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Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease, the 

primary cause of dementia in people over 65 years old. AD is characterized 

by two molecular hallmarks, the intracellular neurofibrillary tangles of tau 

and amyloid beta oligomers, which are aggregates of hyperphosphorylated 

tau and amyloid beta peptides, respectively. These hallmarks gave rise to 

the two main theories that have opened the way for available treatments, 

such as FDA-approved memantine, and Aβ (aducanumab, lecanemab) and 

tau immunotherapies. Tau immunotherapy, especially multitarget approaches, 

has been recently proven effective. However, drugs against amyloid plaques 

had a non-successful outcome, despite their contributions to AD knowledge. 

An innovative approach comes from the multitarget concept, based on 

bioactive molecules and nutraceuticals. Interestingly, the use of early detection 

biomarkers such as Alz-Tau R , SIMOA R , and the recent LumipulseTM test, are an 

important support to orient AD therapies based on the modifications of the styles 

of life. This includes physical exercise, a healthy diet, mindfulness, and cognitive 

stimulation, among others. All of the above analyses are critical to switch the 

focus to the prevention of AD. 
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Introduction 

Alzheimer’s disease is currently the leading cause of dementia worldwide in elderly 
adults older than 65 years old (Alzheimer Association, 2024). Indeed, dementia is currently 
the third leading cause of death in the United States. Due to the accelerating aging 
in the population, its understanding and management represent a significant challenge 
in contemporary medicine, particularly given its status as the most prevalent cause of 
dementia in individuals over the age of 65 (Weninger et al., 2016; Alzheimer Association, 
2024). In a WHO report, in 2022, 50 million people were aected by dementia worldwide, 
and it’s projected that by 2050, 150 million people will be aected (Kerwin et al., 
2022). AD also constitutes a major puzzle for the world community, considering the 
enormous social and economic impacts on families and caregivers, as well as on the 
economies of the countries. This complex, multifactorial neurodegenerative disorder elicits 
a gradual decline in both cognitive and non-cognitive functions, generating a substantial 
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GRAPHICAL ABSTRACT 

Alzheimer’s disease current therapies, detection strategies, preventive scopes and etiopathogenesis summarized in this review. 

burden on patients, their families, and broader society (Jain and 
Sharma, 2021). The molecular markers of Alzheimer’s disease 
pathology are classically defined by the presence of extracellular 
amyloid plaques, primarily composed of aggregated amyloid-
beta peptides, and intracellular neurofibrillary tangles, which 
consist of hyperphosphorylated tau protein (Brion, 1998; Blennow 
et al., 2006; González et al., 2022b). The initial identification of 
these neuropathological hallmarks by Alois Alzheimer in 1906 
has led to the formulation of prominent yet contested theories 
regarding the disease’s etiology (Trejo-Lopez et al., 2022). The 
Amyloid Cascade Hypothesis postulates that the accumulation 
and aggregation of amyloid-beta peptides are the primary drivers 
of the disease, initiating a cascade of events that ultimately lead 
to neuronal dysfunction and death (Sadigh-Eteghad et al., 2015). 
Conversely, the Tau Hypothesis establishes that abnormalities 
in tau protein, such as hyperphosphorylation and subsequent 
aggregation into neurofibrillary tangles, are the central pathogenic 
events in Alzheimer’s disease (Maccioni et al., 2009, 2010; Crespo-
Biel et al., 2012). Despite the extensive research eorts directed 
toward these two prominent hypotheses, therapeutic strategies 
targeting either amyloid-beta or tau have yielded limited success, 
underscoring the complex and multifactorial nature of Alzheimer’s 
disease (González et al., 2023). 

Currently, only palliative treatments and post-clinical FDA-
approved biomarkers are available in the clinic. Why have all 
the previous treatments failed to improve the quality of life of 
the patient and, consequently, of their caregivers? To answer 
that question, it is required to go to the multifactorial etiology 
of AD (González et al., 2023). This disease goes beyond its 
major molecular hallmarks, the neurofibrillary tangles and the 
amyloid plaques. Several damage signals trigger the activation 

of the microglia, promoting neuroinflammation (Singh, 2022; 
Wang C. et al., 2023). This promotes a chronic pro-inflammatory 
microenvironment, which leads to neurodegeneration (Kinney 
et al., 2018). Current FDA-approved therapies, such as memantine 
(Parsons et al., 2013) and others, only act on one target, 
which would explain in part why the improvement of cognitive 
performance is not satisfactory. Now, novel therapies focus on 
multitarget strategies, usually combining nutraceuticals, bioactive 
compounds, such as Andean shilajit (Andrade et al., 2023), and a 
healthy diet. This has proven to be the best approach so far. 

The etiopathogenesis of AD: Aβ, tau, 
or both? 

