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HDAC7 knockout mitigates
astrocyte reactivity and
neuroinflammation via the
IRF3/cGAS/STING signaling
pathway

Rui-zhu Yue!t, Xing Guo!!, Wenqiang Li2, Chaokun Li** and
Linlin Shan3*

!College of Biological Sciences, China Agricultural University, Beijing, China, 2Henan Key Laboratory
of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China,
*Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan
Medical University, Xinxiang, China

Introduction: Astrocytes are parenchymal cells widely distributed throughout
the brain. Beyond their essential functions in healthy tissue, astrocytes exhibit
an evolutionarily conserved response to all forms of brain injury, termed
astrocytic reactivity. Nevertheless, conceptual understanding of what astrocytic
reactivity encompasses and its functional roles remains incomplete and
occasionally contentious. Lipopolysaccharide (LPS) is widely used to induce
neuroinflammation. In the current study, Histone deacetylase 7 (HDAC7?)
has been shown to ameliorate LPS-induced neuroinflammation and mitigate
astrocytic reactivity.

Methods: We overexpressed HDAC7 using viral vectors and generated primary
astrocytes from Hdac7X/foX mice to achieve astrocyte-specific HDAC7
knockout. Subsequently, we assessed astrocytic reactivity and detected the
expression of the Interferon regulatory factor 3 (IRF3)/cyclic GMP-AMP synthase
(cGAS)/stimulator of interferon genes (STING) pathway.

Results: HDAC7 has been implicated in inflammatory regulation, but its role
in astrocyte reactivity and the underlying mechanisms remain unclear. Here,
we demonstrate that HDAC7 deficiency attenuates LPS-induced astrogliosis
by suppressing the cGAS/STING signaling axis. LPS stimulation induced robust
upregulation of glial fibrillary acidic protein (GFAP), complement component
3 (C3), and pro-inflammatory cytokines (TNF-a, IL-6) in WT astrocytes, which
was significantly blunted in HDAC7 knockout astrocytes. Conversely, lentiviral
overexpression of HDAC7 in WT astrocytes exacerbated IRF3/cGAS/STING
pathway activation, as validated by Western blot analysis showing upregulated
cGAS, STING and IRF3 expression. Pharmacological activation of the STING
pathway in astrocytes restored pro-inflammatory cytokine expression and
reactive marker levels, indicating pathway dependence.

Discussion: Our results delineate a novel HDAC7/IRF3/cGAS/STING signaling
axis that governs astrocyte reactivity. This discovery provides a crucial
cellular neurophysiological mechanism by which astrocytes integrate
inflammatory signals and subsequently modulate the central nervous system
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microenvironment. Targeting HDACY, therefore,

10.3389/fncel.2025.1683595

represents a therapeutic

strategy to mitigate neuroinflammation by specifically correcting this
aberrant cell-physiological state of astrocytes, ultimately preserving neural

circuit function.
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1 Introduction

As the predominant glial subtype in the central nervous
system (CNS), astrocytes are crucial for providing trophic
and metabolic support to neurons, regulate synaptogenesis and
neuroinflammatory responses, and contribute to blood-brain
barrier (BBB) formation (Xiong et al., 2022). Reactive astrocytes
are a state of astrocytes in the CNS that undergo morphological,
physiological, and functional changes in response to injury or
disease stimuli. They play a complex and dual role in pathological
conditions. Specifically, when astrocytes differentiate into the
Al phenotype, reactive astrocytes become overactivated and
release large amounts of pro-inflammatory cytokines (Liddelow
et al., 2017). Excessive pro-inflammatory cytokines can further
exacerbate the inflammatory response, leading to BBB, neuronal
apoptosis, and neurological dysfunction. This process promotes
the progression of neurodegenerative diseases, as excessive
inflammation accelerates the death of nerve cells (Escartin et al.,
2021; Hinkle et al., 2019; Liang et al., 2023).

This
homeostasis and activates pro-inflammatory signaling in response

mechanism ensures immune quiescence during

to pathological stimulation. Under chronic neuroinflammation
or infection, astrocytes adopt a neurotoxic Al phenotype (Fang
et al, 2022), marked by upregulation of complement proteins,
pro-inflammatory cytokines (IL-6, TNF-a), and chemokines
(CXCL10). This reactive astrogliosis can be induced by ATP/P2X7-
mediated Ca?" signaling or microglial IL-1a, TNF-a, and Clq.
Al astrocytes contribute to disease pathology via mechanisms
such as oxidative stress in stroke (Sun et al., 2025; Wang et al,
2024), Excitatory amino acid transporter 2 (EAAT2) dysfunction
in Amyotrophic Lateral Sclerosis (ALS) (Rosenblum et al,
2017), D-serine-mediated N-Methyl-D-aspartic acid (NMDA)
potentiation in chronic pain (Sethuraman et al, 2009), C3-
driven synapse loss in Alzheimer’s Disease (AD) (Wen et al,
2024), and neurotoxin release in HIV-associated neurocognitive
disorders (HAND) (Lun et al., 2023). In contrast, A2 astrocytes

Abbreviations: AS, astrocyte; ATP, adenosine 5'-triphosphate; C3,
complement C3; C1Q, complement component 1q; cGAS, Cyclic GMP-AMP
synthase; COX-2, Cyclooxygenase-2; FKBP5, FK506-binding protein 5;
GFAP, Glial fibrillary acidic protein; GFP, green fluorescent protein; GBP2,
guanylate binding protein 2; H2-D1, Histocompatibility 2 class | antigen
D 1, H2-T23, histocompatibility 2, T region locus 2 3; HDAC7, histone
deacetylase 7; HSBP1, heat shock protein beta-1; IFN-y, interferon-gamma;
IL-1a, interleukin-1 alpha; IL-1, interleukin-1 beta; IL-6, interleukin-6; INOS,
inducible nitric oxide synthase; IRF3, interferon regulatory factor 3; Lcn2,
lipocalin-2; LPS, lipopolysaccharide; NMDA, N-methyl-D-aspartic acid;
PSMB8, proteasome subunit beta type 8; P2X7, purinergic receptor P2X 7;
Serpina3n, serine peptidase inhibitor clade A member 3 n; STING, stimulator
of interferon genes; TNF-a, tumor necrosis factor a; VIM, vimentin.
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exert neuroprotective roles through Brain-derived neurotrophic
factor/Glial-cell-line-derived neurotrophic factor (BDNF/GDNF)
secretion and Aquaporin-4 (AQP4) -mediated edema regulation
(Liddelow et al., 2017).

