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TDP-43-proteinopathy at the
crossroads of tauopathy: on
copathology and current and
prospective biomarkers
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Behavioral Neurology Division, Department of Neurology, Oklahoma University Health Sciences
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Though usually described as isolated models, neurodegenerative diseases

exist in a significant proportion of cases as mixed pathologies, particularly in

older adults. The presence of co-pathologies may influence phenotypes and

progression, and the correct classification in vivo has proven to be challenging,

particularly without proper biomarker panels. Recent breakthroughs in

biomarkers, enabling earlier detection in Alzheimer’s disease and, more recently,

in synuclein-related diseases, are promising as a first step toward the wider

detection of all other abnormal proteins involved in neurodegenerative diseases.

Over the past decade, the growing body of research on TDP-43 pathology

has led to considering TDP-43 as a potential major contributor to the

neurodegenerative process. TDP-43’s normal function is essential for neuronal

survival and the regulation of RNA processing and cellular stress response;

abnormal TDP-43 protein leads to altered cell function and survival. TDP-43

is notably the neuropathological hallmark of amyotrophic lateral sclerosis (ALS)

as well as some form of frontotemporolobar degeneration (FTLD). Tauopathies,

divided in primary or secondary tauopathies cover other forms of FTLD including

Pick disease (PiD), corticobasal degeneration (CBD), progressive supranuclear

palsy (PSP) but also non-FTLD diseases like Alzheimer’s disease (AD) which can

be classified as secondary tauopathy. As the importance of copathology is more

and more recognized, TDP-43 is also frequently observed in conjunction with

other proteinopathies, possibly with a synergistic or additive effect, although the

exact mechanism is still unclear. In Alzheimer’s disease, the limbic predominant

age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) co-

occurrence with Alzheimer’s disease neuropathologic changes (ADNC) lead

to a more rapid course. Although there are currently no approved and

validated biomarkers for its early detection, several promising tools, including

neuroimaging and biofluid biomarkers, are under development, offering hope

for the earlier detection of TDP-43 pathology in vivo. Accurate identification of

the underlying proteinopathies and pathological processes could lead to better

diagnosis and classification, more precise selection of clinical trial candidates,

and ultimately, disease-specific tailored treatments.
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Introduction 

Many neurodegenerative diseases are proteinopathies, 
characterized by the abnormal aggregation and accumulation 
of one or more misfolded proteins, which are thought to play a 
crucial role in their pathophysiology. With the advancement of 
biomarkers and the progress in understanding abnormal brain 
aging over recent years, multiple studies have demonstrated that 
most neurogenerative diseases involve more than one protein in 
complex interactions that contribute to neurodegeneration and 
symptoms (Rahimi and Kovacs, 2014). Since its first description 
in 2006 in frontotemporal lobar degeneration (FTLD) and 
amyotrophic lateral sclerosis (ALS), and over the past decade, the 
transactive response DNA binding protein of 43 kDa (TDP-43) 
has been identified as one of the key proteins associated with 
neurodegenerative diseases, along with amyloid, various strains 
of tau, and alpha-synuclein, among others (Neumann et al., 2006; 
Vanden Broeck et al., 2014). TDP-43 is a highly conserved and 
ubiquitously expressed RNA/DNA binding protein belonging to 
the hnRNP family of heterogeneous nuclear ribonucleoprotein 
(hnRNP) (Shenouda et al., 2022). It is an intranuclear protein 
encoded by the TARDBP gene, located on chromosome 1 
(1p36.22), that can also shuttle to the cytoplasm depending on 
transcriptional needs. TDP-43 plays an important role in the 
functions of many cells, including RNA metabolism, mRNA 
transport, microRNA maturation, and cellular stress response 
(Prasad et al., 2019; de Boer et al., 2020). TDP-43 regulates its own 
expression via a complex mechanism and direct action on the 
TARDBP gene. Altered regulation or misdistribution of the protein 
will lead to altered cell function and survival, but the exact process 
is still poorly understood (Koyama et al., 2016). 

Tau is another key protein whose dysfunction can lead to 
neurodegeneration. It is a microtubule-associated protein that 
stabilizes the neuronal cytoskeleton through this association and 
regulates axonal transport. It also plays a role in synaptic signaling 
and synaptic plasticity, as well as in axonal elongation and 
maturation, and is involved in RNA processing. Both TDP-
43 and tau are RNA-binding proteins (RBP), involved in RNA 
regulation and mediating stress granule formation. Abnormal 
tau, including that caused by gene mutations or aberrant post-
translational modifications— for example, hyperphosphorylation 
or N-glycosylation —is associated with a higher tendency to 
aggregate. These aggregates will form in the cytoplasm and alter 
normal neuronal function, while the absence of tau in the nucleus 
will, in turn, aect DNA and RNA processing and the maintenance 
of their integrity (Wang and Mandelkow, 2016; Koren et al., 2020; 
Samudra et al., 2023). 

Abnormal conformation in TDP-43 can be observed 
in several neurodegenerative diseases, such as FTLD and 
ALS, where hyperphosphorylated and ubiquitinated TDP-
43 accumulate as neuronal cytoplasmic inclusions identified 
during neuropathological examination (Neumann et al., 2007; 
Rutherford et al., 2008; Meneses et al., 2021), but also in Limbic-
predominant Age-related TDP-43 Encephalopathy (LATE), an 
entity often found in the brains of older adults and present on 
average in approximately one-third of autopsies of individuals 
above 85 years old (Wilson et al., 2013; Nelson et al., 2022). 
The latter is defined by neuropathological changes in a limbic 

distribution with misfolded TDP-43 aggregates, referred to as 
LATE neuropathological change (LATE-NC). Misfolded proteins, 
including tau, are thought to be able to spread in a “prion-like” 
manner following the neuronal network, and TDP-43 is no 
exception either (Dugger and Dickson, 2017; Jo et al., 2020). 
TDP-43 pathology can co-occur in other proteinopathies, and 
with increasing interest in its possible role in tauopathies. Recent 
research suggests a potential interaction between both and possible 
synergistic eects; some studies suggest that TDP-43 pathology can 
exacerbate tau aggregation and seeding (Riku et al., 2022; Tomé 
et al., 2023; Tomé et al., 2024). In this review, we will examine 
the interaction between TDP-43 and tau and how this aects 
clinical assessment and diagnostics. We will discuss the ongoing 
development of TDP-43 biomarkers to facilitate a more precise 
identification of underlying pathology in vivo, which in turn will 
help optimize the development of therapeutic interventions. 

TDP-43 pathology 

TDP-43 is a 414 amino acid protein with four domains, 
including a N-terminal domain, two RNA recognition motif 
domains (RRM1 and RRM2), and a C-terminal low-complexity 
domain (LCD) (Jiang et al., 2017). It also contains a nuclear 
localization signal (NLS) and a nuclear export signal (NES) that 
shuttles TDP-43 between the nucleus and the cytoplasm (Winton 
et al., 2008). The N-terminal domain mediates the formation of 
homodimers and oligomers (Chang et al., 2012) that participate 
in TDP-43’s physiological functioning and contains a sequence 
important for its transportation to the nucleus. The N-terminal 
domain may participate in TDP-43’s splicing function and protect it 
from forming cytoplasmic inclusions (Jiang et al., 2017). The RRMs 
are critical for its binding to RNA/DNA and exerting its role on 
mRNA, as well as forming ribonucleotide granules. The C-terminal 
low-complexity domain contains a glycine-rich region and a 
Glutamine/Asparagine (Q/N)-rich domain (Carrasco et al., 2023). 
This LCD prion-like domain (PrLD) mediates protein-protein 
interaction with other splicing factors, including heterogeneous 
nuclear ribonucleoprotein A1 (hnRNPA1), hnRNPA2B1, and fused 
in sarcoma (FUS) and is essential to regulate the splicing of some 
mRNA transcripts (Harrison and Shorter, 2017). PrLD is also 
important to the recruitment of TDP-43 into the formation of 
stress granules which are cytosolic structures that form transiently 
after cells are exposed to an environmental stress (Bentmann 
et al., 2012). C-terminal glycine-rich region regulates protein 
solubility. Most disease-related TDP-43 mutations are found in 
the LCD (Johnson et al., 2008; Corbet et al., 2021). PrLD seems 
to be participating in the aggregation process, and its deletion 
could suppress neurotoxicity (Ash et al., 2010). The LCD domain 
participates in the process of forming TDP-43 lipid droplets, 
known as liquid-liquid phase separation (LLPS), and perturbation 
of this phase formation may lead to pathological aggregation 
and dysfunction. However, this is still largely poorly understood 
(Babinchak et al., 2019; Corbet et al., 2021; Babinchak and Surewicz, 
2023). 