In 1901, Alois Alzheimer described for the first time a case 
of a 50 years-old woman, Auguste Deter, the first reported case 
of Alzheimer’s disease. In the report, he described that Auguste 
had several memory issues, disorientation, and hallucinations, 
among other psychiatric symptoms. After passing in 1906, Dr. 
Alzheimer performed histological studies on her postmortem 
brain (Stelzmann et al., 1995). This allowed him to discover two 
abnormalities present in Auguste’s brain: amyloid plaques between 
the neurons and neurofibrillary tangles inside the neurons. This 
discovery established the two main hallmarks of AD: extracellular 
amyloid plaques, constituted by Aβ peptide, and neurofibrillary 
tangles, constituted by hyperphosphorylated tau protein (Roda 
et al., 2022; Abyadeh et al., 2024). The accumulation of both 
amyloid peptide 1–42 and hyperphosphorylated tau protein 
generates oligomers (AβO and TauO, respectively), leading to a 
disruption of neuronal function and exerting a toxic influence on 
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FIGURE 1 

Schematic representation of tau protein aggregation in Alzheimer’s disease. Conformational changes due to hyperphosphorylation of tau leads to 
pathologic tau self-assembly, and the formation of neurofibrillary tangles, one among the main hallmarks of Alzheimer’s disease (AD). 

the brain, since they trigger the misfolding of adjacent proteins into 
aggregates or oligomers (Mroczko et al., 2019). However, the debate 
about which one is the principal contributor to the development 
and progression of AD has extended to the present day. 

Current evidence states that regarding the amyloid plaques, 
which are constituted by AβO, these are also present in cognitively 
healthy elders (Rodrigue et al., 2012), in some cases even more than 
AD patients. Also, cognitive decline, the main symptom of AD, 
is not directly correlated with the amyloid-plaque burden in the 
brain, a reason why the current amyloid therapies had failed (Haass 
and Selkoe, 2022). Despite those facts, new evidence has shed 
light on the involvement of some soluble Aβ fragments, among 
several other signals, which can be recognized by the microglia as 
a danger signal, and not the amyloid plaque as initially thought 
(Luči¯ unait˙ e et al., 2020). The latter is supported by other evidence, 
demonstrating that through the gut-brain axis, some bacteria 
can secrete amyloid-like peptides and activate Alzheimer’s disease 
pathways in a neuronal cell line (Blanco-Míguez et al., 2021). 

Neurofibrillary tangles, on the other hand, are constituted by 
TauO. Tau is a microtubule-associated protein (MAP) whose main 
function is to direct the formation of microtubules that allow 
the formation of dendrites in neurons (Crespo-Biel et al., 2012). 
Hyperphosphorylation of tau protein leads to conformational 
structure changes, from an α-helix to a β-sheet, allowing their self-
assembly into pair-helical filaments (PHF) and later, neurofibrillary 
tangles (Luna-Muñoz et al., 2007; González et al., 2022b). 
It has been demonstrated that, contrary to amyloid plaques, 
hyperphosphorylated tau protein, and neurofibrillary tangles 
correlate well with cognitive decline and brain atrophy (Maccioni 
et al., 2006; Slachevsky et al., 2016). This process is illustrated on 
Figure 1. Thus, tau protein has now emerged as a novel candidate 
to conduct further research regarding novel therapies for AD and 
the development of early detection biomarkers, two milestones 

required to promote AD prevention and the slowing of the onset 
of cognitive symptoms. 

Integration of several onset factors 
and new theories: 
neuroinflammation as the key 
feature 

To understand AD, it is key to identify it as a multifactorial 
neurodegenerative disease. Several signals can trigger the onset and 
are also involved in the progression of the disease. 

