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The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor

linked to the control of immunological responses. Although AhR has been

investigated in relation to lipopolysaccharide (LPS) peripheral inflammation,

its role in LPS-induced, astrocyte-mediated inflammation in vivo is unknown.

This study explores the effect of AhR deletion on astrocyte reactivity and

neuroinflammation responses to lipopolysaccharide (LPS). The results show

that AhR loss aggravates LPS-induced inflammatory responses using a AhR

germline knockout (AhRKO) mouse by increasing pro-inflammatory cytokines

levels (TNF-α, IL-1β) and inducible nitric oxide synthase (iNOS) in both primary

astrocyte cultures and the mouse hippocampus. Morphologically, astrocytes

and microglia from AhRKO mice show increased soma size following LPS

injection, suggesting increased glial activation. In addition, AhRKO mice

displayed more severe weight loss and locomotor impairment behaviorally

following a single systemic LPS injection. Elevated nuclear translocation of NF-

κB p65 in AhR-deficient astrocytes provides a potential mechanism for elevated

pro-inflammatory signaling. These results emphasize an immunomodulatory

role for AhR in reducing astrocyte-driven inflammation and identify AhR

as possible therapeutic target for neurodegenerative illnesses linked with

neuroinflammatory responses.
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1 Introduction

Astrocytes are morphologically complex cells that are diverse and heterogenous across
several brain regions (Oberheim et al., 2012; Vidal-Itriago et al., 2022; Zhou et al.,
2019). These cells are reported to be involved in neuroinflammation-linked disorders,
such as Alzheimer’s disease and Parkinson’s disease (Kwon and Koh, 2020; Zhao et al.,
2024). Mouse neuroinflammatory models have previously been developed to study the
response of glial cells to toxins or genetic alterations (da Silva et al., 2024; Nazem et al.,
2015; Schwab et al., 2010). Lipopolysaccharide (LPS), injected either systemically or
intracerebrally (Qin et al., 2007; Zhao et al., 2019), serves as a common experimental model
for inducing CNS inflammation and mirrors the neuroinflammatory signature observed
in many neurodegenerative diseases. LPS injection activates astrocytes and microglia in
mice (Brandi et al., 2022; da Silva et al., 2024; Norden et al., 2016). Although cytokines,
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chemokines and other genes linked to astrocyte or microglia 
inflammatory responses have been used as biomarkers to 
characterize glial reactivity in the LPS model, morphological 
changes of glia cells are also recognized as structural features of 
neuroinflammation (Diaz-Castro et al., 2021; Guerrero-Carrasco 
et al., 2024). Activated astrocytes exhibit anatomical hypertrophy, 
which includes increased soma size and thickening of main 
branches, as well as increased overall branching (Gomes et al., 
2024; Pekny and Pekna, 2014). Also, microglial cells switch from 
a homeostatic ramified shape to a unramified ameboid shape 
following either systemic or intracerebral LPS administration 
(Kim et al., 2024). 

Aryl hydrocarbon receptor, a ligand activated transcription 
factor, is expressed in both astrocytes and microglia, and has 
been implicated in age-related disease processes (Rothhammer 
et al., 2021; Wheeler et al., 2019; Zhou et al., 2021). Heighted 
inflammatory responses in peripheral tissues such as lungs and 
liver have been reported in AhR-deficient mice after systemic 
LPS injection (Sekine et al., 2009; Wu et al., 2011). Moreover, 
AhR signaling also serves as a crucial regulator of immunological 
response to LPS by microglia in various in vitro systems (Khan 
et al., 2021; Lee et al., 2015). AhR-mediated astrocyte functionality 
in response to CNS inflammatory stimulants such as LPS both 
in vitro and in vivo, under conditions that more closely represents 
physiological responses of glia cells in the brain, requires further 
investigation. Therefore, the aim of this study is to determine 
how AhR mediates astrocyte cell reactivity in the context of their 
native environment during inflammatory conditions using changes 
in morphological features, cytokines, and changes in behavior, as 
indicators of the inflammatory response. 

2 Materials and methods 

2.1 Animals 

Protocols for animal utilization received approval from the 
Institutional Animal Care and Use Committee at Southern Illinois 
University School of Medicine and were executed in compliance 
with the Guide for the Care and Use of Laboratory Animals 
as established by the National Institutes of Health. Experiments 
utilized 9–10-week-old male C57BL/6J, germ line AhR null 
(AhRKO) Bradfield strain (Schmidt et al., 1996), obtained from the 
Jackson Laboratory (Bar Harbor, ME) and bred at the Southern 
Illinois University School of Medicine animal facilities. All animals 
were housed in groups and entrained to a control 12:12 h light: dark 
schedule with food and water provided ad libitum. 

