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Aryl hydrocarbon receptor
deficiency enhances astrocyte
sensitivity to LPS-induced
iInflammation

Emmanuel Ojo! and Shelley A. Tischkaut2*

!Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL,
United States, 2Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois
University School of Medicine, Springdfield, IL, United States

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor
linked to the control of immunological responses. Although AhR has been
investigated in relation to lipopolysaccharide (LPS) peripheral inflammation,
its role in LPS-induced, astrocyte-mediated inflammation in vivo is unknown.
This study explores the effect of AhR deletion on astrocyte reactivity and
neuroinflammation responses to lipopolysaccharide (LPS). The results show
that AhR loss aggravates LPS-induced inflammatory responses using a AhR
germline knockout (AhRKO) mouse by increasing pro-inflammatory cytokines
levels (TNF-a, IL-1B) and inducible nitric oxide synthase (iNOS) in both primary
astrocyte cultures and the mouse hippocampus. Morphologically, astrocytes
and microglia from AhRKO mice show increased soma size following LPS
injection, suggesting increased glial activation. In addition, AhRKO mice
displayed more severe weight loss and locomotor impairment behaviorally
following a single systemic LPS injection. Elevated nuclear translocation of NF-
kB p65 in AhR-deficient astrocytes provides a potential mechanism for elevated
pro-inflammatory signaling. These results emphasize an immunomodulatory
role for AhR in reducing astrocyte-driven inflammation and identify AhR
as possible therapeutic target for neurodegenerative illnesses linked with
neuroinflammatory responses.
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1 Introduction

Astrocytes are morphologically complex cells that are diverse and heterogenous across
several brain regions (Oberheim et al, 2012; Vidal-Ttriago et al., 2022; Zhou et al,
2019). These cells are reported to be involved in neuroinflammation-linked disorders,
such as Alzheimer’s disease and Parkinson’s disease (Kwon and Koh, 2020; Zhao et al,,
2024). Mouse neuroinflammatory models have previously been developed to study the
response of glial cells to toxins or genetic alterations (da Silva et al., 2024; Nazem et al,
2015; Schwab et al, 2010). Lipopolysaccharide (LPS), injected either systemically or
intracerebrally (Qin et al., 2007; Zhao et al., 2019), serves as a common experimental model
for inducing CNS inflammation and mirrors the neuroinflammatory signature observed
in many neurodegenerative diseases. LPS injection activates astrocytes and microglia in
mice (Brandi et al., 2022; da Silva et al., 2024; Norden et al., 2016). Although cytokines,
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chemokines and other genes linked to astrocyte or microglia
inflammatory responses have been used as biomarkers to
characterize glial reactivity in the LPS model, morphological
changes of glia cells are also recognized as structural features of
neuroinflammation ( ;

). Activated astrocytes exhibit anatomical hypertrophy,
which includes increased soma size and thickening of main
branches, as well as increased overall branching (

s ). Also, microglial cells switch from
a homeostatic ramified shape to a unramified ameboid shape
following either systemic or intracerebral LPS administration
( )

Aryl hydrocarbon receptor, a ligand activated transcription
factor, is expressed in both astrocytes and microglia, and has
been implicated in age-related disease processes (

; ; ). Heighted
inflammatory responses in peripheral tissues such as lungs and
liver have been reported in AhR-deficient mice after systemic
LPS injection ( ; ). Moreover,
AhR signaling also serves as a crucial regulator of immunological
response to LPS by microglia in various in vitro systems (

; ). AhR-mediated astrocyte functionality
in response to CNS inflammatory stimulants such as LPS both
in vitro and in vivo, under conditions that more closely represents
physiological responses of glia cells in the brain, requires further
investigation. Therefore, the aim of this study is to determine
how AhR mediates astrocyte cell reactivity in the context of their
native environment during inflammatory conditions using changes
in morphological features, cytokines, and changes in behavior, as
indicators of the inflammatory response.

2.1 Animals

Protocols for animal utilization received approval from the
Institutional Animal Care and Use Committee at Southern Illinois
University School of Medicine and were executed in compliance
with the Guide for the Care and Use of Laboratory Animals
as established by the National Institutes of Health. Experiments
utilized 9-10-week-old male C57BL/6J, germ line AhR null
(AhRKO) Bradfield strain ( ), obtained from the
Jackson Laboratory (Bar Harbor, ME) and bred at the Southern
Illinois University School of Medicine animal facilities. All animals
were housed in groups and entrained to a control 12:12 h light: dark
schedule with food and water provided ad libitum.

