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Glioblastoma (GBM) progression is linked to aquaporin-4 (AQP4), whose functions
extend beyond water transport to influence perivascular architecture, immune
modulation, edema, and treatment response. In the healthy brain, AQP4 is highly
polarized at astrocytic endfeet, supporting perivascular fluid exchange and glymphatic
clearance. In GBM, AQP4 is frequently upregulated and mislocalized, correlating
with blood—brain barrier (BBB) disruption, impaired directional fluid movement, and
peritumoral edema. Peritumoral astrocytic mislocalization of AQP4, together with
tumor mass effect, compromises glymphatic function by distorting perivascular
spaces and compressing cerebrospinal fluid (CSF)-Interstitial fluid (ISF) exchange
zones. We review evidence that AQP4 isoforms (M1 vs. M23) differentially shape
motility and membrane organization, and we outline how AQP4-linked signaling
axes (e.g., indoleamine 2,3-dioxygenase 1 (IDO1)/tryptophan 2,3-dioxygenase
(TDO)-kynurenine—aryl hydrocarbon receptor (AhR) can bias pro-invasive states
and immunosuppressive niches enriched with M2-like macrophages). We integrate a
four-zone perivascular framework to localize where GBM most perturbs periarterial
and perivenous pathways, as well as meningeal lymphatic outflow. Finally, we discuss
therapeutic directions spanning AQP4 modulation, isoform balance, and BBB-bypassing
delivery strategies. Overall, AQP4 emerges as a mechanistic hub connecting BBB
instability, glymphatic impairment, edema, immune evasion, and invasion in GBM.
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Introduction

The Glymphatic system (GS) is a brain-wide fluid clearance network responsible for the
exchange of CSF and ISE It facilitates the removal of metabolic waste and contributes to fluid
homeostasis and solute trafficking within the central nervous system (CNS) (Xu et al., 2022).
The GS comprises a multi-segmented anatomical continuum, including periarterial influx
pathways, CSF-ISF exchange zones, and perivenous efflux routes that ultimately drain into the
meningeal lymphatic vessels (MLVs) (Xu et al., 2022; Klostranec et al., 2021; Jessen et al., 2015;
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). Central to the function of this system
is aquaporin-4 (AQP4), a water channel protein abundantly expressed
at astrocytic endfeet, which enables directional fluid movement along
perivascular routes ( ; ).

Aquaporins have increasingly been associated with the
pathophysiology of several conditions, including hydrocephalus
and systematic hypertension, since these pathologies have
characteristic nervous system water transport alterations
( ; ;

; ); however,
beyond its canonical role, specially AQP4 has emerged as an
astrocytic lineage marker ( ;

s ) and a mediator of
diverse astrocytic functions, including cellular migration,
cytoskeletal remodeling and microenvironmental interactions.
These functions are often associated with the dominant AQP4-
isoforms expressed in an astrocyte ( ;

) (

increasing interest in its contribution to neuropathological states,

). These non-canonical roles of AQP4 have generated

10.3389/fncel.2025.1685491

particularly brain tumors of glial origin, including gliomas
and astrocytomas.

Glioblastoma multiforme (GBM) is the most common and lethal
form of primary brain tumor in adults, characterized by diffuse
infiltration, genetic heterogeneity, and limited responsiveness to
current therapies ( ; ). Despite
multimodal treatment involving surgery, radiation, and chemotherapy,
the median survival remains dismal—approximately 15 months
( ; ; ). This
poor prognosis is largely attributed to the tumor’s aggressive invasion
into surrounding brain parenchyma, its ability to resist conventional
therapies, and its manipulation of the immune and fluid
)-
Importantly, AQP4 has been implicated in several aspects of GB

microenvironments ( H

progression, including enhanced cell migration, resistance to
apoptosis, disruption of the blood-brain barrier (BBB), and the
polarization of tumor-associated macrophages (TAMs) toward an
immunosuppressive phenotype ( ;

; ). These functions associate AQP4 with
tumor-promoting functions.

