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Dopamine released from the axon terminals of dopaminergic neurons is central to 
behaviors like reward learning and complex motor output. The dynamic control 
of dopamine release canonically occurs through two main mechanisms: the 
modulation of somatic excitability and the regulation of vesicular release at 
presynaptic boutons. However, there is also a third mechanism: the precise and 
local control of axonal excitability. Together, these three mechanisms control the 
amplitude and timing of dopamine release from terminal axons. In this review, 
we examine the intrinsic properties and dynamic modulation of dopaminergic axons. 
First, we will examine their intrinsic properties, including membrane biophysics 
and morphological features. Second, we will focus on the modulation of axonal 
excitability through receptor signaling. Finally, we will review how drugs of abuse 
directly influence axonal physiology, and how axonal excitability influences the 
progression and etiology of Parkinson’s disease. Through this review we hope 
to highlight the important role that modulation of axonal excitability plays in 
controlling dopamine release, beyond action potential propagation.
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Introduction

Axons are often conceptualized as a relatively simple component of the neuron. According 
to the canonical view, the purpose of an axon is to propagate action potentials (Hodgkin and 
Huxley, 1952). However, this understanding began to evolve through studies on circuits in 
Cancer borealis when researchers found that focal applications of transmitter to peripheral 
axons could evoke action potentials along almost the entire axon (Goaillard et al., 2004; Bucher 
et al., 2003; Meyrand et al., 1992). In the past three decades, more dynamic processes have 
been discovered in axons including inhibition, gating of branch point propagation, analog 
modulation, and synaptic-like excitation. Here we will focus on dopaminergic neurons of the 
basal ganglia, where axonal signaling and local modulation have been found to be critical 
controllers of neurotransmitter release and network activity (Kramer et al., 2022; Rice and 
Cragg, 2004).

The basal ganglia is a set of interconnected subcortical nuclei regulating both voluntary 
movements and reward learning. Broadly, the nuclei of the basal ganglia process descending 
cortical information to generate desired locomotor behavior. The two principal input regions 
of the rodent basal ganglia are the nucleus accumbens (NAc) and the dorsal striatum (DS), 
which together make up the striatal complex. These regions also receive dense inputs from 
midbrain dopaminergic neurons, which regulate basal ganglia activity through the release of 
dopamine. The NAc receives dopaminergic input from the ventral tegmental area (VTA) via 
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the mesolimbic pathway. This pathway is implicated in the processing 
of rewards and associative learning (Yates, 2023). The DS, which 
consists of the caudate and putamen nuclei in primates, receives input 
from the substantia nigra pars compacta (SNc) via the nigrostriatal 
pathway. This pathway is implicated in motor actions.

Dopaminergic axons make incredibly dense connections with 
local circuits and interneurons in the DS and NAc. The axon of a 
single SNc dopaminergic neuron can create between 102,165 and 
245,103 synapses in the rat DS (Matsuda et al., 2009). Though, recent 
evidence indicates that only about 1/3 of those varicosities may 
actively release dopamine (Liu et  al., 2018). For proper circuit 
function, dopamine release needs to be tightly controlled in timing, 
amplitude, and space. Some of this control is exerted by modulation 
of action potential output from the cell bodies. But there is also 
another layer of control exerted by direct modulation of dopamine 
release from the axon. It is well understood that inputs onto the axon 
can regulate the release of dopamine through modulation of vesicular 
release machinery (Sulzer et al., 2016). However, less appreciated is the 
notion that inputs can also modulate local axonal excitability to 
control the action potential waveform and its propagation.

The intrinsic properties of axons are conducive to the transmission 
of action potentials. They express high densities of voltage-gated 
channels and have a high input resistance, often exaggerated by the 
presence of myelin. Optimizing for action potential propagation 
produces local biophysical properties that make axons unique from 
the soma and dendrites, with distinct mechanisms regulating 
excitability. For example, because axons have a high input resistance, 
even small currents across the plasma membrane can cause large 
fluctuations in the membrane potential. These currents may arise from 
voltage-gated channels, electrogenic transporters, or ligand-gated ion 
channels. Notably, neurotransmitter-activated currents on axons 
permit dynamic, localized modulation of excitability. Many types of 
modulators can affect dopaminergic signaling, including endogenous 
hormones and environmental substances. As a result, the 
dopaminergic system faces the challenge of maintaining normal 
function and supporting appropriate reward processing, motor 
output, and motivation, despite constant physiological and 
environmental fluctuations. As our understanding of how endogenous 
and exogenous modulators affect dopaminergic neurons expands, it 
is important to consider that these substances may act differently on 
axons than on somas and dendrites.

This review will summarize the current state of what is known 
about modulation and control of dopaminergic axonal excitability 
(Table  1). We  will first examine the intrinsic excitability of 
dopaminergic axons, followed by the inputs that modulate this initial 
state. Through this discussion, we  hope to draw attention to the 
mechanisms by which action potentials in the axon may be modulated 
or locally initiated following ligand-gated receptor activation. We will 
end by addressing the potential relevance of these findings as they 
relate to diseases and disorders associated with dopaminergic axons.

Intrinsic control of excitability in 
dopaminergic axons

The functional result of ligand-gated receptor activation or 
inhibition in dopaminergic axons will depend on the axon’s 
intrinsic properties. Therefore, before examining the modulation 

of dopaminergic axons, it is necessary to first summarize what is 
known about the intrinsic excitability of this compartment. Axonal 
excitability is set by the expression of ion channels, which also 
determine the shape of the action potential waveform. 
Dopaminergic neurons are characterized by a well-known action 
potential waveform that is wide, with a large after-hyperpolarization 
and a substantial interevent slope (Puopolo et al., 2007; Grace and 
Bunney, 1984). However, these features recorded from the soma are 
absent or reduced in dopaminergic axons (Kramer et al., 2020). 
This observation highlights the fact that the axons of dopaminergic 
neurons express a different complement of ion channels from the 
soma and dendrites, thus producing a distinct action potential 
waveform (Figure 1). In this portion of the review, we will discuss 
what is known about the intrinsic excitability of 
dopaminergic axons.

