:' frontiers ‘ Frontiers in Cellular Neuroscience

’ @ Check for updates

OPEN ACCESS

EDITED BY
Pu-Xian Gao,
University of Connecticut, United States

REVIEWED BY
Jorge Sierra Fonseca,
Chatham University, United States

*CORRESPONDENCE
Ana Karen Talavera-Pefia
a.talavera@correo.ler.uam.mx

RECEIVED 19 August 2025
REVISED 26 October 2025
AccepTED 04 November 2025
PUBLISHED 25 November 2025

CITATION
Abarca-Castro EA, Reyes-Lagos JJ, Guzman
Ramos K, Montiel-Castro AJ,

Arano-Varela H, Mayer-Villa PA,
Aguilar-Toala JE, Montesillo-Cedillo JL and
Talavera-Pefia AK (2025) Fetal development
and the air pollution exposome:

an integrative perspective of health
pathways.

Front. Cell. Neurosci. 19:1688437.

doi: 10.3389/fncel.2025.1688437

COPYRIGHT

© 2025 Abarca-Castro, Reyes-Lagos,
Guzman Ramos, Montiel-Castro,
Arano-Varela, Mayer-Villa, Aguilar-Toala,
Montesillo-Cedillo and Talavera-Pefia. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Cellular Neuroscience

TYPE Perspective
PUBLISHED 25 November 2025
pol 10.3389/fncel.2025.1688437

Fetal development and the air
pollution exposome: an
integrative perspective of health
pathways

Eric Alonso Abarca-Castro?, José Javier Reyes-Lagos?,

Kioko Guzman Ramos?, Augusto J. Montiel-Castro?,

Hypatia Arano-Varela!, Pablo Adolfo Mayer-Villa?,

Joseé Eleazar Aguilar-Toalal, José Luis Montesillo-Cedillo3 and
Ana Karen Talavera-Pena'*

!Biological and Health Sciences Division, Autonomous Metropolitan University-Lerma (UAM-L), Lerma,
Mexico, ?Department of Electrical Engineering, Bioelectronics Section, Center for Research

and Advanced Studies of the National Polytechnic Institute (Cinvestav), Mexico City, Mexico,
*Multidisciplinary Research Center in Education, Autonomous University of the State of Mexico,
Toluca, Mexico

We offer an integrative perspective on how the air-pollution exposome
shapes fetal development during the first 1,000 days and reverberates across
mental health and behavior. Pregnant individuals and young children are
disproportionately exposed to particulate matter (PM2.5), nitrogen dioxide
(NO;), ozone (Oz), and volatile organic compounds (VOCs) with social
disadvantage amplifying risk. We bridge exposure to biology through three
conduits. First, the placenta acts as a sensor and recorder, transducing
signals that alter growth, immune tone, and neuroendocrine programming.
Second, fetal autonomic control-captured by beat-to-beat fetal heart rate
variability (fHRV) offers a relevant biomarker of neurodevelopmental integrity;
the absence of direct ambient-pollution—fHRV studies is a pressing gap.
Third, maternal immune activation, oxidative and endoplasmic reticulum (ER)
stress, and disrupted morphogenesis reshape developing circuits, changes now
traceable in utero by advanced fetal MRI. These pathways fit a developmental-
programming frame: epigenetic remodeling, gene—environment interplay,
endocrine-disrupting co-exposures, and gut-microbiome shifts create durable
susceptibility. Clinically, the result is structural and functional brain alterations
and child phenotypes spanning attention, executive control, affecting regulation,
and learning, with clear pediatric and educational implications. We propose
an exposome-based research agenda coupling high-resolution exposure
assessment with placental molecular profiling, fetal/neonatal autonomic
biomarkers (including fHRV), fetal/child neuroimaging, and longitudinal
microbiome readouts in harmonized cohorts. In parallel, multisectoral
actions—clean air urban design, targeted protection of pregnancy and early
childhood, chemical regulation, and risk communication—should narrow
exposure inequities while trials test biomarker-guided prevention. Aligning
placental biology, autonomic metrics, and exposome science may transform risk
stratification and safeguard the developing brain.
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1 Introduction

This perspective provides
of how air pollution, including particulate matter (PM2.5),

an interdisciplinary analysis

nitrogen dioxide (NO;), ozone (O3), and volatile organic
compounds (VOCs) affects fetal health at the molecular and
cellular levels, subsequently influencing mental health, cognitive
development, neurodevelopment, and social behavior (Inoue
et al, 2020; Veras and Saldiva, 2025). The first 1,000 days of
life, encompassing the prenatal period, represent a uniquely
sensitive window during which environmental factors, such
as air pollution, could profoundly shape neurodevelopmental
trajectories due to dynamic processes like neurogenesis,
synaptic pruning, and myelination (Costa et al, 2017; Bové
etal., 2019).

