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We offer an integrative perspective on how the air-pollution exposome

shapes fetal development during the first 1,000 days and reverberates across

mental health and behavior. Pregnant individuals and young children are

disproportionately exposed to particulate matter (PM2.5), nitrogen dioxide

(NO2), ozone (O3), and volatile organic compounds (VOCs) with social

disadvantage amplifying risk. We bridge exposure to biology through three

conduits. First, the placenta acts as a sensor and recorder, transducing

signals that alter growth, immune tone, and neuroendocrine programming.

Second, fetal autonomic control–captured by beat-to-beat fetal heart rate

variability (fHRV) offers a relevant biomarker of neurodevelopmental integrity;

the absence of direct ambient-pollution–fHRV studies is a pressing gap.

Third, maternal immune activation, oxidative and endoplasmic reticulum (ER)

stress, and disrupted morphogenesis reshape developing circuits, changes now

traceable in utero by advanced fetal MRI. These pathways fit a developmental-

programming frame: epigenetic remodeling, gene–environment interplay,

endocrine-disrupting co-exposures, and gut-microbiome shifts create durable

susceptibility. Clinically, the result is structural and functional brain alterations

and child phenotypes spanning attention, executive control, affecting regulation,

and learning, with clear pediatric and educational implications. We propose

an exposome-based research agenda coupling high-resolution exposure

assessment with placental molecular profiling, fetal/neonatal autonomic

biomarkers (including fHRV), fetal/child neuroimaging, and longitudinal

microbiome readouts in harmonized cohorts. In parallel, multisectoral

actions–clean air urban design, targeted protection of pregnancy and early

childhood, chemical regulation, and risk communication–should narrow

exposure inequities while trials test biomarker-guided prevention. Aligning

placental biology, autonomic metrics, and exposome science may transform risk

stratification and safeguard the developing brain.
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1 Introduction 

This perspective provides an interdisciplinary analysis 
of how air pollution, including particulate matter (PM2.5), 
nitrogen dioxide (NO2), ozone (O3), and volatile organic 
compounds (VOCs) aects fetal health at the molecular and 
cellular levels, subsequently influencing mental health, cognitive 
development, neurodevelopment, and social behavior (Inoue 
et al., 2020; Veras and Saldiva, 2025). The first 1,000 days of 
life, encompassing the prenatal period, represent a uniquely 
sensitive window during which environmental factors, such 
as air pollution, could profoundly shape neurodevelopmental 
trajectories due to dynamic processes like neurogenesis, 
synaptic pruning, and myelination (Costa et al., 2017; Bové 
et al., 2019). 

The exposome broadens the traditional perspective on 
environmental risks by considering the cumulative eect of 
all internal and external exposures on individual experiences 
from conception to the end of life. Originally defined by 
Wild (2005) as the total set of exposures from conception to 
death, the exposome includes not only environmental pollutants 
(e.g., air pollution) but also diet, psychosocial stress, infections, 
lifestyle, medications, and social and economic environments 
(Vineis et al., 2020). 

The exposome encompasses three broad categories. The 
general external exposome includes socioeconomic conditions, 
educational level, urbanization, and the social environment. 
The specific external exposome refers to more direct exposures, 
such as air pollution, diet, physical activity, and infections. The 
internal exposome involves endogenous biological processes, 
including inflammation, oxidative stress, metabolism, the 
microbiota, and biomarkers of exposure (Baluch et al., 2020). 
During the first 1,000 days, this approach is especially relevant, 
as the organism is more vulnerable and exposures may have 
disproportionate and lasting eects on neurodevelopment, 
enabling the identification of interactions between environmental, 
social, and biological factors and supporting timely prevention 
and intervention (Vrijheid et al., 2011; Sun et al., 2025). Notably, 
recent evidence underscores that air pollution is a critical public 
health threat, disproportionately aecting vulnerable populations, 
including pregnant individuals and young children, particularly 
in urban and socioeconomically disadvantaged contexts 
(Vrijheid et al., 2011; World Health Organization, 2021). 

