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SOD mediates mitochondrial
epigenetic regulation in NIHL

Liuwei Shi'?!, Caiping Li*, Dianpeng Wang**!, Dafeng Lin?,
Xiangli Yang?', Peimao Li!, Wen Zhang*, Yan Guo!, Liting Zhou?*
and Naixing Zhang'*

!Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases,
Shenzhen, China, 2School of Public Health, Jilin University, Changchun, China, *Department of
Toxicology, School of Public Health, Southern Medical University, Guangzhou, China

Occupational noise-induced hearing loss (NIHL) is linked to the overproduction of
mitochondrial reactive oxygen species after noise exposure. This cross-sectional
study investigated the relationship between mitochondrial DNA (mtDNA) D-loop
region methylation and oxidative stress in 150 participants divided into three
age and sex matched groups: a control group (n = 50, workers without noise
exposure and with normal hearing), an exposed group (n = 50, workers with
significant noise exposure but normal hearing), and a case group (n = 50, workers
diagnosed with NIHL). The subjects among groups were matched for sex and
age to control confounding factors. Methylation levels of the mtDNA D-loop
region were determined by the quantitative PCR following bisulfite conversion,
while mitochondrial DNA copy number (mtDNA-CN) was assessed using the
real-time PCR. Oxidative stress markers—including superoxide dismutase (SOD),
glutathione peroxidase (GPX), total antioxidant status (TAS), and malondialdehyde
(MDA)—were quantified via substrate-specific assays, ultraviolet enzymatic methods,
and colorimetric techniques. Results showed the case group (141.6 + 46.80 U/
mL) showed lower SOD than the control (159.5 + 18.68 U/mL, p < 0.05) and
exposed groups (164.0 + 1544 U/mL, p < 0.01), MDA was higher in the case group
(232.8 + 134.5 nmol/mL) than in the control (193.5 + 84.13 nmol/mL) and exposed
groups (187.3 + 60.76 nmol/mL), with a significant overall difference (F = 3.162,
p < 0.05). The case group showed lower methylation [1.205 (0.595, 2.748) %] than
both the control [1.710 (0.912, 3.225) %] and exposed groups [1.850 (0.987, 4.093)
%] (H = 7492, p < 0.05). The case group exhibited higher mtDNA-CN levels [397.7
(205.9, 532.1)] compared to both the blank control group [317.4 (234.6, 549.6)] and
the exposed group [225.1 (125.3, 445.0)] (H = 9.213, p < 0.05). Methylation levels of
the D-loop region were positively correlated with SOD and negatively correlated
with MDA. Mediation analysis indicated that SOD may mediate the relationship
between D-loop methylation and bilateral high-frequency hearing thresholds,
suggesting an indirect epigenetic regulatory mechanism. These findings imply
that noise-induced oxidative imbalance, reflected by reduced SOD, may lead
to D-loop hypomethylation, contributing to the development of NIHL. These
methylation sites may serve as preliminary biomarkers for further research on
preventive strategies.
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1 Introduction

NIHL is an auditory impairment resulting from exposure to high
sound levels, whether from a single intense burst or prolonged
exposure (Lie et al., 2016). It represents one of the most prevalent
occupational hazards worldwide. Epidemiological studies indicate
significant regional variation, with prevalence rates of 25% in the
United States, 15% in Canada, and approximately 20% across the
European Union and Australia (Themann and Masterson, 2019;
Teixeira et al., 2021), with rising rates in developing countries (Fuente
and Hickson, 2011). In China, NTHL prevalence exceeds 20%, making
it the second most common occupational disease, and the incidence
continues to rise (Zhou et al., 2020). Beyond auditory damage, noise
exposure is linked to various psychological and physiological effects,
including tinnitus, cardiovascular dysfunction, cognitive impairment,
and sleep disturbances (Ellermeier et al., 2001; Mohammad et al.,
2023). The mechanism of cochlear damage in NIHL is largely
mediated by reactive oxygen species (ROS) generated in the inner ear
following acoustic overexposure (Zhou et al., 2023). Animal models
have demonstrated that noise triggers apoptotic pathways leading to
cochlear cell death, with ROS levels peaking within 2 weeks post-
exposure (Kishimoto-Urata et al., 2022). Initial hair cell damage is
attributed to mechanical trauma and acute ROS overload (Mao and
Chen, 2021), while sustained ROS and reactive nitrogen species (RNS)
production contribute to progressive cell loss (Kamogashira et al.,
2015). In guinea pig models, noise exposure induces the mitochondrial
release of apoptosis-inducing factors, concomitant with reduced ATP
synthesis and elevated ROS, activating apoptosis and resulting in outer
hair cell death (Rommelspacher et al., 2024).

Mitochondrial dysfunction plays a central role in NIHL pathology.
Noise exposure enhances mitochondrial aerobic respiration,
increasing ROS production and promoting inner ear hair cell
apoptosis (Samara et al., 2024). The antioxidant system—including
enzymes such as SOD, GPX and TAS—partially counteracts ROS
effects, underscoring the significance of mitochondrial impairment in
NIHL development.