Two of the principal signals were discussed above, as the two 
main hallmarks in AD: amyloid plaques and neurofibrillary tangles. 
However, several other contributors either to the onset or the 
progression of AD can be mentioned:(i) Metabolic Dysfunction: 
This is perhaps one of the major contributors to metabolic issues, 
such as AD, alongside the main hallmarks. Evidence supports that 
AD brains have several lower expression of glucose transporters 
(Kalaria and Harik, 1989; Liu et al., 2008) and brain insulin 
resistance (Bosco et al., 2011; Kellar and Craft, 2020), just to 
mention a few. Also, it should be considered that patients with 
type 2 diabetes have 2.5 times higher risk of developing AD, 
and also AD patients have two times higher risk of developing 
type 2 diabetes (Sebastião et al., 2014; Mushtaq et al., 2015). 
In that regard, AD is now considered a novel type 3 diabetes 
(González et al., 2022a); (ii) Gut-brain axis and commensal 
bacteria: several studies sustain that AD patients suer changes 
in the intestinal microbiota, promoting pro-inflammatory signals 
that reach the brain and trigger pro-inflammatory signals (Jiang 
et al., 2017; Varesi et al., 2022). Some of these bacteria can 
secrete amyloid-like peptides that can activate the microglia, in 
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agreement with one of the original hypotheses. Studies on germ-
free 3xTg mice model showed a significant reduction in amyloid 
plaques and neurofibrillary tangles as compared to the 3xTg 
control (Chen et al., 2022). Also, the proinflammatory pathway 
C/EBPβ/AEP, associated with polyunsaturated fatty acids (PUFA), 
is downregulated in these germ-free 3xTg mice as compared 
to the 3xTg control (Chen et al., 2022). Thus, gut microbiome 
regulates AD and associated cognitive disorders via PUFA-
mediated neuroinflammation; (iii) Mitochondrial dysfunction: 
Emerging as a novel theory, mitochondrial dysfunction is now 
considered one of the relevant features in AD. In the brain, neurons 
require a high amount of energy to maintain synaptic function 
and plasticity (Reiss et al., 2024), and mitochondrial dysfunction 
is among the first detectable changes in AD. Mitochondrial 
dysfunction in AD compromises neuronal function and viability, 
contributing to the onset of AD symptoms due to early neuronal 
death (Reiss et al., 2024). This is closely related to other factors, 
such as metabolic dysregulation, calcium homeostasis disruption, 
oxidative stress and mitochondrial quality control impairment, all 
observed in AD (Jayatunga et al., 2020); (iv) Infections: it has 
been reported that viruses and bacteria that can cross the blood-
brain barrier are related to cognitive decline and neuronal death, 
such as Herpes viruses (Deatly et al., 1990). Notably, a recent 
study demonstrated that vaccination against the herpes-zoster virus 
decreased dementia in elderly adults (Eyting et al., 2023); (v) 
Vascular dysfunction: As brain function depends on continuous 
delivery of oxygen and energy substrates, such as glucose, a suitable 
cerebral vasculature that allows these elements is required (Hirsch 
et al., 2012). The regional cerebral blood flow (rCBF) is tightly 
regulated for this purpose. As part of the cerebral vasculature, 
the blood-brain barrier (BBB) regulates the passage of oxygen 
and nutrients and the removal of metabolic waste products. It 
also prevents entry of plasma constituents and protects the brain 
from infection (Zhao et al., 2015). In AD, vascular lesions such 
as arteriolosclerosis, microinfarcts, hemorrhage, atherosclerosis, 
and cerebral amyloid angiopathy are prevalent in 80% of cases 
diagnosed with AD (Toledo et al., 2013), all the later associated with 
a decrease in brain microcirculation (de la Torre and Mussivand, 
1993). These lesions lead to a reduction in the rCBF. This 
hypoperfusion is attributed to an impaired vascular regulation 
by soluble A (Dietrich et al., 2010). This peptide is vasoactive 
and constricts arterioles. Also, it has been demonstrated that 
Aβ oligomers constrict capillaries (Nortley et al., 2019). This 
allowed to propose that vascular dysfunction could lead to AD 
(de la Torre and Mussivand, 1993). 

All of the above-mentioned onset signals have a 
common feature: the trigger of pro-inflammatory signals 
that activate microglia and promote a pro-inflammatory 
microenvironment in the brain (Rubio-Perez and Morillas-Ruiz, 
2012; Twarowski and Herbet, 2023). 

The latter is summarized in the neuroimmunomodulation 
theory (Maccioni et al., 2009, 2010), which states that it is a cyclic 
event, where these pro-inflammatory signals (especially tau-related 
signals) (Morales et al., 2013) activate the microglia and pro-
inflammatory cytokines, such as IL-6 and TNF-α (Zheng et al., 
2016; Culjak et al., 2020), activate downstream signaling pathways, 
such as the one mediated by NFkβ and promote upregulation of 
key proteins, such as the kinases CDk5 and GSK3β (Zheng et al., 
2005; Kimura et al., 2014; Saito et al., 2019). This upregulation, in 

turn, leads to hyperphosphorylation of tau protein, which leads to 
the conformational changes that promote self-assembly, leading to 
the formation of paired-helical filaments and neurofibrillary tangles 
that eventually lead to neurodegeneration (González et al., 2022b). 
Fragments of these neurofibrillary tangles can act as signals for the 
activation of another microglia; thus, the cycle continues. 

As we come to terms with the multifactorial nature of AD, 
summarized in Figure 2, it is no wonder that current therapeutic 
approaches have already failed. 

Stress and the onset of Alzheimer’s 
disease 

Human beings are viewed holistically as biopsychosocial 
individuals, with determining factors in their lives such as 
biological, genetic, chronological, and environmental factors. 
Environmental factors include stressors, which are one of the many 
causes of neurodegenerative diseases, including AD (Doyle et al., 
2014; Stuart and Padgett, 2020). 

Stress aects people of all genders and ages and varies according 
to each individual’s stressful experiences. When a person constantly 
faces stressors, physical and chemical changes occur that aect 
their health. Stress allows people to cope with the obstacles they 
encounter, and therefore, each individual will respond dierently, 
assessing their ability to cope. Stress can be chronic, depending on 
the duration and intensity of the aversive event. Changes occur 
in the nervous system (CNS), which produce alterations in the 
entire organism, that will be expressed later as multiple disorders. 
When there are sudden changes in the nervous system, in order to 
maintain homeostasis, it is forced to demand compensation from 
the various systems, resulting in the overload of activity without 
control, and finally with consequences that primarily aect the 
proper functioning of the brain (Vallejo-Johnson and Marcial-
Velastegui, 2018). 