TDP-43 is an essential, highly conserved, and ubiquitously 
expressed RNA-binding protein involved in multiple steps of 
RNA processing, including transcription, translation, splicing, and 
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stabilization and is encoded by the TARDBP gene on chromosome 
1 (Ou et al., 1995; Cohen et al., 2011). It is a nuclear transcription 
factor regulating numerous genes (Buratti and Baralle, 2010). TDP-
43 in physiological context is mostly present in the nucleus of the 
neurons but can also be found in oligomeric state in the cytoplasm 
(Kellett et al., 2025). The processus leading to mislocalization 
remains unclear. Mislocalized TDP-43 forms misfolded insoluble 
aggregates, some hyperphosphorylated and ubiquitinated, called 
“inclusion bodies” in the neuronal cytoplasm, as well as in nuclei 
and cell processes (neurites) of neurons and in oligodendroglia and 
astrocytes (de Boer et al., 2020). In 2006, TDP-43 was discovered as 
the major protein present in the ubiquitinated inclusions found in 
ALS (Lou Gehrig’s disease) (Arai et al., 2006) and has since lead 
to the discovery of its association with many neurodegenerative 
diseases and trial to understand it’s place in the degeneration 
cascade. 

TDP-43 proteinopathy refers to a broad group of 
neurodegenerative processes in which one of the primary types of 
misfolded protein accumulation leading to typical inclusions found 
on neuropathological examination is TDP-43 (Liao et al., 2022). 
It can be divided into primary TDP-43 proteinopathies, referring 
to the disease driven primarily by TDP-43, which include FTLD-
TDP, FTLD-ALS, for which TDP-43 is a pathological hallmark 
(Neumann et al., 2006; Kabashi et al., 2008; Sreedharan et al., 2008), 
and the Limbic-predominant Age-related TDP-43 Encephalopathy 
(LATE), which will be reviewed further later in this review. 
Perry syndrome is another rare form of TDP-43 proteinopathy, 
highlighting the broad spectrum of disorders associated with this 
proteinopathy (Wider et al., 2009; Mishima et al., 2018), and is 
an autosomal dominant neurodegenerative disease caused by 
a mutation in the dynactin 1 (DCTN1) gene on chromosome 
2p13.1 that results in TDP-43 pathology (Ueda et al., 2024). 
It is clinically defined by neuropsychiatric features, including 
apathy that can be the initial symptom, severe depression, a 
symmetrical Parkinsonism usually poorly or transiently responsive 
to L-DOPA, significant weight loss, and central hypoventilation 
with respiratory failure being the most frequent cause of death 
(Perry et al., 1975; Dulski et al., 2021; Tsuboi et al., 2021). Mutation 
or downregulation of dynactin 1 has also been associated with 
sporadic or familial ALS (Laird et al., 2008). Perturbation of the 
microtubule-associated motor protein complex dynactin leads 
to dysfunction and dysregulation in stress granule disassembly 
in stressed cells, resulting in TDP-43 cytoplasmic accumulation 
(Ueda et al., 2024). Interestingly, tau and dynactin interact with 
each other, and the attachment of the dynactin complex to the 
microtubule is strengthened by tau, showing another connection 
between TDP-43 pathways and tau pathways (Magnani et al., 2007; 
Ueda et al., 2024). 

Secondary TDP-43 proteinopathies refer to neurodegenerative 
diseases or non-neurodegenerative diseases in which TDP-
43 plays a role and can be found associated with other 
proteins or pathological processes. This broader group include 
neurodegenerative diseases including Alzheimer’s disease, 
progressive supranuclear palsy (PSP), corticobasal degeneration 
(CBD), Parkinson’s disease (PD) (Chanson et al., 2010), multiple 
system atrophy (MSA) (Koga et al., 2018), Lewy body disease 
(Uchino et al., 2015), Huntington’s disease (HD) (Davidson et al., 
2009), Primary age related tauopathy (PART) but also non-
neurodegenerative disease like chronic traumatic encephalopathy 

(CTE) (McKee et al., 2010; McKee et al., 2015; Heyburn et al., 
2019a; Heyburn et al., 2019b), brain tumors (Lin et al., 2017), or 
post-infectious or post-toxin exposure like in Parkinson-Guam 
dementia syndrome (Hasegawa et al., 2007; Kawakami et al., 2019; 
Ke et al., 2023; Rahic et al., 2023). 

Cellular stress, including that related to toxin exposure, 
dysimmunity, and inflammation, may lead to TDP-43 dysfunctions 
and aggregation (Thammisetty et al., 2018; Bright et al., 2021; 
Masrori et al., 2022; Garamszegi et al., 2024). Genetic mutations 
beyond those in the TARDBP gene have also been linked to TDP-
43 pathology, particularly C9Orf72 and GNR, and can serve as a 
common ground for some of these processes (Pickford et al., 2011; 
O’Rourke et al., 2016; Pottier et al., 2019; Kahriman et al., 2023). 
Both C9Orf72 and GNR genes are also associated with tauopathies. 

Frontotemporal lobar degeneration (FTLD) refers to a 
clinicopathologic and genetically heterogeneous group of 
pathologies manifested by several and sometimes overlapping 
clinical syndromes that span from cognitive and behavioral 
symptoms like in Pick’s disease and behavioral variant FTD 
(bvFTD), to more language predominant symptoms in semantic 
primary progressive aphasia (svPPA) and nonfluent variant 
primary progressive aphasia (nfPPA) to include motor and 
movement symptoms in corticobasal degeneration (CBD), 
progressive supranuclear palsy (PSP) and amyotrophic lateral 
sclerosis (ALS) (Forman et al., 2007; Rabinovici et al., 2010; Younes 
and Miller, 2020; Neumann et al., 2021). At the neuropathological 
level, FTLD-TDP represents the most frequent underlying 
pathology in 45%–50% of cases, followed closely by FTLD-tau 
(40%–45%), then FTLD-FUS (5%–10%), and finally by other 
pathologies (Mackenzie et al., 2010). FTLD-TDP underlying 
pathology is widespread in the neocortex, hippocampus, and 
subcortical areas (Neumann et al., 2021). FTLD-TDP is itself 
divided into five major histological subtypes, categorized by the 
type of inclusions (designated as A to E), morphology, anatomical 
distribution, and cellular location. FTLD-tau is itself sub-classified 
according to the underlying strain of tau, which includes 3-repeat 
(3R) tau inclusion like found in Pick’s disease (PiD), 4-repeat 
(4R) tau pathologies-[CBD, PSP, aging-related tau astrogliopathy 
(ARTAG), Argyrophilic grain disease (AGD), and globular glial 
tauopathy (GGT)- or with both three and 4-repeat tau forms 
(3R/4R) as in PART and tangle only dementia (ToD) (Mackenzie 
et al., 2011; Neumann et al., 2021; Nilaver and Urbanski, 2023). 

ALS is the most common adult-onset motoneuron disease 
characterized by an upper and lower motoneuron degeneration, 
leading to rapidly progressive paresis, which can lead to death 
in 2–4 years on average (Hobson and McDermott, 2016). Some 
behavioral and cognitive changes are frequent in as many as 
50% of patients, while 5%–25% may meet criteria for clinical 
frontotemporal dementia (FTD). Up to 35% FTLD pathology 
is found in ALS autopsy series (Cividini et al., 2022). Upon 
neuropathological examination at autopsy, the pathognomonic 
finding of abnormal inclusion bodies is found in the cytoplasm 
of motor neurons. These inclusions are made up in more than 
90% of cases of mislocalized and aggregated TDP-43 (Suk and 
Rousseaux, 2020). FTD-ALS cognitive symptoms can be similar to 
the behavioral variant FTD (BvFTD), while it can also present with 
a language variant, semantic variant in one third of FTD-ALS (Tan 
et al., 2019). Several other processes can be associated with TDP-43, 
including Hippocampal sclerosis (HS) of aging (Nelson et al., 2013; 
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Nag et al., 2015; Nho et al., 2016; Cykowski et al., 2017; Nelson et al., 
2019; Nelson et al., 2024). 

