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Background: Inflammation causes reduced markers of GABAergic interneurons 
and brain-derived neurotrophic factor (BDNF) in the hippocampus, features 
often associated with neuropsychiatric disease pathophysiology. However, the 
mechanism connecting inflammation to GABAergic markers remains unclear. 
We hypothesized that reduced BDNF mediates the effects of LPS on GABAergic 
markers and that hippocampal BDNF infusion would prevent LPS-induced 
reduction in somatostatin (SST), and coexpressed markers, including cortistatin 
(CORT), and neuropeptide Y (NPY).
Method: C57BL/6 mice (n = 14; 12–14 weeks old; 50% female) received 
intracerebral administration of BDNF (250 ng) or vehicle control in the 
hippocampus via stereotaxic surgery (unilateral). Thirty minutes after BDNF 
administration, intraperitoneal injection of LPS (2 mg/kg) or phosphate buffered 
saline (PBS) was performed and mice were euthanized 18 h post LPS-injection. 
The hippocampus was collected for investigation of cellular markers using 
quantitative PCR and enzyme-linked immunosorbent assay (ELISA).
Results: LPS administration in mice that did not receive pre-treatment with 
BDNF led to a significant reduction in mRNA levels of Bdnf (p = 0.0049), Sst 
(p = 0.0416), Npy (p = 0.0088), and Cort (p = 0.0055). BDNF infusion into the 
hippocampus prior to LPS injection prevented the reduction in Bdnf, Sst, and 
Cort mRNA expression. BDNF also prevented the LPS-induced effect on protein 
levels of BDNF, SST and NPY. BDNF prevention of LPS effects occurred in the 
context of sustained elevation of inflammatory markers (interleukin 1-beta and 
glial fibrillary acidic protein).
Conclusion: BDNF may protect SST GABAergic interneurons from LPS-induced 
inflammation, providing novel insights into the molecular mechanisms linking 
inflammation and GABAergic dysfunction in neuropsychiatric diseases.
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Introduction

The underlying pathophysiology of neuropsychiatric disorders 
involves increased inflammation (Miller et al., 2009), disruption of the 
inhibitory gamma-aminobutyric acidergic (GABAergic) 
neurotransmitter system (Newton et  al., 2019), and reduced 
neuroplasticity (Tripp et al., 2012). Understanding the link between 
these biological changes can facilitate improved therapeutics.

The GABAergic system comprises multiple types of interneurons: 
somatostatin (SST), parvalbumin (PV) and vasoactive intestinal peptide 
(VIP)-expressing interneurons. Extended set of markers co-expressed 
with these main interneuron subtypes include neuropeptide Y (NPY), 
cortistatin (CORT), cholecystokinin (CCK) and corticotropin-releasing 
hormone corticotropin-releasing hormone (CRH) (Tremblay et  al., 
2016). Interneurons release GABA and innervate glutamatergic 
pyramidal neurons, forming cell microcircuits that regulate the balance 
between excitation and inhibition, thereby contributing to neuronal 
information processing (Fee et  al., 2017). Clinical and postmortem 
studies have shown reduced GABA levels (Newton et al., 2019) and 
markers of GABAergic interneurons, including Sst and genes 
co-expressed with SST cells, such as Cort and Npy across neuropsychiatric 
diseases including major depressive disorder (MDD; Guilloux et al., 
2012; Sibille et al., 2011; Tripp et al., 2011), schizophrenia (Mellios et al., 
2009; Guillozet-Bongaarts et al., 2014; Volk et al., 2012; Dienel et al., 
2025), and bipolar disease (Sibille et al., 2011; Konradi et al., 2004).

A proposed mechanism underlying the reduction of GABAergic 
interneurons is reduced neurotrophic support, particularly from brain-
derived neurotrophic factor (BDNF), which mediates neuronal plasticity 
and survival (Duman et al., 1997). Studies report reduced BDNF levels 
in cortical areas, plasma and hippocampus (HPC) of patients with MDD 
(Duman and Monteggia, 2006; Dwivedi et al., 2003; Karege et al., 2005) 
and schizophrenia (Green et al., 2011; Durany et al., 2001).