Ion channels

K+ channels
Potassium channels provide the principal repolarizing drive of 

action potentials and govern excitability across subcellular domains 
by virtue of their heterogeneous kinetics and distribution. They are 
gated by diverse triggers—voltage changes, intracellular Ca2+ and Na+, 
G-protein activation, ATP availability, and other intracellular signals—
such that each K+ channel variant distinctly influences neuronal 
excitability and the waveform of the axonal action potential.

One study examining the role of voltage-activated K+ (Kv) 
channels in modulating dopamine release found that Kv1.2 
co-immunoprecipitated with dopamine D2 receptors (D2Rs) in 
samples from mouse striatal tissue, demonstrating a physical 
interaction between these proteins. Dopamine D2Rs are inhibitory G 
protein-coupled receptors that, when activated, reduce vesicular 
dopamine release. Functionally, it was found that D2R-mediated 
inhibition was attenuated by blockers of Kv1.1, −1.2, and −1.6 (Fulton 
et  al., 2011). Together, these data were interpreted to mean that 
autoregulatory inhibition by D2 receptors is partially mediated by the 
activation of Kv1 channels. During action potential firing in 
dopaminergic axons, both Kv1.2 and Kv1.4 channels repolarize the 
membrane and are therefore critical to determining impulse duration. 
Interestingly, the axonal resting membrane potential regulates the 
availability of these channels, meaning that a subthreshold 
depolarization leads to their inactivation, and thus a wider action 
potential waveform (Xiao et al., 2021).

SK channels are calcium-activated K+ channels, primarily studied 
in the soma of dopaminergic neurons where they regulate intrinsic 
firing patterns, the development of their characteristic intrinsic 
electrical phenotype (Dufour et al., 2014a; Dufour et al., 2014b), and 
can be activated by glutamate to inhibit activity (Morikawa et al., 2000; 
Fiorillo and Williams, 1998; Deignan et al., 2012; Wolfart et al., 2001). 
The mechanism of this inhibition by glutamate is the activation of 
metabotropic glutamate receptors (mGluRs) that triggers Ca2+ release 
from stores, which in turn activates SK. In the axons of DS 
dopaminergic neurons glutamate has similar inhibitory effects. 
Specifically, spillover from cortical terminals activates mGluR1 on 
dopaminergic neuron axons to suppress dopamine release through SK 
activation (Zhang and Sulzer, 2003). The mechanism for this reduction 
in dopamine release is unknown but may have to do with a 
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hyperpolarization of the axonal membrane potential, similar to the 
somatic mechanism.

Dopaminergic axons are energetically costly due to their large size 
and tonic spiking activity (Bolam and Pissadaki, 2012). This is relevant 
to the progression of Parkinson’s disease, where a central phenotype 
is mitochondrial dysfunction (Swerdlow et al., 1996; Mattson et al., 
2008; Biskup and Moore, 2006). It is therefore important to understand 

how axonal ATP affects cellular activity. In addition to providing a 
source of energy, ATP is also an important factor in modulating 
excitability in dopaminergic axons. In the DS, the physiological 
stimulation of H2O2 signaling in brain slices inhibits dopamine release 
by binding to ATP-sensitive K+ (K-ATP) channels (Avshalumov et al., 
2003; Avshalumov and Rice, 2003) present on the dopaminergic axons 
(Patel et  al., 2011). Further elucidation of this 

TABLE 1  The key channels and receptors that are known to control dopamine release through modulation of axonal excitability.

Channel types Effect on dopamine 
transmission

Mechanisms in the 
axon

Region References

K+ Kv1.2 Activation inhibits release Action potential kinetics and 

repolarization via D-type 

currents

DS Xiao et al. (2021)

Kv1.4 Activation inhibits release Action potential kinetics and 

repolarization via A-type 

currents

DS Xiao et al. (2021)

SK Activation inhibits release Unknown DS Zhang and Sulzer (2003)

K-ATP Activation inhibits release Unknown DS Patel et al. (2011)

Na+ Nav Activation promotes release Resting membrane potential 

controls Nav availability 

through inactivation.

DS, NAc Kramer et al. (2020) and 

Xiao et al. (2021)

Nav1.2 Knockout reduces dopamine 

release

Reduced action potential 

height and Na+ currents

VTA, NAc Li et al., 2025

Ca2+ L-type Activation promotes release Unknown DS Brimblecombe et al. (2015)

T-type Activation promotes release Unknown DS Brimblecombe et al. (2015)

N-type Activation promotes release Action potential-depedent 

Ca2+ entry

DS, NAc Brimblecombe et al. (2015) 

and Sgobio et al. (2014)

P/Q-type Activation promotes release Action potential-depedent 

Ca2+ entry

DS, NAc Brimblecombe et al. (2015) 

and Sgobio et al. (2014)

Neuromodulator Receptors Effect on 
dopamine 
release

Mechanism 
(hypothesized or 
known)

Region References

Acetylcholine nAChR Activation can promote 

or inhibit release

Excitation of distal axons and 

action potential initiation. 

Unknown mechanism of 

inhibition.

DS, NAc Kramer et al. (2022), Liu 

et al. (2022), and Zhang 

et al. (2025)

M1-like mAChR Activation potentiates 

release

Unknown NAc Shin et al. (2015)

M2- like mAChR Limits dopamine 

release in a frequency 

dependent manner

Decreased ACh release and 

reduced nAChR activation on 

dopaminergic axons.

NAc shell Shin et al. (2017)

GABA GABAA Activation inhibits 

release

Na + channel inactivation 

from depolarization and 

shunting inhibition

Medial forebrain 

bundle, DS

Kramer et al. (2020)

GABAB Activation inhibits 

release

Unknown DMS Holly et al. (2021)

Dopamine D2R Activation inhibits 

release

Potentiation of Kv1 currents 

and inhibition of 

Ca2 + currents

DS, NAc Martel et al. (2011) and 

Sgobio et al. (2014)

DAT Activation reduces 

short term depression

Electrogenic current alters 

resting potential

DS, NAc Condon et al. (2019)

If known, the underlying mechanism is also summarized.
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mechanism—particularly ATP/H₂O₂ interactions with 
neuromodulators—is essential for understanding the interplay 
between axonal degradation, excitability, and cellular 
energy management.