All these neurodegenerative diseases are associated with the 
abnormal neuronal and glial accumulation of misfolded proteins; 
however, it remains unclear whether the pathological process 
results from a gain-of-function, loss-of-function, or both (Gendron 
and Petrucelli, 2009; Polymenidou et al., 2011; Wang and 
Mandelkow, 2016; de Boer et al., 2020; Ezzat et al., 2023). In 
the case of TDP-43, the abnormal traÿcking of endogenous 
TDP-43 between the nucleus and the cytoplasm appears to lead 
to the formation of aggregates, including neuronal cytoplasmic 
inclusions (NCIs), neuronal intranuclear inclusions (NIIs), and/or 
dystrophic neurites (DNs), which collectively represent TDP-
43 pathology (McAleese et al., 2017). As TDP-43 proteinopathy 
can be associated with many other neurodegenerative diseases, 
particularly tauopathies, considerable interest has grown in recent 
years to understand its role better, develop biomarkers to help 
recognize it outside of neuropathology/autopsy contexts, and 
ultimately provide future therapeutic approaches and clinical trials 
(Latimer and Liachko, 2021; Riku et al., 2022; VandeVrede et al., 
2023). 

TDP-43 in mixte pathology with tau 

Combined pathologies are increasingly recognized as an 
important field of investigation, as longitudinal studies have 
reported the co-occurrence of TDP-43 and tau. It becomes crucial 
to understand the various interactions at play in order to develop 
targeted therapies (Latimer and Liachko, 2021). TDP-43 has been 
shown to influence tau expression and protein levels, worsening 
tau aggregation and propagation (Gu et al., 2017; Riku et al., 2022; 
Tomé et al., 2023). However, as mentioned above, there is still 
considerable uncertainty regarding whether this is due to a loss of 
function, a gain of function, or both (Nelson et al., 2019; Wisse et al., 
2025). 

In the case of the primary TDP-43 proteinopathy LATE, LATE-
NC can be found in one third of older adults above 85 years old 
and present with an amnestic syndrome like Alzheimer’s disease 
that is clinically indistinguishable from AD. It can cohabitate with 
other neurodegenerative diseases, and is very frequently found 
concomitantly with ADNC, with as many as up to 50% of cases 
in copathology in older adults (Nelson et al., 2019; Katsumata 
et al., 2022; Nelson et al., 2022). The presence of both pathologies, 
ADNC and LATE-NC, has been shown to worsen cognitive decline 
(Montine et al., 2022). When isolated, its course is usually slower, 
more limited to episodic memory, with some reports of behavioral 
manifestations that could be part of its picture (Brenowitz et al., 
2014; Nag et al., 2018; Nelson et al., 2019; Liu et al., 2020; Ono 
et al., 2025). Neuropathology staging based on the anatomical 
progression of LATE-NC pathology was proposed by Nelson et al. 
(2019). Stage 1 involves TDP-43 pathology distribution limited to 
the amygdala, stage 2 involves the hippocampus, and stage 3 aects 
the amygdala, hippocampus, and the middle frontal gyrus (Nelson 
et al., 2019; Nelson et al., 2022). This is the most commonly used 
staging system, though a more detailed 5-stage system has been 
utilized for research purposes in some studies like the Religious 
Orders Study and Memory and Aging project (ROSMAP) (Nag 

and Schneider, 2023). More recently, Wolk et al. (2025) proposed 
criteria for the clinical diagnosis of LATE, distinguishing LATE-
NC as a primary process not or minimally associated with ADNC 
and classifying it as possible or probable LATE, or when LATE-
NC is found in a mixed pathology with AD. They defined core 
clinical criteria, including a primary amnestic syndrome with 
temporal-limbic memory loss and most other cognitive domains 
mostly spared. However, use of biomarkers remain critical and 
are required to help better distinguish both process, with the use 
of the MRI brain showing disproportional hippocampal atrophy 
as a marker of LATE-NC, as well as the presence or absence of 
AD biomarkers to classify the underlying pathology better and 
assess for AD; in case of positive AD biomarkers, additional 
testing is required using PET scan (tau PET and FDG-PET scan) 
(Wolk et al., 2025). The type of interaction between these two 
proteinopathies remains a subject of debate and research. Some 
hypotheses suggest a synergistic or additive eect, while others lean 
more toward a role in the timing of neurodegeneration progression. 
A concurrent progression between TDP-43 and AD stages, and 
particularly between tau and higher Braak stages, supports some 
interaction or synergy between the two. Moreover, the association 
extends beyond a parallel progression: the absence of TDP-43, 
even for the same burden of AD pathology, correlates with normal 
cognition, as noted in Josephs et al.’s (2014) study. Colocalization 
of both pathologies in the same neurons could support a common 
pathophysiological process (Montalbano et al., 2020). Tomé et al. 
(2021) also demonstrated that in AD, LATE-NC pathology was 
associated with an increased presence of NFT and phosphorylated 
tau (p-tau), as well as TDP-43, which increased p-tau aggregation 
and seeding (Nelson et al., 2022). APOE E4 is associated with both 
an increased risk for AD and LATE-NC, suggesting some common 
pathophysiological pathways (de Flores et al., 2020; Dugan et al., 
2021). TDP-43 pathology can also localize to the striatonigral 
system and present with parkinsonism and/or PSP-like syndrome 
(Murakami, 1999; Ono et al., 2025). In AD, it can be misinterpreted 
clinically for presence of Lewy Body copathology (Ono et al., 
2025). In Ono et al.’s (2025) study, TDP-43 pathology correlated 
with reduced pigmented neuron density. As they used an antibody 
recognizing earlier stages of tau (pretangle and tangle), they found 
an association between tau and non-pigmented neuron density. 
Early tau pathology has been reported in the elderly above 90 years 
with Parkinsonism, even in the absence of AD or Lewy body 
pathology, which reinforces the importance of using markers for 
early tau to ensure that we capture the full spectrum of tau-related 
disease and co-pathology (Chu et al., 2024). 

HS of aging (HS-aging) is frequently found in older adults 
as well, is associated with cognitive decline and dementia, and 
can present with an amnestic syndrome mimicking AD. It is 
defined by its neuropathological criteria with neuronal loss and 
gliosis in the hippocampi, out of proportion for an AD-only 
pathology. It is also frequently associated with ADNC, LATE-NC, 
and FTLD (Anderson et al., 2025). HS-aging is very frequently 
associated with TDP-43 pathology, leading to worse cognitive 
functioning and decline when they cohabitate (Nelson et al., 2013; 
Nag et al., 2015). Its diagnosis is mostly postmortem, with the 
typical neuropathological findings of neuronal loss and gliosis 
aecting principally the CA1 hippocampal subfield and subiculum. 
The cause of this selective vulnerability remains unclear, ranging 
from hypoxia, atherosclerotic disease, and being in a watershed 
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area, to inflammatory, hyperexcitability, and excitotoxicity (Cole, 
2007; Hatanpaa et al., 2014; Walker, 2015). TDP-43 presence was 
found to be associated with an increased likelihood of HS of aging, 
and inflammation may contribute (Nag et al., 2015). 