We first synthesize the environmental burden and exposure 
pathways in pregnancy and early childhood (Section “2 
Environmental burden and exposure pathways in pregnancy 
and early childhood”). We then present mechanistic bridges from 
exposure to biology, highlighting the placenta as a sensor-recorder 
and fetal autonomic regulation via fetal heart rate variability or 
fHRV (Section “3 Mechanistic bridges: from exposure to biology via 
the placenta, fetal physiology, and the developing brain”). Next, we 
examine developmental programming through epigenetics, gene— 
environment interplay, and endocrine-disruptive chemicals (EDC) 
mixtures [Section “4 Epigenetics and developmental programming 
(G × E and EDCs)”]. We then summarize observable child 
phenotypes across structural and functional domains (Section “5 
Clinical psychology, pediatrics, and child development: observable 
phenotypes”). Finally, we propose an exposome-based framework 

for research and policy (Section “6 An exposome-based framework 
for research and policy”) and close with a call for interdisciplinary 
action (Section “7 Conclusions and call for interdisciplinary 
action”). 

2 Environmental burden and 
exposure pathways in pregnancy 
and early childhood 

This subsection summarizes the population burden of air-
pollution exposure in pregnancy/early childhood and clarifies the 
main pathways by which these exposures reach and aect the 
mother–placenta–fetus unit. 

Environmental medicine data indicate that pregnant 
individuals and young children are routinely exposed to harmful 
levels of atmospheric pollutants such as PM2.5, NO2, O3, 
and VOCs particularly in urban environments and among 
socioeconomically disadvantaged populations (Vrijheid et al., 
2011; World Health Organization, 2021). These exposures 
frequently exceed international safety guidelines and are associated 
with an increased risk of adverse birth outcomes, including low 
birth weight, preterm birth, and congenital anomalies (Ravindra 
et al., 2021; Desye et al., 2024); from an epidemiological perspective, 
these risks are determinants of health that influence both exposure 
levels and resilience to harm. Indeed, these social determinants can 
outweigh the influence of genetic factors or even healthcare access 
in shaping health outcomes (Conway et al., 2024; Veras and Saldiva, 
2025; World Health Organization, 2025). According to the World 
Health Organization (WHO) Global Air Quality Guidelines (2021), 
concentrations above specific thresholds are considered harmful 
to human health: PM2.5 should not exceed 5 µg/m3 as an annual 
mean and 15 µg/m3 as a 24-h mean; PM10, 15 µg/m3 annually 
and 45 µg/m3 daily; NO2, 10 µg/m3 annually and 25 µg/m3 

daily; O3, 100 µg/m3 as an 8-h mean; and SO2, 40 µg/m3 as a 
24-h mean. These reference values provide the necessary context 
to interpret statements that pollutant concentrations “exceed 
international safety guidelines.” Importantly, WHO emphasizes 
that there is no safe threshold for fine particulate matter (PM2.5), 
as adverse health outcomes–including cardiovascular, respiratory, 
and neurodevelopmental eects–have been documented even 
below these guideline levels (World Health Organization, 2021). 

From an epidemiological perspective, these risks are 
determinants of health that influence both exposure levels 
and resilience to harm. Indeed, social and structural determinants– 
such as poverty, housing conditions, and access to healthcare–can 
outweigh the influence of genetic factors or individual behavior in 
shaping health outcomes (World Health Organization, 2025). 

Consistently, epidemiological studies have robustly linked 
prenatal exposure to elevated pollutant levels with prematurity and 
low birth weight, which are themselves risk factors for long-term 
neurodevelopmental disorders like attention deficit hyperactivity 
disorder (ADHD) and autism spectrum disorder (ASD) (Melody 
et al., 2019; Hu et al., 2024). 

It is essential to understand the main exposure pathways 
during pregnancy and early childhood. While inhalation of fine 
particles is the most extensively studied route, exposure may also 
occur through ingestion of contaminated water or food, or via 
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the transplacental transfer of lipophilic pollutants that accumulate 
in maternal tissues (Veras and Saldiva, 2025). The placenta, far 
from being a completely protective barrier, can allow the passage of 
contaminants that impair fetal growth and alter the programming 
of developing organs and systems (Vrijheid et al., 2011). 