2.2 Primary cell cultures 

Primary hippocampus cell cultures were established from 
postnatal day 0–1 C57BL6/J and AhRKO pups using methods 
previously described by Gutiérrez-Vázquez and Quintana, 2022. 
Hippocampi were dissected and dissociated using papain (EC 
3.4.22.2; Brain Bits) treatment, followed by trituration with sterile 
glass pipettes. Hippocampal cells were cultured using NbAstro 
medium (Brain Bits) (Neurobasal, 10% horse serum, Glutamax, 

and 1% penicillin/streptomycin) at 37 ◦C with 5% CO2 for days 
in vitro (DIV) 10–14. The cell culture media was changed the day 
following seeding and subsequently every 3 days. Upon reaching 
approximately 90% confluence, adherent astrocytes were detached 
using Trypsin (0.25%) (Cat: 15050057; Gibco, United States) and 
subsequently replated, maintaining them in serum-free media 
for an additional 1–2 days before exposure to 250 ng/ml of 
LPS from Escherichia coli 0127: B8 (Sigma-Aldrich Cat: L3129). 
Approximately 96% of cultured astrocytes were stained with 
polyclonal glial fibrillary acidic protein (GFAP) as previous shown 
in our lab (Ojo et al., 2025). 

2.3 LPS injection 

Male mice aged 9–10 weeks received a single intraperitoneal 
injection of 5 mg/kg LPS (from Escherichia coli 0127: B8 Sigma-
Aldrich Cat: L3129) or PBS. LPS was solubilized in PBS to achieve 
a final concentration of 1 mg/ml, and the injection volume was 
calculated according to body weight. Twenty-four hours post-
injection, some mice were euthanized, and the brain was harvested 
for histological and molecular analysis while the other mice were 
utilized for behavioral studies. 

2.4 RNA extraction and qPCR 

2–2.5 × 106 astrocytes per T-25 flask, and mouse hippocampi 
were lysed in Trizol (Fisher Scientific, Hampton, NH, 
United States), and RNA was isolated using the extraction 
protocol. cDNA was synthesized and SYBR green-based real-time 
reverse transcriptase PCR was performed on a Quant-Studio 
real-time PCR system. Gene expression values were normalized 
using GAPDH as the housekeeping gene, and relative mRNA levels 
were determined using the Ct method. The primer sequences 
for real-time PCR are provided in Table 1. 

2.5 Immunofluorescence (IF) 

A total of 50,000 hippocampal astrocytes per 4-well glass 
slide (1.7 cm2 per well) were washed with PBS and subsequently 
fixed with 4% paraformaldehyde (PFA) for 20 min at room 
temperature. Cells were permeabilized with PBST (0.1M PBS with 
0.25% TritonX-100), followed by a 1-h incubation in a solution of 
10% normal goat serum and 1% bovine serum albumin (BSA). After 
incubation, primary antibodies were applied at 4 ◦C overnight. 
Cells were rinsed with PBST (0.1M PBS with 0.25% TritonX-
100) before incubation with secondary antibodies in the dark at 
room temperature for 2 h. The cells were subsequently washed 
in PBST and were cover slipped with ProLongTM Gold antifade 
reagent containing DAPI. Staining was examined using confocal 
microscopy, and number of cells with p65 nuclear translocation 
were counted with National Institute of Health Image J Software 
1.48 (RRID:SCR_003070) by accessing the Dapi/p65 overlay in 
astrocyte cells. Primary antibodies included: Chicken polyclonal 
glial fibrillary acidic protein antibody (1:1000 biosensis Catlog:C-
1373-50), Rabbit monoclonal anti-NF-KB p65 antibody (1:400 Cell 
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TABLE 1 List of primers. 