DNA methylation, an essential epigenetic mechanism involving
the addition of methyl groups to cytosine bases, regulates gene
expression without altering the DNA sequence (Dhar et al., 2021). Tt
is modulated by various environmental factors (Venney et al., 2021).
Although nuclear DNA methylation has been extensively studied,
research on mitochondrial DNA (mtDNA) methylation remains
limited. Recent evidence highlights the functional importance of
mtDNA methylation in pathological and physiological processes,
including deafness (Donato et al., 2024).

Mitochondria, which are central to oxidative phosphorylation and
apoptosis, possess inadequate DNA repair mechanisms, rendering
mtDNA highly vulnerable to oxidative damage (Khan et al., 2022;
Sergeeva et al., 2023; Flores et al., 2013; Wong and Ryan, 2015). The
D-loop region of mtDNA regulates mitochondrial gene transcription
and function, (Lei et al., 2024) and its aberrant methylation is linked
to mitochondrial dysfunction and oxidative stress in neurological
disorders (Trinchese et al., 2024).

Epigenetic regulation, particularly DNA methylation, is
increasingly associated with hearing loss. Studies have identified
methylation differences at CpG sites related to various hearing loss
phenotypes (Zheng et al., 2021; Rizk et al., 2022). Genome-wide
methylation analyses have correlated epigenetic changes with auditory
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function, implicating genes such as TCF25 and FGDRI1 (Guo et al.,
2023). Environmental exposures, such as lead from electronic waste,
can also induce epigenetic modifications affecting auditory
development (Xu et al., 2020). Such findings suggest that mtDNA
D-loop methylation could be a key target for exploring NIHL
pathogenesis (Basu et al., 2020). Moreover, mtDNA copy number
(mtDNA-CN), a biomarker of mitochondrial integrity, fluctuates in
response to damage and oxidative stress (Castellani et al., 2020). Both
human and animal studies have shown that noise exposure alters
mtDNA-CN (Yang et al., 2024; Yu et al., 2014; Tan and Song, 2023).
Despite advances, research on mitochondrial epigenetic mechanisms
in NIHL remains limited, especially concerning the interplay between
oxidative stress and mtDNA methylation. This study aims to investigate
changes in mtDNA D-loop region methylation and oxidative stress
profiles in individuals with occupational NIHL, to elucidate potential
epigenetic regulatory pathways involved in its pathology.

2 Methods
2.1 Cases and controls

This study recruited a total of 150 participants and divided them into
three groups. Within the population engaged in noisy occupations, 50
confirmed cases of noise-induced hearing loss were selected to constitute
the case group. Additionally, 50 noise-exposed workers with normal
hearing, as determined by their occupational health examinations, were
selected to form the exposed group. A control group was composed of
50 employees with normal hearing who had never employed hearing
examinations for noise-related occupations. All groups of study subjects
were matched for gender and age (5 years). Inclusion criteria: ® Case
and exposed groups: subjects with occupational noise exposure for
>3 years; control group: subjects without occupational noise exposure.
® According to GBZ49-2014 “Diagnosis of Occupational Noise-Induced
Hearing Loss,” the case group was diagnosed with occupational NIHL,
defined as a bilateral high-frequency (3,000 Hz, 4,000 Hz, 6,000 Hz)
average hearing threshold of >40 dB. For the control group and exposed
group, normal hearing was defined as a high-frequency average
threshold of <35 dB and a pure tone audiometry threshold of <25 dB at
any frequency range (500 Hz, 1,000 Hz, and 2000 Hz) in either ear.
Exclusion criteria: Participants were excluded if they had any of the
following conditions: pseudohypacusis, exaggerated hearing loss, drug-
induced ototoxicity (e.g., Streptomycin, Kanamycin, Chloramphenicol),
traumatic hearing loss, infectious diseases (such as epidemic
cerebrospinal meningitis, mumps, and measles), hereditary deafness,
Menieres disease, sudden deafness, middle ear diseases, acoustic
neuroma, or auditory nerve diseases. A 7.0 mL sample of upper limb
venous blood should be collected from each experimental subject and
aliquoted into two types of tubes: (1) regular biochemical tubes (without
anticoagulant) and (2) EDTA-anticoagulant tubes. Two milliliters of
peripheral blood were collected in EDTA anticoagulant tubes for use as
the detection sample, and routine blood tests were conducted using a
hematology analyzer (Mindray BC5000, Shenzhen China). Data on the
study subjects’ age, blood pressure, occupational exposure duration, and
bilateral high-frequency average threshold were retrieved from the
Electronic Health Record System. The study cohort comprised both
confirmed patients and healthy individuals who underwent medical
examinations at the Shenzhen Occupational Disease Prevention and
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Treatment Center. This study was approved by the Ethics Committee of
the Shenzhen Occupational Disease Prevention and Treatment Center,
and all study subjects provided informed consent.