Class Ila histone deacetylases (HDACs 4, 5, 7, 9) modulate
inflammation through epigenetic gene regulation and deacetylation
of non-histone substrates in cancer (Shakespear et al., 2011). We
investigated HDAC inhibition, which confers anti-inflammatory
properties, in models of colitis and inflammation-induced
tumorigenesis. The treatment demonstrated significant efficacy in
suppressing both inflammation and tumor development (Glauben
et al., 2009). HDAC7 overexpressed in astrocyte and was shown to
promote nuclear factor kappa-light-chain-enhancer of activated
B (NF-kB) activation and upregulate pro-inflammatory genes
in LPS-induced mice (Ye et al, 2022). The IRF3/cGAS/STING
pathway activates antiviral inflammation through type-I interferon
(IFN-I) and NF-kB signaling (Balka et al., 2020). Recent studies
implicate the cGAS-STING pathway in neuroinflammation
(Paul et al., 2021), where cytosolic DNA sensing triggers Cyclic
GMP-AMP (cGAMP) synthesis, STING activation, and IFN-I
induction—observed in AB-mediated microglial activation in AD
(Govindarajulu et al., 2023), antiviral responses in viral encephalitis
(Losarwar et al., 2025), and STING knockout suppressing astrocyte
proliferation (Zhang et al., 2020). Microglial STING activation
contributes to neuroinflammation and neurodegeneration
in a-synucleinopathies, including Parkinson’s disease (PD)
(Hinkle et al., 2022). The emergence of reactive astrocytes occurs
concomitantly with neuroinflammation.

To date, no studies have demonstrated the involvement of
HDAC: in the IRF3/cGAS/STING system-induced inflammatory
and reactive states of astrocytes. While our previous work
established that LPS upregulates HDAC7 in astrocytes to drive
pro-inflammatory responses via NF-kB activation, the precise
mechanism by which LPS signaling promotes the polarization
of astrocytes toward the detrimental Al reactive state remains
unknown. Here, we investigate whether the IRF3/cGAS/STING
pathway serves as the critical link connecting LPS-induced HDAC7
upregulation to Al astrocyte polarization.

2 Materials and methods

2.1 Animals

Hdac70*/flox mice were obtained from GenPharmatech.
Adult C57BL/6 mice
Cavens Laboratory Animal Co., Ltd (Changzhou, China).

were purchased from Changzhou
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Hdac7%x/flox  mice (4 months of age) were individually
housed in ventilated cages (IVC; 4 mice per cage) under
controlled temperature (22 + 1 °C) with a standardized
12 h/12 h light/dark cycle. Food (standard rodent chow) and
water were provided ad libitum. All animal procedures were
conducted in compliance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were
carried out under a protocol approved by the Institutional
Animal Care and Use Committee (IACUC)
Medical University.

of Xinxiang

2.2 Primary astrocyte culture

Newborn Hdac7%*//10* mice (postnatal day 1-3) were selected,
as cortical astrocytes are abundant and viable at this stage. Cortices
were dissected under sterile conditions in a laminar flow hood.
Meninges and hippocampi were carefully removed. Cortical tissues
were transferred into dissociation solution (30 mL HBSS+330 L
HEPES+1.5 mL 10% Glucose) for enzymatic dissociation. An equal
volume of 0.25% trypsin was added for 20 min digestion at 37
°C, terminated by adding 2 mL fetal bovine serum (FBS). The
dissociated cell suspension was seeded onto poly-D-lysine (PDL)-
coated culture plates and maintained for 7 days in culture medium
(90% DMEM high-glucose+10% FBS+1% penicillin/streptomycin).
After 7 days, cells were placed on an orbital shaker (37 °C,
1,000 rpm for 12 h). The supernatant containing microglia and
oligodendrocyte precursors was discarded. Adherent astrocytes
were trypsinized and re-seeded onto new 6-well culture plates
at a density of 5 x 10° cellsymL. Upon full adhesion, the
cells were treated with 250 ng/mL LPS for 48 h before
being harvested.

2.3 PCR

Genomic DNA extraction was performed using the Beyotime
Mouse Genomic DNA Extraction Kit (D7283S). Freshly prepared
digestion buffer (96 wL DNA Extraction Solution+4 pL Enzyme
Mix per sample) was used to digest 0.2-1 cm tail tips, hair
follicles with roots, or 10 pwL saliva in 100 wL buffer (55 °C
for 15 min — 95 °C for 5 min). Reactions were terminated
with 100 pL Stop Solution, with samples stored at —20 °C/4
°C. For PCR amplification, 20 WL reaction mixtures were
prepared on ice containing: 7.4 pL dd H20, 1 pL template
DNA (2-20 ng/pL), 1.6 pL primer mix (Hdac7flox/flox Forward:
5-TCAGGAAGCCAGTACACCAGAA CTG-3; Reverse: 5'-
GGAAAGAGCTTGTGGGACGTCAC-3" Wild type: 247 bp,
Mutant: 352 bp), and 10 pL Easy-LoadTM PCR Master Mix.
After centrifugation, thermal cycling proceeded as: 95 °C 5 min
(1 cycle); 10 cycles of [95 °C 20 sec — 60 °C 20 sec (A—0.5
°Clcycle) — 72 °C 50 sec]; 26 cycles of (95 °C 20 sec — 55
°C 20 sec — 72 °C 50 sec); final extension at 72 °C 5 min with
temporary 4 °C hold. PCR products were directly analyzed by
agarose gel electrophoresis. Critical precautions included: using
sterile equipment, wearing gloves to prevent contamination,
preparing digestion buffer fresh, and aliquoting samples for long-
term storage to avoid freeze-thaw cycles (The results show in the

).