AQP4

FIGURE 1

AQP4 glia lineage marker and indicator of morphological diversity. (A) Mixed neuron—astrocyte cultures stained with ChMAP2 (neurons, cyan), AQP4
(magenta), and ECD (nuclei, red) show AQP4 expression restricted to astrocytes, confirming its cell-type specificity. (B,C) Astrocyte monocultures
stained with GFAP (cyan), AQP4, and ECD reveal distinct morphologies. (B) Cells with broad lamellipodia and radial GFAP arrays reflect a migratory
phenotype, potentially linked to M1-AQP4. (C) Stellate astrocytes with membrane-enriched AQP4 suggest a stabilized phenotype, consistent with
M23-AQP4 and OAP formation. Samples were fixed with 4% PFA, permeabilized with 0.1% Tween-20, and stained using anti-mouse GFAP (rhodamine
red) and anti-rabbit AQP4 (alexa fluor 488). Unpublished image from our laboratory.
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This review provides a comprehensive synthesis of current
knowledge linking glymphatic anatomy with GBM pathophysiology
and AQP4 dysfunction. We propose a refined anatomical model of the
glymphatic system, including four functional zones, and evaluate the
isoform-specific contributions of AQP4 to glioma cell behavior. By
integrating molecular, anatomical, and clinical insights, we aim to
define the AQP4-glymphatic axis as a critical node in GBM
progression and a potential target for future diagnostic and
therapeutic strategies.

Anatomical organization of the
glymphatic system

The GS facilitates directional CSF influx, ISF exchange, and
metabolic waste clearance from the brain parenchyma (Xu et al., 2022;
[liff et al, 2012). Traditionally divided into three segments—
periarterial influx (S1), CSF-ISF exchange (S2), and perivenous efflux
(S3) (Xu et al,, 2022). Here, we propose a fourth anatomical segment
(S4), corresponding to the meningeal perivenous drainage

10.3389/fncel.2025.1685491

compartment, which is structurally and functionally distinct from its
parenchymal counterpart, as described below.

S1: Periarterial influx region

This region surrounds arteries that penetrate the brain from the
subarachnoid space. The Virchow-Robin space (VRS), located
between the arterial vascular adventitia (AVA) and the pia mater
(PM), forms the main conduit for CSF entry into the brain interstitium
(Hablitz and Nedergaard, 2021). This segment establishes the
foundation of glymphatic flow (Figure 2).

S2: CSF-ISF exchange zone

Here, the pia mater thins and gradually disappears, allowing for
the direct interaction of CSF with the interstitial compartment. In this
section, AQP4, highly expressed at the astrocytic endfeet, facilitates
bidirectional water transport between CSF and ISE, making this region
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FIGURE 2

region.

Anatomical Subdivision of the Glymphatic System

S4

Anatomical organization of the glymphatic system, subdivided into four functional regions: periarterial influx (S1), CSF—interstitial fluid (ISF) exchange
(S2), perivenous parenchymal efflux (S3), and meningeal efflux (S4). This cross-sectional diagram shows the brain cortex, subarachnoid space (SAS),
and meninges (dura mater [DM], arachnoid [A], pia mater [PM]). In S1, CSF (yellow arrows) enters periarterial spaces through the Virchow-Robin space,
located between the arterial vascular adventitia (AVA) and the PM. In S2, the PM becomes discontinuous, enabling CSF-ISF exchange mediated by
astrocytic AQP4 channels. In S3, glymphatic fluid flows along perivenous spaces between the external limiting membrane (ELM) and venous vascular
adventitia (VVA) within the parenchyma. In S4, flow continues in the meningeal compartment between the VVA and PM toward meningeal lymphatic
vessels (MLV). AQP4 is relevant only in the parenchymal segments (S2-S3), but not in S1 or S4. Insets S1-54 highlight key anatomical features of each
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central to solute exchange and fluid balance (Gomolka et al., 2023;
Giannetto et al., 2024) (Figure 2).