2.2 Mitochondrial DNA D-loop methylation
level determination

The total DNA was extracted by DNA extraction kit by Shanghai
Bioengineering Co, Ltd. A 400 pL aliquot of whole blood was
transferred to a 1.5-mL microcentrifuge tube. Subsequently, 40 pL of
Proteinase K was added and mixed thoroughly by vortexing. Then,
400 pL of Buffer DL was added, and the mixture was inverted gently
to homogenize. The solution was incubated in a 56 °C water bath for
10 min. Following incubation, 400 pL of absolute ethanol was added
to the tube, and the mixture was inverted vigorously to ensure
complete precipitation of nucleic acids. The lysate (650 pL) containing
suspended particles was carefully pipetted into a pre-assembled
adsorption column placed in a collection tube. After standing for
2 min, the column was centrifuged at 10,000 rpm for 1 min at room
temperature. The flow-through was discarded, and this step was
repeated until all lysate had passed through the column. 500 uL of GW
Solution was added, followed by centrifugation at 10,000 rpm for 30 s.
700 pL of Wash Solution was applied, and the column was centrifuged
again under identical conditions. A final wash with 500 pL of GW
Solution was conducted, followed by centrifugation. All wash effluents
were discarded after each step. To eliminate residual ethanol, the
column was centrifuged at 12,000 rpm for 2 min.

The dried column was transferred to a new 1.5-mL
microcentrifuge tube. For optimal DNA recovery, 15 pL of CE Buffer
(pre-heated to 60 °C for 10 min) was added directly to the center of
the column membrane. After a 3-min incubation at room temperature,
the DNA was eluted by centrifugation at 12,000 rpm for 2 min. This
elution step was repeated once with an additional 30 pL of CE Buffer.
The purified DNA was either used immediately for downstream
applications or stored at —20 °C for long-term preservation. Bisulfite
conversion of genomic DNA (gDNA) was performed using the Zymo
EZ DNA Methylation Lightning MagPrep Kit (Catalog No. D5046).

The design and synthesis of primers are based on the retrieval of
the human DNA sequence of the target gene D-loop from the NCBI
database (Gene ID: NC_012920), The /3 - actin internal reference gene
sequence was sourced from the reference literature (Hulbert et al.,
2017). Design the primers using the MethPrimer website, and have
them synthesized by Shanghai Biotech Co., Ltd. (Table 1).

The quantitative PCR (qQPCR) reaction system and conditions were
established following the guidelines provided by the SuperReal Color
Fluorescent Quantitative Pre-Mix Kit. The reagents included in the kit
were thoroughly mixed by inversion and subsequently centrifuged
immediately. Amplifcation of the two reactions using primer Forward
and primer Reverse of 0.5 each pL (pmol/pL). Probe 0.6 pL (pmol/pL).
Water 4.4 puL. SuperReal Permix 10 pL. DNA template 4 pL. 20 in total
pL (Table 1). The reaction system was assembled on ice and
subsequently aliquoted into eight tubes devoid of RNA enzymes for
machine detection. Each sample was analyzed in triplicate wells. The
proportion of DNA methylation was calculated using the CT difference
method based on literature (Park et al., 2021). The PCR amplification
parameters for the D-loop and f-actin gene were established as follows:
an initial denaturation at 95 °C for 15 min, followed by 45 cycles of
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TABLE 1 Primer and probe sequences.

Gene ‘ Primer  gequence(5’ - 3)
MET Forward  GGTTTATTATTTTATTAATTATTTACGG
D-Loop Reverse | ATAAAATACTCCGACTCCAACGTC
probe FAM-TTTTTTATGTATTTGGTATTTT-MGB
B-ACTIN = Forward | TGGTGATGGAGGAGGTTTAGTAAGT
Reverse  AACCAATAAAACCTACTCCTCCCTTAA
probe FAM-ACCACCACCCAACACACAATAACA

AACACA-TAMRA

denaturation at 95 °C for 3 s, and annealing/extension at 57 °C for 45 s.
Mitochondrial DNA copy number detection samples are derived from
peripheral blood samples. For this study, hemoglobin, beta gene and
Mitochondrial DNA Copy Number Analysis.

To quantify mitochondrial DNA (mtDNA) copy number, the
hemoglobin beta gene (HBB; GenBank: MH708880.1) and
mitochondrial NADH dehydrogenase 1 gene (MT-ND1; GenBank:
NC_012920.1) were selected as nuclear and mitochondrial reference
genes, respectively, due to their stable expression. A total of 20 ng of
cellular DNA was used as template in a 20 pL reaction mixture
containing 10 pL of 2 x SYBR Green Master Mix (Tiangen, Cat. No.
FP215), 10 pmol of each primer, and 2 pL DNA. Reactions were
performed in triplicate on a StepOnePlus Real-Time PCR System
(Applied Biosystems) under the following conditions: initial
denaturation at 95 °C for 10 s; 40 cycles of denaturation at 95 °C for
5 s, and annealing/extension at 56 °C for 34 s. HBB (nuclear reference):
Forward: 5-GCTTCTGACACAACTGTGTTCACTAGC-3’, Reverse:
5-CACCAACTTCATCCACGTTCACC-3". MT-ND1 (mitochondrial
target, chrM:3313-3322): Forward: 5-CACCCAAGAACAGGG
TTTGT-3’, Reverse: 5-TGGCCATGGGTATGTTGTTA-3'. Threshold
cycle (Ct) values were determined using Applied Biosystems software.
The relative mtDNA -CN was calculated using the ACt method,
expressed as the ratio of MT-ND1 (mitochondrial) to HBB (nuclear)
signals (Wang et al., 2024).