The exposome broadens the traditional perspective on
environmental risks by considering the cumulative effect of
all internal and external exposures on individual experiences
from conception to the end of life. Originally defined by
Wild (2005) as the total set of exposures from conception to
death, the exposome includes not only environmental pollutants
(e.g., air pollution) but also diet, psychosocial stress, infections,
lifestyle, medications, and social and economic environments
(Vineis et al., 2020).

The exposome encompasses three broad categories. The
general external exposome includes socioeconomic conditions,
educational level, urbanization, and the social environment.
The specific external exposome refers to more direct exposures,
such as air pollution, diet, physical activity, and infections. The
internal exposome involves endogenous biological processes,
including inflammation, oxidative stress, metabolism, the
microbiota, and biomarkers of exposure (Baluch et al., 2020).
During the first 1,000 days, this approach is especially relevant,
as the organism is more vulnerable and exposures may have
disproportionate and lasting effects on neurodevelopment,
enabling the identification of interactions between environmental,
social, and biological factors and supporting timely prevention
and intervention (Vrijheid et al., 2011; Sun et al., 2025). Notably,
recent evidence underscores that air pollution is a critical public
health threat, disproportionately affecting vulnerable populations,
including pregnant individuals and young children, particularly
in wurban and socioeconomically disadvantaged contexts
(Vrijheid et al., 2011; World Health Organization, 2021).

We first synthesize the environmental burden and exposure
pathways in pregnancy and early childhood (Section 2
Environmental burden and exposure pathways in pregnancy
and early childhood”). We then present mechanistic bridges from
exposure to biology, highlighting the placenta as a sensor-recorder
and fetal autonomic regulation via fetal heart rate variability or
fHRV (Section “3 Mechanistic bridges: from exposure to biology via
the placenta, fetal physiology, and the developing brain”). Next, we
examine developmental programming through epigenetics, gene—
environment interplay, and endocrine-disruptive chemicals (EDC)
mixtures [Section “4 Epigenetics and developmental programming
(G x E and EDCs)”]. We then summarize observable child
phenotypes across structural and functional domains (Section “5
Clinical psychology, pediatrics, and child development: observable

phenotypes”). Finally, we propose an exposome-based framework
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for research and policy (Section “6 An exposome-based framework
for research and policy”) and close with a call for interdisciplinary
action (Section “7 Conclusions and call for interdisciplinary
action”).

2 Environmental burden and
exposure pathways in pregnancy
and early childhood

This subsection summarizes the population burden of air-
pollution exposure in pregnancy/early childhood and clarifies the
main pathways by which these exposures reach and affect the
mother-placenta—fetus unit.
data indicate that

individuals and young children are routinely exposed to harmful

Environmental medicine pregnant
levels of atmospheric pollutants such as PM2.5, NO,, O3,
and VOCs particularly in urban environments and among
socioeconomically disadvantaged populations (Vrijheid et al,
2011; World Health  Organization, 2021). These exposures
frequently exceed international safety guidelines and are associated
with an increased risk of adverse birth outcomes, including low
birth weight, preterm birth, and congenital anomalies (Ravindra
etal, 20215 Desye et al,, 2024); from an epidemiological perspective,
these risks are determinants of health that influence both exposure
levels and resilience to harm. Indeed, these social determinants can
outweigh the influence of genetic factors or even healthcare access
in shaping health outcomes (Conway et al., 2024; Veras and Saldiva,
2025; World Health Organization, 2025). According to the World
Health Organization (WHO) Global Air Quality Guidelines (2021),
concentrations above specific thresholds are considered harmful
to human health: PM2.5 should not exceed 5 jLg/m> as an annual
mean and 15 pg/m® as a 24-h mean; PM10, 15 jg/m?® annually
and 45 pug/m? daily; NO, 10 pg/m® annually and 25 pg/m?
daily; O3, 100 ug/m3 as an 8-h mean; and SO,, 40 ug/m3 as a
24-h mean. These reference values provide the necessary context
to interpret statements that pollutant concentrations “exceed
international safety guidelines.” Importantly, WHO emphasizes
that there is no safe threshold for fine particulate matter (PM2.5),
as adverse health outcomes-including cardiovascular, respiratory,
and neurodevelopmental effects-have been documented even
below these guideline levels (World Health Organization, 2021).