We understand that stress is a natural human response to 
situations of extreme emotional tension. It manifests itself in a 
state of intolerance and irritability in response to the life situation 
experienced. Cannon points out that the body reacts to threats 
by activating two systems: the sympathetic nervous system and 
the endocrine system (Cannon, 1932). When activated, the body 
returns to calm. 

However, prolonged stress causes excess production of 
adrenaline, noradrenaline, glucocorticoids, and cortisol, which 
disrupt the body’s homeostasis process. This aects the neurons 
of the hippocampus, generating progressive neuronal loss that 
impairs activities of daily living, as reflected in AD. Lifestyles 
focused on physical exercise, cognitive stimulation, and a healthy 
diet can promote a more favorable adaptive response for 
emotional wellbeing and the homeostasis process the body faces in 
times of stress. 

It is important to recognize stress as a major factor in AD 
pathogenesis, as it correlates with the onset of depressive symptoms 
or stress-related pathologies. It is worth noting that these stress-
related pathologies could promote AD-type neurodegenerative 
disorders (García et al., 2012). 

Brain structures such as the hippocampus, amygdala, striatum, 
and cortex are actively involved in processing information 
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FIGURE 2 

Alzheimer’s disease etiopathogenesis. Beyond the classic molecular hallmarks of Alzheimer’s disease (AD), the neurofibrillary tangles and amyloid 
oligomers, other factors contribute to the onset and progression of this disease. Among them, mitochondrial dysfunction, oxidative stress, gut 
dysbiosis, infections, genetic predisposition (APoE4 allele), glucose metabolism impairment, among others. This is why Alzheimer’s disease is a 
multifactorial pathology. 

associated with learning and memory. These cognitive processes 
induce changes in synaptic plasticity under normal conditions, 
but in patients or in transgenic animal models, these processes 
are aected by the development of AD type cognitive decline. In 
transgenic models of AD, the way this pathology aects synaptic 
plasticity has been studied. This work has been conducted at three 
levels of analysis: molecular, cellular, and cognitive-behavioral. 
There are behavioral tasks that induce a high release of stress 
hormones, which can aect learning and memory consolidation. 
AD can impair motor performance because certain tasks require 
good motor performance, reflecting cognitive impairment (Bello-
Medina et al., 2022). 

AD biomarkers: in need of an early 
detection 

The shortcomings of current monotarget therapeutic 
approaches highlight the critical need for early detection 
biomarkers that can identify individuals at risk of developing 
Alzheimer’s disease, potentially enabling preventative strategies 
or interventions that can delay or even halt the onset of clinical 
symptoms. However, current alternatives only include detection 
when the clinical symptoms are evident. Some of the current 
detection biomarkers for AD are: 

(i) Neuroimages: This includes nuclear magnetic resonance 
(NMR) and positron-emission tomography (PET-scan) as the 
most relevant ones. These techniques involve computerized 
images. NMR imaging uses radio waves and strong magnetic 

fields to create detailed images of organs and tissues inside 
the body, in this case, the brain. Usually, brain atrophy is 
observed with this technique. PET-SCAN, on the other hand, 
uses fluorescent or radioactive tracers to visualize and measure 
metabolic processes and other physiological activities in the 
body, such as fluoro-deoxy-glucose. The FDA has approved 
PET-scan imaging with an amyloid-beta and tau probes 
(Chandra et al., 2019; Afzal et al., 2021; Maschio and Ni, 2022; 
Wang R. et al., 2023), the most recent ones directed to tau as 
biomarkers for AD (Xia et al., 2013; Kolb and Andrés, 2017). 
Nevertheless, the main disadvantage is that this technology 
is expensive and only provides diagnosis once the cognitive 
decline is evident. 

(ii) Cerebrospinal fluid (CSF) biomarkers: The other FDA-
approved biomarkers for AD are those evaluated in CSF 
(Maccioni et al., 2006). Several antibodies are employed to 
detect either amyloid-beta, tau, and, more recently, phospho-
tau, in CSF samples (Mattsson et al., 2017; Ki ̄  demet-Piskaˇ c
et al., 2018; Barthélemy et al., 2020; McGrowder et al., 2021). 
These biomarkers can be evaluated using several techniques, 
with the most commonly used being an ELISA (enzyme-
linked immunosorbent assay), according to the National 
Institutes of Health (NIH). Nonetheless, CSF sampling is an 
invasive procedure that requires trained personnel. Also, since 
it provides a diagnosis after the manifestation of cognitive 
decline symptoms, it is not useful for early detection. 