Genes Forward primer sequence Reverse primer sequence 

TNF-α 5-CCA CCA CGCTCT TCT GTCTAC-3 5-AGG GTC TGG GCCATA GAA CT-3 

IL-β 5-AGATGAAGGGCTGCTTCCAAA-3 5-GGAAGGTCCACGGGAAAGAC-3 

IL-10 5-AGGCGCTGTCATCGATTTCT-3 5-ATGGCCTTGTAGACACCTTGG-3 

iNOS 5-ACATCGACCCGTCCACAGTAT-3 5-CAGAGGGGTAGGCTTGTCTC-3 

CCL2 5-CCACTCACCTGCTGCTACTCAT-3 5-TGGTGATCCTCTTGTAGCTCTCC-3 

C3 5-AGCTTCAGGGTCCCAGCTAC-3 5-GCTGGAATCTTGATGGAGACGC-3 

S100A10 5-CCAGGTTTCGACAGACTCTTC-3 5-CCGTTCCATGAGCACTCTC-3 

GAPDH 5-ATGGTGAAGGTCGGTGTGAAC-3 5-TGTAGTTGAGGTCAATGAAGG-3 

signaling Catlog:#8242) while secondary antibodies used were Goat 
anti-chicken IgY H&L (Alexa Fluor R  594) 1:1000, Goat anti-rabbit 
IgG (H+L) (Alexa Fluor R  488) 1:1000. 

For tissue staining, 20 µm hippocampal sections were cut 
on a cryostat (Model HM525 NX, ThermoFisher Scientific). 
Serial sections were extracted from every sixth section of 
the hippocampus. Hippocampal slices were subjected to 
immunofluorescence using a chicken polyclonal glial fibrillary 
acidic protein (GFAP) antibody at a dilution of 1:500 and a rabbit 
polyclonal anti-IBA1 antibody at a dilution of 1:500. Sections 
were permeabilized in PBST (0.1M PBS with 0.25% Triton X-100) 
and subsequently washed three times for 10 min each in sodium 
borohydride in PBS (1 mg/ml) for antigen retrieval. Slices were 
then subjected to another wash with PBST and subsequently 
incubated in a solution of 10% normal goat serum and 1% BSA 
for 1 h. Primary antibodies were then applied to the hippocampal 
sections in a humid chamber at 4 ◦C. On the subsequent day, slices 
were washed in PBST and incubated with the secondary antibody 
(goat anti-rabbit IgG H&L and goat anti-chicken IgY at 1:1000 
dilution) for 2 h. The sections were subsequently washed in PBST 
and were covered with DAPI-containing ProLongTM Gold antifade 
reagent. Z-stack images of five optical slices at 1 µm were obtained 
using a 40x oil immersion objective (numerical aperture 1.3) with 
adjusted pinhole size of 0.81 AU on a Zeiss LSM800 confocal 
microscopy system at 1,024 × 1,024 pixels. For astrocyte and 
microglia soma size, 40X z stacks confocal images were imported 
into the imaris software and a 3D surface were built around the 
immunofluorescence z-stacks based on GFAP and IBA-1 staining 
of the cells, total soma size was determined and exported. 

2.6 Behavioral battery 

Mice were evaluated using a behavioral battery to explore 
locomotion and memory function. All behavioral assessments 
were conducted under low red-light conditions (15–20 lux) 
during the dark phase, 24 h following injection of LPS. Video 
tracking and automated analysis (Noldus EthovisionXT v17.5) were 
employed to assess animal behavior in the open field, Y-maze, and 
Novel Object tests. 

2.6.1 Y-maze 
Using a Y-shaped maze with three arms each 35 cm long 

and 5 cm wide, each diverging from a central point at 120◦ 

angles, with walls 20 cm high, short-term working memory was 
measured. For 10 min, mice were allowed to explore the novel 
Y-maze while their entry was recorded as the moment the mouse’s 
body passed into an arm. The total number of arm entries 
and spontaneous alternations (entry into three distinct arms in 
successive choices) were recorded and expressed as a percentage 
of alternation (number of alternations divided by total number 
of arm entries). 

2.6.2 Open field test 
Mice were assessed in an open field (40 × 40 cm box) for 

30 min to measure motor function. Mice were monitored in an 
open field to assess total voluntary distance traveled, duration spent 
in the center (20 × 20 cm) area equidistant from all edges, total 
entries into the center. The center point of the body was utilized to 
ascertain the mouse’s location within the arena. 

2.6.3 Novel Object Recognition 
The Novel Object Recognition (NOR) assay was employed to 

evaluate long-term memory in mice by quantifying the exploration 
duration of a novel object relative to a familiar object within a 
testing arena. The mice were initially positioned in the NOR testing 
arena (40 × 40 cm box) for a 30-min habituation period. Twenty-
four hours post-habituation, two similar objects were introduced 
into the testing arena, and mice were permitted to explore the 
objects for 10 min; this phase is referred to as the training day. 
Following a 24-h inter-session interval, mice were reintroduced 
into the novel object test arena for 10 min, where they encountered 
one familiar object from the prior training day alongside a novel 
object to assess memory retention. Novelty preference (% time) was 
determined by the ratio of total time spent with the novel object to 
the total time spent with both objects. 