In FTLD, the concomitant presence of TDP-43 and tau was 
previously considered rare, mainly due to an independent process 
or contextual circumstances, such as genetics or age (Robinson 
et al., 2014). However, mixed pathology is now being reported more 
frequently. Some limitations in sampling or the type of markers 
used may have prevented the identification of TDP-43 (Amador-
Ortiz et al., 2007; Robinson et al., 2014; Kim et al., 2018; Koga 
et al., 2022). The choice of markers targeting the advanced, mature 
stage of tau in neurofibrillary tangles, such as the ghost tangle, may 
miss earlier and less mature stages of tau (Ono et al., 2025). In 
a neuropathology series of 201 autopsy-confirmed FTLD-TDP by 
Koga et al. (2022), 42% had concomitant ARTAG, 36% had PART, 
22% had concurrent AGD, and finally 1% had pathology CBD. 
FTLD-TDP type A seems particularly at risk of being combined 
with tau pathology, and as much as in 50% of cases (Gefen 
et al., 2018). Interestingly, this group appeared to have a longer 
duration of disease and a longer lifespan, challenging the classic 
understanding that copathology accelerates the disease process and 
severity of symptoms. For FTLD driven by tau, the 4R tauopathy 
CBD appears to be the one showing the most frequent participation 
of TDP-43 in ∼16% of neuropathological cases in some series 
(Uryu et al., 2008; Uryu et al., 2008; Kim et al., 2018). In the 
Uryu et al. (2008) case series, which included 39 CBD pathological 
cases, 15.4% of the CBD cases exhibited some TDP-43 pathology, 
with 2 cases showing limited deposition in the dentate granule 
cells of the hippocampus, as well as in the entorhinal cortex. Four 
other cases had more diuse aggregates observed in the temporal 
and frontal cortex, as well as the basal ganglia. There were no 
significant dierences in age at death or disease duration between 
the TDP-43-positive and TDP-43-negative CBD groups in this 
specific study, although some other studies suggested that co-
pathology could aect survival and disease duration (Uryu et al., 
2008; Yamashita et al., 2014). TDP-43 and tau were sometimes 
colocalized, particularly in the frontal gray matter (Uryu et al., 
2008). The distribution of TDP-43 pathology in the case by Kouri 
et al. (2013) was more unusual, diering from other previously 
reported cases of co-pathology in CBD, and was associated with 
both TDP-43 and tau pathology in the olivopontocerebellar system, 
suggesting a role in phenotypic presentation (Kouri et al., 2013). 
In FTLD-PSP, reports of the contribution of TDP-43 are more 
limited. Although initially thought to be more dependent on other 
pathologies like HS and AD, as cases with co-pathology were older 
in age and had higher Braak Neurofibrillary and Thal phases, some 
regions of vulnerability to PSP could also be aected by TDP-43. 
FTLD-PSP with concomitant tau and TDP-43 pathologies tend 
to have higher regional tau burden compared to TDP-43-negative 
ones, and a significant correlation between tau and TDP-43 burden 
was noted in the occipitotemporal gyrus, suggesting a potential 
interactive eect in this region (Yokota et al., 2010). TDP-43 and 
tau were frequently colocalized in the limbic system, particularly 
in the amygdala, where colocalization in the same neurons was 
observed (Kim et al., 2018). However, colocalization in the same 
neurons was not observed in some other regions, such as the 
hippocampal dentate gyrus, suggesting possible regional dierences 
in pathophysiological mechanisms, as well as both independent and 

overlapping pathways (Yokota et al., 2010; Koga et al., 2017; Storey 
et al., 2017). Association could also be genetically predetermined, as 
it has been shown that PSP with TDP-43 had decreased expression 
of the TMEM106b homozygous minor allele gene, thought to be 
protective of TDP-43, compared to PSP without TDP-43 (Koga 
et al., 2017). 

PART, previously called “Senile dementia of neurofibrillary 
type” or “tangle-predominant dementia,” is very frequently found 
in older brains, can mimic clinically amnestic AD but usually 
with milder symptoms that can still progress to dementia, and the 
progression is usually related to the tauopathic burden (Noda et al., 
2006; Jellinger and Attems, 2007; Crary et al., 2014). Histologically, 
PART presents the same neurofibrillary tangles (NFT) as in AD, but 
without the presence of amyloid (Aβ) protein ("NFT+/Aβ-" brains) 
and with no involvement of the neocortex. The hippocampal 
tau burden also diers from that of classical AD, with the CA2 
subsection being more involved than the CA1 subsection (Besser 
et al., 2017; Hickman et al., 2020). TDP-43 co-pathology in PART 
is usually less severe than in AD and may not significantly aect 
the clinical presentation (Josephs et al., 2017). Zhang et al. (2019) 
developed a staging system based on the TDP-43 dissemination 
sequence in PART, which is relatively similar to the one seen in 
AD, though more limited to the limbic system. Stage I has TDP-
43 limited to the amygdala, spreading to the hippocampus in stage 
II, the neocortex in stage III, and finally to the putamen, pallidum, 
insular cortex, and the dentate gyrus of the hippocampus in stage 
IV (Zhang et al., 2019; Nag and Schneider, 2023). 

We would like to include to this review the currently rarer 
but intriguing entities represented by the Guam Parkinsonism-
Dementia Complex (G-PDC) and the amyotrophic lateral 
sclerosis-Parkinsonism-Dementia Complex (ALS-PDC), which 
may represent the same neurodegenerative disease with varying 
phenotypes. This now rare neurodegenerative disease endemic in 
Guam among the Chamorro people is characterized clinically by 
either primarily a Parkinsonian syndrome with dementia in G-PDC 
or a primarily motor presentation similar to classic sporadic ALS, 
sometimes associated with features of G-PDC either in the same 
individual or in the same family (Oyanagi, 2005; Verheijen et al., 
2018). It was found to be secondary to exposure to a toxin from 
the seeds of cycad plants, which are used as food and in traditional 
medicine. The toxin may also precipitate genetic mutations, 
possibly via exposure during the prenatal or perinatal period 
(Spencer, 2022). It is characterized neuropathologically by both 
TDP-43 and tau copathology, and both pathologies are thought to 
contribute to the mechanisms of neurodegeneration (Geser et al., 
2008). Other aggregates have been described associated with them, 
including Amyloid-β (Aβ) protein and alpha-synuclein (Condello 
et al., 2023). An inflammatory process resulting from exposure to 
the neurotoxin could be the primary basis for a common pathway 
leading to both TDP-43 and tau dysfunction. Several studies 
demonstrated a relationship between TDP-43 and immune-
inflammatory pathways (Bright et al., 2021). Other studies have 
found a link between immunity and inflammation in the initiation 
of tau pathology and its progression (Johnson and Lukens, 
2025). Cytoplasmic TDP-43 inclusions may be associated with 
defective RNA processing and other cellular disruptions, including 
mitochondrial dysfunction, nucleocytoplasmic transport, impaired 
endocytosis, and protein dysfunction (Verheijen et al., 2018). 
Glial cells can contain abnormal aggregates and may play a role 
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in the pathophysiological process, as well as in the extracellular 
tau deposits, which increase microglial reactivity, a phenomenon 
also observed in other neurodegenerative diseases (Schwab et al., 
1996; McGeer et al., 1997; Verheijen et al., 2018). The innate 
immune system and inflammation represent potential therapeutic 
targets; however, further research is needed to understand their 
relationship with neurodegenerative processes better (Bright et al., 
2021). Similarly, TDP-43 can coexist with tau in Anti-IgLON5 
disease, a neuroimmune disorder characterized by secondary 
tauopathy and neurodegeneration. TDP-43 and tau can either 
coexist or be found in distinct locations (Gelpi et al., 2016; 
Cagnin et al., 2017). One hypothesis is that the proinflammatory 
environment in neurons aected by the anti-IgLON5 antibody 
facilitates protein misfolding and neurodegeneration, which may 
lead to the accumulation of tau and secondary TDP-43; however, 
a synergy between both proteins is also a possibility (Gelpi et al., 
2016). Traumatic brain injury (TBI) is associated with local 
inflammation in the area of the trauma, which can disseminate 
to other brain areas according to recent studies (Shi et al., 2019). 
Chronic Traumatic Encephalopathy (CTE) is a mixed 3R/4R 
tauopathy that mainly happens in the context of repeated head 
impacts (Cherry et al., 2020). Abnormal TDP-43 pathology is often 
observed on neuropathology and appears to progress with the 
stages of CTE and as tau pathology becomes more widespread, 
which suggests an association between the two processes (McKee 
et al., 2015; McKee et al., 2016; Heyburn et al., 2019b; Nicks et al., 
2023; van Amerongen et al., 2023). A common denominator could 
potentially be a primary inflammation pathway leading to TDP-43 
and tau dysregulation (Bright et al., 2021). 