Parallel to the GABAergic and neurotrophic deficits, studies have 
shown increased levels of inflammatory markers in individuals with 
MDD (Howren et al., 2009; Dowlati et al., 2010; Hiles et al., 2012). 
Microglial activation is seen in patients with MDD (Setiawan et al., 
2015), schizophrenia (van Berckel et al., 2008), and bipolar I disorder 
(Haarman et al., 2014). Astrocyte dysfunction has also been reported 
in post-mortem MDD and post-traumatic stress disorder patients 
(Bansal et al., 2024). Recently, we showed that lipopolysaccharide 
(LPS)-induced inflammation induces deficits in GABAergic 
interneuron markers Sst, Cort, Npy, and Cck in the prefrontal cortex 
(PFC) and HPC of mice, and a reduction in Bdnf expression (Rezaei 
et  al., 2024). The mechanism by which inflammation affects the 
GABAergic interneurons remains unclear, but a positive correlation 
between the expression of markers of these two systems suggests 
BDNF as a putative regulator (Rezaei et al., 2024).

In this study, we investigated the interplay between inflammation, 
BDNF and GABA neuron dysfunction. We  used LPS, a cell wall 
component of gram-negative bacteria, to induce a peripheral immune 
response that propagates into the brain (Dantzer et  al., 2008). 
We infused BDNF mature protein into the HPC of mice and investigated 
the expression levels of GABAergic interneuron markers Sst, Npy, Cort, 
Crh, Vip, and Cck following 18 h of LPS exposure (allowing changes in 
GABAergic markers, as in Rezaei et  al., 2024). Given the role of 
microglia and astrocytes in mediating neuroinflammatory responses 
(Farina et al., 2007; Wohleb, 2016), contributing to BDNF synthesis 
(Albini et al., 2023; Parkhurst et al., 2013), and their potential to act as 

downstream targets of tropomyosin receptor kinase B (TrkB)-
dependent trophic pathways (Wu et al., 2020), we measured ionized 
calcium binding adaptor molecule 1 (Iba1) as a marker of microglia 
activation, glial fibrillary acidic protein (Gfap) as a marker of astrocyte 
activation, and IL-1β as a key pro-inflammatory cytokine to assess the 
inflammatory response to LPS and BDNF treatment.

Based on a hypothesized role of BDNF in mediating effects of LPS 
on GABAergic markers, we predicted that BDNF pretreatment would 
prevent the LPS-induced deficits of GABAergic interneuron markers 
in the hippocampus.

Materials and methods

Animals

Male and female C57BL/6 mice (n = 14, 4-5/group, 12–14 weeks 
old, 50% female; Jackson Laboratories, Bar Harbor, ME) were housed 
in groups of four within individually ventilated cages (IVC) under a 
12-h light/dark cycle with ad libitum access to food and water. Mice 
were habituated to the facility for 2 weeks and handled for 3 days to 
minimize stress (Marcotte et al., 2021).

All procedures complied with the Canadian Council on Animal 
Care guidelines and were approved by the Animal Care Committee at 
Center for Addiction and Mental Health (CAMH).

Surgery, drug infusion and brain dissection

Mice were anesthetized with isoflurane and guide cannulae 
(Protech International INC. Boerne, TX) were stereostaxically 
placed into the HPC (AP: −1.8 mm; ML:+/−0.4 mm; DV: −1.8). 
Cannula implantation was unilateral and inserted on either the 
left or right side in a balanced manner across the groups. 
Following one-week of recovery, mice received intracranial 
infusion of 0.5 μL recombinant human BDNF (R&D systems, 
Biotechne, Minneapolis) at a concentration of 0.5 μg/μL (a total 
250 ng/animal) or sterile PBS at a rate of 0.1ul/min. Thirty (30) 
minutes later, intraperitoneal injection of ultra-pure LPS (2 mg/
kg, InvivoGen, San Diego, CA) or PBS was performed. We selected 
30 min because studies have shown increased BDNF 
immunolabeling 30 min after infusion and peaking at 2 h 
(Shirayama et  al., 2002). The groups of mice were PBS/PBS, 
BDNF/PBS, PBS/LPS, BDNF/LPS. After 18 h, mice were 
euthanized by rapid cervical dislocation, and whole hippocampal 
tissue (dorsal and ventral) was collected. Detailed surgical 
procedures and infusion protocols are provided in SI Section 1.