Large-conductance calcium-activated K+ (BK) channels are also 
central regulators of neuronal excitability. The location of BK channels 
has been shown to have a critical impact on neuronal firing. BK 
channels are localized to axons and nerve terminals (Misonou et al., 
2006), as well as to the soma and dendrites. In the dopaminergic 
neuron somas of the SNc, BK channels are major contributors to spike 
repolarization, and inhibition of BK leads to a widening of the action 
potential (Kimm et al., 2015). However, their role in determining the 
kinetics of the axonal action potential is not known, though BK 
channels may play a role in axonal degradation associated with 
neurodegenerative diseases and autophagy (Kochlamazashvili 
et al., 2025).

Na+ channels
Voltage-gated sodium (Nav) channels mediate the rapid upstroke 

of action potentials and their propagation. Action potentials are 
initiated at the axon initial segment (AIS): a specialized, high-density 
Nav domain that defines the onset of the axonal compartment. In 
myelinated axons, action potential conduction is supported by Nodes 
of Ranvier (Jenkins and Bender, 2025). However, the long 
dopaminergic axons that extend from the SNc and VTA are 
unmyelinated or poorly myelinated (Nirenberg et al., 1996). Therefore, 
the mechanisms of action potential conduction in these axons exhibit 
unique features that distinguish them from myelinated axons. In this 
section, we will discuss potential intrinsic mechanisms by which Na+ 
channels contribute to axonal excitability and action 
potential propagation.

In dopaminergic axons, it is unclear if Nav channels cluster, or if 
they are distributed without a regulated pattern. Some unmyelinated 
axons have been shown to have clustered Nav channels, such as in 
Aplysia (Johnston et al., 1996). Modeling studies have explored the 
propagation characteristics of unmyelinated axons with various 

conductance distributions. Including a slow-inactivating gate on 
axonal Nav channels improved the faithful propagation of action 
potentials. Notably, this effect was frequency dependent, resulting in 
a tradeoff between high-frequency firing and reliable propagation 
(Zang et al., 2023). These findings implicate slow-inactivating Na+ 
currents in the regulation of excitability in unmyelinated axons.

There are biophysical differences between axonal and somatic Nav 
channel kinetics in dopaminergic neurons. In both the SNc and the 
VTA, axonal Nav channels take longer to inactivate during small 
depolarizations at subthreshold potentials. They are also faster to 
recover from this inactivation than their somatic counterparts (Yang 
et al., 2019). However, there remain unanswered questions about Nav 
channels in more distal axon regions of the striatal complex. Recent 
work highlights the importance of Nav1.2 in both the main axon trunk 
of VTA dopaminergic neurons and in distal axon terminals in the 
NAc. Nav1.2 loss decreased dopamine release from NAc axon 
terminals elicited by either local carbachol application or electrical 
stimulation (Li et al., 2025).

The availability of axonal Nav channels can be rapidly modulated 
because of their fast inactivation kinetics. This makes many features 
of the axonal action potential dependent on subthreshold membrane 
potential oscillations. In a hippocampal model, fast pulses of 
hyperpolarization disinhibit Nav channels, leading to increased spike 
amplitude in the axon (but not in the soma) (Rama et al., 2015). This 
suggests that hyperpolarizing inputs from local interneurons to the 
axon may, in effect, be excitatory through this disinhibition. These 
findings highlight the digital-analog action potential theory, a central 
framework for understanding axonal excitability (Zbili and 
Debanne, 2019).

Ca2+ channels
Dopaminergic neurons express L-type, T-type, N-type, and 

P/Q-type voltage-gated calcium channels (VGCCs). In the soma of 
dopaminergic neurons, low-voltage-activated T-type and L-type 
channels contribute to pacemaking, whereas high-voltage-activated 
L-type, N-type, and especially P/Q-type channels mediate action 

FIGURE 1

Somatic and axonal action potentials have distinct waveforms, reflecting the different ion channel currents that mediate their conduction across the 
length of the axon.
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potential-evoked Ca2+ influx and dopamine release (Mintz et al., 1992; 
Sutton et  al., 1999). Removing both P/Q-type and N-type Ca2+ 
channels in dopaminergic neurons reduces action potential-evoked 
neurotransmitter release (Liu et al., 2022).

Interestingly, VGCC function has been reported to differ between 
the DS and NAc. Dopamine release in the DS was reduced following 
individual inhibition of P/Q-type, N-type, T-type, and L-type VGCCs 
(Brimblecombe et al., 2015). However, the role of T-type and L-type 
VGCCs in mediating DS dopamine release is unsettled. A separate 
study found that presynaptic Ca2+ entry in DS dopaminergic axons is 
dependent on N- and P/Q- type VGCCs, while L-type channels did 
not significantly contribute (Sgobio et al., 2014). In contrast to the DS, 
inhibiting L-type and T-type VGCCs in the NAc had little effect on 
dopamine release (Brimblecombe et al., 2015). Additionally, there may 
be  differences in Ca2+-dependent dopamine release between the 
axonal terminals and the somatodendritic compartment. For example, 
the somatodendritic release of dopamine is only partially dependent 
on VGCC-mediated Ca2+ entry (Chen et al., 2006).

Additionally, axonal D2Rs and acetylcholine receptors (AChRs) 
directly influence presynaptic Ca2+. The muscarinic AChR (mAChR) 
agonist oxotremorine reduced the amplitudes of Ca2+ transients by 
75%, and the dopamine D2R agonist quinpirole caused a 
concentration-dependent inhibition of evoked Ca2+ transients (Sgobio 
et al., 2014). These data demonstrate dynamic actions of mAChRs and 
D2Rs in controlling Ca2+ in the presynaptic axonal terminals.