The amygdala: a possible pivotal role in 
neurodegeneration 

The frequent and early involvement of the amygdala in diverse 
proteinopathies raises the possibility of pathological synergies 
starting in the amygdala (Gonzalez-Rodriguez et al., 2023; Villar-
Conde et al., 2023). The amygdala is a crucial brain structure in 
the anterior medial temporal lobe involved not only in emotions 
and behaviors, but also in memory and cognition (Avecillas-
Chasin et al., 2023). A recent review from Stouer et al. (2024) 
emphasizes the importance of the amygdala as an early involvement 
in AD, supported by early neuropsychiatric symptoms in some 
patients. The amygdala was also one of the sites with the earliest 
positivity on tau-PET in the Insel et al. (2020) study on AD, 
sometimes as early as 10 years prior to AD diagnosis. MRI 
brain and volumetric analysis studies have shown a relationship 
between areas, including amygdala atrophy, and neuropsychiatric 
symptoms in early disease, or as a predictor of AD diagnosis 
and dementia (Liu et al., 2010; Trzepacz et al., 2013). Amygdala 
subnuclei are also involved in FTLD to a diverse degree, depending 
on the underlying pathology (Bocchetta et al., 2019). The most 
aected are those with FTLD due to MAPT mutation carriers and in 
FTLD-TDP-43 type C (Bocchetta et al., 2021). It is also recognized 
in FTLD-ALS (Kawashima et al., 2001; Takeda et al., 2017). A recent 
study in ALS showed that intra-neuronal accumulation of TDP-
43 in the amygdala correlated with behavioral changes in sporadic 
ALS (Rifai et al., 2024). Connectomics identifies the amygdala as a 

key hub in most neurodegenerative diseases. The propagation, also 
known as seeding of proteinopathies, typically spreads through a 
connected network, and the amygdala is a highly interconnected 
center, including the hippocampus and the prefrontal cortex 
(Ubeda-Bañon et al., 2020). Abnormal connectivity in the amygdala 
circuitry is happening early in AD and is identified as a possible 
marker of early disease (Kicik et al., 2025). Amygdala changes 
were also reported in cerebral small vessel disease (CSVD), 
with associated disrupted connectivity (Cheng et al., 2024). This 
association between vascular impairment, endothelial dysfunction 
and disruption of the amygdala-hippocampal circuitry may play 
a key role in neurodegeneration, as vascular disease is very 
frequently found on autopsy in neurodegenerative diseases (Cheng 
et al., 2024). Impaired perfusion, as well as local inflammation 
and metabolic dysfunction, could potentially drive or at least 
participate in triggering the neurodegenerative process in this 
location. Imaging studies looking at iron deposits as a marker 
of early neuronal damage found an association between iron 
deposition in the amygdala and vascular cognitive impairment 
(Cheng et al., 2024). The relationship could be bi-directional, and a 
recent study by Arribas et al. (2024) demonstrated the importance 
of endothelial TDP-43 for vascular integrity, highlighting that 
abnormal TDP-43 can also potentially lead to disruption of the 
blood-brain barrier and contribute to neuroinflammation. Its close 
anatomical proximity to the ependymal lining as well as the pia 
mater, particularly the ventromedial part, could play a role, as 
suggested by the presence of subependymal and subpial TDP-43 
or tau. Atypical star-shaped TDP-43 inclusions have been recently 
identified, primarily in the subpial medial region of the amygdala, 
and they colocalize with tau in superagers (Geser et al., 2010; 
Kovacs et al., 2016; Nelson et al., 2018; Carlos et al., 2023a). It is 
hypothesized that this anatomical location close to the vasculature 
and CSF could increase exposure to extravasated plasma protein 
due to defects in blood-brain-barrier permeability, triggering 
pathways associated with neurodegeneration and proteinopathies. 
More research is needed to understand the mechanisms and timing 
better (Schultz et al., 2004; Lace et al., 2012). Appropriate sampling, 
including the amygdala, during neuropathology examinations, as 
well as the use of markers that allow the detection of tau at dierent 
stages of maturity (such as CP13 or PHF-1), and assessing for 
atypical TDP-43 inclusions, appears important to better assess the 
whole spectrum of co-pathology in the brain (Carlos et al., 2023a; 
Chu et al., 2024; Ono et al., 2025). 

Toward biomarkers for TDP-43 

The important role of TDP-43 in copathology and its potential 
synergistic eect on neurodegeneration, as reviewed above, raises 
the urgent need for biomarkers to facilitate more precise clinical 
diagnosis, which will help guide therapeutic approaches tailored 
to each underlying pathology and mechanism. Failing to identify 
copathology appropriately may lead to inappropriately interpreting 
clinical trial results, resulting in delays and setbacks (Figure 1). 

MRI brain imaging 
Neuroimaging is one of the most promising tools currently 

available to help identify TDP-43, either indirectly or directly. MRI 
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FIGURE 1 

(A) TDP-43 protein contain a N-terminal domain, a nuclear localization sequence (NLS), two RNA recognition motifs (RRM1 and RRM2), a nuclear 
export sequence (NES), then the C-terminal domain/low complexity domain (LCD)/ prion-like domain with a glycine-rich domain and containing 
the Glutamine/Asparagine (Q/N) domain. (B) Potential target for biomarkers development, with most data coming from the neuroimaging field at 
that time, but with some promising development as well in biofluids and tissue-based markers. 

can be used to assess neurodegeneration (N), and although it is not 
necessarily an early marker or a direct one, it still plays a key role 
in identifying atrophy patterns and neurodegeneration progression, 
helping with the diagnosis and staging process, and as a cue to 
assess for co-pathology (Jack et al., 2024; Youssef et al., 2025). Due 
to the lack of readily available in vivo molecular biomarkers for 
TDP-43 at this time, most data come from clinical-radiological 
and histological correlations, as cortical atrophy patterns seen on 
MRI correlate with progression and staging of TDP-43 pathology 
(Bejanin et al., 2019; Nelson et al., 2019). In all tauopathies, 
a greater volume loss is seen in the presence of co-pathology. 
In AD, the mesial temporal lobe (MTL) is usually the first 
aected. The presence of TDP-43 and HS coexisting with AD 
corresponds to additional disproportionate hippocampal volume 
loss on MRI brain compared to AD alone, which is a clue 
pointing toward multiple underlying proteinopathies (de Flores 
et al., 2020; Yu et al., 2020; Lyu et al., 2024; Wisse et al., 2025). 
Some previous longitudinal volumetric analyses have failed to 
correlate MTL volume with either amyloid or tau pathology, 
suggesting the presence of an additional factor. TDP-43 has been 
suggested here as a potential key actor in the potentiation of 
observed neurodegeneration. TDP-43 is thought to be associated 
with a greater degree of volume loss in AD, particularly when 
localized in the hippocampus, more so than when localized in the 
amygdala alone, and this independently of the presence of HS. The 
discrepancies between the amount of tau (for example, evaluated 
with tau-PET scan) compared to the degree of neurodegeneration 
are called the T-N mismatch (Carlos et al., 2023b), which correlated 
with non-AD pathology and particularly TDP-43 copathology as 
proven on neuropathology studies after autopsy (Josephs et al., 
2017; Woodworth et al., 2022; Lyu et al., 2024). Tau was shown 
to correlate with a faster rate of atrophy early in the disease stage 
of AD, but had a lesser eect in the later stages of the disease 

(Josephs et al., 2017). Woodworth et al. (2022) also found a strong 
association between HS and hippocampal volume. Hippocampal 
subfield studies demonstrated a unique eect of TDP-43 with 
smaller CA1 and subiculum as well as inward deformation in 
bilateral CA1 and subiculum, and the most anterior portion of 
the left hippocampus. This deformation correlated with cognitive 
scores (Vos de Wael et al., 2018; Heywood et al., 2022). Pattern 
of MTL atrophy may dierentiate AD with versus without TDP-
43 pathology. de Flores et al. (2020) found a strong association 
between the anterior region of the MTL and TDP-43 (particularly 
in the entorhinal cortex and anterior hippocampus volumes). At the 
same time, tau was more associated with the posterior part of the 
hippocampus, and suggested using the ratio between the anterior 
hippocampus and the parahippocampal cortex that would serve as 
an early marker of TDP 43 beyond amygdala-only pathology in AD 
copathology (de Flores et al., 2020). 