While neuroimaging techniques such as PET scans and 
cerebrospinal fluid analysis for biomarkers like tau, phosphorylated 
tau, and amyloid-beta peptide are employed for diagnosis, their 
limitations in providing early detection and their invasive nature 
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require the development of more accessible and sensitive diagnostic 
tools. Thus, current FDA-approved biomarkers for AD do not allow 
early detection. Added to that, the costs (over US$1000 for PET-
SCANS and US$650 for CSF tests) and accessibility to these tests 
are a severe limitation for a routine-based implementation in low-
income countries, which exhibit the highest rate of increase in 
AD. Thus, at present, eorts are leading to the implementation of 
cost-eective biomarkers that provide early detection, which allows 
screening of patients before the manifestation of cognitive decline. 

(iii) Blood-based biomarkers: Due to the lack of early detection 
biomarkers, eorts have been made to develop cost-eective 
early detection biomarkers, which must be accessible and 
less invasive for the patients (Brickman et al., 2021; Ashton 
et al., 2023b). In this regard, several blood-based biomarkers 
are evaluated, in which we can highlight (a) The Alz-tau 
biomarker: validated by four clinical trials, this novel blood-
based biomarker allows screening of pre-clinical populations 
at risk of developing AD. It is based on the detection 
of platelet tau variants, including high-molecular-weight 
(HMW) and low-molecular-weight (LMW) forms (Guzmán-
Martínez et al., 2019), using a novel tau-51 monoclonal 
antibody (González et al., 2020) in a western blot analysis. 
The HMW/LMW ratio correlates with brain atrophy and 
cognitive decline and allows screening of presymptomatic 
subjects. Currently, it is implemented in several hospitals 
and clinical laboratories; (b) Ultrasensitive SIMOA R  assay 
detection: another high-end novel biomarker is based on a 
novel SIMOA R  assay, which allows ultrasensitive detection of 
tau protein in serum and also CSF, at levels of pg/ml (Bayoumy 
et al., 2021; Ashton et al., 2023a). This novel technology 
is used for detecting and quantifying specific biomolecules, 
primarily proteins, in various biological samples. It is based 
on the isolation of individual immunocomplexes within 
femtoliter-sized reaction chambers, enabling the detection and 
counting of single molecules. This approach allows SIMOA R 

to detect biomarkers at concentrations up to 1,000 times 
lower than traditional ELISA methods, often reaching the 
femtomolar (fg/mL) range. Currently, two of these SIMOA R 

platforms, which detect ptau181 and ptau217, were recognized 
by the FDA as a breakthrough device due to the test’s 
potential for more eective diagnosis of AD; (c) Lumipulse 
technology: This technique uses chemiluminescent enzyme 
immunoassay (CLEIA) to measure biomarkers in bodily 
fluids, like blood or cerebrospinal fluid, for various diagnostic 
purposes. This technology has been evaluated in Alzheimer’s 
disease (Bayoumy et al., 2021; Keshavan et al., 2021; Gobom 
et al., 2022). Recently, one of these platforms, Lumipulse G 
pTau217/ß-Amyloid 1-42, which evaluates the plasma ratio 
between ptau217 and amyloid 1-42, received a breakthrough 
device recognition by the FDA. 

Additionally, other biomarkers are being tested, such as those 
using mass spectrometry (Cilento et al., 2019). One of them, 
PrecivityAD2, which generates a ptau-217 and aβ 42/40 ratio, 
was clinically validated (Meyer et al., 2024). However, all of them 
require to be validated by neuropsychological tests to confirm the 
diagnosis. 

This reflects the current advances in the search of early 
detection biomarkers, which is ongoing. Some of the former 
mentioned tests are being clinically implemented but not as a 
routine-based test, while others are still on clinical validation trials. 

Therapeutic approaches for AD: 
monotarget, multitarget and novel 
approaches 

Current therapeutic interventions approved by regulatory 
agencies such as the FDA oer only symptomatic relief or aim 
to slow the progression of cognitive decline, without addressing 
the underlying disease mechanism (Wang Y. et al., 2023). The 
multifactorial nature of AD can explain, at least in part, why several 
therapeutic approaches failed. In this regard, current therapies for 
AD can be subdivided into two: 

(a) Monotarget therapies: These therapies aim at a single 
pharmacological target. The FDA-approved drugs are 
classified as monotarget, such as memantine, a cholinesterase 
inhibitor (Parsons et al., 2013; Tang et al., 2023). Novel 
current therapies include monoclonal antibodies that act 
against amyloid-beta have also been approved by the FDA: 
aducanumab, lecanemab, and donanemab (Haddad et al., 
2022; PR Newswire, 2023; Söderberg et al., 2023). Currently, 
aducanumab is on phase IV clinical trial, and lecanemab 
in 2023 was approved by the FDA. However, as discussed 
above, amyloid beta does not have a direct relation with 
cognitive impairment in AD, not the way tau protein does. 
Which is why the majority (if not all) of the therapeutic 
approaches based on amyloid-beta have failed, due to lack 
of eÿciency and some severe side-eects (Knopman et al., 
2021; Atwood and Perry, 2023; Kurkinen, 2023). That is why 
novel therapies that target tau protein. In a recent study, a 
novel tau monoclonal antibody, specific for insoluble tau, 
employed as a therapeutic approach, improved tau pathology 
through the cytosolic antibody receptor TRIM21(Mukadam 
et al., 2023). The limitations of mono-target therapeutic 
approaches in Alzheimer’s disease have prompted a shift 
toward multi-targeting strategies that address multiple 
pathological pathways simultaneously (Maccioni et al., 2020). 