these
determinants of health that influence both exposure levels

From an epidemiological perspective, risks are
and resilience to harm. Indeed, social and structural determinants—
such as poverty, housing conditions, and access to healthcare-can
outweigh the influence of genetic factors or individual behavior in
shaping health outcomes (World Health Organization, 2025).

Consistently, epidemiological studies have robustly linked
prenatal exposure to elevated pollutant levels with prematurity and
low birth weight, which are themselves risk factors for long-term
neurodevelopmental disorders like attention deficit hyperactivity
disorder (ADHD) and autism spectrum disorder (ASD) (Melody
etal., 2019; Hu et al., 2024).

It is essential to understand the main exposure pathways
during pregnancy and early childhood. While inhalation of fine
particles is the most extensively studied route, exposure may also
occur through ingestion of contaminated water or food, or via
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the transplacental transfer of lipophilic pollutants that accumulate
in maternal tissues (Veras and Saldiva, 2025). The placenta, far
from being a completely protective barrier, can allow the passage of
contaminants that impair fetal growth and alter the programming
of developing organs and systems (Vrijheid et al., 2011).

Another critical aspect is the specific biological vulnerability
of these early developmental stages. During gestation and
early childhood, the respiratory, cardiovascular, nervous, and
immune systems are still developing and are more susceptible to
alterations induced by environmental pollutants (World Health
Organization, 2021). This heightened sensitivity can lead to
low-grade chronic inflammation, oxidative stress, and endothelial
dysfunction, with potential long-term health repercussions
(Veras and Saldiva, 2025).

Beyond direct organ effects, the gut microbiome has emerged
as an additional pathway of impact and potential biomarker
of exposure. Atmospheric pollutants can indirectly affect health
by modulating gut microbial composition and diversity, a key
determinant of wellness and disease (Manor et al., 2020). For
example, both acute and chronic exposure to NO, immediately
after birth and during early life have been associated with reduced
gut microbial diversity (Cruells et al., 2024), one of several relevant
indicators of well-being (de Vries et al., 2022). Growing evidence
suggests that exposure to fine particulate matter (PM2.5, black
carbon) can alter the gut microbiota, with decreases in the bacterial
phylum Bacteroidetes and increases in Proteobacteria (Li et al,
2023), the latter being associated with bacterial dysbiosis (Rizzatti
et al., 2017). Imbalances in the early-life gut microbiome have
been linked to systemic diseases (e.g., diabetes, asthma, enteric
inflammation) later in life (Isolauri, 2012). When detected in
population-based studies, these microbiota changes can serve as
early biomarkers of environmental exposure and may contribute
to maternal and child health risk stratification.

3 Mechanistic bridges: from
exposure to biology via the
placenta, fetal physiology, and the
developing brain

The placenta is a transient but highly specialized organ that
suppresses maternal immune rejection and transports oxygen,
nutrients, hormones, and growth factors to the fetus while
exporting waste products in the opposite direction; these functions
depend on a multilayered barrier of trophoblasts, endothelial cells,
and Hofbauer macrophages (Levkovitz et al., 2013; Burton et al,,
2014). Its endocrine output and bidirectional signaling make it
not merely a passive barrier a first responder to environmental
toxicants that reach maternal blood, positioning placental tissue as
both a target and a recorder of air-pollution exposure (Janssen et al.,
2013; Nugent and Bale, 2015).