2.2 Primary cell cultures

Primary hippocampus cell cultures were established from
postnatal day 0-1 C57BL6/] and AhRKO pups using methods
previously described by .
Hippocampi were dissected and dissociated using papain (EC
3.4.22.2; Brain Bits) treatment, followed by trituration with sterile
glass pipettes. Hippocampal cells were cultured using NbAstro
medium (Brain Bits) (Neurobasal, 10% horse serum, Glutamax,
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and 1% penicillin/streptomycin) at 37 °C with 5% CO, for days
in vitro (DIV) 10-14. The cell culture media was changed the day
following seeding and subsequently every 3 days. Upon reaching
approximately 90% confluence, adherent astrocytes were detached
using Trypsin (0.25%) (Cat: 15050057; Gibco, United States) and
subsequently replated, maintaining them in serum-free media
for an additional 1-2 days before exposure to 250 ng/ml of
LPS from Escherichia coli 0127: B8 (Sigma-Aldrich Cat: L3129).
Approximately 96% of cultured astrocytes were stained with
polyclonal glial fibrillary acidic protein (GFAP) as previous shown
in our lab ( ).

2.3 LPS injection

Male mice aged 9-10 weeks received a single intraperitoneal
injection of 5 mg/kg LPS (from Escherichia coli 0127: B8 Sigma-
Aldrich Cat: L3129) or PBS. LPS was solubilized in PBS to achieve
a final concentration of 1 mg/ml, and the injection volume was
calculated according to body weight. Twenty-four hours post-
injection, some mice were euthanized, and the brain was harvested
for histological and molecular analysis while the other mice were
utilized for behavioral studies.

2.4 RNA extraction and gPCR

2-2.5 x 10° astrocytes per T-25 flask, and mouse hippocampi
(Fisher NH,
United States), and RNA was isolated using the extraction

were lysed in Trizol Scientific, Hampton,
protocol. cDNA was synthesized and SYBR green-based real-time
reverse transcriptase PCR was performed on a Quant-Studio
real-time PCR system. Gene expression values were normalized
using GAPDH as the housekeeping gene, and relative mRNA levels
were determined using the A ACt method. The primer sequences

for real-time PCR are provided in

2.5 Immunofluorescence (IF)

A total of 50,000 hippocampal astrocytes per 4-well glass
slide (1.7 cm? per well) were washed with PBS and subsequently
fixed with 4% paraformaldehyde (PFA) for 20 min at room
temperature. Cells were permeabilized with PBST (0.1M PBS with
0.25% TritonX-100), followed by a 1-h incubation in a solution of
10% normal goat serum and 1% bovine serum albumin (BSA). After
incubation, primary antibodies were applied at 4 °C overnight.
Cells were rinsed with PBST (0.1M PBS with 0.25% TritonX-
100) before incubation with secondary antibodies in the dark at
room temperature for 2 h. The cells were subsequently washed
in PBST and were cover slipped with ProLong™ Gold antifade
reagent containing DAPI. Staining was examined using confocal
microscopy, and number of cells with p65 nuclear translocation
were counted with National Institute of Health Image J Software
1.48 ( ) by accessing the Dapi/p65 overlay in
astrocyte cells. Primary antibodies included: Chicken polyclonal
glial fibrillary acidic protein antibody (1:1000 biosensis Catlog:C-
1373-50), Rabbit monoclonal anti-NF-KB p65 antibody (1:400 Cell
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TABLE 1 List of primers.

10.3389/fncel.2025.1653109

Genes Forward primer sequence Reverse primer sequence ‘
TNF-a 5'-CCA CCA CGCTCT TCT GTCTAC-3" 5'-AGG GTC TGG GCCATA GAA CT-3'
IL-B 5-AGATGAAGGGCTGCTTCCAAA-3' 5-GGAAGGTCCACGGGAAAGAC-3'
IL-10 5'-AGGCGCTGTCATCGATTTCT-3' 5'-ATGGCCTTGTAGACACCTTGG-3'
iNOS 5'-ACATCGACCCGTCCACAGTAT-3' 5'-CAGAGGGGTAGGCTTGTCTC-3'
CCL2 5'-CCACTCACCTGCTGCTACTCAT-3' 5-TGGTGATCCTCTTGTAGCTCTCC-3'
c3 5-AGCTTCAGGGTCCCAGCTAC-3' 5-GCTGGAATCTTGATGGAGACGC-3'
S100A10 5-CCAGGTTTCGACAGACTCTTC-3' 5'-CCGTTCCATGAGCACTCTC-3'
GAPDH 5-ATGGTGAAGGTCGGTGTGAAC-3' 5-TGTAGTTGAGGTCAATGAAGG-3'