Frontiers in

10.3389/fncel.2025.1683595

2.4 Western blot

Primary astrocytes were lysed using RIPA buffer supplemented
with protease and phosphatase inhibitors and subsequently
harvested by cell scraping. The resulting lysates were sonicated
on ice for 5 min, followed by centrifugation at 12,000 x g for
20 min at 4 °C to collect the supernatant. Protein concentration was
determined with a BCA assay kit (Beyotime, Cat# P0009). Protein
samples were denatured in loading buffer at 95 °C for 10 min
and electrophoresed on 10% or 12.5% SDS-polyacrylamide gels
at 100 V for approximately 90 min. Subsequently, proteins were
transferred onto nitrocellulose (NC) membranes (Thermo Fisher
Scientific, Cat# 26616) at 256 mA for 30 min (proteins < 30 kDa)
or 120 min (proteins 30-180 kDa). The membranes were
blocked with 5% non-fat milk in TBST for 1 h at room
temperature, incubated with primary antibodies (see )
overnight at 4 °C, and then washed three times (10 min each)
with TBST. Thereafter, membranes were probed with HRP-
conjugated secondary antibodies for 1 h at room temperature,
followed by three additional washes with TBS. Protein bands
were visualized using an enhanced chemiluminescence (ECL)
detection system.

2.5 Realtime PCR

Total RNA was extracted from cultured cells with pre-
chilled TRIzoI™ Reagent (Invitrogen, Cat# 15596026) according
to the manufacturer’s instructions. Briefly, after removing
the culture medium, cells were directly lysed in TRIzol.
RNA was precipitated through sequential phase separation
using chloroform, followed by isopropanol precipitation and
washing with 75% ethanol. The RNA pellet was collected
by centrifugation at 12,000 x g for 15 min at 4 °C. RNA
concentration and purity were measured using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific), and samples
with A260/A280 ratios between 1.8 and 2.0 were used for
subsequent experiments. First-strand c¢cDNA was synthesized
from total RNA using the PrimeScript™ RT Master Mix
(Takara Bio, Cat# RR047A). The process included two steps:
(1) genomic DNA removal with gDNA Eraser at 25 °C for
5 min, and (2) reverse transcription at 37 °C for 15 min,
followed by enzyme inactivation at 85 °C for 5 sec and
cooling to 4 °C. Realtime PCR was performed on a Bio-
Rad CFX96 Real-Time PCR System using 2x Real Star Fast
SYBR qPCR Mix (Gene Star, Cat# A301-10). Each 10 pL
reaction contained 5 pL of qPCR mix, 0.8 wL each of forward
and reverse primers (10 wM), 2 pL of cDNA template, and
2.2 pL of nuclease-free water. The thermal cycling conditions
were as follows: initial denaturation at 95 °C for 30 sec; 40
cycles of 95 °C for 5 sec and 60 °C for 30 sec; and melt
curve analysis from 60 to 95 °C with incremental heating
at 0.5 °C/sec. Threshold cycle (Cq) values were determined
using Bio-Rad CFX Maestro™ software. Relative mRNA
expression levels were calculated via the 2~ 22Ct method, with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serving
as the endogenous reference gene. Primer sequences can are
listed in
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TABLE 1 Primers used for realtime PCR.

10.3389/fncel.2025.1683595

TABLE 2 Primary antibodies used in this study.

Genes Forward (5’ to 3') Reverse (5’ to 3') ‘ Antibodies | Applications ‘ Source Catelogy ‘
GAPDH TGTGAACGGATTTG ACTGTGCCGTTGAAT B-actin WB: 1:2,000 Proteintech Cat#66009
GCCGTA TTGCC
cGAS WB: 1:1,000 Proteintech Cat#29958
HDAC7 GAACTCTTGAGCCCT GGTGTGCTGCTACT
TGGACA ACTGGG STING WB: 1:1,000 CST Cat#13647S
C3 AAGCATCAACACACC CTTGAGCTCCATTCGT IRF3 WB: 1:1,000 Proteintech Cat#66670
CAACA GACA INOS WB: 1:1,000 CST Cat#131208
C1Q AAAGGCAATCCAGGCA TGGTTCTGGTATGGA COX2 WB: 1:1,000 Abcam Cat#ab15191
ATATCA CTCTCC
IL-6 WB: 1:1,000 CST Cat#129125
COX-2 GTCTGGTGCCTGGT TCTGATACTGGAACTGCT
CTGATGATG GGTTGAA IL-1B ‘WB: 1:1,000 Proteintech Cat#16806
FKBP5 GGACTGGACAGTGC CGTTGTGCTCCIT GFAP WB: 1:1,000 CsT Cat#36708
CAATGAGA CGCCTTC
HDAC7 WB: 1:1,000 Sigma-Aldrich Cat# H2662
GEFAP AGAAAGGTTGAATC CGGCGATAG TCGTTA
GCTGGA
GBP2 CCTGGTTCIGCTTGAC TGCTGGTTGATGGTTC Fluorescently conjugated secondary antibodies were incubated for
ACTGAG CTATGC 1 h at 37 °C protected from light. After three additional 5 min
H2-D1 GGCTCCACAGATAC CAAGAGGCACCACC PBS washes to remove excess secondary antibodies, nuclei were
CTGAAGAAC ACAGATG counterstained with DAPI for 5 min. Mounted specimens were
H2-T23 CTCCTCCATCCACTG ACCTATGTGTCTCCTC imaged using fluorescence microscopy.
TCTCCAA CTCTTCAT
HSBP1 ATCCCCTGAGGGCAC GGAATGGTGATCTCCG
ACTTA CTGAC 2.7 Flow cytometry
IFN-y CGGCACAGTCATT TGCATCCTTTTTCG
GAAAGCC CCTTGC Prior to the initiation of the procedure, all necessary
1o CGCTTGAGTCGGE CITCCCGTTGCTT reagents were prepared, including 1X PBS, 4% formaldehyde,
AAAGAAAT GACGTTG 100% methanol, and 0.5% BSA in PBS (stored at 4 °C). For
g GCAACTGTTCCTG ATCTTTTGGGGTC fixation, adherent cells or tissues were dissociated into single-cell
AACTCAACT CGTCAACT suspensions and centrifuged at 150-300 g for 5 min to pellet the
Lo TAGTCCTTCCTACCCCAA | TTGGTCOITAGCCACT cells. The cell pellet was resuspended in approximately 100 pnL
TTTCC CCTTC of 4% formaldehyde per 1 x 10° cells and mixed thoroughly
NOS CCCTTCCGAAGITTCIGE | GOCIGTCAGAGCCTCATAA to dissociate aggregates and prevent cell clumping. Fixation was
L
CAGCAGC CITTGG performed at room temperature (20-25 °C) for 15 min. After
Lo TGOCCCTGAGTGTC CTCTTOTAGCTCATAGAT fixation, cells were washed 2-3 times with excess 1X PBS via
C1n. . . . . .
ATGIG GGTGC centrifugation — care being taken to avoid excessive g-forces
to prevent cell rupture — and finally resuspended in 0.5-1 mL
PSMB8 CACCGCATTCCTGAGG GGAGTCCACAGCCAC . . . °
TCCTT GATGA of 1X PBS for immediate use or stored overnight at 4 °C.
For permeabilization, fixed cells were gently resuspended, and
Serpina3n ATTTGTCCCAATGTCT TGGCTATCTTGGCTATAA . . .
GCGAA AGGGG prechilled 100% methanol was added dropwise to achieve a final
concentration of 90%, followed by incubation on ice for at least
TNF-a CCCTCACACTCAGATCA GCTACGACGTGGG . . . .
p— CTACAG 10 min. For immunostaining, an appropriate number of cells were
aliquoted into 1 mL microcentrifuge tubes, washed 2-3 times with
M TCCACACGCACCTACA! ATGAGGAAT . . . .
v CGTCCACACGCACCTACAG igigSCTG oG 1X PBS under gentle centrifugation, and incubated with 100 wL