Another critical aspect is the specific biological vulnerability 
of these early developmental stages. During gestation and 
early childhood, the respiratory, cardiovascular, nervous, and 
immune systems are still developing and are more susceptible to 
alterations induced by environmental pollutants (World Health 
Organization, 2021). This heightened sensitivity can lead to 
low-grade chronic inflammation, oxidative stress, and endothelial 
dysfunction, with potential long-term health repercussions 
(Veras and Saldiva, 2025). 

Beyond direct organ eects, the gut microbiome has emerged 
as an additional pathway of impact and potential biomarker 
of exposure. Atmospheric pollutants can indirectly aect health 
by modulating gut microbial composition and diversity, a key 
determinant of wellness and disease (Manor et al., 2020). For 
example, both acute and chronic exposure to NO2 immediately 
after birth and during early life have been associated with reduced 
gut microbial diversity (Cruells et al., 2024), one of several relevant 
indicators of well-being (de Vries et al., 2022). Growing evidence 
suggests that exposure to fine particulate matter (PM2.5, black 
carbon) can alter the gut microbiota, with decreases in the bacterial 
phylum Bacteroidetes and increases in Proteobacteria (Li et al., 
2023), the latter being associated with bacterial dysbiosis (Rizzatti 
et al., 2017). Imbalances in the early-life gut microbiome have 
been linked to systemic diseases (e.g., diabetes, asthma, enteric 
inflammation) later in life (Isolauri, 2012). When detected in 
population-based studies, these microbiota changes can serve as 
early biomarkers of environmental exposure and may contribute 
to maternal and child health risk stratification. 

3 Mechanistic bridges: from 
exposure to biology via the 
placenta, fetal physiology, and the 
developing brain 

The placenta is a transient but highly specialized organ that 
suppresses maternal immune rejection and transports oxygen, 
nutrients, hormones, and growth factors to the fetus while 
exporting waste products in the opposite direction; these functions 
depend on a multilayered barrier of trophoblasts, endothelial cells, 
and Hofbauer macrophages (Levkovitz et al., 2013; Burton et al., 
2014). Its endocrine output and bidirectional signaling make it 
not merely a passive barrier a first responder to environmental 
toxicants that reach maternal blood, positioning placental tissue as 
both a target and a recorder of air-pollution exposure (Janssen et al., 
2013; Nugent and Bale, 2015). 

Traditional fetal surveillance hinges on mean fetal heart rate 
(FHR), yet a registry analysis of 23,782 pregnancies showed that 
a 10.7 µg/m3 rise in first-trimester PM2.5 increased false-positive 
FHR alarms by 20% without biochemical acidosis, suggesting 
pollutant-induced alterations in fetal cardiac reactivity (Morokuma 
et al., 2017). Beat-to-beat fetal heart rate variability (fHRV) captures 

the maturation of sympathetic and parasympathetic control and 
may therefore oer a more sensitive marker of neurodevelopmental 
integrity (DiPietro et al., 2007). Our literature scan found no studies 
directly linking ambient air pollution with fHRV, highlighting a 
critical evidence gap. Tobacco exposure provides proof of concept: 
in 6,491 late-gestation fetuses, continued maternal smoking 
reduced mean FHR, dampened movement, and disrupted HR– 
movement coupling in a dose-dependent fashion (Lucchini et al., 
2021). Follow-up data in preschool children prenatally exposed 
to nicotine via smokeless tobacco revealed higher systolic blood 
pressure and a shifted low-frequency to high-frequency HRV ratio, 
implicating persistent autonomic imbalance (Nordenstam et al., 
2019). Collectively, these findings indicate that integrating fHRV 
with placental molecular profiling in birth cohorts could sharpen 
risk assessment, reduce obstetric diagnostic noise, and illuminate 
mechanistic links between early pollutant exposure and long-term 
neuro-cardiovascular health. Taken together, these observations 
support a coherent pathway from exposure → placental signaling 
→ fetal autonomic regulation → structural and functional brain 
changes. 