Morphology

Axonal branching
The architecture of striatal dopaminergic axons is unique in its 

highly branched structure, with a field of overlapping axons from 
other dopaminergic neurons and from local striatal neurons. In the 
mouse, dopaminergic axons were measured to have an average total 
length of 467,000 μm, with bifurcations of the axon occurring about 
every 31 μm (Matsuda et al., 2009). This produces an estimated total 
of 15,000 branches per dopaminergic neuron in mice, which is 
substantial, though likely an underestimation what occurs in human 
neurons (Kramer et al., 2020). This presents an interesting problem 
for the propagation of action potentials at branch points in these 
highly variegated structures. One study suggests that the high degree 
of branching in dopaminergic axons leads to attenuation of action 
potentials as they propagate, due to GABAA receptor activation. This 
suggests that, as action potentials travel through dopaminergic axons, 
they are subject to inhibition via tonic GABAA activity, leading to 
shortened action potentials and reduced dopamine release (Kramer 
et al., 2020). The shortened amplitude of the action potential may also 
lead to increased branch point failures, though further investigation 
into this issue remains necessary. Interestingly, GABAA activity in 
axons is not always inhibitory. In the spinal cord, GABAA activity 
specifically near nodes and branch points facilitates propagation 
through transient depolarizations, providing regulation of action 
potential conduction and enhancing the computational power of this 
system (Sgobio et al., 2014). Furthermore, in the cerebellum, axonal 
GABAA receptors have been found to potentiate glutamate release 
from granule cells onto Purkinje neurons (Sgobio et al., 2014).

These contrasting results of GABAA-dependent modulation of 
axonal excitability are intriguing and remain unexplained. Possible 

mechanisms mediating these differences could stem from axonal 
morphology. Dopaminergic axons are highly variegated whereas 
cerebellar granule cells and sensory axons in the spinal cord are less 
branched. Or it could stem from the kinetics of GABAA receptor 
activation. In dopaminergic axons GABAA is predominately a tonic 
signal, without a stimulated component yet described (Kramer et al., 
2020), whereas in the spinal cord the receptors are transiently activated 
by interneurons.

Myelination
Dopaminergic axons of the ventral midbrain are often described 

as being unmyelinated, poorly myelinated, or lightly myelinated. Early 
work in the 1960s described dopaminergic axons extending from the 
SNc to the striatum as thin (smaller than 0.3 μm in diameter) and 
“poorly myelinated” due to a slow action potential conduction velocity 
recorded in  vivo (York, 1970). Furthermore, early electron 
micrographs of dopaminergic axons displayed a lack of the membrane 
ensheathments that are characteristic of myelin (Nirenberg et  al., 
1996). However, a recent study finds that roughly 86% of VTA 
dopaminergic neuron axons are myelinated. Moreover, the authors 
suggest that the myelination of dopaminergic axons is a dynamic 
process, responding to increases in activity and exposure to opioids. 
Interestingly, changes in myelination state were not observed in 
medial forebrain bundle or in the NAc (Yalçın et  al., 2024). It is 
therefore unsettled whether these axons are all partly myelinated, if 
there are subpopulation differences in their myelination states, 
regional differences in myelination, or some combination of these 
possibilities. What is clear is that the axons of dopaminergic neurons 
are not all heavily myelinated.

Axon initial segment
The canonical understanding of action potential propagation 

often fails to capture complicated dynamics between different 
compartments of the neuron. The AIS is a critical region of the axon 
where action potentials initiate (Debanne et  al., 2011). This 
unmyelinated portion of the neuron is usually located proximal to the 
soma, and expresses the highest density of Nav channels (Bean, 2007). 
Interestingly, dopaminergic neurons have an AIS that extends from a 
thick basal dendrite (Häusser et al., 1995). Importantly, differences in 
ion channel kinetics at the AIS differ across brain regions, with 
important ramifications on action potential shape and propagation 
(Bean, 2007).

The AIS may also influence the spontaneous activity of 
dopaminergic neurons, though this hypothesis requires further 
examination. In one study, researchers found that dopaminergic 
neurons with faster firing rates tended to have larger and more 
proximal AIS regions. Computational modeling further suggests 
that the AIS and soma may function as independent, spatially 
separated Nav1 oscillators that synchronize their activity at a 
common frequency (Meza et al., 2018). However, other research has 
shown that spiking frequency and action potential shape in 
dopaminergic neurons is independent of AIS length or distance 
from the soma. Rather, the excitability and morphology of the axon-
bearing dendrite is what was found to define the frequency and 
kinetics of dopaminergic action potentials (Moubarak et al., 2022; 
Moubarak et al., 2019). This coupled oscillator model suggests that 
the axon is not involved in the pacemaking of dopaminergic 
neurons (Wilson and Callaway, 2000; Jang et al., 2014). While the 
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role of the AIS in regulating pacemaker activity is debated, the distal 
axon is unlikely to be  a part of the coupled oscillator. Voltage 
recordings from distal, soma-isolated, dopaminergic axons display 
no intrinsic oscillatory activity (Kramer et  al., 2022; Kramer 
et al., 2020).

Organization of axonal ion channels
Dopaminergic axons are mostly unmyelinated or lightly 

myelinated. Therefore, many of these axons lack discrete nodal 
regions that typically organize ion channels. In fact, the 
organization and biophysical properties of distal dopaminergic 
axon ion channels are mostly uncharacterized. Systematic 
mapping of channel distribution and clustering is therefore 
essential for revealing how these axons maintain high-speed 
conduction and control of local excitability. This is especially 
relevant during high-frequency bursting where branch point 
failures are more common (Ofer et  al., 2024), and which have 
recently been shown to occur in the axons of dopaminergic 
neurons as well (Yee et al., 2025).

Unmyelinated axon fibers still express organizational proteins that 
form structures, even in the absence of nodes. One study observed 
that actin, one of the main structural proteins in the axon, forms ring-
like formations around the circumference of the axon. These rings 
were found to be evenly spaced along the length of the axon, from 
about 180 to 190 nm apart, and were not observed in dendrites (Xu 
et al., 2013). Atomic force microscopy of the axonal plasma membrane 
found that axons are about 6-fold stiffer than the soma, and 2-fold 
stiffer than dendrites (Zhang et al., 2017). These stiff actin structures 
have been hypothesized to serve as a scaffold for organizing ion 
channels along the axon.