2.6 Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 15-20 min to
preserve cellular morphology. Permeabilization was carried out
with 0.3% Triton X-100 (P0096, Beyotime) for 30 min to facilitate
antibody access. Following this, blocking was performed with 5%
BSA at room temperature for 1 h to minimize nonspecific binding.
Subsequently, primary antibodies, diluted to their optimal working
concentrations, were applied and incubated overnight at 4 °C to
allow specific antigen binding. The next day, samples underwent
three 5 min PBS washes to remove unbound primary antibodies.

Frontiers in Cellular Neuroscience

of primary antibody solution for 1 h at room temperature with
occasional mixing. Cells were then washed again and incubated
with 100 pL of secondary antibody solution for 1 h at room
temperature protected from light. After a final wash, cells were
resuspended in 200-500 pL of 1X PBS. Processed samples were
analyzed using a flow cytometer. The purity of astrocytes was
assessed by flow cytometry, and the representative gating strategy
and quantification are presented in Supplementary Figure 2.

2.8 ELISA

Quantification of interleukin-6 (IL-6) and interleukin-1 beta
(IL-1B) in lysates of primary astrocytes was performed using

frontiersin.org
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specific ELISA kits (MEIMIAN, #MM-0163M1 and #MM-0040M1,
respectively) in strict adherence to the manufacturers protocol.
The assay procedure involved the addition of 50 nL of standards
or samples to the antibody-precoated wells, followed by a 30-min
incubation at 37 °C. The wells were then aspirated and washed
three times with wash buffer. Subsequently, 100 wL of horseradish
peroxidase (HRP)-conjugated detection antibody was added to
each well, and the plate was incubated for a further 30 min at 37
°C. After a second wash cycle, color development was initiated
by sequential addition of 50 wL of substrate solutions A and B,
with a 15-min incubation at 37 °C in the dark. The enzymatic
reaction was stopped by adding 50 pL of stop solution per well.
Absorbance was measured immediately at 450 nm, and sample
cytokine concentrations were determined by interpolation from a
standard curve calibrated with recombinant proteins.

2.9 Statistical analysis

Statistical analyses were performed with Graphpad Prism 10
(LaJolla, CA, USA). Unpaired Students t-test was employed to
identify difference between the two groups. One-way or two-
way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test was employed to identify differences among three
or more groups as indicated in the figure legends. The statistical
significance levels were set at p < 0.05 (*), p < 0.01 (**), p < 0.001
(***), with a confidence interval of 95%. All data were expressed
as mean £ SD.

3 Results

3.1 LPS triggers astrocyte reactivity and
neuroinflammatory responses

Following treatment of primary astrocytes with 250 ng/mL LPS
for 48 h, we detected HDAC?7 expression to validate our previous
findings (Ye et al., 2022), confirming that LPS induces significant
upregulation of HDAC7 (Figure 1A). iNOS, an enzyme increased
during inflammation, primarily catalyzes nitric oxide (NO)
production (Hibbs et al., 1988; Moncada et al., 1991). NO exhibits
cytotoxicity by damaging DNA, proteins, and cell membranes (Xia
etal., 2010). Concurrently, NO upregulates other pro-inflammatory
factors (e.g., IL-1B, TNF-a), establishing a pro-inflammatory
positive feedback loop. LPS markedly increased iNOS expression
(Figure 1B), accompanied by elevated IL-1B (Figure 1F) and TNF-
a expression (Figure 1G). COX-2, a key enzyme in prostaglandin
synthesis (KKujubu et al., 1991), showed significant upregulation
in astrocytes under sustained LPS stimulation (Figure 1C).
A pronounced increase in IL-6 further indicated progressive
enhancement of astrocytic inflammatory responses (Figure 1D).
Peripheral administration of LPS is known to trigger a central
inflammatory response and robustly stimulate IL-la expression
from astrocytes (Figure 1E). While inducing substantial elevations
in inflammatory gene (iNOS, COX-2, IL-1B, TNF-a), LPS also
significantly upregulated IFN-y expression (Figure 1H). LCN2,
initially identified in neutrophils and widely expressed in various
cells (epithelial, immune, neuronal), participates in inflammatory
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and immune responses (Kjeldsen et al., 1994). It demonstrated
marked upregulation following stimulation by inflammatory
cytokines (IL-1f, TNF-a, IFN-y) (Figure 1I). Elevated LCN2
further amplified TNF-a and IL-6 release. GFAP, a specific
astrocytic marker critical for maintaining cellular structure,
function, and CNS homeostasis (Bignami et al., 1972), showed
significant overexpression (Figure 1]) in activated “reactive
astrocytes,” accompanied by cellular hypertrophy and increased
processes. Astrocytic complement C3 expression, observed in
various pathological conditions, was substantially increased by
LPS (Figure 1K). Vimentin (Vim), a type III intermediate
filament protein, is predominantly expressed in radial glia and
immature astrocytes during CNS development, later replaced
by GFAP in adults. In mature brain tissue, Vim persists in
subependymal immature astrocytes and cerebellar Bergmann glia
(Hockfield and McKay, 1985). LPS induced Vim upregulation in
astrocytes (Figure 1L). Serpina3n, an acute-phase protein with
anti-inflammatory effects in early cerebral ischemia by suppressing
microglial overactivation (Zhang J. et al., 2021), exhibited sustained
overexpression under LPS-induced model (Figure 1M), potentially
promoting pro-inflammatory Al astrocyte maintenance and
impairing neural repair. Under neuroinflammatory conditions,
inflammatory microglia secrete IL-1a, TNE and Clq to induce
astrocytic activation into neurotoxic states. Our study confirmed
LPS-induced IL-1a and TNF upregulation, with concurrent C1Q
elevation (Figure 1N), indicating significant neuroinflammation
and Al reactive astrocyte transformation. HSBPI, a reactive
astrocyte marker, was upregulated by LPS (Figure 10). LPS-
induced PSMB8 overexpression (Figure 1P) triggered endoplasmic
reticulum stress and excessive inflammatory cytokine release
(IFN-y, IL-6). While astrocytes normally support myelination,
LPS-induced Al transformation led to FKBP5 overexpression
(Figure 10Q), inhibiting remyelination. Classic Al astrocyte markers
H2-T23, GBP2, and H2-D1 all showed significant LPS-induced
upregulation (Figures 1R-T).