signaling Catlog:#8242) while secondary antibodies used were Goat
anti-chicken IgY H&L (Alexa Fluor® 594) 1:1000, Goat anti-rabbit
IgG (H+L) (Alexa Fluor® 488) 1:1000.

For tissue staining, 20 wm hippocampal sections were cut
on a cryostat (Model HM525 NX, ThermoFisher Scientific).
Serial sections were extracted from every sixth section of
the hippocampus. Hippocampal slices subjected to
immunofluorescence using a chicken polyclonal glial fibrillary
acidic protein (GFAP) antibody at a dilution of 1:500 and a rabbit
polyclonal anti-IBA1 antibody at a dilution of 1:500. Sections
were permeabilized in PBST (0.1M PBS with 0.25% Triton X-100)
and subsequently washed three times for 10 min each in sodium
borohydride in PBS (1 mg/ml) for antigen retrieval. Slices were

were

then subjected to another wash with PBST and subsequently
incubated in a solution of 10% normal goat serum and 1% BSA
for 1 h. Primary antibodies were then applied to the hippocampal
sections in a humid chamber at 4 °C. On the subsequent day, slices
were washed in PBST and incubated with the secondary antibody
(goat anti-rabbit IgG H&L and goat anti-chicken IgY at 1:1000
dilution) for 2 h. The sections were subsequently washed in PBST
and were covered with DAPI-containing ProLong™ Gold antifade
reagent. Z-stack images of five optical slices at 1 jum were obtained
using a 40x oil immersion objective (numerical aperture 1.3) with
adjusted pinhole size of 0.81 AU on a Zeiss LSM800 confocal
microscopy system at 1,024 x 1,024 pixels. For astrocyte and
microglia soma size, 40X z stacks confocal images were imported
into the imaris software and a 3D surface were built around the
immunofluorescence z-stacks based on GFAP and IBA-1 staining
of the cells, total soma size was determined and exported.

2.6 Behavioral battery

Mice were evaluated using a behavioral battery to explore
locomotion and memory function. All behavioral assessments
were conducted under low red-light conditions (15-20 lux)
during the dark phase, 24 h following injection of LPS. Video
tracking and automated analysis (Noldus EthovisionXT v17.5) were
employed to assess animal behavior in the open field, Y-maze, and
Novel Object tests.

2.6.1 Y-maze

Using a Y-shaped maze with three arms each 35 cm long
and 5 cm wide, each diverging from a central point at 120°
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angles, with walls 20 cm high, short-term working memory was
measured. For 10 min, mice were allowed to explore the novel
Y-maze while their entry was recorded as the moment the mouse’s
body passed into an arm. The total number of arm entries
and spontaneous alternations (entry into three distinct arms in
successive choices) were recorded and expressed as a percentage
of alternation (number of alternations divided by total number
of arm entries).

2.6.2 Open field test

Mice were assessed in an open field (40 x 40 cm box) for
30 min to measure motor function. Mice were monitored in an
open field to assess total voluntary distance traveled, duration spent
in the center (20 x 20 cm) area equidistant from all edges, total
entries into the center. The center point of the body was utilized to
ascertain the mouse’s location within the arena.

2.6.3 Novel Object Recognition

The Novel Object Recognition (NOR) assay was employed to
evaluate long-term memory in mice by quantifying the exploration
duration of a novel object relative to a familiar object within a
testing arena. The mice were initially positioned in the NOR testing
arena (40 x 40 cm box) for a 30-min habituation period. Twenty-
four hours post-habituation, two similar objects were introduced
into the testing arena, and mice were permitted to explore the
objects for 10 min; this phase is referred to as the training day.
Following a 24-h inter-session interval, mice were reintroduced
into the novel object test arena for 10 min, where they encountered
one familiar object from the prior training day alongside a novel
object to assess memory retention. Novelty preference (% time) was
determined by the ratio of total time spent with the novel object to
the total time spent with both objects.