(b) Multitarget therapies: These multi-targeted approaches may 
involve the combination of components targeting dierent 
aspects of the disease, such as amyloid-beta production, tau 
phosphorylation, neuroinflammation, and oxidative stress. 
In this group, we can find all bioactive compounds, 
nutraceuticals, and functional foods that aim at more than 
one target. Some examples are nutraceutical formulations 
such as Brain-Up10 R  or DurabrainTM in United States, 
multicomponent with several bioactive molecules containing 
Andean shilajit and vitamin B complex (Cornejo et al., 2011; 
Carrasco-Gallardo et al., 2012a; Guzman-Martinez et al., 
2021b), which is supported by clinical trials. Then, we have 
bioactive compounds such as curcumin (Tang et al., 2017; 
Voulgaropoulou et al., 2019) and quercetin (Zaplatic et al., 
2019; Khan et al., 2020), and functional foods such as 
berries (Subash et al., 2014), which are rich in anthocyanins 
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(Sohanaki et al., 2016; Ma et al., 2018) and polyphenols (Reddy 
et al., 2020; Caruso et al., 2022; Li et al., 2023). This approach 
has been proven to be the most eective therapy to delay the 
progression and improve cognitive performance in AD. 

It is worth mentioning that in the context of AD therapy, other 
novel approaches are: 

(c) Immunotherapy: This could be summarized in (i)Active 
immunotherapy: anti-Aβ vaccines, such as AN1792, the first 
one to be tested clinically (Thatte, 2001). However, during 
phase IIA, 6% of the patients developed meningoencephalitis 
due to an excessive Th-1-mediated inflammation. Currently, 
UB311 is on phase II clinical trial. This vaccine is composed 
by two synthetic T-helper peptide epitopes linked to Aβ 1-14 
and possess safety vaccine designs and a delivery mechanism 
that increases Th-2 response (Wang et al., 2017). AADVac1, 
on the other hand is a tau epitope-based vaccine which 
induces specific antibodies targeting 3 or 4 conformational 
epitopes (Novak et al., 2019). AADVac1 treatment resulted 
in less brain atrophy and reduced cognitive impairment in a 
Phase I clinical trial. (ii) Passive immunotherapy: This therapy 
involves passive administration of monoclonal antibodies 
generated against the target protein, in this case, Aβ 1-42. 
Some of the monoclonal antibodies employed for Aβ- based 
immunotherapy are lecanemab and aducanumab, which are 
currently going on a phase II/III clinical trials (Thatte, 2001). 
Even though aducanumab was approved in 2021 by the FDA, 
a new phase II clinical trial is required to evaluate safety 
and eÿciency as vasogenic edema was developed in trials 
(Arndt et al., 2018). 

Anti-tau-based immunotherapy includes Zagotenemab, 
Tilavonemab, and bepranemab among others (Thatte, 2001). 
Semorinemab can bind to the six human tau isoforms and protect 
neurons, and a study in patients with moderate AD was performed 
(Ayalon et al., 2021). Phase 2 clinical trial of Zagotenemab showed 
increase in ptau181 and adverse eects with no eÿciency (Fleisher 
et al., 2024). Tilavonemab was discontinued due to the lack of 
eÿciency (West et al., 2017). 

All the eÿciencies and safety were compared in a recent 
study by Cai et al. (2025) (Ahmad et al., 2024). This study 
showed that Semorinemab was more eective in terms of cognitive 
decline prevention. 

(d) Stem cell therapy: A novel potential therapy worth to be 
explored is the stem cell therapy for AD. Four types of stem 
cells are available: embryonic stem cells, induced pluripotent 
stem cells, neural stem cells (NSCs) and mesenchymal stem 
cells (Ahmad and Sachdeva, 2022). Using AD rodent models, 
it was demonstrated that NSCs reduce tau and Aβ expression 
levels (Lee et al., 2015); promote neurogenesis and synapse 
formation (Ager et al., 2015; Lilja et al., 2015), reduce 
neuroinflammation (Zhang et al., 2016); and reverse cognitive 
deficits (Ager et al., 2015; Lilja et al., 2015; Zhang et al., 
2016). Several clinical trials of stem cell therapy are ongoing 
(Ahmad et al., 2024), in Phase I and II. And more recently, a 
phase II study with laromestrocel demonstrated its eÿciency 

and safety, as at 39 weeks post-treatment, it significantly 
reduced hippocampal atrophy, which correlated with an 
improvement in cognitive performance evaluated by MMSE 
(Rash et al., 2025). 