3.2 Overexpression of HDACY7 activates
IRF3/cGAS/STING and induces astrocyte
activation and inflammatory responses

Building on our previous finding that LPS upregulates
astrocytic HDAC7—which enhances IKKa/p acetylation, activates
NF-kB, and drives neuroinflammation—we next questioned
whether HDAC7 overexpression alone is sufficient to induce
astrocyte activation (Ye et al., 2022). Next, we identified whether
HDAC? overexpression can induce astrocyte activation. Primary
mouse astrocytes transduced with LV-GfaABC1D-HDAC7-GFP-
WPRE showed substantial upregulation of HDAC7 at both the
mRNA and protein levels (Figures 2A, B, E). This was accompanied
by a pronounced increase in the expression of key pro-
inflammatory mediators—iNOS, COX-2, IL-6, and IL-1p are highly
increased in protein and mRNA (Figures 2C, F-H, ]). Notably,
the elevated levels of IL-6 and IL-1p were further confirmed by
ELISA (Figure 2D), demonstrating a consistent and significant
upregulation. Reactive astrocyte marker GFAP (Figure 2N),
additional cytokines IL-1a, TNF-a and IFN-y (Figures 21, K, L)
were also elevated. Notably, HDAC7 overexpression upregulated
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LPS triggers astrocyte reactivity and neuroinflammatory responses. (A—-T) Quantitative PCR analysis of mRNA expression levels in primary astrocytes
treated with 250 ng/mL LPS. (A) HDAC?7, (B) iNOS, (C) COX-2, (D) IL-6, (E) IL-1a, (F) IL-18, (G) TNF-a, (H) IFN-vy, (I) LCN2, (3) GFAP (K) C3, (L) Vim,
(M) Serpina3n, (N) C1Q, (O) HSBP1, (P) PSMBS, (Q) FKBPS5, (R) H2-T23, (S) GBP2, and (T) H2-D1, n = 5-6. Data are presented as mean =+ SD.
Statistical significance was determined using unpaired t-test. ***p < 0.001, **p < 0.01, *p < 0.05.

both general (LCN2, GFAP) and Al-specific (C3, C1Q, GBP2)
reactive astrocyte markers (Figures 2M-X), establishing HDAC7

as a key driver of Al astrocyte transformation. Importantly,

Frontiers in Cellular Neuroscience

06

HDAC?7 overexpression in astrocytes also significantly activated
components of the STING pathway, including IRF3, cGAS, and
STING (Figure 2Y).
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FIGURE 2

Overexpression of HDAC7 activates IRF3/cGAS/STING and induces astrocyte activation and inflammatory responses. (A) Representative
immunostaining images of HDAC7 and DAPI in astrocyte (Scale Bar = 10 um). (B) Representative Western blot images for HDAC7 and B-actin, and
the corresponding quantitative data, n = 6. (C) Representative Western blot images of IL-6, IL-18, INOS, COX-2, GFAP and B-actin, with quantification
of band intensities indicating the relative protein expression levels of IL-6, IL-18, INOS, COX-2 and GFAP, n = 6. (D) IL-6 and IL-1B concentrations
were measured by ELISA, n = 12. (E-X) Quantitative PCR analysis of mMRNA expression levels of various inflammatory and oxidative stress markers
including (E) HDAC?7, (F) iNOS, (G) COX-2, (H) IL-6, (1) IL-1a, (J) IL-1B, (K) TNF-a, (L) IFN-y, (M) LCN2, (N) GFAP, (O) C3, (P) Vim, (Q) Serpina3n,

(R) C1Q, (S) HSBP1, (T) PSMBS, (U) FKBPS5, (V) H2-T23, (W) GBP2, and (X) H2-D1 in primary astrocyte infected with AAV-GfaABCD-GFP-WARE and
AAV-GfaABCD-HDAC7-GFP-WARE, n = 5-6. (Y) Representative Western blot images showing the expression of IRF3, cGAS, STING, and B-actin, with
quantification of band intensities indicating the relative expression levels of IRF3, cGAS, and STING, n = 6. Data are presented as mean + SD. Data are
presented as mean + SD. Statistical significance was determined using unpaired t-test. ***p < 0.001, **p < 0.01, *p < 0.05.
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3.3 HDAC7 deletion inhibits
IRF3/cGAS/STING and ameliorates
reactive astrogliosis and
neuroinflammatory responses

Building upon our finding that HDAC7 upregulation drives
astrocyte transformation into reactive Al astrocytes, we generated
Hdac7¥/flox mice and isolated primary astrocytes from neonates.
Cells were transduced with pLenti-EF1-P2A-puro-CMV-Cre-
3xFLAG-WPRE to knockout HDAC?7, assessing whether this
attenuates LPS-induced inflammation and reactivity. Western
blot analysis and immunofluorescence confirmed a significant
reduction in HDAC7 expression following viral infection
(Figures 3A, B, F). Additionally, we monitored key inflammatory
markers, including cytokines (IL-6, IL-18) and enzymes (iNOS,
COX-2). HDAC7 knockout significantly attenuated the LPS-
induced upregulation of these factors, as demonstrated by both
western blot , Elisa and quantitative PCR analyses (Figures 3C,
D, G-K). The reduced expression levels of IL-6 and IL-1f were
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further validated by ELISA in primary astrocytes, confirming
consistent suppression following HDAC7 knockout (Figure 3E).
Finally, we examined the effect of HDAC7 knockout on reactive
astrocytes and found it significantly downregulated both general
(LCN2, GFAP) and Al-specific (C3, C1Q, GBP2) markers
(Figures 3L-Y), confirming its inhibitory role in Al astrocyte
polarization. Additionally, HDAC7 knockout suppressed LPS-
induced activation of the cGAS/STING pathway (Figure 37).
Collectively, these results indicate that HDAC?7 deficiency prevents
astrocytes from transforming into Al reactive astrocytes.