2.7 Statistical analysis

Prism (GraphPad Software, Inc., La Jolla, CA; RRID:SCR_
002798) software was used for statistical analyses. Data are
presented as mean £+ SEM. Unless otherwise stated, all cell
culture experiments were repeated at least three times, from
separate dissections. One-way or two-way ANOVA with Tukey’s
post-hoc tests were utilized to identify significant differences
between groups, where appropriate. For all behavioral assays, both
automated and manual data were acquired from EthoVision XT
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Aryl hydrocarbon receptor (AhR) deletion increases lipopolysaccharide (LPS)-induced inflammatory response in primary astrocyte cell culture.
(A) Fold change of mRNA levels relative to control expression levels of inflammatory cytokines in hippocampal astrocytes pretreated with FICZ
(250 nM) followed by LPS for 24 h. Data represent mean + S.E.M, n = 3—-4 independent biological replicates. *P < 0.05, **P < 0.01 by One-way
ANOVA with Tukey's post hoc comparison. (B) Fold change of mRNA levels relative to wild type expression levels of inflammatory cytokines in
AhR-deficient astrocytes treated with by LPS for 24 h. Data represent mean £ S.E.M, n = 3-4 independent biological replicates.

**P < 0.01,***P < 0.001, ****P < 0.0001 by Two-way ANOVA with Tukey's post hoc comparison.

17.5 and measurements were analyzed using two-way ANOVA
with Tukey’s post-hoc tests. Statistical significance was defined as
p <0.05.

3 Results

3.1 AhR deletion increases
pro-inflammatory cytokine levels in
astrocyte cell culture and hippocampus

of LPS treated mice
Prior research has shown that AhR activation exerts
immunosuppressive effects on LPS-induced proinflammatory
cytokine production in primary microglial cultures (Brandi et al,
2022; Guerrero-Carrasco et al., 2024; Kim et al., 2024). Therefore,
we determined whether AhR activation elicits a comparable
immunomodulatory response in astrocytes under conditions of
acute LPS-induced neuroinflammation in an in vitro system.
Cytokine profiling was performed to assess the impact of
AhR signaling on LPS-induced astrocyte reactivity in vitro.
LPS treatment elevated the transcript levels of various pro-
inflammatory cytokines (TNF-a, IL-1f8, and CCL2). Furthermore,
pretreatment of astrocytes with the AhR agonist, FICZ, suppressed
the LPS-induced increase in TNF-a [F (3 12) = 9.392, p = 0.0018], IL-
18 [F (3,10) = 83.24, p < 0.0001], CCL2 [F (3,12) = 14.92, p = 0.0002,
one-way ANOVA] pro-inflammatory cytokines (Figure 1A).
Previous studies from our lab have confirmed that AhR is activated
by FICZ by assessing downstream targets Cyplal in our astrocyte
culture (Ojo et al., 2025). In contrast, AhRKO-derived astrocyte
cell cultures treated with LPS exhibited significant increases in the
transcript levels of TNF-a [F (1,12) = 32.79, p < 0.0001], IL-1B [F
(L12) = 10.86, p = 0.0064], CCL2 [F (1.12) = 12.09, p = 0.0046,
two-way ANOVA] when compared to LPS-treated wild type
controls. To assess anti-inflammatory cytokines, IL-10 transcript
levels were evaluated. Surprisingly AhRKO-derived astrocytes also
demonstrated more robust elevation of IL-10 mRNA levels 24 h
following LPS treatment [F (1 11) = 11.43, p = 0.0061, two-way
ANOVA] (Figure 1B). In addition to elevated pro-inflammatory
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cytokines, LPS also enhanced the levels of inducible nitric oxide
synthase (iNOS) in our astrocyte cell culture system. Although
these levels were not diminished by FICZ pretreatment, iNOS
transcript levels were elevated in AhR-deficient astrocyte cells [F
(,11) = 1245, p = 0.0047, two-way ANOVA]. We observed that
untreated AhR-deficient astrocyte cultures exhibited a trend toward
an increase in proinflammatory cytokines compared to untreated
wildtype astrocyte cultures, this indicates that the absence of AhR
in astrocyte cells, in the absence of inflammatory stimuli, renders
these cells susceptible to inflammatory processes (Ligure 1B).