AD prevention: the five major tips to 
prevent and slow-down its 
progression 

All the former therapeutic approaches and early detection are 
key for AD prevention or to slow down its progression. It is 
known that sporadic AD can be decreased if we modify our lifestyle 
(Guzman-Martinez et al., 2021a; González-Madrid et al., 2023), 
aligning at least with these major factors: 

(i) Exercise: Sedentary life is a risk factor for the development of 
AD; thus, exercise is a key player in AD prevention, especially 
aerobic exercise (Morris et al., 2017; Meng et al., 2020; López-
Ortiz et al., 2021). It has been demonstrated that exercise 
stimulates the secretion of a neuroprotective hormone, irisin 
(Jin et al., 2018), which promotes the downregulation of 
the ERK-STAT3 pathway through the release of neprylisin 
(Kim et al., 2023). It was demonstrated that irisin rescues 
synaptic plasticity alongside the FNDC5 protein, which is 
associated with neuroplasticity, in an exercise-linked manner 
on Alzheimer’s disease mouse models (Lourenco et al., 2019). 
This is consistent with other studies that presented correction 
in memory deficits in mouse models of AD (Lourenco et al., 
2017) and protective pathways in rat hippocampus (Lourenco 
et al., 2022). On the other hand, exercise also promotes 
the increase of brain-derived neurotrophic factor (BDNF) in 
people with multiple sclerosis (Shobeiri et al., 2022). This 
is also consistent with the stimulation of adult hippocampal 
neurogenesis (AHN) and the increase of BDNF in 5xFAD 
mice (Choi et al., 2018). Thus, within neurodegenerative 
diseases, such as AD and multiple sclerosis, exercise has 
neuroprotective eects (Mahalakshmi et al., 2020). 

(ii) Healthy diet: a diet rich in antioxidants, such as the 
Mediterranean diet, rich in vegetables, fruits, whole grains, 
olive oil, beans, and fish, is pivotal to prevent AD (Solch et al., 
2022). Also, it helps to keep balance in the gut microbiota 
(Solch et al., 2022; Dissanayaka et al., 2024), since a gut 
dysbiosis generates damage signals, such as LPS and amyloid-
like peptides, that promote neuroinflammation (Leblhuber 
et al., 2021), generally associated with a proinflammatory diet 
(Shi et al., 2023). Consistent with the latter, the Mediterranean 
diet improved main cognitive functions in AD patients (de la 
Rubia Ortí et al., 2018). Another example is the ketogenic diet, 
which is high-fat, moderate-protein, very-low-carbohydrate 
eating plan that induces a state of ketosis in the body (Lange 
et al., 2017). This opens new avenues in the treatment of 
Alzheimer’s disease, since this diet can eectively reduce the 
accumulation of amyloid-beta and tau proteins (Oliveira et al., 
2024), reduce neuroinflammation (Xu et al., 2022), stimulate 
synaptic plasticity (Di Lucente et al., 2024) and modulate the 
gut microbiome (Dilmore et al., 2023) among other eects. 
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(iii) Meditation/mindfulness: Meditation may oer promising 
benefits for individuals with Alzheimer’s disease (AD) 
and mild cognitive impairment (MCI), potentially slowing 
cognitive decline and improving well-being, as well as 
promoting AD prevention (Khalsa, 2015; Chen et al., 2020; 
Guzman-Martinez et al., 2021a). Meditation improves 
cognitive function in adults with cognitive decline 
(Innes et al., 2017). Also, it improves the blood flow to 
the brain (Khalsa et al., 2009), and promotes structural 
changes in patients with MCI or AD (Dwivedi et al., 
2021), which includes a reduction of brain atrophy. This 
in turn improves brain connectivity. Also, meditation 
downregulates stress and anxiety, some of the most 
common neuropsychological symptoms in AD (Khalsa, 
2015). 

(iv) Cognitive stimulation: solving puzzles, reading, and 
writing by hand promote cognitive stimulation, which 
in preclinical AD is associated with brain structure 
and cognitive function (Schultz et al., 2015). Studies 
have shown that in AD patients undergoing cognitive 
stimulation programs improve their cognitive plasticity 
(Zamarrón Cassinello et al., 2008) and in early-stage 
AD, it improves neuropsychological symptoms such 
as apathy (Buettner et al., 2011). Also, cognitive 
stimulation improves connectivity and cognition in 
AD patients (Behfar et al., 2023). Indeed, multisensory 
stimulation had a positive eect not only on cognition 
but also decreased depression and anxiety levels, thus 
improving neuropsychological symptoms on AD patients 
(Ozdemir and Akdemir, 2009). 