Neurobiologists emphasize the developing brain’s susceptibility 
to environmental insults. Air pollutants trigger maternal immune 
activation, elevating pro-inflammatory cytokines that cross the 
placenta and disrupt fetal neurodevelopment (Block and Calderón-
Garcidueñas, 2009). Animal models demonstrate that prenatal 
exposure to air pollutants impairs synaptic plasticity, disrupts 
myelination, and induces structural changes in critical brain 
regions such as the cortex and hippocampus, which are 
essential for emotional regulation and cognitive functioning 
(Bolton et al., 2017). 

Recent advances show that the air-pollution exposome aects 
the developing brain through structural and cellular pathways. 
High-resolution fetal MRI now links mid-gestation exposure 
to NO2, PM2.5, and black carbon with a 4%–8% reduction 
in cortical surface area, delayed cerebellar gyrification, and 
expanded cerebrospinal fluid spaces by 32 weeks’ gestation– 
indicating teratogenic eects manifest in utero rather than 
only in childhood follow-ups (Gómez-Herrera et al., 2025). At 
the cellular level, in animal models, gestational PM2.5 triggers 
oxidative and endoplasmic-reticulum stress in the hypothalamus, 
down-regulates tyrosine hydroxylase, and produces depressive-
like behavior, implicating disrupted dopaminergic signaling (Kim 
et al., 2024). Additionally, gestational PM2.5 selectively down-
regulates the transcription factor homeobox A5 (HOXA5), stunts 
axonal and dendritic growth, and produces male-biased spatial-
memory deficits, linking particulate exposure to disrupted neuronal 
morphogenesis (Hou et al., 2023). Functionally, the behavioral toll 
of prenatal air pollution has been documented in Mexico City’s 
longitudinal PROGRESS cohort: a 6 µg/m3 interquartile increment 
in PM2.5 during the second or third trimester raised the odds of 
belonging to the “low inhibitory-control” class on Go/No-Go tasks 
at 9–10 years by ∼60% (Bansal et al., 2021), pinpointing a window 
that overlaps rapid axonal outgrowth and synaptic pruning. 

At the cellular and molecular level, ambient 
PM2.5/NO2/O3/VOCs induce oxidative and endoplasmic-
reticulum stress and epigenetic remodeling, with carbonaceous 
particles crossing the placenta and localizing in fetal organs, and 
gestational PM2.5 perturbing hypothalamic development, thereby 
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FIGURE 1 

Conceptual model linking air pollution exposure to fetal neurodevelopment. Maternal exposure to environmental pollutants such as nitrogen 
dioxide (NO2 ), ozone (O3 ), volatile organic compounds (VOCs), fine particulate matter (PM2.5), and endocrine-disrupting chemicals (EDCs) triggers 
systemic stress responses. These exposures contribute to oxidative stress, immune activation, inflammation, and epigenetic alterations, summarized 
within the exposome framework. Such biological processes may affect placental function and fetal physiology. Emerging approaches, including 
assessment of fetal heart rate variability (fHRV), fetal magnetic resonance imaging (MRI), and other novel biomarkers (e.g., maternal microbiome), 
provide windows into in utero adaptations. Ultimately, these pathways may shape neurodevelopmental trajectories and clinical outcomes in early 
life (e.g., Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder). 

linking exposure to placental and fetal-brain targets (Gruzieva 
et al., 2019; Bongaerts et al., 2022; Kim et al., 2024). 