Traditional fetal surveillance hinges on mean fetal heart rate
(FHR), yet a registry analysis of 23,782 pregnancies showed that
a 10.7 pg/m? rise in first-trimester PM2.5 increased false-positive
FHR alarms by 20% without biochemical acidosis, suggesting
pollutant-induced alterations in fetal cardiac reactivity (Morokuma
etal., 2017). Beat-to-beat fetal heart rate variability (fHRV) captures
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the maturation of sympathetic and parasympathetic control and
may therefore offer a more sensitive marker of neurodevelopmental
integrity (DiPietro etal., 2007). Our literature scan found no studies
directly linking ambient air pollution with fHRYV, highlighting a
critical evidence gap. Tobacco exposure provides proof of concept:
in 6,491 late-gestation fetuses, continued maternal smoking
reduced mean FHR, dampened movement, and disrupted HR-
movement coupling in a dose-dependent fashion (Lucchini et al,
2021). Follow-up data in preschool children prenatally exposed
to nicotine via smokeless tobacco revealed higher systolic blood
pressure and a shifted low-frequency to high-frequency HRYV ratio,
implicating persistent autonomic imbalance (Nordenstam et al,
2019). Collectively, these findings indicate that integrating fHRV
with placental molecular profiling in birth cohorts could sharpen
risk assessment, reduce obstetric diagnostic noise, and illuminate
mechanistic links between early pollutant exposure and long-term
neuro-cardiovascular health. Taken together, these observations
support a coherent pathway from exposure — placental signaling
— fetal autonomic regulation — structural and functional brain
changes.

Neurobiologists emphasize the developing brain’s susceptibility
to environmental insults. Air pollutants trigger maternal immune
activation, elevating pro-inflammatory cytokines that cross the
placenta and disrupt fetal neurodevelopment (Block and Calderén-
Garciduenas, 2009). Animal models demonstrate that prenatal
exposure to air pollutants impairs synaptic plasticity, disrupts
myelination, and induces structural changes in critical brain
regions such as the cortex and hippocampus, which are
essential for emotional regulation and cognitive functioning
(Bolton et al., 2017).

Recent advances show that the air-pollution exposome affects
the developing brain through structural and cellular pathways.
High-resolution fetal MRI now links mid-gestation exposure
to NO,, PM2.5, and black carbon with a 4%-8% reduction
in cortical surface area, delayed cerebellar gyrification, and
expanded cerebrospinal fluid spaces by 32 weeks gestation—
indicating teratogenic effects manifest in utero rather than
only in childhood follow-ups (Gomez-Herrera et al., 2025). At
the cellular level, in animal models, gestational PM2.5 triggers
oxidative and endoplasmic-reticulum stress in the hypothalamus,
down-regulates tyrosine hydroxylase, and produces depressive-
like behavior, implicating disrupted dopaminergic signaling (Kim
et al, 2024). Additionally, gestational PM2.5 selectively down-
regulates the transcription factor homeobox A5 (HOXAS5), stunts
axonal and dendritic growth, and produces male-biased spatial-
memory deficits, linking particulate exposure to disrupted neuronal
morphogenesis (Hou et al., 2023). Functionally, the behavioral toll
of prenatal air pollution has been documented in Mexico City’s
longitudinal PROGRESS cohort: a 6 jg/m? interquartile increment
in PM2.5 during the second or third trimester raised the odds of
belonging to the “low inhibitory-control” class on Go/No-Go tasks
at 9-10 years by ~60% (Bansal et al., 2021), pinpointing a window
that overlaps rapid axonal outgrowth and synaptic pruning.

At the cellular and
PM2.5/NO,/03/VOCs
reticulum stress and epigenetic remodeling, with carbonaceous

molecular level, ambient

induce oxidative and endoplasmic-

particles crossing the placenta and localizing in fetal organs, and
gestational PM2.5 perturbing hypothalamic development, thereby
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FIGURE 1

Conceptual model linking air pollution exposure to fetal neurodevelopment. Maternal exposure to environmental pollutants such as nitrogen
dioxide (NO3), ozone (O3), volatile organic compounds (VOCs), fine particulate matter (PM2.5), and endocrine-disrupting chemicals (EDCs) triggers
systemic stress responses. These exposures contribute to oxidative stress, immune activation, inflammation, and epigenetic alterations, summarized
within the exposome framework. Such biological processes may affect placental function and fetal physiology. Emerging approaches, including
assessment of fetal heart rate variability (fHRV), fetal magnetic resonance imaging (MRI), and other novel biomarkers (e.g., maternal microbiome),
provide windows into in utero adaptations. Ultimately, these pathways may shape neurodevelopmental trajectories and clinical outcomes in early
life (e.g., Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder).
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Neurodevelopment

Fetal HRV & Clinical Outcomes
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linking exposure to placental and fetal-brain targets (Gruzieva
et al., 2019; Bongaerts et al., 2022; Kim et al., 2024).