S3: Perivenous efflux region
(parenchymal)

As glymphatic flow transitions to venous outflow, CSF-ISF passes
along perivenous spaces bordered by the external limiting membrane
(ELM) and venous vascular adventitia (VVA). AQP4 expression
persists in this segment, enabling waste clearance toward the brain
surface (Rasmussen et al., 2018; [liff et al., 2015). Structural disruption
of this segment is frequently observed in pathological conditions,
including GBM (Figure 2).

S4: Perivenous efflux region
(meningeal)

Beyond the parenchyma, fluid continues along subarachnoid
perivenous spaces bordered by the VVA and PM, eventually draining
into the meningeal lymphatic vessels (MLVs). AQP4 is not functionally
involved in this segment (Figure 2). However, anatomical alterations
in this zone—such as compression or obstruction by tumor masses—
may still indirectly influence glymphatic function.

This four-zone anatomical model offers a refined framework for
investigating region-specific vulnerabilities in glymphatic transport,
particularly in pathologies such as GBM, in which edema and stasis
predominantly arise in CSF-ISF exchange (S2) and parenchymal
perivenous efflux (S3), whereas diminished out flow affects meningeal
lymphatic regions (S4) (Ma et al., 2019).

AQP4 localization and blood—-brain
barrier integrity

AQP4 not only facilitates glymphatic transport but is also essential
for maintaining the structural and functional integrity of the blood-
brain barrier (BBB). Under physiological conditions, AQP4 is highly
polarized at perivascular astrocytic endfeet, where it mediates
bidirectional water flux and contributes to homeostatic exchange
between vascular and parenchymal compartments (Warth et al., 2007;
Warth et al., 2004; Valente et al., 2024; Salman et al., 2022). Its
perivascular localization further supports endothelial tight junction
stability and BBB ultrastructure (e.g., astrocytic endfeet abut
microvessels, influencing endothelial morphology) (Wolburg et al.,
20125 Mueller et al., 2023). The BBB is anatomically adjacent to the
perivascular spaces engaged by glymphatic flow. Therefore, AQP4 at
the astrocyte provides a molecular interface for exchange, between
vascular and perivascular/glymphatic compartments. Alterations in
AQP4 expression, or loss of perivascular polarity can disturb endfoot-
vascular coupling, degrade tight-junction integrity, increase BBB
permeability, and exacerbate vasogenic edema in injury or disease
states (Mueller et al., 2023; Jeon et al., 2021; Zhou et al., 2008). In
GBM, loss of AQP4 polarity and disruption of its perivascular
with
permeability, as demonstrated by elevated sodium fluorescein leakage

organization correlate increased blood-brain barrier

and higher MRI-derived edema indices in patient specimens (Valente
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etal, 2022; Solar et al,, 2022; Abbrescia et al., 2024). This breakdown
allows plasma proteins and water to enter the brain parenchyma,
resulting in vasogenic edema, and perivascular disorganization
(Wolburg et al., 2012) that in turn impairs glymphatic clearance
(Valente et al., 2022; Gao et al., 2024)—two coupled yet separable
processes (Warth et al., 2007; Warth et al., 2004; Valente et al., 2024;
Wolburg et al., 2012; Noell et al., 2012).

Mechanistically, the mislocalization of AQP4 is associated with
the degradation of anchoring proteins such as agrin and components
of the dystrophin-dystroglycan complex, which are responsible for
tethering AQP4 to the astrocytic endfoot membrane (Warth et al.,
2004; Wolburg et al., 20125 Noell et al., 2012). The detachment of
AQP4 from these complexes not only disrupts water channel function
but also undermines the scaffold supporting the BBB (Figure 3).

Understanding the link between AQP4 localization and BBB
stability could affect therapeutic approaches aimed at restoring
vascular integrity. By reestablishing the polarized expression of AQP4
and preserving the dystrophin-dystroglycan complex, it may
be possible to reinforce BBB function and attenuate tumor-associated
edema and invasion.