2.3 The determination of the oxidative
stress index included SOD, GAX, and TAS

Five milliliters of peripheral blood were centrifuged at 2,000 g
for 30 min to isolate serum for subsequent analyses. SOD activity
was quantified using the substrate method. Under alkaline
conditions, pyrogallol undergoes autoxidation to form
purpurogallin and superoxide anion (O,7). The rate of pyrogallol
autoxidation is correlated with the concentration of O,~. SOD
catalyzes the dismutation of O, into hydrogen peroxide (H.0,)
and oxygen (O,), thereby inhibiting the autoxidation of pyrogallol.
By measuring the absorbance changes of purpurogallin at a
wavelength of 405 nm, the SOD activity in the sample can
be determined. GPX activity was measured via the UV enzyme
assay. GPX catalyzes the oxidation of reduced glutathione (GSH)
to oxidized glutathione (GSSG) using cumene hydroperoxide as a
substrate. In the presence of glutathione reductase (GR) and
reduced nicotinamide adenine dinucleotide phosphate (NADPH),

GSSG is rapidly reduced back to GSH, while NADPH is oxidized
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to nicotinamide adenine dinucleotide phosphate (NADP*). The
rate of NADPH oxidation is directly proportional to the activity
of GPX in the serum. By measuring the rate of decrease in
NADPH absorbance at 340 nm, the activity of GPX can
be determined. TAS levels were determined using the colorimetric
method. In the presence of an oxidizing agent, 2,2"-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
(ABTS) is oxidized to generate the ABTS*- radical cation, which
exhibits a stable bluish-green color and can be measured at
600 nm. Antioxidants can scavenge these radicals, inhibiting the
formation of the colored product and resulting in a decrease in
absorbance. The degree of inhibition is proportional to the
concentration of the antioxidant, thereby allowing for the
assessment of the sample’s antioxidant capacity. MDA levels were
determined using the colorimetric method. Under acidic
conditions, malondialdehyde (MDA) reacts with thiobarbituric
acid (TBA) to form a red-colored product, which exhibits a
maximum absorption peak at 532 nm. By measuring the
absorbance at 532 nm, the concentration of MDA in the sample
can be determined. The SOD, GPX, and TAS assay kits were
obtained from Zhongtuo Biological Co., Ltd. (China). The MDA
assay kit was obtained from the Nanjing Jiancheng Bioengineering
Institute (China).

2.4 The mediation effect was analyzed
using SPSS software

To explore the intrinsic mechanism of the significant positive
impact of methylation on bilateral high-frequency hearing
thresholds, SOD is further introduced as a mediator variable in
the study. Age, diastolic pressure, systolic pressure, TAS, and
mitochondrial copy number are controlled variables in the
structural equation model.

2.5 Statistical analysis

Statistical analysis of all data was performed using IBM SPSS
24.0 software. The data for each group were represented as X+s or
M (P25, P75). For normally distributed and homogenous data,
t-test was used for comparison between two groups, one-way
analysis of variance (ANOVA) was used for comparison among
multiple groups, and Tukey’s test was used for pairwise
comparisons between groups. For non-normally distributed or
heteroscedastic data, Kruskal-Wallis test was used for comparison
among groups. A significance level of p < 0.05 was considered
statistically significant. Through using Model4 in the SPSS macro
program Process to test the mediating effect, analysis verification
is conducted based on the Bootstrap method provided by Hayes.
Enrichment analysis of functions and signaling pathways
associated with MT genetic loci exhibiting differential methylation
expression was conducted using KOBAS v3.0' based on the KEGG
database, applying a corrected p-value threshold of < 0.05.

1 http://bioinfo.org/kobas/
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3 Result
3.1 General characteristics

Given the predominance of male patients with noise-induced
hearing loss, the study participants in this experiment were
exclusively male. As indicated in Table 2, there was no statistically
significant difference in age among the three groups of subjects
(F =2.07, p = 0.13). However, the systolic blood pressure in the
case group was significantly higher than that in both the control
group and the exposed group, with the differences among the
three groups reaching statistical significance (F = 5.23, p < 0.01).
The diastolic blood pressure in the case group was significantly
elevated compared to both the control group and the exposed
group, with the differences among the three groups reaching
statistical significance (F=3.78, p < 0.05). Additionally, the
hearing threshold in the case group was markedly higher than that
in the control group and the exposed group, with the differences
among the three groups demonstrating high statistical significance
(F =559.5, p < 0.001). The absolute lymphocyte count in the case
group was lower compared to both the control group and the
exposed group; however, the differences among the three groups
were not statistically significant (H = 0.86, p = 0.651). Similarly,
the platelet-to-lymphocyte ratio (PLR) in the case group was
higher than that in the control group and the exposed group, yet
the differences were also not statistically significant (H = 0.9,
p =0.64) (Table 2).

3.2 Comparison of oxidative stress levels in
the subjects

The levels of antioxidant indicators SOD, GPX and TAS were
significantly reduced in the case group relative to both the control
group and the exposed group, with the exposed group exhibiting the
highest levels among the three groups (Figure 1). Conversely, the
concentration of MDA, an indicator of oxidative damage, was elevated
in the case group compared to the control group and the exposed
group, with the control group demonstrating the lowest levels among
the three groups.

3.2.1 Comparison of methylation levels in the
D-loop region among three subject groups

The levels of mtDNA D-loop methylation were significantly
reduced in the case group relative to both the control group and the
exposed group, with the exposed group exhibiting the highest levels
among the three groups (Figure 2).