MRI brain scans enable volumetric analysis of other areas of 
interest, as well as the assessment of other possible confounders and 
co-pathologies. In one longitudinal MRI study, AD neuropathology 
was more closely associated with changes in ventricular volume 
than with hippocampal volumes, with CAA and vascular co-
pathology also being potential contributors (Erten-Lyons et al., 
2013). A more recent study with 3D-T1 3T-MRI showed that 
excessive amygdala volume loss could serve as a clinical biomarker 
for underlying TDP-43/LATE copathology (Wesseling et al., 2025). 
In Kim et al. (2018)’s study comparing the clinical and pathological 
presentations between the dierent subtypes of FTLD-TDP and 
FTLD-tau, the MRI brain showed that in FTLD-TDP as a 
primary disease with additional concurrent tau, there was more 
widespread atrophy compared to FTLD-TDP alone. Additionally, 
for primary FTLD-tau (CBD) with concomitant TDP-43, there was 
significant left asymmetrical atrophy, particularly in frontoparietal, 
hippocampal, striatum, and amygdala, when pure FTLD-tau (CBD) 
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was associated with bilateral frontoparietal and basal ganglia 
atrophy, sparing the MTL (Kim et al., 2018; Buciuc et al., 2020; 
de Boer et al., 2020). More specific techniques, such as diusion 
tensor imaging (DTI), are being studied. White matter (WM) 
changes are an important feature associated with the process 
of neurodegeneration and axonal loss. Structural MRI, as well 
as DTI, may allow for the identification of patterns that help 
distinguish them from what is usually attributed to small vessel 
disease. In ALS, Cheng et al. (2020) demonstrated macro and 
microstructural WM changes with alteration of the corticospinal 
tract and corpus callosum with increased mean diusivity and 
decreased fractional anisotropy (FA), as well as decreased fiber 
density and bundle cross-section on Fixel-based analysis (FBA). 
A study by Maj et al. (2022) also suggested that using FA at the 
brainstem level and particularly in the pons could be a valuable 
biomarker for distinguishing ALS patients from healthy controls. 
Cortical tau load in AD has shown to be associated with worse WM 
burden (Brun and Englund, 1986; McAleese et al., 2015; Kantarci 
et al., 2017). Regional dierences have been identified in AD, with 
temporal and parietal WM changes reported as correlating with 
the cortical axonal loss in AD, while frontal changes are a result 
of both small vessel disease and the AD degenerative process (Brun 
and Englund, 1986; McAleese et al., 2015). Patterns of atrophy have 
also been characterized in CBD and particularly in the premotor 
and supplemental areas (SMA) (Constantinides et al., 2019; Di 
Stasio et al., 2019). In PSP, the gray matter of the midbrain is 
involved, leading to the description of the “hummingbird sign” 
and “Mickey-mouse sign”; however, other regions can also be 
aected, including the superior cerebellar peduncles (SCP), the 
thalamus, and the frontal and motor areas (Albrecht et al., 2019; 
Lupascu et al., 2023). WM changes are also a key feature in 
PSP and CBD. FBA studies showed a specific pattern of bundle 
atrophy following axonal degeneration by quantifying fiber density 
and fiber bundle cross-section in 4R tauopathy and have been 
suggested as a better tool than DTI to assess in vivo, disease-
specific, WM changes correlating with neuropathology findings 
associated with 4R tau spread and clinical symptoms, which 
could help monitor for disease progression. In PSP, involvement 
of the corpus callosum, as well as descending tracts from the 
primary motor cortex to the corona radiata, the internal capsule, 
thalamic radiation, and midbrain, is observed (Nguyen et al., 2021; 
Sakamoto et al., 2021; Uchida et al., 2023). FBA has also been 
used more recently in semantic variant dementia and is able to 
show a more comprehensive and specific map of WM changes 
than DTI, revealing early disruption in the anterior commissure, 
projections to the parahippocampal gyrus and amygdala, as well 
as parietal connection pathways in semantic dementia (Mandelli 
et al., 2025). FBA appears also able to dierentiate changes due 
to presumed LATE from changes due to amnestic AD, and with 
alterations in the callosal fibers connecting the middle frontal 
gyri and of the cerebello-thalamo-cortical tracts in LATE, while 
involving more the callosal fibers connecting the superior frontal 
gyrus as well as temporo-limbic tracts in amnestic AD (Ahmadi 
et al., 2024; Lebrun et al., 2024; Vanderlinden et al., 2025). More 
studies will likely be conducted to expand our knowledge and 
the use of FBA in the future, enabling better assessment of TDP-
43 copathology, not only in LATE and AD, but also in other 
tauopathies (Table 1). 

Positron emission tomography scan (PET-scan) 
imaging 

FDG-PET is a non-specific neuroimaging test used to assess 
patterns of glucose metabolism in the brain. Beyond initial 
visual assessment, a quantitative analysis using software enables a 
comparison of the subject to the brain atlas of normal controls, 
utilizing a z-score. This approach ultimately allows for assessing 
whether the area of hypometabolism matches a specific pattern 
described in a particular pathology, thereby increasing confidence 
in diagnosis and accuracy (Na et al., 2024). However, this is 
not a specific test and should always be integrated into the 
broader clinical and imaging context. A hypometabolism pattern 
aecting the posterior parietal and temporal lobes, including 
the posterior cingulate, is suggestive of AD pathology (Jagust 
et al., 2007). Stage et al. (2020) showed that, however, in 
late-onset non-AD dementia, both pronounced atrophy and 
hypometabolism predominate for the bilateral temporal and 
prefrontal cortices, extending to the parietal lobes in more 
advanced disease, which was concordant with the pattern seen 
in LATE, or TDP-43-HS. The lack of tau binding in the medial 
temporal lobes seemed to exclude PART (Stage et al., 2020). 
A temporolimbic FDG-PET pattern, thought to correlate with 
LATE-NC staging, was also reported in other studies, including the 
one by Grothe et al. (2023). A pattern of hypometabolism in the 
MTL and the orbitofrontal cortex with preserved inferior temporal 
cortex metabolism leading to a high inferior temporal/MTL 
ratio is suggestive of LATE-NC underlying pathology (Botha 
et al., 2018; Grothe et al., 2023; Corriveau-Lecavalier et al., 
2024). An amyloid-positive PET scan is a useful tool to rule in 
the presence of Alzheimer’s pathology. In contrast, a negative 
amyloid PET scan can help rule it out, which can help assess 
or rule out co-pathology (Matsuda et al., 2022; Wolk et al., 
2025). 

Tau-PET is currently not widely available in clinics and is 
primarily used in research. It could play a role not only from 
a diagnosis standpoint and identifying tau pathology, but also 
for staging purposes. The diversity and multiple strains of tau, 
which are also broadly divided into AD-tau and non-AD-tau, 
make finding tau ligands challenging (Choi et al., 2018; Schöll 
et al., 2019; Buchholz and Zempel, 2024). Moreover, tau is located 
both extra- and intracellularly, adding to the challenge in the 
development of a proper molecule. First-generation Tau ligand 
Flortaucipir shows strong aÿnity for AD tau but low aÿnity 
and o-target binding for other tauopathies (Ossenkoppele et al., 
2018). Several second-generation ligands are currently promising 
and have less o-target binding (Smith et al., 2020). [18F]-MK-
6240 has higher selectivity and is specific mainly for tau associated 
with Alzheimer’s disease, and with less to no binding in non-
AD tau (Malarte et al., 2021). [18F]PI-2620 has shown promise 
as a candidate for use in non-AD pathologies (Tezuka et al., 
2021; Cassinelli Petersen et al., 2022). It revealed a distinct pattern 
of binding in amyloid and non-amyloid corticobasal syndrome, 
which could aid in dierential diagnosis and the identification of 
4R tauopathies (Palleis et al., 2021). Brendel et al.’s (2020) study, 
which used a dynamic acquisition protocol, showed moderate-to-
high discriminative performance between PSP and controls with 
[(18)F]PI-2620, characterized by increased uptake in the globus 
pallidus and subcortical regions associated with PSP (Yap et al., 
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TABLE 1 Summary of MRI findings in TDP-43 proteinopathies. 