Glymphatic dysfunction, AQP4
dysregulation, and peritumoral edema
in glioblastoma

Anatomical and functional disturbances in the GS are increasingly
recognized as contributors to the pathophysiology of glioblastoma. In
particular, tumor-induced compression, glial proliferation, and
vascular disorganization disrupt directional perivascular flow and
glymphatic clearance, changes that are most pronounced in the CSF-
ISF exchange (S2) and perivenous efflux (S3) regions, with reduced
meningeal outflow in the newly defined S4 zone as reported in glioma
(Rasmussen et al., 2018; Gao et al., 2024; Scalia et al., 2024) (Figure 3).

Advanced MRI techniques have revealed significantly reduced
glymphatic activity in GBM patients, correlating with interstitial fluid
retention and peritumoral edema (Mueller et al., 2023). These
disruptions are closely associated with changes in AQP4 expression
and distribution. In healthy brain tissue, AQP4 is highly polarized at
astrocytic end-feet lining the perivascular spaces, facilitating the
exchange of CSF and ISE as well as the clearance of metabolic waste
(McCoy et al,, 2010; Mou et al,, 2010). In GBM, however, AQP4
becomes disorganized—often redistributed throughout the astrocytic
membrane or even overexpressed in tumor cells—thereby
compromising tumor-associated perivascular fluid transport (Noell
etal, 20125 Mou et al., 2010) as illustrated schematically in Figure 3
and histologically in Figure 4.

Histological analyses have shown that AQP4 is frequently
upregulated around aberrant tumor vasculature and accumulates near
dilated or disorganized perivascular spaces (Warth et al., 2007; Gao
et al,, 2024; Noell et al., 2012; Scalia et al., 2024) (Figure 4). Such
alterations not only disrupt local water homeostasis but also impair
perivascular fluid transport, contributing to tissue swelling and elevated
intracranial pressure. Consistent with this, Scalia et al. (2024) reported
that GBM-associated glymphatic dysfunction involves reduced
meningeal lymphatic drainage and loss of directional fluid clearance. In
glioblastoma, AQP4 is often mislocalized or overexpressed within
tumor cells, resulting in loss of perivascular polarization and impaired
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Disruption of the Glymphatic System and AQP4-Associated Edema in Glioblastoma
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FIGURE 3

Schematic representation of glymphatic system disruption in glioblastoma. (A) In healthy brain tissue, the glymphatic system supports directional CSF—
ISF exchange through intact Virchow—Robin spaces in zones S2 and S3. Polarized AQP4 is concentrated at astrocytic endfeet, enabling efficient
perivascular fluid movement and metabolic waste clearance. (B) In glioblastoma, glymphatic architecture is disrupted by glial proliferation, vascular
alteration, and tumor-induced structural disorganization. AQP4 becomes mislocalized, reducing directional flow and promoting peritumoral edema.
CSF influx (yellow arrows) and impaired efflux (pink arrows) cause fluid accumulation, while increased vascular permeability allows leakage of immune
cells (green) and blood-derived products (red arrows), reflecting local BBB disruption that further amplifies edema and inflammation. In addition, M2-
polarized macrophages sustain a tumor-permissive microenvironment.

FIGURE 4

Histopathological features and AQP4 expression in glioblastoma (WHO Grade [V). (A,B) Hematoxylin and eosin (H&E) staining of glioblastoma tissue
reveals hallmark features, including moderate hypercellularity and geographic necrosis (A, 100X; bar 200 pm), and prominent microvascular
proliferation with glomeruloid-like vessels (B, 200X; bar 100 um). (C,D) Immunohistochemistry for AQP4 shows strong perivascular labeling at
astrocytic endfeet (arrows), highlighting pathological vessels surrounded by AQP4 + glial processes (C, 200X; bar 100 pm) and the presence of
irregular, dilated perivascular spaces (D, 400X; bar 50 pm). These findings support AQP4's role in tumor-associated vascular remodeling, glial
proliferation, and potentially impaired glymphatic clearance in glioblastoma. Images from unpublished clinical case from our group.
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coordination of perivascular flow. Experimental models demonstrate
reduced glymphatic influx and clearance in tumor-bearing hemispheres
(Kaur et al,, 2023) while diffusion MRI studies in patients reveal
diminished perivascular flow indices (lower DTI-ALPS) in tumor-
affected regions (Liang et al, 2025). Given that polarized AQP4
expression at astrocytic endfeet is essential for CSF-interstitial fluid
exchange (Simon et al., 2022; Peng et al., 2023) its disruption in GBM
likely compromises glymphatic transport not only within the tumor
core but also in surrounding brain tissue, thereby promoting
peritumoral fluid accumulation and impaired metabolic waste clearance.