Quantitative real-time PCR and 
enzyme-linked immunosorbent assay 
(ELISA)

Hippocampal RNA was extracted using the Allprep RNA/protein 
kit and cDNA was synthesized with SuperScript VILO cDNA 
Synthesis Kit. qPCR was performed using SYBR Green supermix with 
primers listed in Supplementary Table 1. Hippocampal protein was 
quantified to measure the protein levels of the neuropeptides using 
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ELISA kits for SST, NPY, CORT, IL-1β and BDNF. Relative gene 
expression was calculated using the 2^(-dCt) method. A complete 
description of RNA, protein extraction, cDNA synthesis, qPCR 
analysis, and ELISA procedures are provided in SI Section 1.

Statistical analysis

Statistical analysis was conducted using GraphPad Prism 10. Data 
from both sexes were combined. Our analysis focused on pre-specified 
biologically-driven comparisons, using unpaired t-tests. We conducted 
two planned comparisons (1): PBS/PBS vs. PBS/LPS to confirm the 
LPS-induced deficit, and (2) PBS/LPS vs. BDNF/LPS to test for the 
protective effect of BDNF.

Results

BDNF infusion prevented LPS-induced 
reduction in Bdnf, Sst, Cort, and Npy 
mRNA, with no effect on, Pv, Vip, Crh or 
Cck

Eighteen hours after LPS exposure, hippocampal Bdnf expression 
was significantly reduced. Two by two comparisons revealed a 
significant decrease in PBS/LPS group compared to PBS/PBS group 
(p = 0.0049). BDNF infusion fully blocked the effect of LPS, as Bdnf 
expression increased in the BDNF/LPS group compared to PBS/LPS 
(p = 0.0482; Figure 1A).

For Sst, there was a significant decrease in the PBS/LPS group 
compared to PBS/PBS group (p = 0.0416), while BDNF partially 
blocked this effect, resulting in a 72% increase in Sst levels in the 
BDNF/LPS group compared to the PBS/LPS group (p = 0.1062; 
Figure 1B).

LPS significantly decreased Cort expression, with a reduction 
observed in the PBS/LPS group compared to PBS/PBS group 
(p = 0.0055). BDNF partially blocked the effect of LPS on Cort as 
evidenced by an 84% increase in Cort expression in the BDNF/LPS 
group compared to PBS/LPS (p = 0.095; Figure 1C).

LPS significantly decreased Npy expression, with a reduction in 
PBS/LPS group compared to PBS/PBS group (p = 0.0088). BDNF 
partially blocked the effect of LPS on Npy as evidenced by the 31% 
increase in Npy expression in the BDNF/LPS group compared to PBS/
LPS (p = 0.2692; Figure 1D). In the BDNF/PBS group there was a 
significant increase only in Npy mRNA expression compared to PBS/
PBS group (p = 0.0445; Supplementary Figure 2C).

Results for Pv, Vip, Crh and Cck are in Supplementary Figure 1.

BDNF infusion prevented LPS-induced 
reduction in SST, NPY, and BDNF protein 
levels, but had no effect on CORT

There was no effect of LPS on BDNF protein levels as two by two 
comparisons showed no change in BDNF levels in the PBS/LPS group 
compared to PBS/PBS group (p = 0.1660). There was a significant 
increase in BDNF levels in the BDNF/LPS group (p = 0.0278) 
compared to PBS/LPS (Figure 1E).

