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Early-life stress (ELS) and enrichment often have opposing effects on long-

term cognitive abilities. Deprivation, such as institutionalized care during early

childhood neurodevelopmental periods, results in lifelong working memory

and recall deficits. In contrast, enrichment facilitates new learning and slows

cognitive decline due to aging and neurodegenerative diseases. Similarly, in

rodent models, enrichment facilitates learning whereas ELS induces prominent

spatial memory deficits. Environmental enrichment (EE) and ELS can cause

opposing changes in hippocampal structure (e.g., shifts in synaptic density)

that largely depend on experimental conditions. However, it remains untested

whether EE can rescue the behavioral disruptions caused by ELS and how

this would impact the hippocampus at advanced ages. To address this, we

conducted a longitudinal study on ELS mice, extensively training them on a

cognitive enrichment track (ET) or an exercise alone control track (CT). After

this, the mice underwent repeated memory testing followed by brain extraction

for anatomical analysis of their hippocampus. We found that ET reversed spatial

memory deficits at 6, 13, and 20 months and reduced the number of dentate

gyrus (DG) to CA3 synapses. Surprisingly, this reduction occurred at excitatory

MF synapses surrounding CA3 somas in the stratum pyramidale—a layer not

typically associated with MF terminals. Collectively, these findings suggest that

cognitive enrichment during early adulthood may reverse ELS-induced spatial

memory deficits by adjusting synaptic connectivity between the DG and CA3.

KEYWORDS

memory, synaptic plasticity, behavior, hippocampus, enrichment, early-life stress and
mossy fiber

Introduction

Severe early-life adversity, affecting close to 50% of the world’s children (Fenoglio et al.,
2006), can cause both emotional and cognitive disturbances. For instance, children raised
in institutionalized settings often exhibit memory deficits and poor impulse control (Pollak
et al., 2010); likely contributing to their delayed language acquisition and low scholastic
aptitude (Beckett et al., 2007; Eigsti et al., 2011). Evidence suggests that early childhood
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deprivation, such as parental neglect, has a particularly negative 
impact on executive function and memory (Wodarski et al., 1990; 
Eckenrode et al., 1993; Spratt et al., 2012) because this sensitive 
time period (first 2–3 years in humans and first 3–4 weeks in 
rodents) is critical for the maturation of brain systems necessary 
for learning and memory, such as the hippocampus (Malave et al., 
2022; Kloc et al., 2020; Leinekugel et al., 2002). This may be why ELS 
during this time period can cause long-lasting deficits in declarative 
learning and hippocampal function. Adults who have experienced 
ELS have diÿculty remembering episodic events and perform 
poorly on delayed word recall tasks (Ding and He, 2021; Ma et al., 
2021; Cai et al., 2024). These individuals have smaller hippocampal 
volumes, especially their dentate gyrus (DG) (Humphreys et al., 
2019; Youssef et al., 2019; Koyama et al., 2022; Kawamoto et al., 
2023). Importantly, these findings have been replicated in rodent 
models designed to mimic maternal neglect (Walker et al., 2017). 
As adults, these ELS animals perform poorly on hippocampus-
dependent spatial memory tasks such as the Morris water maze and 
object location memory (OLM) (Brunson et al., 2005; Cui et al., 
2006; Rice et al., 2008; Ivy et al., 2010; Pollak et al., 2010; Naninck 
et al., 2015; Chen et al., 2016; Molet et al., 2016b; Naninck et al., 
2017) consistent with human findings, these animals have smaller 
hippocampi and dendritic atrophy in CA3 and CA1 neurons 
(Brunson et al., 2005; Molet et al., 2016a; Teicher et al., 2016). 

Unfortunately, there are very few non-invasive treatments 
for individuals suering from the eects of ELS; however, 
experience-based behavioral interventions may help. For example, 
the Bucharest intervention project (and related studies) found 
that adoption of institutionalized children into more nurturing 
environments correlated with improved cognition and higher IQ 
scores (i.e., the earlier the better) (Tizard and Rees, 1974; Nelson 
et al., 2007; Bos et al., 2009; Almas et al., 2016). And, enriching 
activities later in life can also facilitate cognitive recovery (Cai et al., 
2024). 

In rodent models, environmental enrichment (EE) improves 
cognitive functions, including spatial learning, memory, and task 
learning (Cheng et al., 2022; Rountree-Harrison et al., 2018; Bennett 
et al., 2006; Williams et al., 2001; Woodcock and Richardson, 
2000; Zeleznikow-Johnston et al., 2017). Consistent with this, we 
found that extensive cognitive enrichment on a specially designed 
“enrichment track” leads to dramatic improvements on a wide 
variety of memory tasks (Gattas et al., 2022). Mechanistically, 
EE promotes synaptogenesis and adult hippocampal neurogenesis 
(Speisman et al., 2013) increases spine count (Jung and Herms, 
2014) and dendritic complexity (Connor et al., 1982), modulates 
synaptic signaling (Pintori et al., 2024) and enhances long-term 
potentiation in the hippocampus (Cortese et al., 2018; Artola 
et al., 2006). Additionally, it improves sensory processing and 
neural coding eÿciency (Engineer et al., 2004; LeMessurier et al., 
2019). For instance, EE improves the ability of the hippocampus 
to distinguish between dierent environments (i.e., better pattern 
separation), which in turn promotes better spatial learning (Bilkey 
et al., 2017; Ventura et al., 2024). 

