faces significant challenges. 
The complexity and diversity of NSCs data cause model 
performance to degrade when confronted with noise, missing 
data, or distribution shifts. Existing models are often sensitive 
to data perturbations and lack suÿcient generalization ability, 
making it diÿcult to handle data variations arising from dierent 
experimental conditions or clinical settings. Furthermore, models 
tend to overfit or produce unstable predictions when dealing with 
small sample sizes, high-dimensional, and heterogeneous data. To 
improve model robustness, it is necessary to design more eective 
regularization strategies, employ reinforcement learning methods, 
and utilize adversarial training techniques to enhance model 
stability and generalization across various complex environments. 

Finally, the "black-box" nature of AI models limits their 
application in both clinical and basic research. Many deep learning 
models have complex structures and opaque decision-making 
processes, making it diÿcult for researchers to understand the 
reasoning logic and key driving factors behind their predictions. 
This not only aects the credibility of scientific discoveries but 
also hinders the adoption of AI technologies in clinical diagnosis 
and treatment. As NSCs research moves toward clinical translation, 
model interpretability and transparency become increasingly 
important. Developing explainable AI (XAI) methods will help 
enhance trust in research findings, facilitate interdisciplinary 
collaboration, and promote clinical adoption. 

Looking ahead, advancing AI applications in the NSCs 
field hinges on building high-quality, standardized multimodal 

data platforms to ensure data reliability and consistency. At 
the same time, integrating biological knowledge into hybrid 
models is necessary to enhance model robustness and biological 
interpretability. Promoting innovations in explainable AI (XAI) 
technologies will improve model transparency and credibility, 
fostering closer integration between basic research and clinical 
applications, while strengthening interdisciplinary collaboration 
and data sharing. 

Although current applications of AI technologies in NSC 
research remain relatively limited, these emerging techniques 
are expected to play increasingly significant roles as they 
continue to develop and mature. By integrating advanced 
technologies such as GNN, GAN, and GDL et.al, researchers 
will be able to achieve a more comprehensive understanding 
of the biological characteristics, dierentiation mechanisms, and 
regenerative potential of NSCs. This not only provides new tools 
for basic research but also opens up new possibilities for clinical 
applications and personalized therapies. 
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