3.4 HDACY7 deletion mitigates STING
pathway-driven reactive astrogliosis and
neuroinflammatory responses

Building upon our finding that HDAC7 upregulation drives
astrocyte transformation into reactive Al astrocytes. Next, to
assess whether HDAC knockout can attenuates LPS-induced
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FIGURE 3

HDACY7 deletion inhibits IRF3/cGAS/STING and ameliorates reactive astrogliosis and neuroinflammatory responses. (A) Representative
immunostaining images of HDAC7 and DAPI in astrocyte (Scale Bar = 10 um). (B) Representative Western blot images of HDAC7 and p-actin, n = 3.
(C) Representative Western blot images of IL-6, IL-18, INOS, COX-2, GFAP and B-actin, n = 3. (D) Quantification of HDAC7, IL-6, IL-1B, INOS, COX-2,
GFAP protein expression levels normalized to B-actin. (E) IL-6 and IL-1B concentrations were measured by ELISA, n = 12. (F-Y) Quantitative PCR
analysis of mMRNA expression levels of various inflammatory and reactive astrocyte markers including (F) HDAC7?, (G) iNOS, (H) COX-2, (I) IL-6,

(J) IL-1a, (K) IL-1B, (L) TNF-a, (M) IFN-y, (N) LCN2, (O) GFAP, (P) C3, (Q) Vim, (R) Serpina3n, (S) C1Q, (T) HSBP1, (U) PSMBS, (V) FKBP5, (W) H2-T23,
(X) GBP2, and (Y) H2-D1, n = 5-6. (Z) Representative Western blot images of IRF3, cGAS, STING, and B-actin, with quantification of band intensities
indicating the relative expression levels of IRF3, cGAS, and STING. The primary astrocyte transfected with pLenti-EF1-P2A-puro-CMV-3xFLAG-WPRE
(HDAC7*/%) and pLenti-EF1-P2A-puro-CMV-Cre-3xFLAG-WPRE (HDAC7~/~). And We treated primary astrocytes with 250 ng/mL LPS, n = 3. Data
are presented as mean =+ SD. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. ***p < 0.001, **p < 0.01,
*p < 0.05
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inflammation and reactivity, primary astrocyte derived from
Hdac7/0*/fox mice were transduced with G10 (a specific STING
agonist). We investigated whether HDAC7 knockout could
suppress astrocyte toxicity and reactive phenotypes. Initially, we
assessed the expression levels of key inflammatory mediators at
both protein and mRNA levels. The results showed significant
reductions in IL-6, IL-1f, iNOS, and COX-2 (Figures 4B-D, T,
U). Notably, the decreased expression of IL-6 and IL-1f was
further confirmed by ELISA, consistent with the preceding data
(Figure 4V). We also detected the reactive astrocyte activation
marker GFAP and found it was also significantly reduced
(Figure 4]). We detected the expression of IRF3 and cGAS
and found significant decreases (Figure 4U), indicating that
HDAC?7 knockout inhibits the IRF3/cGAS/STING pathway. Next,
we detected HDAC7 mRNA expression and found a significant
decrease, suggesting that activating the STING pathway to induce
inflammatory factor release also stimulates HDAC7 overexpression
(Figure 4A). We also detected other relevant inflammatory factors,
such as IL-la (Figure 4E), TNF-a (Figure 4G), and IFN-y
(Figure 4H), and found that these inflammatory factors also
decreased significantly, indicating that HDAC7 knockout can
reduce the increased release of inflammatory factors caused by
STING pathway activation. Finally, we verified whether HDAC7
knockout could inhibit the activation of reactive astrocytes and
the high expression of Al astrocyte markers after STING pathway
activation. We found that reactive astrocyte markers, including
LCN2 (Figure 4I), HSBP1 (Figure 40), Serpina3n (Figure 4M),
VIM (Figure 4L), and GFAP (Figure 4]) were significantly
decreased; while established Al astrocyte markers such as C3
(Figure 4K), C1Q (Figure 4N), PSMB8 (Figure 4P), FKBP5
(Figure 40), H2-T23 (Figure 4R), GBP2 (Figure 45), and H2-D1
(Figure 47T also showed significant reductions.

4 Discussion

This study systematically reveals the critical regulatory
role of HDAC7 in LPS-induced Al astrocyte activation and
neuroinflammation, and for the first time demonstrates that
HDAC?7 drives neurotoxic astrocyte polarization by activating
the IRF3/cGAS/STING signaling pathway, as validated by genetic
knockout models showing the significant inhibitory effect of
HDACY? deficiency on neuroinflammation.

Glial cells are key components of the central nervous
system with diverse and complex functions. Under physiological
conditions, astrocytes interact with neurons through the “tripartite
synapse” structure, directly regulating synaptic transmission and
plasticity. They are responsible for maintaining extracellular
ion/transmitter homeostasis and providing neurotrophic support.
Meanwhile, microglia, as resident immune cells, play a central
role in immune surveillance (Hanslik et al., 2021; Segarra et al,,
2019; Vecino et al, 2016). Al astrocyte activation is a common
feature in pathological processes such as neurodegenerative
diseases and brain injury (Hinkle et al., 2019); their overactivation
can exacerbate neuronal damage by releasing complement
proteins, pro-inflammatory cytokines, and neurotoxins (Yun
et al, 2018). Elucidating the intrinsic mechanisms regulating
neurotoxic  versus neuroprotective