LPS significantly decreased SST protein levels in PBS/LPS 
compared to PBS/PBS group (p = 0.0055). BDNF fully blocked this 
effect, as SST protein levels increased by 55% in the BDNF/LPS group 
compared to PBS/LPS (p = 0.0056; Figure 1F).

There was no significant effect of LPS on CORT protein levels, as 
CORT levels did not differ between PBS/LPS group compared to PBS/
PBS group (p = 0.1456), nor between BDNF/LPS group and PBS/LPS 
group (p = 0.5971; Figure 1G).

There was no effect of LPS on NPY protein levels, as NPY levels 
did not differ between the PBS/LPS group compared to PBS/PBS 
group (p = 0.2027). However, NPY levels were significantly increased 
in the BDNF/LPS group compared to PBS/LPS (p = 0.0079; 
Figure 1H).

LPS increased IL1-beta protein levels and 
Gfap mRNA levels and decreased Iba1

LPS significantly increased IL-1β protein levels in the PBS/LPS 
group compared to PBS/PBS group (p = 0.006; Figure 2A). There was 
no significant change in BDNF/LPS group compared to PBS/LPS 
group (p = 0.314).

LPS significantly increased Gfap in the PBS/LPS group compared 
to PBS/PBS group (p = 0.0408). There was no significant change in 
BDNF/LPS group compared to PBS/LPS group (p = 0.480; Figure 2B).

LPS significantly decreased Iba1 expression in the PBS/LPS group 
compared to PBS/PBS group (p  < 0.0001). There was a trend of 
increase in Iba1 in the BDNF/LPS group compared to PBS/LPS group 
(p = 0.0899; Figure 2C).

Discussion

BDNF blocks LPS-induced effects on 
GABAergic markers, mainly markers 
specific of SST interneurons

In this report, we showed that LPS-induced inflammation leads to 
a significant reduction in the expression of Sst, Cort, and Npy, key 
molecular markers of SST interneurons, and that BDNF infusion prior 
to LPS exposure can prevent these changes. Investigation of other 
GABAergic markers indicate that the protective effects of BDNF may 
primarily target SST interneurons, potentially due to their high 
dependence on BDNF signaling for survival and function (Tripp et al., 
2012; Guilloux et al., 2012; Oh et al., 2019).

We showed that LPS-induced inflammation significantly reduced 
hippocampal BDNF expression, likely due to impaired synthesis and 
release by pyramidal neurons. Previous studies have reported similar 
findings, but BDNF levels in those studies were measured at earlier 
time points (3, 4, and 7 h post-LPS administration; Guan and Fang, 
2006; Lapchak et al., 1993; Golia et al., 2019). Our previous study 
(Rezaei et  al., 2024) also demonstrates a reduction in BDNF and 
GABAergic interneuron markers at 18 h, a time point that extends 
beyond the early sickness-induced inflammatory response (0–6 h; 
Dantzer et al., 2008). This later timeframe is more appropriate for 
investigating molecular mechanisms that may drive longer-term 
pathophysiological changes, particularly those linked to chronic 
MDD-like states. Here, the LPS model was not used to assess the 
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FIGURE 2

Effect of LPS and BDNF on hippocampal IL-1beta protein, Gfap and Iba1 mRNA levels. (A) LPS significantly increased IL-1beta protein levels compared 
to PBS controls. BDNF infusion did not significantly alter IL-1beta levels compared to the PBS/LPS group. (B) LPS significantly increased Gfap mRNA 
expression, while BDNF infusion had no effect on LPS-induced Gfap expression. (C) LPS significantly decreased Iba1 mRNA expression. BDNF had no 
significant effect on Iba1 expression in the BDNF/LPS group compared to PBS/LPS group. Results are expressed as individual animals and mean ± SEM 
(n = 4-5/group; 50% female). Females are shown as orange circles and males as blue x symbol. *p < 0.05, **p < 0.01, and ****p < 0.0001.