2.7 Statistical analysis 

Prism (GraphPad Software, Inc., La Jolla, CA; RRID:SCR_ 
002798) software was used for statistical analyses. Data are 
presented as mean ± SEM. Unless otherwise stated, all cell 
culture experiments were repeated at least three times, from 
separate dissections. One-way or two-way ANOVA with Tukey’s 
post-hoc tests were utilized to identify significant dierences 
between groups, where appropriate. For all behavioral assays, both 
automated and manual data were acquired from EthoVision XT 
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FIGURE 1 

Aryl hydrocarbon receptor (AhR) deletion increases lipopolysaccharide (LPS)-induced inflammatory response in primary astrocyte cell culture. 
(A) Fold change of mRNA levels relative to control expression levels of inflammatory cytokines in hippocampal astrocytes pretreated with FICZ 
(250 nM) followed by LPS for 24 h. Data represent mean ± S.E.M, n = 3–4 independent biological replicates. *P < 0.05, **P < 0.01 by One-way 
ANOVA with Tukey’s post hoc comparison. (B) Fold change of mRNA levels relative to wild type expression levels of inflammatory cytokines in 
AhR-deficient astrocytes treated with by LPS for 24 h. Data represent mean ± S.E.M, n = 3–4 independent biological replicates. 
**P < 0.01,***P < 0.001, ****P < 0.0001 by Two-way ANOVA with Tukey’s post hoc comparison. 

17.5 and measurements were analyzed using two-way ANOVA 
with Tukey’s post-hoc tests. Statistical significance was defined as 
p < 0.05. 

3 Results 

3.1 AhR deletion increases 
pro-inflammatory cytokine levels in 
astrocyte cell culture and hippocampus 
of LPS treated mice 

Prior research has shown that AhR activation exerts 
immunosuppressive eects on LPS-induced proinflammatory 
cytokine production in primary microglial cultures (Brandi et al., 
2022; Guerrero-Carrasco et al., 2024; Kim et al., 2024). Therefore, 
we determined whether AhR activation elicits a comparable 
immunomodulatory response in astrocytes under conditions of 
acute LPS-induced neuroinflammation in an in vitro system. 

Cytokine profiling was performed to assess the impact of 
AhR signaling on LPS-induced astrocyte reactivity in vitro. 
LPS treatment elevated the transcript levels of various pro-
inflammatory cytokines (TNF-α, IL-1β, and CCL2). Furthermore, 
pretreatment of astrocytes with the AhR agonist, FICZ, suppressed 
the LPS-induced increase in TNF-α [F (3,12) = 9.392, p = 0.0018], IL-
1β [F (3,10) = 83.24, p < 0.0001], CCL2 [F (3,12) = 14.92, p = 0.0002, 
one-way ANOVA] pro-inflammatory cytokines (Figure 1A). 
Previous studies from our lab have confirmed that AhR is activated 
by FICZ by assessing downstream targets Cyp1a1 in our astrocyte 
culture (Ojo et al., 2025). In contrast, AhRKO-derived astrocyte 
cell cultures treated with LPS exhibited significant increases in the 
transcript levels of TNF-α [F (1,12) = 32.79, p < 0.0001], IL-1β [F 

(1,12) = 10.86, p = 0.0064], CCL2 [F (1,12) = 12.09, p = 0.0046, 
two-way ANOVA] when compared to LPS-treated wild type 
controls. To assess anti-inflammatory cytokines, IL-10 transcript 
levels were evaluated. Surprisingly AhRKO-derived astrocytes also 
demonstrated more robust elevation of IL-10 mRNA levels 24 h 
following LPS treatment [F (1,11) = 11.43, p = 0.0061, two-way 
ANOVA] (Figure 1B). In addition to elevated pro-inflammatory 

cytokines, LPS also enhanced the levels of inducible nitric oxide 
synthase (iNOS) in our astrocyte cell culture system. Although 
these levels were not diminished by FICZ pretreatment, iNOS 
transcript levels were elevated in AhR-deficient astrocyte cells [F 

(1,11) = 12.45, p = 0.0047, two-way ANOVA]. We observed that 
untreated AhR-deficient astrocyte cultures exhibited a trend toward 
an increase in proinflammatory cytokines compared to untreated 
wildtype astrocyte cultures, this indicates that the absence of AhR 
in astrocyte cells, in the absence of inflammatory stimuli, renders 
these cells susceptible to inflammatory processes (Figure 1B). 