astrocyte  phenotypes
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remains a current research priority. Evidence indicates that
the previously simplified Al: neurotoxic astrocyte and A2:
neuroprotective astrocyte classification can be further subdivided
into distinct subpopulations defined by proliferative capacity
and differential gene expression profiles (Batiuk et al, 2020).
Neuroprotective astrocytes act via compartmentalized cyclic
adenosine monophosphate (cAMP) produced by soluble adenylyl
cyclase. This regulation restrains microglial activation, leading to
the suppression of downstream neurotoxic astrocyte induction
(Cameron et al., 2024). Some studies also indicate that microglia
play pivotal roles in the nervous system. Pharmacological or
genetic approaches can induce robust adult neurogenesis (Driger
et al., 2022; Willis et al., 2020; Zhang Y. et al., 2021). Evidence
further demonstrates that activated microglia release multiple
inflammatory factors including IL-6, IL-1a, and TNF which drive
astrocyte transformation into Al astrocytes, thereby exacerbating
severe neuroinflammatory responses in the nervous system
(Liddelow et al., 2017). LPS-induced systemic inflammation leads
to the generation of reactive astrocytes. The levels of inflammatory
factors in astrocytes are significantly increased; it also exacerbates
the activation of microglia, the disruption of the BBB, the
infiltration of peripheral immune cells, neuronal dysfunction,
2024). Under
pathological conditions, factors such as neuroinflammation can

and the depressive behaviors of mice (Guo et al,

activate microglia, which in turn drives the transformation of
astrocytes into a neurotoxic Al-reactive phenotype. These reactive
astrocytes release large amounts of pro-inflammatory factors,
compromising BBB integrity and triggering neuronal apoptosis,
thereby accelerating the progression of neurodegenerative diseases.
In this process, molecules such as HDAC?7 play a crucial role in
glial cell activation and inflammatory responses by modulating
key signaling pathways like IRF3/cGAS/STING, making them
potential therapeutic targets for intervening in neuroinflammation
and related diseases.

Therefore, the current discussions on Al astrocytes remain
inconclusive and are still a subject of debate. However, this study
primarily focuses on elucidating the transformation mechanisms of
normal astrocytes into Al-type astrocytes.

HDACs play a crucial role in modulating astrocyte function
and neuroinflammation (Beurel, 2011; Manengu et al., 2024). In
the context of neuroinflammation, HDACs modulate astrocyte
activation, driving these cells toward a reactive phenotype
marked by heightened generation of pro-inflammatory cytokines
and chemokines (Wang et al., 2023). This astrocyte activation
can exacerbate the inflammatory response and contribute to
the compromise of the BBB (Kim et al, 2022). Targeting
HDAGCs represents a potential therapeutic strategy to modulate
astrocyte-mediated neuroinflammation and mitigate the associated
neurodegenerative processes (Cai et al., 2022). Overexpression of
Sirtl reduces the reactivity of astrocytes, improves neurological
dysfunction and improves neuron activity (Zhang et al, 2019,
2022). Additionally, HDACs may influence the crosstalk between
astrocytes and other glial cells, such as microglia, further amplifying
neuroinflammatory signaling (Villarreal et al, 2021). Our research
found that LPS stimulation significantly upregulates HDAC7
expression in astrocytes, and HDAC7 overexpression further
enhances the release of A1 markers and pro-inflammatory factors,
suggesting HDAC? is a key molecule linking PAMPs stimulation to
the cytotoxic astrocyte phenotype.
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Activation of the cGAS-STING axis orchestrates a multifaceted
cellular program that encompasses senescence, autophagy, selective
mRNA translation, and robust interferon-driven immunity (Wu
et al, 2024). The cGAS/STING pathway is a central signaling
axis for cytosolic DNA sensing. It is indispensable for mounting

antiviral defenses, yet its dysregulation fuels autoimmune
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pathology and drives neuroinflammatory cascades (Oduro
et al, 2022). This study found that HDAC7 overexpression
significantly activates the protein expression of IRF3, cGAS,
and STING, whereas HDAC?7 deficiency reduces LPS or G10-
induced inflammatory responses by inhibiting this pathway. It
is noteworthy that STING activation can feedback to upregulate
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HDAC7 mRNA levels, suggesting a potential positive feedback
regulatory loop between HDAC?7 and the cGAS/STING pathway,
which jointly sustains the chronicity of neuroinflammation.
HDAC?7 knockout mouse models constructed using CRISPR/Cas9
show that HDAC7 deficiency significantly inhibits LPS-induced
astrocyte hypertrophy, GFAP expression, and upregulation of Al
markers, while concurrently reducing levels of pro-inflammatory
factors such as IL-18 and TNF-a in brain tissue.

Under neuroinflammatory stress, LCN2 is rapidly synthesized
and secreted by activated microglia and reactive astrocytes,
propagating a cytotoxic milieu that culminates in widespread
neuronal apoptosis. We demonstrate that LCN2 secretion from
reactive astrocytes is triggered by LPS as an inflammatory stressor.
Studies indicate that inhibiting NF-kB activation downregulates
astrocytic LCN2 even under inflammatory stress (

). Our findings show that suppressing HDAC7 overexpression
in astrocytes ameliorates LCN2 elevation, concurrently validating
our prior research that NF-kB pathway activation enhances
inflammatory factor release effects attenuated by TMP195-
mediated inhibition of histone deacetylase function (

). Furthermore, this study establishes HDAC7 as a mediator
of astrocyte transformation into Al-type reactive astrocytes.
Mechanistically, this protective effect is closely associated with
the inactivation of the IRF3/cGAS/STING pathway, indicating
that HDAC7 may serve as a potential target for intervening in
neuroinflammation-related diseases.

As the pathological
neurodegenerative diseases advances, the
roles of HDACs and their specific inhibitors in these disorders
are becoming increasingly elucidate. However, the physiological

of
neuroregulatory

research  into mechanisms

functions of HDAC? in the nervous system, particularly its
regulatory mechanisms in the activation of Al-reactive astrocyte,
remain poorly understood and require further investigation.
Based on our in vitro experimental results, we propose a central
hypothesis: the HDAC7/cGAS-STING signaling pathway identified
in this study may represent a key molecular mechanism driving
the sustained activation of neurotoxic Al-reactive astrocytes.
This mechanism could potentially explain the core pathological
feature observed in neurodegenerative diseases such as Alzheimer’s
disease namely, the persistent activation of astrocytes and
exacerbated neuroinflammatory damage that are difficult to
alleviate. Furthermore, future studies should focus on elucidating
the regulatory patterns of this pathway in vivo using disease models,
validating the synergistic neuroprotective effects of HDAC7-
specific inhibitors and cGAS-STING pathway interventions,
and clarifying the crosstalk between this pathway and other
neuroinflammatory signaling cascades ( )