Another possible model of ion channel organization in the axon 
is one of clustered Nav channels on lipid rafts. Lipid rafts are regions 
of protein and lipid assemblies, enriched with sterol sphingolipids 
(Pike, 2006), which can contribute to functional localization of 
proteins on the plasma membrane. Additionally, they have been found 
have an impact on cell excitability (Pristerà et al., 2012). The model 
indicates that lipid raft confinement of Nav channels mediates micro-
saltatory conduction of action potentials, mirroring the function of 
Nodes of Ranvier. Additionally, this model suggests that the lipid rafts 
do not pose any significant increase in metabolic cost or propagation 
velocity (Neishabouri and Faisal, 2014).

Terminal release structures
Dopaminergic terminals express some of the same synaptic 

scaffold proteins as excitatory synapses that are essential for action 
potential triggered, and Ca2+-dependent, neurotransmitter release (Liu 
et  al., 2018; Banerjee et  al., 2020). These include RIM, RIM-BP, 
Munc13, Bassoon/Piccolo, ELKS, and Liprin-α. Of these proteins, 
Munc13 and RIM closely interact with dopamine-filled vesicles, 
priming them for fusion. However, in other ways, dopaminergic 
release sites differ from classical glutamate synapses. ELKS and 
RIM-BP are not required, and RIM, Munc13, and Liprin-α support 
scaffold structures (Banerjee et al., 2022). Once dopamine is released 
from the terminal, it signals with high temporal precision for 
metabotropic signaling (Howe and Dombeck, 2016). Dopamine 
receptor activation occurs rapidly in response to a high concentration 
of neurotransmitter localized to discrete areas (Gantz et al., 2018; 
Courtney and Ford, 2014). These features endow striatal dopamine 
transmission with focal characteristics that cannot be fully explained 
by volume-transmitted release.

Receptor-mediated modulation of 
axonal excitability

Modulation of neuronal circuits via hormones, peptides, and 
neurotransmitters enables fine-tuned signal adaptations. Many studies 
examining the effects of endogenous modulators and exogenous drugs 
on neuronal excitability have been focused on responses in the soma 
due to its experimental accessibility. Some studies have been able to 
access the AIS, but few have been able to record the properties of distal 
axons. Of particular interest is the role of neurotransmitters that 
activate ion permeable receptors along the axon. In this section, 
we  will discuss what is known about how neurotransmitters, and 
exogenous drugs, alter the excitability of dopaminergic axons to 
locally control dopamine release (Figure 2).

Endogenous modulators

Cholinergic signaling
There has been growing interest in the relationship between 

dopamine and acetylcholine in the basal ganglia. Acetylcholine 

FIGURE 2

Axon terminals express ligand-gated receptors and electrogenic transporters that modulate axonal excitability. Action potentials propagating from the 
soma therefore traverse a landscape of shifting excitability states that may produce regionally distinct dopamine release, even within a single axon. A 
full breakdown of channels and receptors modulating axonal excitability can be found in Table 1.

https://doi.org/10.3389/fncel.2025.1681044
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Seddon and Kramer� 10.3389/fncel.2025.1681044

Frontiers in Cellular Neuroscience 07 frontiersin.org

released by cholinergic interneurons (CINs) onto dopaminergic 
axons can both modulate and evoke dopamine release (Adrover 
et  al., 2020; Mohebi et  al., 2019; Cachope and Cheer, 2014). 
However, incongruities in the literature remain about the precise 
influence of CIN-mediated control of dopamine release in the DS 
and NAc regions. Nicotinic acetylcholine receptors (nAChRs) 
serve as crucial molecular mediators coupling cholinergic 
signaling to the regulation of dopamine release. These are 
ionotropic receptors that cause transient depolarizations in 
dopaminergic axons. In ex vivo brain slices, it has been shown 
that activation of axonal nAChRs can trigger action potentials in 
the distal axonal compartment to evoke dopamine release 
(Kramer et  al., 2022; Liu et  al., 2022; Threlfell et  al., 2012). 
Importantly, individual CINs are able to trigger local release of 
dopamine ex vivo (Matityahu et al., 2023), suggesting a precise 
control of dopamine by striatal CINs. These findings strongly 
support the conclusion that CINs excite dopaminergic neurons, 
and evoke dopamine release, through an axo-axonic connection 
that relies on nAChR signaling. However, the role of nAChR 
signaling in modulating dopamine release is not settled. One 
recent study suggests that small, putative subthreshold nAChR-
mediated depolarizations in the dopaminergic axons may inhibit 
dopamine release (Zhang et al., 2025). Additionally, CIN pauses 
are required to induce long-term potentiation, suggesting a 
decrease in acetylcholine release facilitates dopaminergic 
signaling (Reynolds et al., 2022).

These incongruities seen in ex vivo brain slices are reflected also 
by experiments performed in vivo. In behaving animals, dopamine 
moves across the DS in a wave-like fashion, with opposing 
dopamine waves exerting some control over behavioral reward 
prediction (Hamid et al., 2021). Acetylcholine is mainly released 
from a sparse population of CINs, and surprisingly also moves 
across the DS in a similar wave-like fashion to dopamine. What’s 
more, activity in the cholinergic neuropil of the DS is highly 
synchronized (Matityahu et  al., 2023). Combined, these studies 
support the conclusion that one key function of CINs is to directly 
evoke dopamine release. However, other research has found no 
causal link between CINs and dopamine release in the DS. In the 
dorsolateral striatum, blocking nAChR activity, or knocking out the 
β2 nAChR subunit, did not meaningfully alter dopamine activity 
(Krok et al., 2023). Furthermore, eliminating acetylcholine release 
in the ventrolateral striatum did not alter reward-related dopamine 
signals, while elimination throughout the whole striatum had a 
profound effect (Chantranupong et al., 2023). Finally, in defined 
dopaminergic subpopulations across the whole striatal complex, 
somatic firing closely correlates with axonal Ca2+ transients, 
suggesting minimal local control of release (Azcorra et al., 2023).