In vivo, LPS treatment produced significantly higher transcript 
levels for various pro-inflammatory cytokines (TNF-α and IL-1β). 
However, similar to the in vitro astrocyte culture, the hippocampus 
of LPS-treated AhRKO mice exhibited significantly increased levels 
of TNF-α [F (1,8) = 88.82, p < 0.0001, two-way ANOVA] and IL-
1β [F (1,12) = 28.31, p = 0.0002, two-way ANOVA] compared to 
LPS-treated wild-type controls (Figures 2A, B). Notably, increased 
levels of anti-inflammatory cytokine-associated genes (S100A10 
and IL-10) [F (1,11) = 42.30, p < 0.0001, two-way ANOVA] were 
also observed in LPS-treated AhRKO mice (Figures 2C, D). We 
also assessed the levels of iNOS (marker for oxidative stress) and 
C3 (marker for reactive glia cells) in the hippocampus of LPS 
injected mice. iNOS mRNA was substantially increased in LPS-
injected AhRKO mice relative to LPS injected wild-type mice [F 

(1,12) = 6.101, p = 0.0295, two-way ANOVA], with no significant 
changes in C3 mRNA [F (1,11) = 0.5071, p = 0.4912, two-way 
ANOVA] (Figures 2E, F). Altogether, these results suggest that 
deletion of AhR heightened the immune response to inflammatory 
stimuli, as observed both in vitro in primary astrocyte cultures and 
in vivo in extracts derived from whole hippocampus. 

3.2 AhRKO exacerbates the 
morphological glial cell inflammatory 
response to LPS in vivo 

To assess the eect of AhR deficiency on the inflammatory 
response of glial cells in their native environment, structural 
alterations in astrocytes and microglia were evaluated following a 
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FIGURE 2 

Aryl hydrocarbon receptor germline knockout (AhRKO) mice exhibit enhanced pro-inflammatory cytokine levels in the hippocampus. (A–F) Fold 
change of mRNA levels relative to wild type expression levels of inflammatory cytokines in the hippocampus of PBS and lipopolysaccharide (LPS) 
treated mice 24 h after injection. Data represent mean ± S.E.M, n = 3–4 animals per group. *P < 0.05, **P < 0.01, ****P < 0.0001 by Two-way 
ANOVA with Tukey’s post hoc comparison. 

single, acute systemic injection of LPS. In this neuroinflammatory 
model, a substantial population of hippocampal microglia and 
astrocytes exhibit inflammatory-induced morphological alterations 
24 h after a single LPS injection. LPS generated an increase 
in astrocyte soma size compared to the PBS-treated group [F 

(1,226) = 36.61, p < 0.0001, two-way ANOVA]; furthermore, these 
structural alterations were exacerbated in AhRKO mice astrocytes, 
which had more hypertrophic characteristics than LPS-treated 
wild-type controls (Figures 3A, B). Comparatively, microglia in 
AhRKO animals also exhibited a higher inflammatory response, 
shown by a larger soma size than wild-type controls treated with 
LPS [F (1,208) = 7.556, p = 0.0065, two-way ANOVA] (Figures 3C, 
D). These results further support the idea that AhRKO mice exhibit 
heightened sensitivity to LPS treatment in the brain. 

To examine the signaling pathway by which AhR interacts 
to reduce the release of pro-inflammatory cytokines in astrocytes 
cultures after inflammatory stimulation, p65 NF-κB nuclear 
translocation was assessed 2 h following LPS treatment. LPS 
promoted more nuclear accumulation of p65 NF-κB in AhR-
deficient astrocytes relative to the wild type astrocytes [F 

(1,12) = 6.804, p = 0.0229, two-way ANOVA] (Figures 4A, B). Thus, 
from these results AhR activation might be interfering with NF-
κB signaling to exert an immunosuppressive eect on astrocytes in 
response to LPS. 