In the cGAS-STING signaling pathway, the initiation stage
begins with the sensing of cytosolic double-stranded DNA. When
exogenous DNA, such as viral DNA, or endogenous DNA, such
as mitochondrial DNA leakage caused by genomic instability, is
present in the cytoplasm, cGAS binds to and is activated by these
dsDNA molecules. Subsequently, activated cGAS catalyzes the
synthesis of the cyclic dinucleotide second messenger 2'3’-cGAMP
from ATP and GTP. During the signal transduction phase, STING
located on the endoplasmic reticulum, inducing conformational
changes and dimerization of STING. The activated STING
protein then translocates from the endoplasmic reticulum to the
perinuclear region via the Golgi apparatus ( ;

Frontiers in

11

10.3389/fncel.2025.1683595

). Downstream STING activation involves the
recruitment and activation of TBK1, leading to the phosphorylation
and nuclear translocation of IRF3 and NF-«B, where they drive
the expression of type I interferons (IFN-a/f) and inflammatory
cytokines to trigger a broad innate immune response (

). Previous studies have shown that class I[Ta HDACs can
significantly activate IRF3 ( ). Inspired by this finding,
we investigated whether HDAC7 might also activate the cGAS-
STING signaling pathway. In our study, we found that knockout of
HDACY suppressed the cGAS-STING signaling pathway, thereby
preventing excessive inflammatory responses in astrocytes.

HDAC7, a member of Class Ila histone deacetylases,
exerts context-dependent and often complex regulatory roles
in inflammation across different tissues and cell types. Its functions
extend beyond histone modification to include deacetylation of
transcription factors and cytoplasmic proteins, thereby influencing
key inflammatory signaling pathways. In immune cells such
as macrophages, HDAC7 is generally recognized as a positive
regulator of pro-inflammatory responses. It enhances NF-«kB
activation and significantly upregulates the expression of pro-
inflammatory cytokines such as TNF-o, IL-6, and IL-18. The
mechanism primarily relies on direct interaction with TRAF6 and
TAK1 in the TLR4 signaling pathway, amplifying downstream
MAPK and NF-kB activation without altering chromatin
accessibility. Studies have shown that HDAC7 expression is
significantly increased in LPS-induced inflammation models,
and targeted degradation of HDAC7 using PROTAC technology
effectively suppresses the release of multiple inflammatory
cytokines ( ). The role of HDAC? in inflammatory
regulation remains incompletely understood; however, our
findings indicate that it promotes the activation of the cyclic
cGAS-STING pathway and exacerbates neuroinflammation.
HDACY is a key regulator in TLR signaling. Its enzymatic activity
can be rapidly activated by various TLR agonists in a MyD88
adaptor-dependent manner. This protein plays a dual role in
inflammation: it regulates glycolysis in macrophages induced by
low-dose LPS in a deacetylase-independent manner, while through
its enzymatic activity—particularly via deacetylation of PKM2
and subsequent promotion of HIF-la-mediated transcription—it
enhances the production of pro-inflammatory cytokines such as
IL-1f and CCL2. This functional divergence positions HDAC7 as a
critical node linking inflammation and metabolic reprogramming,
especially in low-grade chronic inflammation. Targeting HDAC7
enzymatic activity or its mediated protein interactions offers a
potential new strategy for treating inflammation-related diseases
( ). While current research has mainly
focused on the strong pro-inflammatory role of HDAC7 in
macrophages, studies also indicate that HDAC7 plays a significant
pro-inflammatory role in LPS-induced inflammation by promoting
the activation of astrocytes ( ). Given its significant
impact on inflammatory processes, HDAC7 has emerged as a
potential therapeutic target in inflammatory and autoimmune
diseases. Inhibition of HDAC7 has been shown to attenuate
excessive immune activation in several experimental models,
and our experiments further supplement its important role
in ameliorating neuroinflammation, suggesting its utility in
modulating inflammation-driven pathology.

Reactive astrogliosis, a hallmark of various neurological
disorders, is characterized by the morphological and functional
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transformation of astrocytes in response to pathological
stimuli. Several biomarkers have been identified to delineate
reactive astrocytes (Liddelow et al, 2017). Activation of the
IRF3/cGAS/STING pathway in microglia and astrocytes promotes
the release of pro-inflammatory cytokines, chemokines, and
interferons, exacerbating neuroinflammation (Decout et al., 2021).

It is noteworthy that HDAC7, belonging to class Ila HDACs,
possesses tissue-specific expression and regulates non-histone
substrates; these properties may confer lower systemic toxicity
compared to broad-spectrum HDAC inhibitors, providing a
theoretical basis for developing central nervous system-selective
anti-inflammatory drugs. Although this study clarified the
mechanism of HDAC7 action in in vitro astrocyte models, its
role within the complex in vivo neural microenvironment requires
further validation. For instance, whether HDAC7 indirectly
influences neuroinflammation by regulating microglia-astrocyte
interactions or exerts differential functions at distinct disease
stages such as acute injury vs. chronic degeneration, needs to be
elucidated by in vivo experiments. Furthermore, the interaction
of HDAC7 with other inflammatory pathways, such as the
NLRP3 inflammasome (Yao et al, 2022), and its impact on
astrocyte differentiation toward the neuroprotective A2 phenotype,
also warrants in-depth investigation. The functional plasticity
of astrocytes makes them a potential therapeutic target for
neurological diseases. Future research needs to leverage single-
cell sequencing and spatial transcriptomics to decipher their
heterogeneity and develop dual regulatory strategies, inhibiting
the harmful Al phenotype while preserving neuroprotective
functions. In-depth research targeting the cGAS/STING pathway
may provide novel insights for simultaneously intervening in
neuroinflammation and glial scar formation.

This  study that HDAC7 drives astrocyte
transformation toward the neurotoxic Al phenotype via the
IRF3/cGAS/STING pathway,
mechanism of HDAC7 in neuroinflammation involving
simultaneous activation in IRF3/cGAS/STING pathways. The
anti-inflammatory effect of HDAC7 knockout provides novel

elucidates

revealing the dual regulatory

therapeutic strategies for inflammation-related brain diseases such
as neurodegenerative disorders and stroke; targeting HDAC7 or
its downstream pathways holds promise as a precision medicine
approach for intervening in central nervous system inflammation.
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