(v) Nutraceuticals and supplements: In addition to a healthy diet, 
it is important to complement it with relevant nutraceuticals 
and supplements that could benefit cognitive health and 
preserve brain function. A nutraceutical formulation, Brain-
Up 10 R , containing Andean shilajit and Vitamin B complex 
(Carrasco-Gallardo et al., 2012a), has been validated in clinical 
trials (Guzman-Martinez et al., 2021b). The Andean shilajit 
is rich in humic and fulvic acids, compounds that promote 
disassembly of tau fibrils in vitro (Cornejo et al., 2011). 
This formulation improves neuropsychological symptoms in 
patients, especially apathy (Guzman-Martinez et al., 2021b). In 
a pre-clinical study, the shilajit and Brain-Up 10 R  formulation 
increased the number of neuronal processes and their length 
(Carrasco-Gallardo et al., 2012b). When the Andean shilajit 
was chemically fractionated, a neuritogenic eect in vitro 
of the fractions was observed, which was higher than that 
of the shilajit (Andrade et al., 2023). Regarding functional 
compounds, we can mention several, such as polyphenols 
(Choi et al., 2012; Caruso et al., 2022), flavonoids (Hasan 
et al., 2023), anthocyanins (Ma et al., 2018; Afzal et al., 
2019), quercetin (Zaplatic et al., 2019; Zhang et al., 2020; 
Chiang et al., 2023) and curcumin (Tang et al., 2017; 
Voulgaropoulou et al., 2019; Shao et al., 2023; Abdul-
Rahman et al., 2024), just to mention a few. These bioactive 
compounds are characterized by their anti-inflammatory, 
antioxidant eect, alongside other particular properties such 
as epigenetic regulation of key molecular pathways involved 
in AD. Finally, regarding supplements, vitamins B9 and 
B12 promote neuroprotection, improving synaptic plasticity 
(Mehrdad et al., 2023) and reducing neuroinflammation 

FIGURE 3 

The five major scopes for prevention of Alzheimer’s disease. Considering that sporadic Alzheimer’s disease (AD) in over 80% can be prevented and 
its progression slowed by modifying some of the modifiable risk factors, nutrition, cognitive stimulation, a healthy diet, exercise, correct 
supplementation with nutraceuticals, and meditation all promote an improvement in cognitive performance and contribute to the prevention of AD. 
But for them to work, it is necessary to detect AD in a preclinical stage, prior to the manifestation of cognitive decline. 
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(Chen et al., 2021). It should be considered that high levels 
of homocysteine are considered a risk factor for AD (Miller, 
1999; Seshadri et al., 2002). Vitamins B12 and B9 act as 
coenzymes for remethylation and posterior conversion to 
methionine (McCaddon and Miller, 2023), which would 
prevent hyperhomocysteinemia. 

These major scopes for AD prevention/slow-down progression 
are summarized in Figure 3. 

A recent United States POINTERS study demonstrated 
that with a structured lifestyle intervention, including MIND 
diet, regular moderate-to-high-intensity physical exercise, social 
engagement, cognitive challenge and cardiovascular health 
monitoring, a significant improvement in global cognition was 
observed (Baker et al., 2025). The latter includes at least 4 of the 
5 scopes previously mentioned. Therefore, it is very relevant an 
early detection by sensitive biomarkers (Guzmán-Martínez et al., 
2019), since it will allow an opportune intervention using clinically 
guided lifestyle changes. 

Conclusion 

In this review, we briefly summarize the state-of-the-
art regarding new frontiers in Alzheimer’s disease, from its 
etiopathogenesis to the most recent research in terms of eective 
therapies, biomarkers, and preventive measures. Given that even 
modest advances in therapeutic and preventative strategies 
that lead to small delays in the onset and progression of 
Alzheimer’s disease can significantly reduce the global burden 
of this disease (Brookmeyer et al., 2007), the development of 
eective interventions remains a high priority. The precise 
mechanisms underlying the pathogenesis of Alzheimer’s 
Disease are incompletely understood, but involve a complex 
interplay of genetic predisposition, environmental factors, and 
lifestyle influences. 

However, for any treatment or preventive measure to be 
eective, it is necessary to screen patients in a pre-clinical stage, 
before the manifestation of the neuropsychological symptoms. 
Current FDA-approved biomarkers, such as PET scans and CSF 
biomarkers, only provide diagnosis in a post-clinical stage, when 
the neuropsychological symptoms are evident. Added to that, they 
are expensive and invasive, thus they are not a routine-based test 
that could be taken for preventive scopes. Now, current research 
is focused on providing a cost-eective, early-detection, blood-
based biomarker. An example of this is the Alz-tau R  biomarker 
(Guzmán-Martínez et al., 2019), which is clinically validated and 
implemented in several health facilities. The challenge of blood-
based biomarkers is that the proteins employed as biomarkers are 
in low quantity in blood or serum, which is why novel technologies 
such as SIMOA R  and Lumipulse R  provide ultrasensitive detection. 
However, implementing these technologies on a routine basis in 
clinical examination is still ongoing. 

Since advances in terms of eective therapies and early-
detection biomarkers are noted, but insuÿcient, prevention is key 
(Weninger et al., 2016; Guzman-Martinez et al., 2021a). Changes 
in lifestyle, such as adopting a Mediterranean diet, exercising, and 

reading to promote cognitive stimulation, may be key to preventing 
the cognitive decline associated with AD. 

Further research is needed to identify and validate novel 
drug targets and to develop innovative therapeutic strategies that 
can eectively prevent, delay, or reverse the progression of this 
devastating disease. 
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