Together, these findings reveal a complication to the causal 
relationship between acetylcholine signaling and dopamine release. 
The mechanistic data from ex vivo brain slices show that cholinergic 
inputs to dopaminergic axons are well established to dynamically 
modulate—and evoke—dopamine release (Rice and Cragg, 2004). 
However, how and when this occurs in  vivo to influence specific 
behaviors remains unclear. Given the phasic, coordinated release of 
dopamine and acetylcholine in the striatal complex, elucidating how 
these signals interact with voltage-gated ion channels in the axon is 
therefore essential to understanding the relationship between these 
two critical modulators of basal ganglia activity.

In addition to nAChRs, muscarinic acetylcholine receptors 
(mAChRs) are abundantly expressed throughout the striatum and 
exert receptor subtype-specific modulation of dopamine release that 
varies with firing frequency and across striatal subregions (Threlfell 
et al., 2010; Shin et al., 2015). CINs express mAChR autoreceptors on 
their terminals that reduce acetylcholine release, resulting in 
modulation of nAChR activity (Threlfell et al., 2010). In one study, it 
was found that mAChR signaling limited dopamine release in a 
frequency-dependent manner that also depended on the activity of 
nAChRs on dopaminergic axons in the NAc core but not the NAc shell 
(Shin et  al., 2017). Dopaminergic axons also express excitatory 
mAChRs that enhance dopamine release, though the mechanism 
remains unclear (Threlfell et al., 2010; Shin et al., 2015). In one study, 
the M1 subtype of the mAChR was found, in oocytes, to inhibit 
GIRK1 and GIRK4 channels, thus increasing excitability (Hill and 
Peralta, 2001). GIRK channels are abundantly expressed in 
dopaminergic axons (Hobson et al., 2022), leading to the hypothesis 
that M1 mAChRs may act through similar mechanisms to enhance 
dopamine release.

GABAergic input
GABA is co-released from some dopaminergic terminals (Tritsch 

et al., 2016; Borisovska et al., 2013) and GABA receptors are expressed 
along the axon and its terminals (Kramer et al., 2020; Tritsch et al., 
2016; Kim et al., 2023). Functionally, GABA release may serve as an 
autoinhibitory signal to inhibit dopamine release following trains of 
action potentials (Kim et al., 2023). Also, GABA released from striatal 
neurons may act as an inhibitory signal that reflects network activity. 
The mechanisms of GABAA inhibition in axons have long been 
debated. Axonal GABAA receptors in dopaminergic neurons are 
depolarizing, a finding that seems counter to their inhibitory function. 
GABAA-mediated inhibition of dopamine release involves two 
mechanisms: Nav channel inactivation secondary to depolarization 
(Rama et al., 2015), and shunting inhibition (Kramer et al., 2020; Xia 
et  al., 2014). This dual mechanism of inhibition may be  cell type 
specific, as GABAergic axo-axonal signals in cerebellar parallel fibers 
are depolarizing and increase neurotransmitter release (Pugh and 
Jahr, 2011).

GABA may also act to regulate the excitation of dopaminergic 
neurons by shunting nAChR inputs (Brill-Weil et al., 2024) to reduce 
stimulated dopamine release (Kramer et  al., 2020). The dense 
GABAergic architecture of the striatal complex poses significant 
challenges to accurately localizing and characterizing inhibitory 
pathways. It has been observed that striatal CINs do not receive GABA 
from SNc axons (Straub et al., 2014), but rather from local GABAergic 
interneurons (Dorst et al., 2020), afferent inputs (Brown et al., 2012), 
and perhaps even from other CINs (Lozovaya et al., 2018). However, 
in this study the authors show that antagonizing GABAA receptors 
enhances nAChR-mediated excitation of dopaminergic axons without 
altering local striatal acetylcholine levels. These findings suggest that 
the effects of GABA on dopaminergic axonal excitability are not 
mediated by broader circuit mechanisms. Instead, dopaminergic 
axons may integrate GABAA- and nAChR-mediated signals to 
independently make a computation that reflects striatal network 
activity and dopaminergic neuronal excitability (Brill-Weil 
et al., 2024).

GABAB is also an important regulator of dopamine and has been 
shown in ex vivo brain slice experiments to suppress evoked release. 
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Recent findings reveal that low threshold spiking interneurons gate 
dopamine release in a local and direct fashion through the activation 
of GABAB receptors on dopaminergic axons (Holly et al., 2021). These 
results also suggest that this mechanism is independent of CIN input, 
allowing for precise, and direct, regulation of dopamine release.

Dopaminergic autoinhibition
Inhibitory D2Rs are expressed at dopaminergic terminals where 

they are canonically activated by dopamine signaling to inhibit further 
dopamine release (autoinhibition). Recent findings indicate D2Rs may 
also respond to presynaptic voltage, allowing them to directly sense 
bursts of action potentials (Sun et  al., 2024). This autoregulatory 
signaling provides essential feedback control of dopamine levels in the 
striatum. D2R activation inhibits dopamine release through myriad 
mechanisms. D2Rs inhibit synthesis and vesicular packaging of 
dopamine (Onali et al., 1988), rapidly reduce excitation and Ca2+ influx 
(Stamford et al., 1991), potentiate Kv1 channels (Congar et al., 2002), and 
activate G protein-coupled inwardly rectifying K+ (GIRK) channels to 
inhibit somatic activity (Ford et al., 2006). D2R-mediated GIRK currents 
are larger in somas of SNc than VTA dopaminergic neurons, suggesting 
a subregion-specific modulation of dopamine release by D2Rs. However, 
D2R-mediated inhibition of dopamine release from axon terminals is 
significantly more sensitive to dopamine, with little difference in efficacy 
between the DS and NAc (Cragg and Greenfield, 1997). This suggests 
that the axon is uniquely sensitive to autoregulatory inputs, which may 
reflect the axonal mechanisms mediating inhibition of release. There 
may also be a role for GIRK in inhibiting axonal excitability. In one study 
it was found that D2R-mediated inhibition of release was blunted by 
GIRK channel antagonists. The authors concluded that axonal K+ 
channels directly inhibit the secretory process, suggesting that Ca2+ 
channel modulation is not the sole mechanism by which release of 
neurotransmitter at the axon terminals is controlled (Congar et al., 2002).