3.3 Behavioral alterations induced by 
systemic LPS administration are 
amplified in AhRKO mice 

The impact of AhR deficiency on LPS-induced behavioral 
alterations were determined by assessing weight changes, cognitive 

impairment, and locomotor activity subsequent to systemic LPS 
injection (Figure 5A). LPS treatment resulted in a significant 
decrease in body weight compared to PBS injection throughout 
four days of weight assessment in mice; however, LPS-injected 
AhRKO animals exhibited more pronounced weight loss and 
resistance to returning to the normal weight range by Day 4 post-
LPS injection [F (9,182) = 3.268, p = 0.0010, two-way ANOVA] 
(Figure 5B). No significant cognitive dierences were found in the 
Y-maze [F (1,38) = 0.3016, p = 0.5861, two-way ANOVA] or Novel 
Object test [F (1,38) = 3.358, p = 0.0747, two-way ANOVA] between 
the PBS and LPS-treated mice (Figures 5C, D). In the open field 
test, LPS administration reduced the overall distance traveled by 
the mice in comparison to those treated with PBS [F (1,38) = 15.51, 
p = 0.0003, two-way ANOVA]. However, the diminished locomotor 
activity was more noticeable in the AhRKO mice administered LPS 
[F (1,38) = 0.07172, p = 0.7903, two-way ANOVA] (Figure 5E). 
PBS-treated AhRKO mice also spent less time in the center of the 
open field box compared to PBS-treated wild-type mice, which is 
an indication of anxiety-like behavior displayed by AhRKO mice 
[F (1,38) = 21.44, p < 0.0001, two-way ANOVA] (Figure 5F). 
Overall, these findings indicate that the deletion of AhR in mice 
amplifies acute behavioral alterations triggered by systemic LPS 
administration, particularly locomotor activity and body weight. 

4 Discussion 

A key mechanism by which the astrocytes participate in 
inflammatory responses during pathological conditions is by 
release of pro-inflammatory cytokines, chemokines, and other 
neurotoxic factors that promote neuronal dysfunction and 
synaptic loss (Kwon and Koh, 2020; Lee et al., 2023). This 
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FIGURE 3 

Aryl hydrocarbon receptor (AhR) deletion exacerbates glial cell inflammatory response to lipopolysaccharide (LPS) in vivo. (A) Representative 
immunofluorescence stain of astrocytes in the CA1 region of the hippocampus 24 h post-LPS injection (B) Quantification of astrocyte soma size 
(µm 2 ), total of 50–60 astrocytes per group. Data represent mean ± S.E.M, n = 4 animals per group. *P < 0.05, **P < 0.01, ****P < 0.0001 by
Two-way ANOVA with Tukey’s post hoc comparison. All images taken at 40 × magnification, scale bar = 20 µm (C) Representative 
immunofluorescence stain of astrocytes in the CA1 region of the hippocampus 24 h post-LPS injection. (D) Quantification of microglial soma size 
(µm 2 ), total of 50–60 microglia per group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by Two-way ANOVA with Tukey’s post hoc
comparison. All images taken at 40 × magnification, scale bar = 20 µm 

FIGURE 4 

Aryl hydrocarbon receptor (AhR) deletion induces astrocyte cytokine expression through p65 NF-κB activation. (A) Representative images of primary 
astrocyte cells co-stained with glial fibrillary acidic protein (GFAP) (Red), p65 NF-κB (green) and dapi (blue). (B) Quantification of p65 positive cells in 
the nucleus of astrocytes following lipopolysaccharide (LPS) treatment. Data represents mean ± S.E.M, n = 4 independent biological 
replicates. ∗ P < 0.05, by Two-way ANOVA with Tukey’s post hoc comparison. Images taken at 40 × magnification with scale bar = 20 µm from five 
different fields for each well. 

study demonstrated that AhR deletion intensifies inflammatory 

responses in astrocytes after LPS-induced systemic inflammation, 
which builds upon evidence from previous studies reporting 

hyper-responsiveness of AhR knockout mice to LPS, and 

immunosuppressive eects of AhR activation in immune cells 
(Kimura et al., 2009; Sekine et al., 2009; Zhu et al., 2018). The 
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FIGURE 5 

Aryl hydrocarbon receptor germline knockout (AhRKO) mice exhibited amplified behavioral changes following systemic lipopolysaccharide (LPS) 
treatment. (A) Schematic showing the overview of behavioral test design (B) Quantification of changes in body weight over 4 days following a single 
I.P injection of LPS (C) Percentage number of spontaneous alternations during Y-maze test 24 h post LPS injection. Data represent mean ± S.E.M, 
n = 9–12 animals per group (D) Duration spent with novel object during testing phase Data represent mean ± S.E.M, n = 10–12 animals per group 
(E) Total distance moved within 30 min period of open field exploration (F) Total time spent (s) at the center of the open field box during exploration. 
Data represent mean ± S.E.M, n = 9–12 animals per group. *P < 0.05, **P < 0.01, ***P < 0.001 by Two -way ANOVA with Tukey’s post hoc. 

current study adds to the understanding of AhR signaling in 
regulating neuroinflammation through the immune responses of 
glial cells, specifically by modifying the morphology and cytokine 
expression of astrocytes and microglia in an in vivo system, 
potentially through regulation of NFkB. 