4 Epigenetics and developmental 
programming (G × E and EDCs) 

Growing evidence from epigenetic research highlights the 
marked sensitivity of fetal development to environmental stressors, 
particularly airborne pollutants (Perera and Herbstman, 2011). 
Environmental evidence indicates that pregnant individuals and 
young children are constantly exposed to PM2.5, NO2, O3, VOCs, 
and EDCs at levels that often exceed safety guidelines (Vrijheid 
et al., 2014; World Health Organization, 2021). Epigenetic research 
reveals air-pollution-induced changes in DNA methylation, histone 
modifications, and non-coding RNA expression in the placenta 
and fetal tissue (Janssen et al., 2013; Breton et al., 2016). 
These epigenetic alterations aect gene expression patterns crucial 
for neural development, stress response, and immune function, 
potentially mediating long-term behavioral and cognitive outcomes 
in line with developmental origins of health and disease principles 
(Ho et al., 2012). Importantly, placental epigenetic marks can 
serve as an exposure “record” that pairs naturally with autonomic 
readouts (e.g., fHRV) to assess exposure–biology links. 

Building upon this epigenetic perspective, gene–environment 
interaction studies have found that the interplay between specific 
genotypes (e.g., GSTM1 null, OGG1 null, H2AX AG/GG) 
and environmental factors (e.g., cereal consumption, in-house 
cockroaches, home crowding, humidity during the first year of 
life) with PM2.5 is associated with increased DNA damage (Marín 
et al., 2024). This evidence illustrates the complex interplay between 
genetic background and environmental exposure in shaping early-
life health outcomes. 

Endocrine-disrupting chemicals are compounds that alter 
hormone metabolism, signaling, and homeostasis of the endocrine 
system and can modify gene expression (Braun, 2017). EDCs 
include volatile or semi-volatile molecules commonly detected 

in dust and in indoor/outdoor air (Rudel and Perovich, 2009). 
In addition to EDCs, the above-mentioned airborne pollutants 
(PM2.5, NO2, O3, VOCs) –many with endocrine-disrupting 
properties– are widespread and tend to co-occur in complex 
mixtures. Fetuses, neonates, and infants are particularly susceptible 
due to multiple exposure pathways, including transplacental and 
lactational transfer, inhalation, and ingestion of contaminated 
dust, food, and beverage packages; their heightened vulnerability 
is compounded by immature detoxification systems and distinct 
toxicokinetic processes. Disruption of hormonally regulated, time-
sensitive developmental processes and epigenetic pathways during 
early life may significantly increase the risk of neurodevelopmental 
disorders and obesity (Rudel and Perovich, 2009; Braun, 2017). 

Studies using human biological models have linked the 
presence of EDCs in placental tissue with altered gene-expression 
profiles mediated by epigenetic modifications–such as global and 
locus-specific DNA hypomethylation–and telomere shortening 
in placental and umbilical cord cells. These molecular alterations 
associate with adverse outcomes including preterm birth, 
restricted fetal growth and development, thyroid dysfunction 
(physiological thyroid hormone levels are fundamental for normal 
neurodevelopment), neurological disorders, and increased risk of 
subsequent metabolic diseases (Basak et al., 2020; Isaevska et al., 
2021). Moreover, prenatal and early postnatal exposure to EDCs 
and air pollutants may contribute to behavioral disorders and 
cognitive deficits in children (Rudel and Perovich, 2009; Braun, 
2017). Together, these lines of evidence position developmental 
programming as a plausible mediator between the air-pollution 
exposome and later neurobehavioral phenotypes. 

5 Clinical psychology, pediatrics, 
and child development: observable 
phenotypes 

This subsection summarizes structural and functional 
phenotypes observed in children following prenatal/early-life 
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exposure to air pollution. The association between prenatal 
exposure to air pollutants and developmental diÿculties is well 
documented. Structural brain dierences include reductions in 
white matter (Peterson et al., 2015; de Prado Bert et al., 2018; 
Herting et al., 2019), cortical gray matter (de Prado Bert et al., 
2018; Herting et al., 2019), basal ganglia (de Prado Bert et al., 
2018), and caudate nucleus (Herting et al., 2019). Functional 
diÿculties have been reported in adaptive skills, social skills, and 
adaptive communication (McGuinn et al., 2020); in memory 
functioning and attention (Mathilda Chiu et al., 2023); in language 
and fine/gross motor domains; and in global intelligence quotient 
(Suades-González et al., 2015). In clinical populations, higher 
severity of ASD symptoms and an increased risk of ADHD have 
also been reported (Thygesen et al., 2020; Zhao et al., 2024). 