The edema is a hallmark of glioblastoma and contributes
substantially to the clinical symptoms and poor prognosis associated
with the disease. Traditionally considered a passive consequence of
tumor growth, peritumoral edema is now recognized as an active
process involving glymphatic dysfunction and astrocytic activation.
The breakdown of glymphatic flow due to tumor expansion and
vascular alteration results in the accumulation of interstitial and
cerebrospinal fluid in the peritumoral region (Ma et al., 2019; Scalia
et al., 2024; Lan et al., 2023; Siri et al., 2024).

AQP4 plays a central role in this process. Elevated expression and
mislocalization of AQP4 around tumor boundaries are strongly
correlated with the extent and severity of peritumoral edema (Gao
etal, 2024; Noell etal., 2012; Mou et al., 2010). Rather than facilitating
efficient fluid clearance, disorganized AQP4 expression disrupts
osmotic gradients and contributes to aberrant water influx into the
extracellular space, thereby worsening local swelling.
modulating AQP4
distribution—either through pharmacologic means or gene-targeted

Therapeutically, strategies aimed at
approaches—may offer a way to reduce edema and improve clinical
outcomes. Additionally, restoring the integrity of the glymphatic
system may help re-establish fluid balance and relieve peritumoral
mass effect. As such, understanding the bidirectional relationship
between AQP4 function and glymphatic flow is essential for the

development of targeted interventions to mitigate edema in GBM.

AQP4 in immune modulation and the
tumor microenvironment

Beyond water transport, AQP4 contributes to cellular dynamics
and to the immune architecture of glioblastoma; higher AQP4
expression is associated with M2-like tumor-associated macrophage
(TAM) enrichment and immune evasion (Lan et al., 2022; Mou et al.,
2010). One of its critical functions lies in driving TAM polarization
toward the M2 phenotype—a state characterized by immune
suppression, angiogenesis, and tissue remodeling (Lan et al., 2022;
Wang et al., 2023) (Figure 5). M2-polarized TAMs secrete anti-
inflammatory cytokines such as IL-10 and TGF-p, support
extracellular matrix reorganization, and suppress antigen presentation,
thereby contributing to immune evasion and tumor growth. High
AQP4 expression in glioma tissues has been associated with a higher
prevalence of M2-like TAMs, linking AQP4 to an immunosuppressive
tumor niche (Pisani et al., 20215 Lan et al., 2022; Wang et al., 2023;
Seifert et al., 2015; Simone et al., 2022; Du et al., 2020).

Recent single-cell RNA sequencing studies further support this
relationship by demonstrating shifts in macrophage polarization states
in AQP4-high gliomas (Wang et al., 2023). Moreover, AQP4-
containing extracellular vesicles have been shown to influence the
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phenotype of surrounding immune cells and contribute to the
remodeling of the tumor milieu (Simone et al., 2022).

Taken together, these findings highlight the immunomodulatory
potential of AQP4, underscoring its role beyond its function as a water
channel. By orchestrating both glioma cell motility and immune
evasion, AQP4 emerges as a dual-threat molecule within the GBM
microenvironment. Therapies aimed at modulating AQP4 expression
or localization may not only impede tumor spread but also recalibrate
the immune landscape toward an anti-tumoral state.