3.3 The correlation between DNA
methylation levels and average hearing
threshold of high-frequency bilateral ears

The methylation level of mtDNA D-loop region exhibits a
statistically significant negative correlation with the average hearing
threshold of high-frequency bilateral ears (r=—0.175, p <0.05)
(Figure 3). Specifically, a lower methylation level is associated with a
higher average hearing threshold in high-frequency bilateral ears.
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TABLE 2 The basic characteristics of the three study groups.

Characteristic Controln = 50 Exposed n = 50 Casen =50

Age (year) 4242 £6.312 44.80 £ 7.461 45.00 +£7.321 0.13*
Systolic pressure (mm Hg) 119.7 + 12.15 120.8 +£11.97 127.3 + 14.68 0.006*
Diastolic pressure (mm Hg) 77.62 + 8.557 80.18 +9.413 82.76 +10.01 0.025°
Binaural average hearing threshold (dB) 6.710 £ 5.701 6.206 +£4.913 58.06 + 13.47 <0.001*
absolute lymphocyte count (x10°/L) 2.07 (1.633, 2.463) 2.15 (1.598, 2.608) 1.97 (1.65, 2.33) 0.651°
Platelet-to-lymphocyte ratio (PLR) 119.9 (99.58, 138.5) 107.1 (93.81, 151.9) 121.9 (99.55, 137.1) 0.637°

*One way ANOVA.

"Kruskal-Wallis test.

1 p<0.05 i g p<0.01 i
1 1 1 1
500- 80 p<0.05
p<0.001 I |
— =
gm' 3 604 T
- e =
" =B g
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control exposed case control exposed case
C D
. p<0.05 &
2.0- 900 - I | p<0.05 |1
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Eg 1.5+ =
E £ 600~
g =)
< 10- E 450
> —— -1
z ‘é 300+
2 0.5+
b= 150+
0.0 T T T 0 T T T
control exposed case control exposed case

FIGURE 1

Oxidative stress levels in three study groups. (A) A significant difference in SOD levels was observed among the three groups (F = 7.599, p < 0.01).
Specifically, the case group (141.6 + 46.80) exhibited lower SOD levels compared to both the control group (159.5 + 18.68), p < 0.05, and the exposed
group (164.0 + 15.44), p < 0.01. (B) Similarly, a significant difference in GPX levels was found among the three groups (F = 5.631, p < 0.01). The case
group (45.66 + 10.61) demonstrated lower GPX levels compared to the control group (51.36 + 8.286), p < 0.01, and the exposed group (50.13 + 7.651),
p < 0.05. (C) The TAS level in the case group (1.105 + 0.1923) was lower than that in both the control group (1.125 + 0.1491) and the exposed group
(1.163 + 0.1688); however, this difference was not statistically significant (F = 1.514, p = 0.224). (D) The MDA level in the case group (232.8 + 134.5) was
higher than that in the control group (193.5 + 84.13) and the exposed group (187.3 + 60.76), with a statistically significant difference observed among
the three groups (F = 3.162, p < 0.05).
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FIGURE 2
D-loop methylation Levels in Three Study Groups. The results
indicate a statistically significant difference in mtDNA D-loop
methylation across the groups (H = 7.492, p < 0.05). Specifically, the
case group exhibited lower methylation levels [1.205 (0.5950, 2.748)]
compared to both the control group [1.710 (0.9125, 3.225)] and the
exposed group [1.850 (0.9875, 4.093)], with p-values less than 0.05.

3.4 The correlation between DNA
methylation levels and oxidative stress
level in all subjects

The methylation level of the mtDNA D-loop region exhibits a
statistically significant positive correlation with SOD (r =0.391,
p <0.01) (Figure 4A). The correlation between the methylation level
of the mtDNA D-loop region and GPX is weak (r = —0.152, p = 0.063)
and not statistically significant (Figure 4B). The methylation level of
the mtDNA D-loop region shows a positive correlation with TAS
(r=0.025, p = 0.764) (Figure 4C), which is not statistically significant.
The methylation level of the mtDNA D-loop region is negatively
correlated with MDA (r = —0.162, p < 0.05), and this correlation is
statistically significant (Figure 4D).

3.5 Comparison of mtDNA-CN among
three subject groups

The differences in mtDNA-CN levels among the three groups
were statistically significant (H = 9.213, p < 0.01), with the case group
[397.7 (205.9, 532.1)] exhibiting higher levels compared to the control
group [317.4 (234.6, 549.6)]. Additionally, the case group
demonstrated significantly higher mtDNA-CN levels than the exposed
group [225.1 (125.3, 445.0)], p < 0.05. Notably, the case group had the
highest mtDNA-CN levels overall (Figure 5).

3.6 KEGG pathway analysis

KEGG pathway analysis of mitochondrial genes (MT-ND1 and
D-loop) revealed a significant correlation between the MT gene and
Metabolic  pathways and Retrograde
endocannabinoid signaling and Parkinson disease and Oxidative

and Thermogenesis

phosphorylation (Figure 6).
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FIGURE 3

The correlation between DNA methylation levels and average
hearing threshold of high-frequency bilateral ears in all subjects. The
methylation level of the mtDNA D-loop region exhibits a statistically
significant negative correlation with the average hearing threshold of
high-frequency bilateral ears (r = —0.175, p < 0.05).