The dopamine transporter (DAT) is a neurotransmitter 
transporter and Na+/Cl− symporter. The main role of DAT is to 
transport dopamine into the presynaptic terminal, clearing it from 
the synapse. When DATs are inhibited, this leads to spillover and 
diffusion of dopamine transmission. The rate of dopamine uptake 
in the NAc is slower than the DS, producing subregion-specific 
dopamine-dependent signaling, with greater diffusion of dopamine 
in the NAc (Stamford et  al., 1988). DATs also modulate axonal 
excitability through both electrogenic symporter currents and a 
small Cl− conductance. The Cl− conductance persists even in the 
presence of D1-, D2-, and α1-receptor antagonists, and reverses at 
a more depolarized potential than GABAA-mediated anion 
conductances in the same dopaminergic neurons (Ingram et al., 
2002). Because this current was described in the cell body, it would 
be  interesting to see if the same phenomena are observed in 
dopaminergic axons where this small Cl− current could have large 
effects on axonal physiology. DATs may also play a role in the short-
term plasticity of dopamine release through their electrogenic 
current. One study argues that DAT currents can modulate short-
term depression via a K+-dependent gating mechanism. To 
specifically target DAT function, monoamine uptake inhibitors 
such as cocaine, methylphenidate, and nomifensine were observed 
to modulate short-term plasticity. The authors concluded that DATs 
limit the short-term depression of dopamine release in the striatal 
complex, operating as a “clamp” on dopamine transmission 
(Condon et al., 2019).

Hormone and neuropeptide modulation
The effects of sex hormones on the brain remain understudied, 

and there is a clear gap in the literature regarding the effects of sex 
hormones on axonal excitability. This biological variable is critical to 
investigate if we seek to understand how sex differences emerge across 
pathologies and psychological conditions. This information would 
help to further understand the cellular mechanisms by which sex 
differences emerge. Evidence of changing extracellular dopamine 
concentrations in conjunction with estrous cycle (Xiao and Becker, 
1994) suggests that these hormones are important in the regulation of 
the basal ganglia. Indeed, many studies have shown that estradiol acts 
on estrogen receptors to modulate dopamine release from axon 
terminals, possibly through secondary cholinergic mechanisms 
(Almey et al., 2012; Almey et al., 2022; Yoest et al., 2019; Yoest et al., 
2018). Progesterone is another ovarian hormone that fluctuates across 
an estrous or ovulatory cycle. Treatment of female rats with estradiol 
before progesterone administration enhances striatal dopamine 
release compared to estradiol alone (Becker and Rudick, 1999; Glaser 
et al., 1983; Cummings and Becker, 2012). Progesterone also promotes 
axonal myelination and repair (Schumacher et al., 2012). This could 
contribute to a neuroprotective effect in female individuals.

Dopamine also plays a critical role in regulating feeding behaviors. 
Neuropeptide Y (NPY) is a peptide neuromodulator with a broad 
range of physiological effects in both the central and peripheral 
nervous systems (Thorsell and Mathé, 2017; Li et al., 2019). NPY has 
been identified as particularly important in modulating feeding 
behaviors through control of dopamine release in the NAc, exerting 
an orexigenic effect (Raghanti et al., 2023). Humans, compared to 
other primates, have greater densities of dopaminergic axons and 
NPY-containing axons in the NAc (Raghanti et al., 2023; Hirter et al., 
2021). However, what effect NPY may have on axonal excitability 
remains unresolved.

Exogenous modulators and drugs

A universal property of addictive substances is that they “hijack” 
normal learning via modulation of the dopaminergic system in the 
striatal complex (Sulzer, 2011). Although addictive substances differ 
structurally and pharmacologically, they uniformly uncouple phasic 
dopamine signaling from environmental cues in favor of drug-
associated triggers. These drugs are associated with elevated dopamine 
in the VTA, and cause extended synaptic modulation in this region 
(Bellone and Lüscher, 2006; Faleiro et al., 2004; Ungless et al., 2001). 
As with other modulatory substances, most studies have focused on 
somatic effects or release of transmitters. In this section, we will review 
common addictive substances and pathways by which they may affect 
axonal action potential transmission and dopamine release.

Psychostimulants
Cocaine is an addictive drug that acts as a stimulant, increasing 

locomotion in a dopamine-dependent manner (Wang et al., 2023). 
This drug acts on the dopaminergic system by blocking DAT, leading 
to increased and prolonged dopamine in the extracellular space that 
can potentiate D2R signaling (Rice and Cragg, 2008). Recently, DAT 
has been visualized in a human protein structure model interacting 
with cocaine (Nielsen et al., 2024). By blocking DAT, cocaine also 
modulates axonal excitability to lessen the short-term depression of 
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dopamine release (Condon et al., 2019). Cocaine exposure can also 
profoundly alter the morphology of dopaminergic axons, leading to 
large-scale axonal re-arrangement after exposure to the drug. Cocaine 
exposure results in large, bulbous portions of the axon that are filled 
with mitochondria. Additionally, the authors observed increased 
axonal branching and pruning of bulbs on the axon reducing local 
connections (Wildenberg et  al., 2021). Cocaine also resulted in 
swelling of the axonal bulb structures, similar to the structural changes 
seen in traumatic brain injuries (Wildenberg et al., 2021; Johnson 
et al., 2013).