In vivo, LPS treatment produced significantly higher transcript
levels for various pro-inflammatory cytokines (TNF-a and IL-18).
However, similar to the in vitro astrocyte culture, the hippocampus
of LPS-treated AhRKO mice exhibited significantly increased levels
of TNF-a [F (1.8) = 88.82, p < 0.0001, two-way ANOVA] and IL-
18 [F (1,12) = 28.31, p = 0.0002, two-way ANOVA] compared to
LPS-treated wild-type controls (Figures 2A, B). Notably, increased
levels of anti-inflammatory cytokine-associated genes (S100A10
and IL-10) [F (1,11) = 42.30, p < 0.0001, two-way ANOVA] were
also observed in LPS-treated AhRKO mice (Figures 2C, D). We
also assessed the levels of iNOS (marker for oxidative stress) and
C3 (marker for reactive glia cells) in the hippocampus of LPS
injected mice. iNOS mRNA was substantially increased in LPS-
injected AhRKO mice relative to LPS injected wild-type mice [F
(,12) = 6.101, p = 0.0295, two-way ANOVA], with no significant
changes in C3 mRNA [F (1 11y = 0.5071, p = 0.4912, two-way
ANOVA] (Figures 2E, F). Altogether, these results suggest that
deletion of AhR heightened the immune response to inflammatory
stimuli, as observed both in vitro in primary astrocyte cultures and
in vivo in extracts derived from whole hippocampus.

3.2 AhRKO exacerbates the
morphological glial cell inflammatory
response to LPS in vivo

To assess the effect of AhR deficiency on the inflammatory

response of glial cells in their native environment, structural
alterations in astrocytes and microglia were evaluated following a
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FIGURE 2

Aryl hydrocarbon receptor germline knockout (AhRKO) mice exhibit enhanced pro-inflammatory cytokine levels in the hippocampus. (A—F) Fold
change of mMRNA levels relative to wild type expression levels of inflammatory cytokines in the hippocampus of PBS and lipopolysaccharide (LPS)
treated mice 24 h after injection. Data represent mean £ S.E.M, n = 3—4 animals per group. *P < 0.05, **P < 0.01, ****P < 0.0001 by Two-way

ANOVA with Tukey's post hoc comparison.

single, acute systemic injection of LPS. In this neuroinflammatory
model, a substantial population of hippocampal microglia and
astrocytes exhibit inflammatory-induced morphological alterations
24 h after a single LPS injection. LPS generated an increase
in astrocyte soma size compared to the PBS-treated group [F
(1,226) = 36.61, p < 0.0001, two-way ANOVA]; furthermore, these
structural alterations were exacerbated in AhRKO mice astrocytes,
which had more hypertrophic characteristics than LPS-treated
wild-type controls (Figures 3A, B). Comparatively, microglia in
AhRKO animals also exhibited a higher inflammatory response,
shown by a larger soma size than wild-type controls treated with
LPS [F (1,208) = 7.556, p = 0.0065, two-way ANOVA] (Figures 3C,
D). These results further support the idea that AhRKO mice exhibit
heightened sensitivity to LPS treatment in the brain.

To examine the signaling pathway by which AhR interacts
to reduce the release of pro-inflammatory cytokines in astrocytes
cultures after inflammatory stimulation, p65 NF-kB nuclear
translocation was assessed 2 h following LPS treatment. LPS
promoted more nuclear accumulation of p65 NF-kB in AhR-
deficient astrocytes relative to the wild type astrocytes [F
(1,12) = 6.804, p = 0.0229, two-way ANOVA] (Figures 4A, B). Thus,
from these results AhR activation might be interfering with NF-
kB signaling to exert an immunosuppressive effect on astrocytes in
response to LPS.