FIGURE 1

Effect of LPS and BDNF on hippocampal Bdnf, Sst, Cort, and Npy mRNA and protein levels. (A–D) Bdnf, Sst, Cort, and Npy mRNA expression levels. LPS 
significantly reduced expression of all four genes compared to PBS controls. BDNF infusion fully blocked the reduction in Bdnf (A), partially blocked 
reductions in Sst (B) and Cort (C), and modestly increased Npy (D). (E–H) Corresponding protein levels for BDNF, SST, CORT, and NPY. LPS had no 
significant effect on BDNF (E), CORT (G), or NPY (H) protein levels, but significantly reduced SST protein levels (F). BDNF infusion significantly increased 
BDNF (E), SST (F), and NPY (H) protein levels compared to PBS/LPS, but had no effect on CORT (G) protein levels. Results are expressed as individual 
mice and mean ± SEM (n = 4-5/group; 50% female). Females are shown as orange circles and males as blue x symbol. *p < 0.05 and **p < 0.01.
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well-established early sickness and depression-like behaviors, and 
instead we focused on cellular changes.

GABAergic interneurons do not synthesize BDNF and therefore 
rely on its supply from other cells, primarily pyramidal neurons 
(Cellerino et al., 1998; Gorba and Wahle, 1999). The reduction in 
BDNF levels suggests a disruption in trophic support to GABAergic 
interneurons which likely contributes to the downregulation of 
BDNF-dependent interneuron markers Sst, Cort, and Npy (Tripp 
et  al., 2012). Importantly, BDNF infusion prior to LPS exposure 
prevented the reduction in Bdnf, supporting the hypothesis that 
exogenous BDNF can counteract LPS-induced effects, as demonstrated 
in another study (Wu et al., 2020). To address whether BDNF’s effects 
reflect general trophic upregulation versus protection under 
inflammation, we added a BDNF-only baseline group (BDNF/PBS; 
Supplementary Figures 2, 3). At baseline, BDNF did not change Sst or 
Cort, but increased Npy mRNA levels and there was no change in 
BDNF, SST, CORT or NPY protein levels. Thus, the prevention of 
LPS-induced decreases in Sst and Cort cannot be explained by baseline 
upregulation and likely reflects context-dependent preservation of 
trophic support during inflammation.

LPS-induced inflammation increases IL-1β 
and Gfap levels, while reducing Iba1

The mechanism by which inflammation reduces BDNF levels is 
not known, but studies show that pro-inflammatory cytokines, in 
particular IL-1β, decrease BDNF levels (Li et al., 2017; Haddad et al., 
2002; Barrientos et  al., 2003; Tong et  al., 2008). A previous study 
showed that inactivating astrocytes attenuates LPS-induced effect on 
BDNF suggesting that astrocyte activation downstream of 
LPS-induced inflammation may contribute to BDNF depletion (Wang 
et al., 2019). Consistent with prior studies (Diaz-Castro et al., 2021; 
Norden et al., 2016), we find that LPS significantly increased IL-1β and 
Gfap levels. Notably, we showed that BDNF infusion did not exhibit 
any significant anti-inflammatory effects on IL-1β protein levels or 
Gfap mRNA expression. Other studies report anti-inflammatory 
effects of BDNF on tumor necrosis factor alpha, and interleukin-6 
(Jiang et  al., 2011; Charlton et  al., 2023), as well as heighted 
inflammation in BDNF heterozygous mice in response to an immune 
challenge (Parrott et al., 2021). We also observed that Iba1 expression 
significantly decreased with LPS, which is opposite to the increase 
often reported (Hoogland et al., 2015; Chen et al., 2012). However, 
consistent with our findings, another study found significantly 
decreased expression of Iba1 mRNA in brain regions including HPC 
and cortex (Silverman et al., 2015) and proposed that the suppression 
of Iba1 may act as a stop signal to prevent over activation of microglia 
in response to LPS. In line with their observations, we found elevated 
IL-1beta levels in the LPS/PBS group despite reduced Iba1 expression, 
suggesting that microglia were functionally active to produce 
cytokines. Another explanation is microglial tolerance, whereby prior 
inflammation blunts Iba1 reactivity to subsequent LPS exposure. This 
phenomenon has been demonstrated with repeated LPS injections 
(Norden et al., 2016; Zhou et al., 2020). In our study, the prior cannula 
implantation 1 week earlier may have induced a local inflammatory 
response that had not fully subsided, as reported in other studies 
(Hayn and Koch, 2015; Holguin et  al., 2007). This pre-existing 
activation could have altered the microglial response to LPS, 
contributing to the observed reduction in Iba1 expression.