4 Epigenetics and developmental
programming (G x E and EDCs)

Growing evidence from epigenetic research highlights the
marked sensitivity of fetal development to environmental stressors,
particularly airborne pollutants (Perera and Herbstman, 2011).
Environmental evidence indicates that pregnant individuals and
young children are constantly exposed to PM2.5, NO;, O3, VOCs,
and EDCs at levels that often exceed safety guidelines (Vrijheid
etal, 2014; World Health Organization, 2021). Epigenetic research
reveals air-pollution-induced changes in DNA methylation, histone
modifications, and non-coding RNA expression in the placenta
2016).
These epigenetic alterations affect gene expression patterns crucial

and fetal tissue (Janssen et al, 2013; Breton et al,
for neural development, stress response, and immune function,
potentially mediating long-term behavioral and cognitive outcomes
in line with developmental origins of health and disease principles
(Ho et al, 2012). Importantly, placental epigenetic marks can
serve as an exposure “record” that pairs naturally with autonomic
readouts (e.g., fHRV) to assess exposure-biology links.

Building upon this epigenetic perspective, gene-environment
interaction studies have found that the interplay between specific
genotypes (e.g, GSTMI null, OGG1 null, H2AX AG/GG)
and environmental factors (e.g., cereal consumption, in-house
cockroaches, home crowding, humidity during the first year of
life) with PM2.5 is associated with increased DNA damage (Marin
etal., 2024). This evidence illustrates the complex interplay between
genetic background and environmental exposure in shaping early-
life health outcomes.

Endocrine-disrupting chemicals are compounds that alter
hormone metabolism, signaling, and homeostasis of the endocrine
system and can modify gene expression (Braun, 2017). EDCs
include volatile or semi-volatile molecules commonly detected
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in dust and in indoor/outdoor air (Rudel and Perovich, 2009).
In addition to EDCs, the above-mentioned airborne pollutants
(PM2.5, NO,, O3, VOCs) -many with endocrine-disrupting
properties— are widespread and tend to co-occur in complex
mixtures. Fetuses, neonates, and infants are particularly susceptible
due to multiple exposure pathways, including transplacental and
lactational transfer, inhalation, and ingestion of contaminated
dust, food, and beverage packages; their heightened vulnerability
is compounded by immature detoxification systems and distinct
toxicokinetic processes. Disruption of hormonally regulated, time-
sensitive developmental processes and epigenetic pathways during
early life may significantly increase the risk of neurodevelopmental
disorders and obesity (Rudel and Perovich, 2009; Braun, 2017).

Studies using human biological models have linked the
presence of EDCs in placental tissue with altered gene-expression
profiles mediated by epigenetic modifications-such as global and
locus-specific DNA hypomethylation-and telomere shortening
in placental and umbilical cord cells. These molecular alterations
associate with adverse outcomes including preterm birth,
restricted fetal growth and development, thyroid dysfunction
(physiological thyroid hormone levels are fundamental for normal
neurodevelopment), neurological disorders, and increased risk of
subsequent metabolic diseases (Basak et al., 2020; Isaevska et al,
2021). Moreover, prenatal and early postnatal exposure to EDCs
and air pollutants may contribute to behavioral disorders and
cognitive deficits in children (Rudel and Perovich, 2009; Braun,
2017). Together, these lines of evidence position developmental
programming as a plausible mediator between the air-pollution
exposome and later neurobehavioral phenotypes.