3.3 Behavioral alterations induced by
systemic LPS administration are
amplified in AhRKO mice

The impact of AhR deficiency on LPS-induced behavioral
alterations were determined by assessing weight changes, cognitive
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impairment, and locomotor activity subsequent to systemic LPS
injection (Figure 5A). LPS treatment resulted in a significant
decrease in body weight compared to PBS injection throughout
four days of weight assessment in mice; however, LPS-injected
AhRKO animals exhibited more pronounced weight loss and
resistance to returning to the normal weight range by Day 4 post-
LPS injection [F (9,182) = 3.268, p = 0.0010, two-way ANOVA]
(Figure 5B). No significant cognitive differences were found in the
Y-maze [F (1,38) = 0.3016, p = 0.5861, two-way ANOVA] or Novel
Object test [F (1,38) = 3.358, p = 0.0747, two-way ANOVA] between
the PBS and LPS-treated mice (Figures 5C, D). In the open field
test, LPS administration reduced the overall distance traveled by
the mice in comparison to those treated with PBS [F (1 38) = 15.51,
p =0.0003, two-way ANOVA]. However, the diminished locomotor
activity was more noticeable in the AhRKO mice administered LPS
[F (1,38) = 0.07172, p = 0.7903, two-way ANOVA] (Figure 5E).
PBS-treated AhRKO mice also spent less time in the center of the
open field box compared to PBS-treated wild-type mice, which is
an indication of anxiety-like behavior displayed by AhRKO mice
[F (1,38 = 21.44, p < 0.0001, two-way ANOVA] (Figure 5F).
Overall, these findings indicate that the deletion of AhR in mice
amplifies acute behavioral alterations triggered by systemic LPS
administration, particularly locomotor activity and body weight.

4 Discussion

A key mechanism by which the astrocytes participate in
inflammatory responses during pathological conditions is by
release of pro-inflammatory cytokines, chemokines, and other
neurotoxic factors that promote neuronal dysfunction and
synaptic loss (Kwon and Koh, 2020; Lee et al, 2023). This
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Aryl hydrocarbon receptor (AhR) deletion exacerbates glial cell inflammatory response to lipopolysaccharide (LPS) in vivo. (A) Representative
immunofluorescence stain of astrocytes in the CAl region of the hippocampus 24 h post-LPS injection (B) Quantification of astrocyte soma size
(Lm?), total of 50—60 astrocytes per group. Data represent mean + S.E.M, n = 4 animals per group. *P < 0.05, **P < 0.01, ****P < 0.0001 by
Two-way ANOVA with Tukey's post hoc comparison. All images taken at 40 x magnification, scale bar = 20 um (C) Representative
immunofluorescence stain of astrocytes in the CAl region of the hippocampus 24 h post-LPS injection. (D) Quantification of microglial soma size
(nm?), total of 50—60 microglia per group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by Two-way ANOVA with Tukey's post hoc
comparison. All images taken at 40 x magnification, scale bar = 20 pm
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FIGURE 4

Aryl hydrocarbon receptor (AhR) deletion induces astrocyte cytokine expression through p65 NF-kB activation. (A) Representative images of primary
astrocyte cells co-stained with glial fibrillary acidic protein (GFAP) (Red), p65 NF-«B (green) and dapi (blue). (B) Quantification of p65 positive cells in
the nucleus of astrocytes following lipopolysaccharide (LPS) treatment. Data represents mean + S.E.M, n = 4 independent biological

replicates.*P < 0.05, by Two-way ANOVA with Tukey's post hoc comparison. Images taken at 40 x magnification with scale bar = 20 um from five
different fields for each well

study demonstrated that AhR deletion intensifies inflammatory  hyper-responsiveness of AhR knockout mice to LPS, and
responses in astrocytes after LPS-induced systemic inflammation, — immunosuppressive effects of AhR activation in immune cells
which builds upon evidence from previous studies reporting  ( ; ; ). The
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FIGURE 5

Aryl hydrocarbon receptor germline knockout (AhRKO) mice exhibited amplified behavioral changes following systemic lipopolysaccharide (LPS)
treatment. (A) Schematic showing the overview of behavioral test design (B) Quantification of changes in body weight over 4 days following a single
I.P injection of LPS (C) Percentage number of spontaneous alternations during Y-maze test 24 h post LPS injection. Data represent mean + S.E.M,

n = 9-12 animals per group (D) Duration spent with novel object during testing phase Data represent mean + S.E.M, n = 10-12 animals per group
(E) Total distance moved within 30 min period of open field exploration (F) Total time spent (s) at the center of the open field box during exploration.
Data represent mean + S.E.M, n = 9-12 animals per group. *P < 0.05, **P < 0.01, ***P < 0.001 by Two -way ANOVA with Tukey's post hoc.

current study adds to the understanding of AhR signaling in
regulating neuroinflammation through the immune responses of
glial cells, specifically by modifying the morphology and cytokine
expression of astrocytes and microglia in an in vivo system,
potentially through regulation of NFkB.