AQP4 as a therapeutic target in
glioblastoma

One of the most challenging clinical features of glioblastoma is its
resistance to therapies, including radiation and chemotherapy. AQP4
has been implicated in maintaining therapy-resistant niches,
particularly in regions of hypoxia and low perfusion where slow-
cycling, stem-like glioma cells persist (Jia et al., 2023; MacLeod et al.,
2019). These microenvironments exhibit altered water-efflux kinetics,
suggesting that AQP4 may support cellular survival under cytotoxic
stress by preserving ionic balance in hypo-perfused tumor zones,
where drug diffusion is limited.

AQP4-enriched astrocytic domains in gliomas often co-localize
with regions exhibiting poor therapeutic penetration, hinting at a
protective spatial arrangement that shelters vulnerable glioma
subpopulations. In such zones, AQP4’s role in maintaining cell
polarity and local fluid dynamics may buffer against treatment-
induced apoptosis, enabling tumor cell regrowth (Ding et al., 2011).

Beyond its role in water transport, AQP4 contributes to glioma
cell migration and invasion through dynamic cytoskeletal remodeling,
membrane plasticity, and interactions with ion channels (Ding et al.,
20105 Varricchio et al., 2021). Upstream metabolic signaling via the
IDO1/TDO-kynurenine (Kyn) pathway activates the AhR, which
upregulates AQP4 and biases isoform balance toward invasive
phenotypes; AQP4 then acts as a downstream effector that promotes
motility, immune tolerance, and survival under therapeutic stress (Du
et al., 2020; Varricchio and Yool, 2023).

Pharmacologic inhibition of AQP4—alone or in combination with
ion channel modulators—has shown promise in preclinical models by
reducing glioma cell motility, sensitizing tumors to standard therapies,
and suppressing recurrence (Varricchio et al., 2021; Varricchio and
Yool, 2023). For example, TGN-020, a selective AQP4 inhibitor, has
demonstrated efficacy in reducing cerebral edema and glioma cell
migration in animal models, while AER-271, a more recent compound,
has shown similar effects with improved pharmacokinetics and CNS
penetration (Behnam et al., 2022). However, both agents face
challenges in clinical translation due to limited blood-brain barrier
(BBB) permeability and potential off-target effects. To overcome these
limitations, novel delivery strategies such as nanoparticle-based
platforms and BBB-penetrating antibody conjugates are being
explored. Simultaneous inhibition of AQP4 and co-expressed ion
channels has shown synergistic effects in reducing glioma cell viability
(MacLeod et al.,, 2019). Targeting upstream regulators like the Kyn—
AhR-AQP4 axis also offers a promising approach to disrupt glioma
proliferation and immune evasion (Du et al., 2020).

Altogether, AQP4 represents a mechanistically grounded and
multifaceted therapeutic target in GBM. Future efforts should
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Schematic representation of M1-AQP4 and M23-AQP4 isoforms in glioblastoma (GBM). On the left, M1-AQP4, which forms non-OAP tetramers,
predominates in GBM and drives cytoskeletal remodeling and lamellipodia formation, thereby enhancing glioma cell motility, invasion, and extracellular-
matrix remodeling. This M1-dominated state is further associated with polarization of tumor-associated macrophages (TAMs) toward the
immunosuppressive M2 phenotype, promoting angiogenesis, immune evasion, and tumor progression. On the right, M23-AQP4 assembles into OAPs
that stabilize astrocytic membranes and maintain polarized perivascular water flux under physiological conditions. In this configuration, AQP4 supports
glymphatic flow, limits cell migration, and favors apoptosis, reflecting a tumor-suppressive and homeostatic profile. Together, these isoform-specific
mechanisms illustrate how the M1/M23 balance governs both normal astrocytic physiology and the malignant as well as immunological behavior of GBM.
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prioritize the development of BBB-permeable inhibitors, identification
of AQP4-driven patient subgroups, and clinical evaluation of AQP4-
directed interventions to improve long-term outcomes.