MRI Findings References 

Hippocampus - TDP-43 with smaller CA1 and subiculum; Inward deformation in bilateral CA1, 
subiculum and most anterior portions of hippocampus 

Vos de Wael et al., 2018; Heywood et al., 2022 

Mesial temporal lobe - Anterior pattern of atrophy more correlating with TDP-43 (entorhinal cortex 

and anterior hippocampus volumes) 
- Posterior pattern of atrophy more associated with tau in AD 

- The ratio between the anterior hippocampus with the parahippocampal cortex 

as an early marker of TDP 43 beyond amygdala-only pathology in AD 

- Involvement of MTL in FTLD-tau suggest presence of TDP-43 copathology 

de Flores et al., 2020; Kim et al., 2018 

Amygdala - Excessive volume loss suggestive for TDP-43/LATE co-pathology Wesseling et al., 2025 

Diuse volume loss - Worse widespread atrophy in FTLD-TDP when tau copathology Kim et al., 2018; Buciuc et al., 2020; de Boer et al., 
2020 

White matter analysis - White matter changes at the level of brainstem seen using fractional anisotropy 

(FA) in ALS may help distinguish from healthy control 
- Alteration of the corticospinal tract and corpus callosum in ALS using FA but 
also Fixel-based analysis (FBA) and correlating with functional scale in ALS 

- Temporal and parietal WM changes reported as correlating with the cortical 
axonal loss while frontal changes being a resultant of both small vessel disease and 

AD degenerative process 
- FBA showing early disruption on the anterior commissure, projections to the 

parahippocampal gyrus and amygdala as well as parietal connection pathways in 

semantic variant dementia, 
- FBA in LATE vs AD: alterations in the callosal fibers connecting the middle 

frontal gyri and of the cerebello-thalamo-cortical tracts whereas in amnestic AD 

callosal fibers connecting the superior frontal gyrus as well as temporo-limbic 

tracts 

Maj et al., 2022; Cheng et al., 2020; Brun and 

Englund, 1986; McAleese et al., 2015; Mandelli 
et al., 2025; Lebrun et al., 2024; Ahmadi et al., 2024; 
Vanderlinden et al., 2025 

FA, fractional anisotropy; FBA, fixel-based analysis; FTLD, frontotemporal lobar degeneration; LATE, limbic-predominant age-related TDP-43 encephalopathy; MTL, mesial temporal lobe; 
WM, white matter. 

2021). [18F]PI-2620 is currently in phase 3 of clinical development 
for the detection of tau in AD, as well as in 4R tauopathy 
like PSP and CBD, and received a fast track designation from 
the FDA. The study will evaluate cognitively normal seniors, as 
well as their ability to distinguish AD or FTLD-tau from FTLD-
TDP, and assess their association with phenotypical features.1 

[18F]OXD-2314 is another ligand showing promise in non-AD 
tau, pending further evaluation in patient populations of non-
AD tauopathies (Lindberg et al., 2024). A negative tau PET scan, 
combined with suggestive FDG-PET findings for temporal-limbic 
hypometabolism, can suggest TDP-43 pathology (Botha et al., 2018; 
Stage et al., 2020). 

Direct detection of TDP-43 aggregates by PET holds promises 
for a more accurate diagnosis, patient stratification, and assessment 
of therapeutic eÿcacy in clinical trials. Current research to identify 
the best candidate is ongoing. Some promising candidates have 
been reported, particularly the [18F]ACI-19278 tracer, which could 
become the first TDP-43 PET scan tracer in the future. This 
tracer showed high aÿnity for human brain-derived TDP-43 and 
appeared to be able to dierentiate FTLD-TDP type A and B from 
controls in samples. It did not show o-target binding and was 
highly selective for TDP-43 (Seredenina et al., 2023). Seredenina 
et al. (2023) also reported that it quickly and eÿciently crossed 
the blood-brain barrier and had a fast and complete washout, 
which limits the risk for a non-specific background signal. All these 
characteristics are promising, and the product is currently in an 

1 https://clinicaltrials.gov/ 

early-phase 1 clinical trial, with study completion estimated for late 
2026. 

TDP-43 biomarkers beyond neuroimaging 
The development of fluid biomarkers for TDP-43 is ongoing, 

but has proved to be challenging; however, recent advancements 
using either antibody-based approach or proteomics show promise. 
Several issues remain, including the risk of binding to both 
the pathological and physiological forms of TDP-43, as well as 
variations in detected levels depending on solubility and sample 
origin. TDP-43 is a widely expressed protein, and its levels may not 
be explicitly related to CNS damage, but rather to damage in other 
organs (Cordts et al., 2023; López-Carbonero et al., 2024). Katisko 
et al. (2022)’s study utilized the Simoa R  sandwich enzyme-linked 
immunosorbent assay (ELISA) kit for TDP-43 to measure soluble 
TDP-43 in serum. Their study revealed a significant dierence, 
with slightly decreased TDP-43 levels in FTD-TDP compared to 
FTD-tau and healthy controls (Katisko et al., 2022). Ren et al. 
(2021) also used a sandwich ELISA kit for TDP-43 and measured 
plasma and CSF TDP-43 levels, as well as phosphorylated TDP-
43 (pTDP-43) levels, in ALS compared to healthy controls. The 
results showed that both TDP-43 and pTDP-43 were elevated in 
ALS and correlated well with CSF levels. The use of pTDP-43/TDP-
43 in plasma helped dierentiate between healthy controls and the 
ALS group and could be a good candidate as a biomarker in this 
context (Ren et al., 2021). The Multimer Detection System (MDS) 
platform, an atypical sandwich enzyme-linked immunosorbent 
assay (ELISA), was utilized by Jamerlan et al., (2023, 2025) and 
enabled the detection of increased oligomeric TDP-43 in the plasma 
of a small cohort of FTLD-semantic dementia. Another promising 

Frontiers in Cellular Neuroscience 09 frontiersin.org 

https://doi.org/10.3389/fncel.2025.1671419
https://clinicaltrials.gov/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-19-1671419 October 23, 2025 Time: 18:20 # 10

Nasir and Delpirou Nouh 10.3389/fncel.2025.1671419 

new technique is the proteomic platform using the Nucleic-Acid-
Linked Immuno-Sandwich Assay (NULISATM), which utilizes 
oligonucleotide-conjugated antibodies to amplify signals from 
neurodegeneration-associated proteins, including those related 
to TDP-43 pathologies. Several studies have demonstrated its 
potential in detecting TDP-43 and pTDP-43 in plasma, suggesting 
its potential as a diagnostic tool in ALS and other TDP-43-
related pathologies, including LATE-NC. However, the detection 
sensitivity remains suboptimal, and further studies are currently 
underway (Zeng et al., 2024; Thomas et al., 2025; Wang et al., 2025). 

Another method currently evaluated uses the measurement 
of extracellular vesicles (EVs) in biofluids. EVs are cell-
derived lipid nanoparticles that are released by cells into the 
extracellular environment, serving as transport vesicles that traÿc 
macromolecules from the CNS to the cerebrospinal fluid (CSF) 
and blood. In LATE, EVs-TDP-43 derived from astrocyte-derived 
extracellular vesicles (ADEVs) was shown to be significantly 
increased in the plasma of individuals. This finding suggests that 
EVs-TDP-43 derived from neuronal and glial cells may serve as 
valuable diagnostic biomarkers in neurodegeneration, including 
LATE and potentially other TDP-43 proteinopathies. However, 
several questions and challenges remain, including the replicability 
and consistency of findings, the risk of potential artifacts from the 
EV enrichment material, and the time-consuming and often poorly 
reproducible methods of EV purification (Thompson et al., 2016; 
Sproviero et al., 2019; Pasetto et al., 2021; Winston et al., 2022; 
Dellar et al., 2025). 

Another growing field of research for TDP-43 biomarkers 
focuses on the study of cryptic peptides. Abnormal TDP-43 
aects its normal splicing function, leading to the inclusion of 
cryptic exons during transcription. This results in cryptic peptides 
from altered transcripts, which subsequently impair functions 
when not degraded by regulatory and monitoring pathways. 
Transcriptomic and proteomic approaches are currently being 
investigated to develop validated assays that assess cryptic peptides 
in biospecimens, thereby facilitating the detection of TDP-43 
pathology, including co-pathology (Irwin et al., 2024; Seddighi 
et al., 2024). 

Recent findings of high concentrations of TDP-43 in the cytosol 
of platelets have sparked interest in utilizing platelets as a potential 
biomarker (Wilhite et al., 2017; Luthi-Carter et al., 2024). Research 
focusing on ALS demonstrated increased levels of abnormal TDP-
43 in platelets in the ALS group compared to healthy controls, 
and increased with disease duration (Hishizawa et al., 2019). It 
is hypothesized that abnormal TDP-43 could make its way from 
astrocytes to platelets via a permeable blood-brain barrier (Fang 
et al., 2014; Kopeikina and Ponomarev, 2021) or via platelet 
activation and release of platelet-activating factor (PAF) at the 
choroid plexus-blood-CSF barrier due to inflammation and leading 
to a leaky barrier ( ̌Carna et al., 2023). However, much remains to 
be learned about utilizing platelets as a biomarker in copathology. 
Another approach by Quek et al. (2020) used ALS patient’s blood 
to generate monocyte-derived microglia (MDMi), which allowed 
the detection of TDP-43 and pTDP-43 cytoplasmic inclusions in 
ALS patients compared to healthy control. This model also helped 
demonstrating the mislocalization of TDP-43 in microglia in ALS 
patients (Quek et al., 2020; Quek et al., 2022). MDMi allows an easy 
sampling using blood collection, and shows promise as a screening 

tool in neurodegeneration and dementia beyond ALS (Banerjee 
et al., 2021; Quek and White, 2023). 