Clinical psychologists further highlight links between prenatal 
and early-life air-pollution exposure and behavioral/emotional 
challenges, including heightened anxiety, mood disorders, and 
attentional deficits (Perera et al., 2013; Peterson et al., 2015). These 
outcomes may result from pollution-induced neurotoxic eects 
or indirect impacts on regulatory brain regions–prefrontal cortex, 
anterior cingulate, and limbic structures–as well as environmental 
modifiers such as family stress and reduced outdoor activities. 

Pediatricians emphasize the cumulative impact of pollution 
exposure on child health and neurodevelopment. Beyond 
respiratory illness, compromised neurodevelopment aects 
academic achievement, social integration, and long-term 
health (Sunyer et al., 2015; Chong-Neto and Filho, 2025). 
Early interventions hold the potential for significant health and 
societal benefits, as shown by improved child neurodevelopment 
after the closure of a coal-fired power plant that reduced prenatal 
PAH exposure (Frederica et al., 2008). 

6 An exposome-based framework 
for research and policy 

Building on the foregoing mechanisms, understanding the 
multifaceted ways in which the air-pollution exposome shapes 
fetal and early childhood development requires a framework that 
seamlessly integrates environmental science, biomedical research, 
and psychosocial context. During the critical first 1,000 days 
of life, exposures to PM2.5, NO2, O3, VOCs, and mixtures of 
EDCs often occur in synergy with social disadvantage, amplifying 
biological vulnerability. 

The placenta functions as a dynamic biosensor and mediator, 
translating maternal exposures into molecular, endocrine, and 
immune signals that influence growth, immune tone, and 
neurodevelopmental programming. Fetal autonomic regulation, 
captured through high-resolution measures such as beat-to-
beat fHRV, oers a sensitive yet underutilized biomarker of 
neurodevelopmental integrity, while advanced neuroimaging 
reveals that pollutant-induced structural and functional brain 
changes can manifest in utero (Figure 1). 

These processes are further shaped by epigenetic remodeling, 
gut microbiome alterations, and complex gene–environment 
interactions, establishing trajectories of susceptibility that may 
persist across the lifespan. An exposome-based approach facilitates 
the integration of multimodal exposure assessment with placental 

molecular profiling, autonomic biomarkers, neuroimaging, and 
microbiome metrics in harmonized, longitudinal birth cohorts, 
enabling spatial epidemiology, risk mapping, and precision 
prevention strategies. Translating this science into policy demands 
coordinated, multisectoral engagement between environmental 
agencies, health systems, urban planners, and communities, with 
measures such as clean-air zones, reduction of traÿc emissions near 
homes and schools, expansion of urban green spaces, and maternal 
education programs to reduce indoor exposures. Embedding these 
strategies within an exposome framework bridges mechanistic 
insights with actionable public health interventions, ensuring that 
the protection of neurodevelopment is recognized as both a public 
health priority and a social imperative. 

7 Conclusions and call for 
interdisciplinary action 

Air pollution during the first 1,000 days intersects with 
biological vulnerability to reshape neurodevelopmental trajectories 
via placental sensing, neuroimmune activation, autonomic 
and neural circuit maturation, and epigenetic programming. 
An integrated exposome framework, implemented through 
interdisciplinary collaboration among environmental medicine 
specialists, epidemiologists, neurobiologists, epigeneticists, clinical 
psychologists, pediatricians, and public health professionals, can 
improve risk assessment, guide evidence-based interventions, and 
inform eective policies to safeguard the neurodevelopment and 
health of future generations. 

Moving forward, our collective challenge is to operationalize 
this framework within harmonized, longitudinal birth cohorts that 
allow real-time integration of exposure data, biological signatures, 
and developmental outcomes. Embedding such science in policy 
will require not only technological and methodological innovation 
but also sustained multisectoral commitment to environmental 
justice, ensuring that protection of neurodevelopment is recognized 
as both a public health priority and a social imperative. 
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