Lipopolysaccharide injection is a common model for
generating CNS inflammation; it mirrors neuroinflammatory
signatures observed in neurodegenerative diseases (Cunningham
et al, 2009; Deng et al, 2020; Lopez-Rodriguez et al., 2021).
Multiple investigations have clearly demonstrated the activation
of astrocytes and microglia subsequent to LPS injection in mice
(Brandi et al., 2022; da Silva et al., 2024; Norden et al., 2016).
While the molecular characteristics of glial reactivity are frequently
used as outputs to define neuroinflammatory signatures, the
dynamic and heterogenous morphological changes can also be
used as markers of inflammation in various disease states (Kim
et al, 2024; Li et al, 2023; Yakovlev et al, 2024). This study
demonstrated that a single, systemic dose of LPS elicited profound
astrocytic hypertrophic alterations in the mouse hippocampus,
which is consistent with previously reported characteristics of
2022; Diaz-Castro

activated astrocytes (Agnew-Svoboda et al, 2022;
2023). Moreover, the impact of LPS on

et al.,, 2021; Xingi et al.,
molecular markers and morphological changes was markedly
intensified AhR-depleted animals. Similarly, microglia in AhRKO
animals also showed an exaggerated inflammatory response, as
evidenced by increased soma size. The heightened morphological
changes of glial cells to inflammatory stimuli seen in the brain
of AhRKO mice indicates that the presence of AhR signaling
during neuroinflammation may function as a critical checkpoint
for modulating glial reactivity in the brain. Consistent with
prior studies that identified AhR signaling as an immunological
regulator in peripheral systems and immune cells, our studies
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corroborate this idea, and extends these findings to specific
astrocytes and microglia within the brain. The presence of
AhR signaling limits the activation of glial cells in response to
inflammatory signals, thereby protecting the brain from intensified
inflammatory responses following acute exposure to LPS. This
serves as a foundational link that elucidates the function of AhR
in regulating glial cells, particularly astrocyte responsiveness,
within the framework of LPS-induced inflammation in the brain.
Numerous immune cytokines have been associated with the onset
and pathogenesis of various neuroinflammatory diseases. During
the initiation and progress of neuroinflammation, reactive glial
cells experience molecular alterations, including the secretion
of proinflammatory cytokines such as IL-13 and TNF-a. The
release of these cytokines in the brain promotes amplification
of neuroinflammatory signaling and sustains the activation of
glial cells, thereby contributing to chronic neuroinflammatory
processes. AhR signaling contributes to shaping the transcriptional
response of immune cells to inflammatory stimuli by binding
to the DNA as a transcriptional factor to influence cytokines
production (DiNatale et al., 20105 Ishihara et al., 2019; Kerkvliet,
2009). In our in vitro LPS model, AhR-deficient astrocytes had
increased proinflammatory cytokine levels. The pro-inflammatory
cytokine profile results observed in AhR-deficient astrocytes are
consistent with previous studies utilizing primary microglial
cultures, therefore indicating comparable AhR activation effects in
both astrocytes and microglia immunological responses following
LPS stimulation. Nevertheless, studies employing astrocyte-
microglia co-culture systems are warranted, as such in vitro
models would more accurately recapitulate the physiological
neuroinflammatory cytokines responses observed in vivo, where
astrocyte-microglia crosstalk plays a critical role in shaping
inflammatory dynamics. Similarly, the hippocampus of AhRKO
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mice administered LPS systemically also demonstrated elevated
production of inflammatory cytokines, such as TNF-a and IL-1B,
thus providing more evidence that AhR regulates brain immune
responses. However, we cannot exclude a potential contribution
from AhR depletion in peripheral immune cells, as this study
employed germ line AhR depleted mice. Peripheral immune cells
may potentially affect the response of astrocytes or microglia to
inflammatory stimuli, particularly when the blood-brain barrier
has been compromised (Barton et al., 2019; Peng et al., 2021;
VanHook, 2024). Thus, future experiments studying the response
of astrocyte cells to inflammatory stimuli in mice with astrocyte-
specific AhR deletion using efficient gene targeting strategies is
still necessary.