3.7 Correlation between mtDNA-CN levels
and DNA methylation level

The methylation level of the mtDNA D-loop region across the
three study groups exhibited a positive correlation trend with mtDNA
-CN; however, this association did not reach statistical significance
(r=0.079, p= 0.144) (Figure 7A). Within the case group, the
methylation level of the mtDNA D-loop region demonstrated a
negative correlation trend with mtDNA -CN. Specifically, a decrease
in methylation level corresponded with an increase in copy number,
yet this relationship was not statistically significant (r=—0.012,
p=0.935) (Figure 7B).

3.8 Mediation effect

In the mediating effect model, SOD fully mediates the effect of
methylation on bilateral high-frequency hearing thresholds, indicating
that the effect of methylation on bilateral high-frequency hearing
thresholds may not be direct, but partially or entirely realized through
SOD (Table 3, Figure 8).

4 Discussion

Noise exposure triggers cochlear oxidative stress, a key driver of
NIHL, by disrupting the balance between reactive oxygen species
(ROS) production and antioxidant defense (Yamane et al., 1995; Juan
et al, 2021). In our study, the NIHL case group exhibited elevated
MDA (a marker of lipid peroxidation) alongside reduced SOD, GPX,
and total antioxidant status (TAS), reflecting heightened oxidative
damage and impaired antioxidant capacity. This aligns with animal
studies showing noise-induced ROS surges in cochlear tissues and
perilymph (Bagheri Hosseinabadi et al., 2019; Reastuty and Haryuna,
2021), and diminished SOD/GPX activity in noise-exposed rodents.

Consistent with these findings, diminished SOD expression has
been reported in the brains of noise-exposed rats (Reastuty and
Haryuna, 2021).
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p < 0.05), and this correlation is statistically significant.

The correlation between DNA methylation levels and oxidative stress level in all subjects. (A) The methylation level of the mitochondrial DNA (mtDNA)
D-loop region exhibits a statistically significant positive correlation with superoxide dismutase (SOD) (r = 0.391, p < 0.01). (B) The correlation between
the methylation level of the mtDNA D-loop region and glutathione peroxidase (GPX) is weak (r = —0.152, p = 0.063) and not statistically significant.
(C) The methylation level of the mtDNA D-loop region shows a positive correlation with total antioxidant status (TAS) (r = 0.025, p = 0.764), which is
not statistically significant. (D) The methylation level of the mtDNA D-loop region is negatively correlated with malondialdehyde (MDA) (r = —0.162,
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FIGURE 5
Comparison of mtDNA-CN among three subject groups. The
differences in mtDNA-CN levels among the three groups were
statistically significant (H = 9.213, p < 0.01), with the case group
[397.7 (205.9, 532.1)] exhibiting higher levels compared to the blank
control group [317.4 (234.6, 549.6)]. Additionally, the case group
demonstrated significantly higher mtDNA-CN levels than the control
group [225.1 (125.3, 445.0)], p < 0.05.
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Superoxide dismutase 2 (SOD2), an isoform localized specifically
within the mitochondrial matrix, plays a critical role in neutralizing
mitochondrial superoxide. Studies demonstrate that SOD2 modulates
the PI3K/MAPK signaling pathway, mitigating noise-induced
hearing loss and kanamycin-induced mitochondrial DNA depletion
in mice with a 4,834 gene mutation (Li et al., 2020). Additionally,
reduced GPX activity has been documented following noise exposure
(Samara et al., 2024). For example, noise exposure in rats induced
vascular plexus swelling and significantly decreased GPXI1
immunofluorescence intensity per unit area (Kil et al., 2007). These
findings align with evidence showing that genetic deletion of GPX1
increases susceptibility to noise-induced cochlear damage and
hearing loss (Ohlemiller et al., 2000). In the present study, serum TAS
levels were lower in the case group than in controls. This observation
is consistent with a study by Havlioglu et al. (2022) which compared
100 textile factory workers exposed to noise with 56 non-exposed
healthy volunteers and found significantly reduced TAS levels in the
noise-exposed group.

Unlike animal studies focusing on local (cochlear) oxidative
stress, we show systemic perturbations (via serum markers),
supporting Havlioglu et al. (2022) conclusion that noise-induced
oxidative stress is not confined to the auditory system. This
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suggests that NIHL may be part of a broader systemic imbalance,
a perspective underemphasized in prior work (Havlioglu
et al.,, 2022).

The inverse relationship between SOD and MDA in our cohort
directly links antioxidant depletion to oxidative damage, reinforcing
SOD’s role as a critical gatekeeper—a mechanism supported by Li
et al., who showed that SOD2 mitigates noise-induced hearing loss in
mice, but here contextualized in a human occupational setting (Li
et al., 2020).

In this study, it was observed that the methylation level of the
mtDNA D-loop region was reduced in the case group. This reduction
may be attributed to noise exposure, which induces the production
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of ROS and oxidative stress within the cochlea. The mtDNA D-loop
region is particularly vulnerable to oxidative damage, potentially
leading to diminished gene expression levels. The observed decrease
in methylation of the mtDNA D-loop region may facilitate a
compensatory increase in gene expression within this region, serving
as a countermeasure to mitigate the oxidative damage. Research has
demonstrated that the inhibition of DNA methyltransferase activity
using the non-nucleoside specific inhibitor RG108, or the silencing
of DNA methyltransferase-1 via siRNA, can significantly mitigate
noise-induced elevations in auditory brainstem response (ABR)
thresholds, hair cell damage, and auditory synapse loss (Zheng
etal., 2021).
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TABLE 3 Overall effect, direct effect, and mediation effect decomposition table.