The skin and the nervous system share the same ectodermal 
origin, leading to the concept of the skin-brain axis (Jameson et al., 
2023; Kim et al., 2024), making skin an attractive candidate for 
assessing abnormal proteins and biomarkers in neurodegenerative 
diseases (Suzuki et al., 2010; Paré et al., 2015). There is already a 
fair amount of published work supporting the skin as a potentially 
accessible tissue for evaluating TDP-43 pathology (Sabatelli et al., 
2015; Wang et al., 2015; Yang et al., 2015). Most studies comes 
from the ALS research and have shown a significant association 
between a higher amount of TDP-43 inclusion in ALS patients 
and a significantly higher amount of TDP-43 in the epidermis and 
dermis, as well as a higher amount of TDP-43 in the cytoplasm of 
dermal fibroblasts (Riancho et al., 2020; Romano et al., 2020; Rubio 
et al., 2022). Epidermal TDP-43 mRMA expression appears reduced 
in ALS patients, particularly in those with upper-limb onset (Abe 
et al., 2017). Ren et al. (2018) demonstrated the involvement of 
the peripheral and autonomic nervous systems in ALS patients, 
characterized by reduced intraepidermal nerve fiber density, as 
well as the deposition of TDP-43 and phosphorylated TDP-43 
around autonomic nerve fibers. One study in a small cohort 
of sporadic ALS failed to demonstrate any specific changes in 
fibroblasts however (Codron et al., 2018), and more data remain 
needed in larger cohorts at dierent stages of the disease and 
particularly at an early stage as the amount of TDP-43 positive 
cells has been shown to be positively associated with the duration 
of the disease in ALS patients (Suzuki et al., 2010). Besides ALS, 
skin biopsy and fibroblast use have limited evidence in FTLD, 
which may be related to culture conditions and other limitations. 
However, fibroblasts may exhibit other markers of cellular stress 
that could be useful in identifying FTLD patients, and further 
research is ongoing (Riancho et al., 2020; Leskelä et al., 2021; 
Homann and Haapasalo, 2022). Skin biopsy studies have shown 
promise in detecting tau using a tau seeding activity assay (tau-
SAA), which exhibits a greater aÿnity for 4R tau than 3R tau, and 
notably demonstrates better accuracy in PSP (Vacchi et al., 2022; 
Dellarole et al., 2024; Martinez-Valbuena et al., 2024; Wang et al., 
2024). Beyond the skin, muscle has also been investigated, mainly 
in neuromuscular diseases such as ALS. However, physiologically, 
TDP-43 is involved in the muscular regeneration process, and 
deposits are hypothesized to be more closely related to this process; 
further research is required (Ishikawa et al., 2012; Paré et al., 
2015; Vogler et al., 2018; Liu et al., 2022). The olfactory mucosa 
is also studied, and TDP-43 aggregates using the TDP-43 seeding 
amplification assay (TDP43-SAA) have been shown to accurately 
distinguish TDP-43 pathology, pending further validation on a 
larger cohort (Fontana et al., 2024; Vizziello et al., 2025). Tau-SAA 
on the olfactory mucosa also has some limited positive data, but is 
considered invasive, increasing the risk of infections, and overall a 
less preferable option (Vacchi et al., 2025). 

Retinal-based TDP-43 biomarkers are also being investigated, 
as some recent animal studies suggest early retinal changes in TDP-
43 proteinopathies (Gao et al., 2024). However, there is still limited 
data in humans, primarily from autopsy reports (Glashutter et al., 
2025). A small molecule tracer selectively binding TDP-43 in the 
retina is being evaluated through a phase 1/2 trial, the PROBE-
trial, though no final results have been published yet, and research 
is ongoing (Glashutter et al., 2025). The use of nanotechnology, 
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TABLE 2 Summary of clinical trials on TDP-43 proteinopathy and biomarkers currently listed as recruiting/active in clinicaltrials.gov. 

Trial ID Type Indication Technique Phase/study 
type 

Status 

NCT06891716 PET 

[18F] ACI-19626 

ALS 

FTLD 

AD 

LATE 

PET binding ligand for TDP-43 Early Phase 

I/Interventional 
Recruiting 

NCT05456503 PET 

FPI-2620 

Non-amnestic AD 

FTLD-tau 

FTLD-TDP 

FTLD-genetic 

PET imaging to dierentiate tauopathy 

from TDP-43 proteinopathy 

Phase 

III/Interventional 
Recruiting 

NCT05974579 PET 

89Zr-DFO-AP-101 

ALS PET imaging study to detect misfolded 

SOD1 

Phase 

I/Interventional 
Active, not recruiting 

NCT06735014 MRI 
Neurofilament light 
chain (NfL) 

ALS This imaging study evaluates the fiber 

density, fiber-cross section, orientation 

dispersion and cortical thickness on MRI 
and along use of plasma markers like NfL 

Observational Recruiting 

NCT04960540 MRI ALS Imaging study for brain changes using 

fMRI, structural MRI and DTI 
Observational Unknown 

NCT05764434 MRI ALS MRI study looking at imaging markers in 

ALS and more specifically changes in gray 

and white matter in the spinal cord. 

Observational Recruiting 

NCT02567136 MRI ALS Imaging biomarkers using 3T and 7T MRI 
brain and DTI 

Observational recruiting 

NCT02567136 MRI ALS 

PLS 

Imaging study using 3T and 7T MRI to 

detect early changes and biomarker of 
ALS and PLS 

Observational Active, not recruiting 

NCT04691011 MRI ALS Imaging using 3T and 7T MRI at three 

dierent levels i.e., cerebral, medullary 

and muscular to determine early 

biomarkers in ALS 

Interventional Recruiting 

NCT06528964 Skin biopsy Neuro-
degeneration 

Skin biopsy study looking at 
alpha-synuclein, amyloid-beta, 
phosphorylated tau and TDP-43 

Observational Recruiting 

NCT06490822 Skin biopsy FTLD Assess for TDP-43 and tau using Western 

blot and qPCR to determine level of 
expression of both proteins 

Observational recruiting 

NCT05309408 Fluid biomarkers ALS Serum, plasma, whole blood, CSF, urine, 
peripheral blood mononuclear cells, DNA, 
RNA 

Observational recruiting 

NCT06083584 RNA sequencing 

from blood 

ALS Targeted RNA-Seq for Amyotrophic 

Lateral Sclerosis Diagnosis 
Observational Recruiting 

NCT03233646 Retinal imaging Aging/ 
neurodegeneration 

Evaluating the Retinal and Choroidal 
Microvasculature and Structure Using 

Multimodal Retinal and Choroidal 
Imaging in Neurodegenerative Disease: 
The iMIND Research Study 

Observational Recruiting 

like the tau-fluorophore BT-1, a BODIPY-based probe and highly 
specific fluorescent ligand, is another promising technique that may 
expand our ability to evaluate for tau in the human retina and our 
ability for early detection of tauopathies (Soloperto et al., 2022; 
Barolo et al., 2024). The same techniques could potentially be used 
to develop TDP-43 probes. 

In summary, the development of valid tools for the detection of 
TDP-43 in biofluids or other tissues proves to be challenging and 
is currently ongoing, including several other targets beyond plasma 
and CSF, with some data in skin and fibroblasts and pending larger 
studies, while retinal-based biomarkers using nanotechnology and 

TDP-43 or tau-probes may be promising, though also in need of 
further research and validation (Table 2). 

Conclusion 

TDP-43 frequently cohabits, though to varying degrees, with 
other neurodegenerative diseases, including tauopathies, and is 
suspected to be a major contributor to the neurodegenerative 
process. Several arguments suggest potential additive or synergistic 
eects with other proteins, particularly with tau, although common 
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pathways and pathophysiological processes leading to multiple 
proteinopathies are also considered. The development of accurate 
and validated neuroimaging and fluid or tissue biomarkers is 
ongoing and will be crucial in identifying TDP-43 pathology and 
co-pathology, which will enable more precise diagnosis and in vivo 
pathology classification, facilitating the more accurate selection of 
candidates for clinical trials and allowing for future targeted and 
tailored treatments. 
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