AQP4 isoforms and functional roles in
gliomas

AQP4 exists in multiple isoforms, primarily M1-AQP4 and
M23-AQP4, which differ in their N-terminal sequences and in their
ability to form supramolecular structures (Pisani et al., 2021; Smith
etal, 2014; de Bellis et al., 2021). These isoforms play divergent roles
in glioma biology, particularly influencing cellular motility,
invasiveness, and the structural integrity of astrocytic networks.

MI1-AQP4, typically forming tetramers, is associated with
increased astrocyte migration and invasive capacity in high-grade
gliomas. Its expression correlates with poorer prognosis, increased
recurrence rates, and greater tumor spread (Sun et al., 2020; Engelhorn
etal, 2009). M1-AQP4 enhances the formation of lamellipodia—actin-
rich membrane protrusions—facilitating dynamic cytoskeletal
remodeling required for glioma cell motility (Smith et al., 2014; Lan
etal, 2017) (Figure 5).
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In contrast, M23-AQP4 forms orthogonal arrays of particles
(OAPs) that stabilize the astrocyte plasma membrane and restrict
cell motility. These arrays support a more polarized cellular
phenotype, associated with membrane rigidity and induction of
apoptosis (Amiry-Moghaddam, 2019; Simone et al., 2019; de Bellis
et al., 2021; McCoy and Sontheimer, 2007; Hiroaki et al., 2006).
Thus, the relative abundance and distribution of AQP4 isoforms
can influence the invasive phenotype of glioma cells (Figure 5).

Molecular regulators of AQP4 isoform expression have also
been identified. Thus, The Kyn-AhR axis also influences AQP4
expression by favoring the upregulation of the M1-AQP4 isoform,
thus reinforcing the pro-invasive and therapy-resistant phenotype
of glioma cells (Du et al., 2020). This metabolic-immunologic axis
represents a key interface between tumor metabolism and
membrane protein regulation. Moreover, non-coding RNAs such as
IncRNA LINC00461 and miR-216a modulate AQP4 expression,
further linking gene regulation to tumor behavior (Behnam
et al., 2022).

These findings emphasize that AQP4 isoform switching is not
merely a structural adaptation but may actively drive glioma
progression. Understanding and manipulating this isoform balance
could represent a novel therapeutic strategy in GBM.
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Clinical intersection of AQP4 function:
glioblastoma and neuromyelitis optica
spectrum disorders (NMOSD)

The therapeutic significance of AQP4 has prompted the
investigation of the intersection between glioblastoma and NMOSD,
an autoimmune condition characterized by the presence of pathogenic
anti-AQP4 antibodies (Castaneyra-Ruiz et al., 2014). Although
chronic AQP4 inhibition in NMOSD may hypothetically decrease the
risk of glioma development, there is currently insufficient evidence to
substantiate this hypothesis.

Numerous case reports have underscored the diagnostic
challenges and occasional clinical overlap between NMOSD and
gliomas, primarily due to the risk of misdiagnosis in which often
NMOSD is erroneously identified as brain tumors located in regions
where AQP4 is abundantly expressed (Park and Hwang, 2021; Song
et al., 2020; Tomari et al., 2024; Natsis et al., 2021).

A particularly intriguing case highlighted the coexistence of
NMOSD and glioblastoma, where the brain tumor emerged while the
patient was undergoing AQP4 immunosuppressive treatment for
NMOSD. In this situation, the immunosuppression may have
prevented the autoimmune system from identifying and targeting the
glioblastoma’s AQP4, facilitating its growth. Notably, upon partial
withdrawal of immunosuppressive therapy, NMOSD re-emerged
while the glioblastoma entered remission (Donovan et al., 2017). This
paradoxical outcome suggests a potential immunological conflict
between active NMOSD and glioblastoma progression, reinforcing
the notion that AQP4-targeted autoimmunity could inherently
oppose glioma advancement. Remarkably, Liao et al. (2010)
demonstrated that serum from NMOSD patients, rich in anti-AQP4
antibodies, exhibited reactivity against human glioblastomas. While
anti-AQP4 antibodies are widely considered pathogenic in NMOSD,
some studies suggest they may represent an epiphenomenon rather
than a direct driver of disease pathology (Schmetzer et al., 2021).
Although this does not undermine the immunological relevance of
AQP4, it introduces nuance into the role of recomanti-AQP4
antibodies in potential therapeutic implications for glioblastoma.