Variable Effect value Boot SE p 95% BootCl Effect size
a (MeL- SOD) 2532 1.202 0.037 0.176 ~ 4.887

b (SOD - BHFTA) —0.143* 0.064 0.028 —0.269 ~ —0.017

¢ (MeL- BHFTA) ~1.967* 0.935 0.037 —3.800 ~ —0.134

¢’ (MeL-SOD-BHFTA) —1.605 0.937 0.089 —3.441 ~ 0.231 81.596%
a*b —0.362 0.048 0.000 —0.156 ~ 0.017 18.404%

a*b is the mediating effect, ¢ is the direct effect, and c is the total effect. a and b are significant, while ¢’ is not significant. Although the 95% interval includes 0 in this case, it is still a complete
mediating effect. The direct effect (—1.605) and the mediating effect (—0.362) account for 81.596 and 18.404% of the total effect (—1.967) respectively.

Additionally, other studies have suggested that elevated levels of
lead (Pb) and cadmium (Cd) in children residing in electronic waste
areas are associated with a slight negative trend in the methylation of
the Rbl and CASP8 promoters, whereas the methylation of the
MeCP2 promoter exhibits a strong positive trend (Xu et al., 2020).

Similarly, global DNA methylation levels in patients with
otosclerosis (OTSC) are reduced by 4.53-fold (females) and 4.83-fold
(males) compared to healthy individuals (Bouzid et al, 2022). In
contrast to prior studies that have not linked mtDNA methylation to
oxidative stress, our data demonstrate that D-loop methylation
correlates positively with SOD and negatively with MDA. This
that
methyltransferase activity or damage the oxidation-vulnerable D-loop

suggests noise-induced ROS may directly disrupt
region, thereby reducing methylation. Collectively, these findings
suggest that noise exposure may perturb methylation patterns,
contributing to its pathogenic effects.

In a study of noise-exposed male workers in China, it was
observed that for every 1 dB (A) increase in annual cumulative noise
exposure (CNE), the relative mtDNA-CN decreased by 0.014 units
(Yang et al., 2024).

In animal models of hearing loss caused by diverse etiological
factors, experimental results demonstrated a significant increase in
mtDNA damage levels alongside reduced mtDNA-CN and diminished
expression of PGC-1a and PGC-1p in aged mice (Oh et al,, 2020).
Epidemiological studies further revealed that among 300 infants with
hearing loss and 200 healthy controls, individuals carrying
mitochondrial gene mutations (A3243G, T5655C, and A14692G)
exhibited lower mtDNA-CN compared to controls (Tang et al., 2019).
The results of the above-mentioned literature reported lower
mtDNA-CN in infants with hearing loss (vs. controls), contrasting
with our finding of elevated mtDNA-CN in NIHL cases. We propose
that this difference reflects a compensatory mechanism: as noise-
induced D-loop hypomethylation disrupts mtDNA regulation, cells
upregulate replication to maintain mitochondrial function—a
hypothesis supported by Coppede and Stoccoro (Coppede, 2024),
who noted inverse correlations between D-loop methylation and
mtDNA-CN. Methylation levels of the mtDNA D-loop region are
positively correlated with SOD and negatively correlated with
MDA. Noise exposure may disrupt the balance between antioxidant
and pro-oxidant enzymes in hair cells, leading to ROS overproduction
and oxidative stress in cochlear cells (Gu et al., 2021).

The mtDNA D-loop region is particularly susceptible to oxidative
damage, which may reduce gene expression levels and decrease
methylation. Mutations in this region can impair mtDNA replication
fidelity, triggering compensatory increases in mtDNA-CN. Studies
suggest that inhibiting DNA methylation via the LRP1-PI3K/AKT

Frontiers in Cellular Neuroscience

pathway reduces oxidative stress-induced mitochondrial apoptosis,
thereby alleviating cisplatin-induced hearing loss (He et al., 2022).

In age-related hearing loss models, the DNA methylation inhibitor
5-azacytidine reduces SOD2 methylation, mitigates oxidative stress,
and inhibits H202-induced cell apoptosis (Li et al., 2020).
Additionally, mtDNA D-loop methylation is dynamically regulated
during the progression of neurodegenerative diseases. In this study,
SOD mediated the full effect of methylation on bilateral high-
frequency hearing thresholds, underscoring its critical role in auditory
regulation. Methylation of the mtDNA D-loop region suppresses
mtDNA replication, with methylation levels inversely correlating with
mtDNA-CN (Coppede and Stoccoro, 2019).

Similar compensatory mechanisms have been observed in
cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) patients, where mitochondrial
dysfunction leads to reduced D-loop methylation and elevated
mtDNA-CN (Zhang et al., 2022).