Attention-deficit/hyperactivity disorder (ADHD) is a 
psychological disorder with a disease mechanism partially dependent 
on a hypoactive dopaminergic system. Currently, ADHD is treated 
with stimulants (like amphetamines or methylphenidate), which pose 
a risk for addiction or misuse. This is of concern especially in light of 
the genetic predisposition to addictive, impulsive, and compulsive 
behaviors of those with ADHD (Blum et al., 2008). Methamphetamines 
act as a substrate for monoamine transporters, like DAT, and increase 
dopamine release, while methylphenidate inhibits DAT. These effects 
on DAT produce modulation of axonal function due to altered 
electrogenic currents, which may contribute to the effects of these 
drugs on dopamine release. Repeated methamphetamine 
administration to mice causes significant degradation of SNc neurons 
and their striatal axons (Ares-Santos et  al., 2014). Interestingly, 
amphetamine use also disrupts axonal growth, with sex-specific effects 
only in early adolescent male mice. Meanwhile, female mice 
experienced compensatory changes via Netrin-1 that helped to protect 
against axonal damage (Reynolds et al., 2023).

Nicotine
Cigarette smoking remains a leading cause of preventable 

disease in the United States and other countries (Benowitz, 2010). 
Beyond cigarettes, nicotine is now sold to consumers as oral 
nicotine products (like gums and lozenges) and e-cigarettes/vapes 
(Harlow et  al., 2025). Emerging evidence suggests these new 
methods of nicotine consumption have long-term effects on 
respiratory, cardiovascular, and oral health (Meister et al., 2025). 
Still, there remain unanswered questions about how nicotine alters 
brain function to produce addiction. Highly debated is whether 
nAChRs on dopaminergic axons become desensitized to nicotine 
exposure, contributing to the development of habitual nicotine use. 
In the cell body, application of nicotine at a concentration relevant 
to human smokers only partially desensitized nAChR signaling, 
producing increased action potential firing (Pidoplichko et  al., 
1997). Since the exogenous application of nicotine to axon terminals 
alters CIN modulation of dopamine release, it is important to 
consider how these perturbations affect dopamine transmission. 
Foundational work showed that nicotine facilitates burst firing-
mediated dopamine release at axon terminals in the striatum, 
suggesting that endogenous nAChR signaling in dopaminergic 
axons limits the transmission of action potential bursts (Rice and 
Cragg, 2004; Zhang and Sulzer, 2004). However, the cellular 
mechanism underlying this effect remains unresolved.

The β2 subunit of nAChRs is highly expressed on dopaminergic 
axons and is essential for the binding of nicotine. Knockout of the β2 
subunit in dopaminergic neurons abolishes the nicotine-mediated 
release of dopamine in vivo and reduces nicotine self-administration 
(Picciotto et al., 1998). It has also been suggested that chronic nicotine 

may decrease the function of α6 containing nAChRs selectively in the 
NAc (Exley et al., 2013). Finally, investigating both the efficacy and 
recovery time of nicotine binding to axonal nAChRs is essential for 
understanding how nicotine use leads to substance use disorder. High 
concentrations of nicotine cause rapid dopamine release, which 
quickly diminishes within one minute. Subsequent nicotine exposures 
result in little additional dopamine release, indicating that nAChR 
desensitization leads to a form of cellular “memory” of prior exposure 
(Rowell and Duggan, 1998).

Parkinson’s disease

A large component of the susceptibility of dopaminergic neurons 
to degenerate in Parkinson’s disease stems from the morphology and 
physiology of their axons. It is often observed that the axon is the first 
cellular compartment to degrade in SNc dopaminergic neurons in 
Parkinson’s patients (Cheng et  al., 2010). In this section, we  will 
discuss the relationship between axonal excitability and Parkinson’s 
disease pathology.

Parkinson’s disease (PD) is a neurodegenerative disease 
characterized by cell death in certain neuronal populations, including 
dopaminergic neurons. These neurons are unmyelinated or lightly 
myelinated. This renders them more susceptible to cellular stress due 
to their increased energy demands and distributed ion channel 
localization (Rasband et al., 1999). This is because one function of 
myelin is to decrease the energy demand required to transmit action 
potentials (Hildebrand et al., 1993). Substantial evidence indicates that 
dopaminergic axons are one of the first cellular structures to degrade 
(Kurowska et  al., 2016). This axonal degradation leads to loss of 
striatal dopamine concentration and subsequent motor and cognitive 
symptoms. The reasons for dopamine neuron degradation are 
incompletely understood but often include metabolic factors that 
maintain axonal function (Bolam and Pissadaki, 2012). One axonal 
function is the maintenance of ion gradients, including those ions 
transmitted through nAChRs. One study found that the global 
expression of α3*/α6* nAChRs in the striatum is preferentially 
reduced following acute nigrostriatal degeneration. However, 
nicotine-evoked dopamine release remains around control levels in 
the DS, even though DAT protein levels, and thus dopamine uptake, 
are significantly reduced. These data suggest that the nAChRs on 
dopaminergic axons may compensate for the loss of dopaminergic 
fibers to boost dopamine release and maintain striatal function 
(McCallum et  al., 2006). A foundational hypothesis states that 
acetylcholine and dopamine act in balance and competition in the DS, 
with evidence as far back as the 19th century when Jean Martin 
Charcot treated PD patients with an anticholinergic (Aosaki et al., 
2010). Therefore, a clear link exists between acetylcholine and 
dopamine signaling in the striatum that is particularly relevant to the 
progression and treatment of Parkinson’s disease. This link warrants 
further investigation into how cholinergic modulation of axonal 
excitability and physiology is altered in Parkinson’s patients.

Conclusion

Here we have discussed the many ways that dopaminergic 
axonal excitability is finely controlled and locally modulated. 
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This control of dopaminergic axons is one of many ways that is 
used to control the amplitude and timing of dopamine release. As 
we  move into an era of precision medicine, it becomes 
increasingly important to recognize the modulatory potential of 
the axon as a target for pharmaceutical intervention. Advancing 
interventions for diseases of the dopaminergic system demands 
incorporation of axonal control over dopamine release, 
underpinned by a comprehensive understanding of the intrinsic 
modulatory mechanisms at play.
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