One of the most striking features of glioblastoma is its ability to
spread through the perivascular spaces of Virchow-Robin, a
phenomenon known as perivascular satellitosis or satellitism. This
invasive behavior contributes to the tumor’s poor surgical treatability
and is mediated by chemokines, such as stromal cell-derived factor 1
alpha (SDF-1a or CXCL12), which is expressed in subpial blood
vessels (Wesseling et al, 2011). Glioblastoma cells express
corresponding receptors, including CXCR4, which facilitates
chemotactic migration (Wesseling et al., 2011; Esencay et al., 20135
Zagzag et al., 2008). Intriguingly, an inverse relationship has been
reported between anti-AQP4 autoantibodies and CXCL12 levels in
NMOSD patients, suggesting a potential immunological conflict
between NMOSD and glioblastoma progression eritumoral astrocytic
mislocalization of AQP4, together with tumor mass effect,
compromises glymphatic function by distorting perivascular spaces
and compressing CSF-ISF exchange zones (Kang et al., 2015).
Moreover, homologous aquaporins, such as AQP3, are known to
be upregulated at the migrating edge of cancer cells upon stimulation
with CXCL12, further implicating aquaporins in chemokine-driven
tumor invasion (Satooka and Hara-Chikuma, 2016).

Given the limited data available, these findings suggest an
immunological incompatibility between active NMOSD and glioma
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progression that warrants further exploration. Systematic reviews and
large multicenter patient registries could provide crucial insights into
whether NMOSD offers any protective effect against glioma
development and whether AQP4-targeted immunity could
be therapeutically exploited. These observations should be interpreted
with caution, yet they remain valuable for generating new hypotheses.

Conclusions and future directions

This review highlights the central role of aquaporin-4 (AQP4) in
glioblastoma pathophysiology, extending beyond its canonical function
in water transport to include tumor-cell migration, immune modulation,
blood-brain barrier (BBB) disruption, and therapeutic resistance. AQP4
dysfunction—particularly its isoform-specific expression and subcellular
mislocalization—emerges as a converging mechanism linking
glymphatic system disruption with glioma progression.

We propose a refined anatomical framework for the glymphatic
system composed of four segments, each with distinct structural and
functional roles in cerebrospinal fluid (CSF)-interstitial fluid (ISF)
exchange. This segmentation offers new insights into how specific
anatomical zones may be selectively compromised in GBM, resulting
in impaired waste clearance, edema formation, and immune evasion.

Therapeutically, AQP4 represents a promising but complex target.
Pharmacological inhibitors, isoform-specific regulators, and novel
delivery systems (e.g., nanoparticle-conjugated agents) offer avenues
for disrupting AQP4-mediated tumor support. However, aquaporins
are traditionally considered “undruggable”; therefore, future strategies
may focus on modulating their upstream regulatory pathways or
selectively interfering with pore function. Moreover, the IDO1/TDO-
Kyn-AHR-AQP4 signaling axis, together with AQP4’s interaction
with tumor-associated immune components such as macrophages,
warrant the exploration of combined therapeutic approaches.

The rare clinical intersection between glioblastoma and NMOSD
suggests a potentially exploitable immunological relationship, though
further data are required to substantiate therapeutic applications.

Future research should focus on (1) clarifying causal links between
AQP4 dysregulation and glymphatic failure in gliomas, (2) identifying
biomarkers of AQP4 activity and localization for patient stratification,
and (3) developing BBB-penetrant, isoform-selective interventions. Such
approaches may improve diagnosis, therapeutic targeting, and clinical
outcomes in glioblastoma and related central nervous system tumors.
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