Among the three study groups, the case group exhibited the
lowest levels of SOD, GPX, and TAS, along with the highest level of
MDA. mtDNA-CN in the case group was the highest, while
methylation levels in the D-loop region were the lowest. Additionally,
the exposed group showed a higher absolute lymphocyte count and a
lower PLR compared to both the control group and the case group.
The absolute lymphocyte count is an important immune indicator in
the human body, while PLR serves as a representative marker of
inflammation levels. These findings suggest that noise exposure in the
control group may have stimulated protective immune responses,
reducing systemic inflammation and enhancing antioxidant capacity.
This could explain the observed decrease in oxidative damage (lower
MDA), reduced mtDNA-CN (due to compensatory regulation), and
increased mtDNA D-loop methylation for the exposed group.
Environmental factors such as noise exposure and oxidative stress are
known to modulate DNA methylation patterns. Our study indicates
that changes in methylation may affect genes involved in cellular
protection. This study has several limitations. Participants were
recruited from a single occupational center in Shenzhen, which may
limit generalizability to other populations. The sample size (1 = 150)
also restricts power for detecting subtle effects or subgroup differences.
Although age and sex were matched, unmeasured confounders—such
as lifestyle factors, genetic background, and co-exposures to other
occupational hazards—may affect oxidative stress and methylation
measures. While SOD mediated the methylation-hearing threshold
relationship, the precise mechanisms (e.g., SOD’s role in regulating
DNA methylation) remain unexplored. Future research should
investigate the following recommendations: implement longitudinal
designs with repeated measures to establish temporal relationships
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between methylation changes and hearing loss; use genetic and
pharmacological interventions (e.g., SOD2 knockout, DNMT
modulators) in experimental animal models to clarify mechanistic
pathways; improve control of confounders through detailed covariate
collection and adjusted analyses; and evaluate the clinical utility of
combined biomarkers (e.g., D-loop methylation, SOD, MDA) for risk
prediction and early intervention.

5 Conclusion

This study investigated the relationships among occupational
noise exposure, oxidative stress, mitochondrial DNA (mtDNA)
D-loop methylation, mtDNA copy number (mtDNA-CN), and
noise-induced hearing loss (NIHL) in a matched cohort of 150
occupational workers. Key findings indicate that NTHL cases exhibit
elevated high-frequency hearing thresholds, reduced antioxidant
SOD and TAS, higher MDA),
hypomethylation, and a biphasic shift in mtDNA-CN—initially

capacity (lower D-loop
decreased in exposed controls but elevated in NIHL cases,
suggesting compensatory mtDNA replication.

Notably, we identified a novel pathway in which SOD mediates
the effect of D-loop methylation on high-frequency hearing
thresholds, integrating oxidative stress with mitochondrial
epigenetic regulation. This provides new mechanistic insight into
NIHL pathogenesis, highlighting the role of mtDNA methylation
not as a mere biomarker but as a functional element in noise-
induced damage.

Frontiers in Cellular Neuroscience

These findings advance the theoretical framework of NIHL by
connecting oxidative stress with mitochondrial epigenetics and
suggest potential clinical applications: D-loop methylation and SOD
activity may serve as biomarkers for early detection and risk
stratification, while mtDNA-CN dynamics could help monitor
mitochondrial adaptation. Restoring SOD activity or modulating
methylation may offer new strategies for preventing NIHL in high-
risk populations.

In summary, this study elucidates a SOD-mediated mtDNA
epigenetic mechanism in NIHL, providing a foundation for
and further
mitochondrial regulation in environmental hearing loss.

biomarker-guided interventions research into
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Glossary

NIHL - Noise-induced hearing loss

mtDNA D-loop region - mitochondrial DNA D-loop region
mtDNA-CN - mitochondrial DNA copy number
PCR - Polymerase Chain Reaction

SOD - Superoxide Dismutase

GPX - Glutathione Peroxidase

TAS - Total Antioxidant Status

MDA - malondialdehyde

KEGG - Kyoto Encyclopedia of Genes and Genomes
ROS - reactive oxygen species

RNS - reactive nitrogen species

AITF - apoptosis-inducing factor

EndoG - endonuclease G

ATP - adenosine triphosphate

OHC:s - outer hair cells

CpG - Cytosine-phosphate-Guanine

nDNA - nuclear DNA

D-loop - displacement loop

mtDNA-CN - mitochondrial DNA copy number

qPCR - Quantitative Polymerase Chain Reaction
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ANOVA - one-way analysis of variance

PLR - platelet-to-lymphocyte ratio

BHFHL - bilateral high-frequency hearing loss
SOD2 - Superoxide dismutase 2

PIBK/MAPK - Phosphoinositide 3-kinase/Mitogen-Activated
Protein Kinase

RG108 - N-Phthalyl-L-tryptophan
SiRNA - small interfering RNA

ABR - auditory brainstem response

Pb - lead

Cd - cadmium

Rb1 - Retinoblastoma 1 protein

CASPS - Caspase-8

MeCP2 - Methyl CpG binding protein 2
OTSC - otosclerosis

CNE - cumulative noise exposure

PGC-1oe - Peroxisome proliferator-activated receptor-gamma
coactivator 1-alpha

PGC-1p - Peroxisome proliferator-activated receptor-gamma
coactivator 1- Beta

LRP1-PI3K/AKT - Low-Density Lipoprotein Receptor-Related
Protein 1 - Phosphoinositide 3-Kinase/Protein Kinase B

CADASIL - subcortical infarcts and leukoencephalopathy
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