A limitation of the study is that we did not investigate BDNF-
dependent intracellular signaling. BDNF classically binds TrkB and 
engages MAPK/ERK, PI3K/Akt, and PLC-γ pathways that support 
neuronal survival, dendritic maintenance, and synaptic function 
(Reichardt, 2006). In inflammatory contexts, LPS binds to Toll-like 
receptor 4 (TLR4), activating NF-κB, which drives cytokine release 
and glial reactivity (Dantzer, 2018). Studies indicate that BDNF–TrkB 
activation counterbalances LPS-induced responses, reducing 
microglial activation and cytokine production via the TrkB-Erk-
CREB signaling pathway (Wu et al., 2020; Charlton et al., 2023). In 
our study, BDNF pretreatment prevented LPS-induced decreases in 
SST-related markers while IL-1β and Gfap remained elevated. Thus, 
BDNF’s protective effects likely reflect TrkB-dependent preservation 
of trophic support and interneuron integrity under inflammatory 
conditions, rather than a global suppression of the inflammatory 
cascade. Future experiments in this model should quantify 
hippocampal p-TrkB, p-ERK, p-Akt. In this study, BDNF ameliorates 
LPS-induced effects on GABAergic interneurons, despite elevated 
IL1-beta and Gfap levels, suggesting a mechanism that is likely 
independent of, or downstream from LPS induced microglia and 
astrocyte activation. This study is not without limitations. We used 
an acute LPS challenge to model systemic inflammation and test 
whether hippocampal BDNF prevents LPS-induced reductions in 
interneuron markers. This approach provides construct validity for 
immune signaling and causal effects on GABAergic interneurons, but 
does not capture chronic, low-grade inflammation or the 
multifactorial dimensions of neuropsychiatric disorders. Accordingly, 
our findings indicate that BDNF prevents LPS-induced SST 
interneuron deficits under acute inflammation, rather than implying 
normalization of a full disease state. We  observed discrepancies 
between mRNA and protein levels for the neuropeptides, particularly 
BDNF, CORT and NPY. This is consistent with the well-documented 
phenomenon where mRNA levels do not always fully correlate with 
protein levels, due to factors such as delays in translation, post-
translational modifications, and rapid protein degradation (Liu et al., 
2016). As such, the 18-h post-LPS time point may capture changes in 
transcription, but not fully reflect translated protein levels. Previous 
studies investigating LPS-induced inflammation have also reported 
delayed correlation between mRNA and protein levels (Jovanovic 
et al., 2010). Another limitation of this study is the lack of direct 
cellular assessments linking molecular changes to functional 
alterations at the circuit level and histological validation. While 
we  observed changes in GABAergic interneuron markers, future 
studies should incorporate techniques to determine how these 
molecular shifts impact neuronal activity, structural alterations and 
synaptic function.

Finally, the sample size could be expanded to allow for sex-based 
analyses, and based on our previous findings (Rezaei et al., 2024), 
we would expect a more robust reduction in some markers in males 
than in females following LPS exposure.

Conclusion

This study demonstrates that LPS-induced effects on GABAergic 
interneurons can be prevented by BDNF, suggesting a protective role 
for BDNF against inflammation-induced neuronal dysfunction, 
particularly in SST cells. By linking reduced neuroplasticity, 
GABAergic deficits, and increased inflammation, the findings provide 
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a mechanistic framework connecting key pathological features of 
neuropsychiatric disorders.
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