5 Clinical psychology, pediatrics,
and child development: observable
phenotypes

This
phenotypes observed in children following prenatal/early-life

subsection summarizes structural and functional
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exposure to air pollution. The association between prenatal
exposure to air pollutants and developmental difficulties is well
documented. Structural brain differences include reductions in
white matter (Peterson et al., 2015; de Prado Bert et al., 2018;
Herting et al, 2019), cortical gray matter (de Prado Bert et al,
2018; Herting et al., 2019), basal ganglia (de Prado Bert et al,
2018), and caudate nucleus (Herting et al., 2019). Functional
difficulties have been reported in adaptive skills, social skills, and
adaptive communication (McGuinn et al, 2020); in memory
functioning and attention (Mathilda Chiu et al., 2023); in language
and fine/gross motor domains; and in global intelligence quotient
(Suades-Gonzdlez et al, 2015). In clinical populations, higher
severity of ASD symptoms and an increased risk of ADHD have
also been reported (Thygesen et al., 2020; Zhao et al., 2024).

Clinical psychologists further highlight links between prenatal
and early-life air-pollution exposure and behavioral/emotional
challenges, including heightened anxiety, mood disorders, and
attentional deficits (Perera et al., 2013; Peterson et al., 2015). These
outcomes may result from pollution-induced neurotoxic effects
or indirect impacts on regulatory brain regions—prefrontal cortex,
anterior cingulate, and limbic structures—as well as environmental
modifiers such as family stress and reduced outdoor activities.

Pediatricians emphasize the cumulative impact of pollution
exposure on child health and neurodevelopment. Beyond
respiratory illness, compromised neurodevelopment affects
academic achievement, social integration, and long-term
health (Sunyer et al, 2015; Chong-Neto and Filho, 2025).
Early interventions hold the potential for significant health and
societal benefits, as shown by improved child neurodevelopment
after the closure of a coal-fired power plant that reduced prenatal
PAH exposure (Frederica et al., 2008).

6 An exposome-based framework
for research and policy

Building on the foregoing mechanisms, understanding the
multifaceted ways in which the air-pollution exposome shapes
fetal and early childhood development requires a framework that
seamlessly integrates environmental science, biomedical research,
and psychosocial context. During the critical first 1,000 days
of life, exposures to PM2.5, NO,, Oz, VOCs, and mixtures of
EDC:s often occur in synergy with social disadvantage, amplifying
biological vulnerability.

The placenta functions as a dynamic biosensor and mediator,
translating maternal exposures into molecular, endocrine, and
immune signals that influence growth, immune tone, and
neurodevelopmental programming. Fetal autonomic regulation,
captured through high-resolution measures such as beat-to-
beat fHRV, offers a sensitive yet underutilized biomarker of
neurodevelopmental integrity, while advanced neuroimaging
reveals that pollutant-induced structural and functional brain
changes can manifest in utero (Figure 1).

These processes are further shaped by epigenetic remodeling,
gut microbiome alterations, and complex gene-environment
interactions, establishing trajectories of susceptibility that may
persist across the lifespan. An exposome-based approach facilitates
the integration of multimodal exposure assessment with placental
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molecular profiling, autonomic biomarkers, neuroimaging, and
microbiome metrics in harmonized, longitudinal birth cohorts,
enabling spatial epidemiology, risk mapping, and precision
prevention strategies. Translating this science into policy demands
coordinated, multisectoral engagement between environmental
agencies, health systems, urban planners, and communities, with
measures such as clean-air zones, reduction of traffic emissions near
homes and schools, expansion of urban green spaces, and maternal
education programs to reduce indoor exposures. Embedding these
strategies within an exposome framework bridges mechanistic
insights with actionable public health interventions, ensuring that
the protection of neurodevelopment is recognized as both a public
health priority and a social imperative.

7 Conclusions and call for
interdisciplinary action

Air pollution during the first 1,000 days intersects with
biological vulnerability to reshape neurodevelopmental trajectories
via placental sensing, neuroimmune activation, autonomic
and neural circuit maturation, and epigenetic programming.
An integrated exposome framework, implemented through
interdisciplinary collaboration among environmental medicine
specialists, epidemiologists, neurobiologists, epigeneticists, clinical
psychologists, pediatricians, and public health professionals, can
improve risk assessment, guide evidence-based interventions, and
inform effective policies to safeguard the neurodevelopment and
health of future generations.

Moving forward, our collective challenge is to operationalize
this framework within harmonized, longitudinal birth cohorts that
allow real-time integration of exposure data, biological signatures,
and developmental outcomes. Embedding such science in policy
will require not only technological and methodological innovation
but also sustained multisectoral commitment to environmental
justice, ensuring that protection of neurodevelopment is recognized
as both a public health priority and a social imperative.
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