Lipopolysaccharide injection is a common model for 
generating CNS inflammation; it mirrors neuroinflammatory 
signatures observed in neurodegenerative diseases (Cunningham 
et al., 2009; Deng et al., 2020; Lopez-Rodriguez et al., 2021). 
Multiple investigations have clearly demonstrated the activation 
of astrocytes and microglia subsequent to LPS injection in mice 
(Brandi et al., 2022; da Silva et al., 2024; Norden et al., 2016). 
While the molecular characteristics of glial reactivity are frequently 
used as outputs to define neuroinflammatory signatures, the 
dynamic and heterogenous morphological changes can also be 
used as markers of inflammation in various disease states (Kim 
et al., 2024; Li et al., 2023; Yakovlev et al., 2024). This study 
demonstrated that a single, systemic dose of LPS elicited profound 
astrocytic hypertrophic alterations in the mouse hippocampus, 
which is consistent with previously reported characteristics of 
activated astrocytes (Agnew-Svoboda et al., 2022; Diaz-Castro 
et al., 2021; Xingi et al., 2023). Moreover, the impact of LPS on 
molecular markers and morphological changes was markedly 
intensified AhR-depleted animals. Similarly, microglia in AhRKO 
animals also showed an exaggerated inflammatory response, as 
evidenced by increased soma size. The heightened morphological 
changes of glial cells to inflammatory stimuli seen in the brain 
of AhRKO mice indicates that the presence of AhR signaling 
during neuroinflammation may function as a critical checkpoint 
for modulating glial reactivity in the brain. Consistent with 
prior studies that identified AhR signaling as an immunological 
regulator in peripheral systems and immune cells, our studies 

corroborate this idea, and extends these findings to specific 
astrocytes and microglia within the brain. The presence of 
AhR signaling limits the activation of glial cells in response to 
inflammatory signals, thereby protecting the brain from intensified 
inflammatory responses following acute exposure to LPS. This 
serves as a foundational link that elucidates the function of AhR 
in regulating glial cells, particularly astrocyte responsiveness, 
within the framework of LPS-induced inflammation in the brain. 
Numerous immune cytokines have been associated with the onset 
and pathogenesis of various neuroinflammatory diseases. During 
the initiation and progress of neuroinflammation, reactive glial 
cells experience molecular alterations, including the secretion 
of proinflammatory cytokines such as IL-1β and TNF-α. The 
release of these cytokines in the brain promotes amplification 
of neuroinflammatory signaling and sustains the activation of 
glial cells, thereby contributing to chronic neuroinflammatory 
processes. AhR signaling contributes to shaping the transcriptional 
response of immune cells to inflammatory stimuli by binding 
to the DNA as a transcriptional factor to influence cytokines 
production (DiNatale et al., 2010; Ishihara et al., 2019; Kerkvliet, 
2009). In our in vitro LPS model, AhR-deficient astrocytes had 
increased proinflammatory cytokine levels. The pro-inflammatory 
cytokine profile results observed in AhR-deficient astrocytes are 
consistent with previous studies utilizing primary microglial 
cultures, therefore indicating comparable AhR activation eects in 
both astrocytes and microglia immunological responses following 
LPS stimulation. Nevertheless, studies employing astrocyte– 
microglia co-culture systems are warranted, as such in vitro 
models would more accurately recapitulate the physiological 
neuroinflammatory cytokines responses observed in vivo, where 
astrocyte–microglia crosstalk plays a critical role in shaping 
inflammatory dynamics. Similarly, the hippocampus of AhRKO 
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mice administered LPS systemically also demonstrated elevated 
production of inflammatory cytokines, such as TNF-α and IL-1β, 
thus providing more evidence that AhR regulates brain immune 
responses. However, we cannot exclude a potential contribution 
from AhR depletion in peripheral immune cells, as this study 
employed germ line AhR depleted mice. Peripheral immune cells 
may potentially aect the response of astrocytes or microglia to 
inflammatory stimuli, particularly when the blood-brain barrier 
has been compromised (Barton et al., 2019; Peng et al., 2021; 
VanHook, 2024). Thus, future experiments studying the response 
of astrocyte cells to inflammatory stimuli in mice with astrocyte-
specific AhR deletion using eÿcient gene targeting strategies is 
still necessary. 