A potential mechanism to explain how deletion of AhR
increases proinflammatory cytokines in astrocytes after LPS is
through interactions with NF-kB signaling, a major regulator of
proinflammatory cytokine production in glia cells (Anilkumar and
Wright-Jin, 2024; Dresselhaus and Meffert, 2019). In this study,
enhanced NF-kB p65 translocation was observed in LPS-treated
AhR-deficient astrocyte cultures, which is consistent with previous
studies (Lin et al., 2022; Rothhammer et al., 2016). Surprisingly,
we also observed an elevation of the anti-inflammatory cytokines
IL-10 and S100A10 in the brains of AhRKO mice and in
astrocyte cell cultures derived from AhRKO mice treated with
LPS. When inflammatory stimuli activate astrocytes and microglia,
elevated levels of IL-10 and S100A10 mostly suggest enhanced
neuroprotective characteristics (King et al., 2020; Shanaki-Bavarsad
et al., 2022). However, based on these findings, we speculate that
these effects observed in LPS-treated AhRKO mice may result
from compensatory mechanisms employed by neuroprotective
glial phenotypes attempting to counterbalance the increased
pro-inflammatory response (Barsig et al, 1995). While AhR
activation by FICZ exerted immunosuppressive effects through
the reduction of pro-inflammatory cytokine levels in our in vitro
LPS model, iNOS expression remained unaffected. Previous
studies have reported that iNOS induction in astrocytes under
inflammatory conditions involves multiple signaling pathways
beyond NF-kB (Ko et al, 2018; Saha and Pahan, 2006). We
speculate that the observed result may be attributed to the ligand-
bound AhR preferentially interacting with NF-kB-dependent
signaling pathways that promote cytokine gene upregulation
during the initial phase of LPS-induced neuroinflammation, while
leaving other regulatory pathways that modulate iNOS-enhanced
neuroimmunology responses in astrocyte cells unaffected.

Acute systemic administration of LPS has been documented in
multiple studies to elicit behavioral alterations in mice, with motor
activity and weight loss being the most significantly impacted
(Biesmans et al., 2013; Sorrenti et al., 2018). In our study, similar
behavioral changes were observed following LPS injection and
deletion of AhR globally worsen the observed behavioral changes.
Motor-related brain regions demonstrate enhanced glial cell
inflammatory response following a single LPS injection (Carregosa
et al,, 2024). Thus, the diminished exploratory locomotor activity
observed in AhRKO mice may be attributed to their heightened
glial inflammatory response impacting the motor cortex. This study
focused solely on the morphological alterations of microglia and
astrocytes, as well as cytokine production in the hippocampus;
however, future research examining the response of glial cells in
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AhRKO mice to LPS in the motor cortex is also necessary. Anxiety-
like behaviors were also displayed by AhRKO mice, as these mice
spent reduced time spent in the center of the open field box;
however, it is premature to draw definitive conclusions, as further
investigations employing additional anxiety-related behavioral tests
are need to corroborate these observations. With regards to
memory, a single dose of LPS in this study had no effect. Numerous
studies have indicated memory deficits in mice administered
LPS, utilizing the Y-maze, Novel Object test, or Morris water
maze memory test (Ganesan et al., 2024; Morimoto et al., 2023;
Schirmbeck et al., 2023); however, those studies either employed
a chronic LPS injection model or assessed memory deficits at a later
time point than in the current study.

Neuroinflammation is pivotal in the initiation of various
neurodegenerative disorders, and integrates a complex interplay
between resident immune cells in the brain, and the peripheral
immune system (Maurya et al., 2024; Zang et al., 2022). Because loss
of AhR seems to predispose both peripheral and central immune
cells to heightened immunological responses, targeting AhR may be
an intriguing therapeutic strategy to mitigate neuroinflammatory
processes in various brain diseases. Also, considering that
astrocytes and microglia interact in a bi-directional, cooperative
manner to respond to pathological stimuli, augmenting AhR
signaling in astrocytic cells may facilitate the maintenance or
restoration of brain homeostasis by promoting neuronal survival
and synaptic integrity, especially during the initial phases of
ongoing inflammation. Future research focused on elucidating the
role of AhR signaling in glial cells during chronic inflammatory
states will be crucial for understanding the therapeutic potential of
targeting AhR in neuroinflammatory disorders.
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