A potential mechanism to explain how deletion of AhR 
increases proinflammatory cytokines in astrocytes after LPS is 
through interactions with NF-κB signaling, a major regulator of 
proinflammatory cytokine production in glia cells (Anilkumar and 
Wright-Jin, 2024; Dresselhaus and Meert, 2019). In this study, 
enhanced NF-κB p65 translocation was observed in LPS-treated 
AhR-deficient astrocyte cultures, which is consistent with previous 
studies (Lin et al., 2022; Rothhammer et al., 2016). Surprisingly, 
we also observed an elevation of the anti-inflammatory cytokines 
IL-10 and S100A10 in the brains of AhRKO mice and in 
astrocyte cell cultures derived from AhRKO mice treated with 
LPS. When inflammatory stimuli activate astrocytes and microglia, 
elevated levels of IL-10 and S100A10 mostly suggest enhanced 
neuroprotective characteristics (King et al., 2020; Shanaki-Bavarsad 
et al., 2022). However, based on these findings, we speculate that 
these eects observed in LPS-treated AhRKO mice may result 
from compensatory mechanisms employed by neuroprotective 
glial phenotypes attempting to counterbalance the increased 
pro-inflammatory response (Barsig et al., 1995). While AhR 
activation by FICZ exerted immunosuppressive eects through 
the reduction of pro-inflammatory cytokine levels in our in vitro 
LPS model, iNOS expression remained unaected. Previous 
studies have reported that iNOS induction in astrocytes under 
inflammatory conditions involves multiple signaling pathways 
beyond NF-κB (Ko et al., 2018; Saha and Pahan, 2006). We 
speculate that the observed result may be attributed to the ligand-
bound AhR preferentially interacting with NF-κB-dependent 
signaling pathways that promote cytokine gene upregulation 
during the initial phase of LPS-induced neuroinflammation, while 
leaving other regulatory pathways that modulate iNOS-enhanced 
neuroimmunology responses in astrocyte cells unaected. 

Acute systemic administration of LPS has been documented in 
multiple studies to elicit behavioral alterations in mice, with motor 
activity and weight loss being the most significantly impacted 
(Biesmans et al., 2013; Sorrenti et al., 2018). In our study, similar 
behavioral changes were observed following LPS injection and 
deletion of AhR globally worsen the observed behavioral changes. 
Motor-related brain regions demonstrate enhanced glial cell 
inflammatory response following a single LPS injection (Carregosa 
et al., 2024). Thus, the diminished exploratory locomotor activity 
observed in AhRKO mice may be attributed to their heightened 
glial inflammatory response impacting the motor cortex. This study 
focused solely on the morphological alterations of microglia and 
astrocytes, as well as cytokine production in the hippocampus; 
however, future research examining the response of glial cells in 

AhRKO mice to LPS in the motor cortex is also necessary. Anxiety-
like behaviors were also displayed by AhRKO mice, as these mice 
spent reduced time spent in the center of the open field box; 
however, it is premature to draw definitive conclusions, as further 
investigations employing additional anxiety-related behavioral tests 
are need to corroborate these observations. With regards to 
memory, a single dose of LPS in this study had no eect. Numerous 
studies have indicated memory deficits in mice administered 
LPS, utilizing the Y-maze, Novel Object test, or Morris water 
maze memory test (Ganesan et al., 2024; Morimoto et al., 2023; 
Schirmbeck et al., 2023); however, those studies either employed 
a chronic LPS injection model or assessed memory deficits at a later 
time point than in the current study. 

Neuroinflammation is pivotal in the initiation of various 
neurodegenerative disorders, and integrates a complex interplay 
between resident immune cells in the brain, and the peripheral 
immune system (Maurya et al., 2024; Zang et al., 2022). Because loss 
of AhR seems to predispose both peripheral and central immune 
cells to heightened immunological responses, targeting AhR may be 
an intriguing therapeutic strategy to mitigate neuroinflammatory 
processes in various brain diseases. Also, considering that 
astrocytes and microglia interact in a bi-directional, cooperative 
manner to respond to pathological stimuli, augmenting AhR 
signaling in astrocytic cells may facilitate the maintenance or 
restoration of brain homeostasis by promoting neuronal survival 
and synaptic integrity, especially during the initial phases of 
ongoing inflammation. Future research focused on elucidating the 
role of AhR signaling in glial cells during chronic inflammatory 
states will be crucial for understanding the therapeutic potential of 
targeting AhR in neuroinflammatory disorders. 
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