The DG-CA3 connection is particularly susceptible to 
experience-dependent plasticity (Henze et al., 2000; Urban et al., 
2001). ELS and EE can have opposing eects on this such as the 
rate of neurogenesis in the DG and the magnitude of DG-CA3 
long-term plasticity (LTP and LTD) (Alwis and Rajan, 2014; 
Kempermann, 2019). In contrast, both ELS and EE increase 

mossy fiber sprouting (Brunson et al., 2001; Galimberti et al., 
2006; Bramati et al., 2023). This paradoxical finding—that both 
detrimental ELS and beneficial EE increase mossy fiber sprouting— 
highlights the need to examine not just the quantity but also the 
location and functional properties of these synaptic changes. 
This is especially interesting, considering the positive correlation 
between mossy fiber expansion and spatial memory performance 
(Schwegler et al., 1990; Ramírez-Amaya et al., 2001; Carasatorre 
et al., 2015). With respect to EE, however, it is important to 
recognize that many of these structural and physiological changes 
largely depend on experimental conditions such as the animal’s 
age and the duration of enrichment (Gogolla et al., 2009; Bednarek 
and Caroni, 2011); making it diÿcult to predict how ELA and EE 
would mechanistically interact. 

Despite extensive research on ELS and EE individually, critical 
knowledge gaps remain. First, while EE has been shown to enhance 
cognition in normal animals, it is unknown whether cognitive 
enrichment can reverse established ELS-induced memory deficits, 
particularly across the lifespan. Second, although both ELS and 
EE aect hippocampal structure, the specific synaptic mechanisms 
underlying potential ELS-EE interactions remain unexplored. 
Finally, previous studies have not distinguished between the eects 
of cognitive enrichment versus exercise alone in the context of 
ELS recovery, limiting our understanding of which intervention 
components are most therapeutic. 

We hypothesized that cognitive enrichment would reverse 
ELS-induced spatial memory deficits across the lifespan through 
specific modifications to mossy fiber synaptic connectivity between 
the dentate gyrus and CA3 region. To test this hypothesis, 
we pursued three specific objectives: (1) determine whether 
cognitive enrichment can reverse ELS-induced spatial memory 
deficits longitudinally from young adulthood through aging; (2) 
distinguish the eects of cognitive enrichment from exercise alone 
using a controlled track design; and (3) identify the underlying 
synaptic mechanisms by examining mossy fiber terminal density 
and size distribution in the hippocampus. 

Using a longitudinal approach, we first trained ELS mice 
on our complex obstacle enrichment track (ET) (Supplementary 
Figures 1A, B). This 3-month protocol produces dramatic and 
broad long-term memory enhancements well above that of 
standard enrichment procedures (Gattas et al., 2022). Moreover, 
the incorporation of a simple ramp control track (CT) group 
allowed us to disambiguate the eect of exercise alone. Following 
this, we repeatedly tested mice on spatial and object recognition 
tasks across their lifespan. Finally, we assessed whether these 
transgenic mice (GCaMP6fs) had hippocampal structural changes 
using a combination of endogenous fluorescence and nanobodies. 
To specifically visualize MF projections and their synapses, we 
took advantage of the selective expression of the GCaMP6fs signal 
in the DG (no signal in CA3 neurons) together with excitatory 
synaptic markers such as PSD-95, which are primarily considered 
glutamatergic (Walker et al., 2001; Gutiérrez et al., 2003); however, 
there is some evidence that these terminals also contain GABA 
(Cabezas et al., 2012; Uchigashima et al., 2007). This approach 
allowed us to test whether cognitive enrichment could rescue ELS 
deficits and identify the specific synaptic adaptations underlying 
any behavioral recovery. Unexpectedly, we found clusters of these 
atypical excitatory MF synapses surrounding CA3 cell bodies whose 
density was regulated by the cognitive component of enrichment. 
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FIGURE 1 

Experimental timeline of enrichment training, behavioral tests and 
structural analysis on early-life stressed (ELS) and control mice. 
(A) Initially, we separated ELS mice into two sex matched groups. 
Half of the ELS mice (four males and four females) ran on the 
enrichment track (ET) track (orange) while the other half (four males 
and four females) ran on the control track (CT) track (dark blue). 
Following this, both groups received longitudinal behavioral testing 
and hippocampal structural analysis. (B) We ran double-housed 
adult ELS mice on our automated side-by-side environmental 
enrichment (EE) setups such that one mouse ran on the control 
track (CT, left panel) while its cage-mate ran on the enrichment 
track (ET, right panel). On the ET track, mice had to navigate through 
multiple obstacles (obstacle configuration changed every session), 
whereas the CT only ran over simple ramps. We place two one-way 
doors (asterisks) at opposite corners of the square track to minimize 
backtracking. Mice received a reward (sweetened condensed milk) 
upon completion of each lap controlled by an automated delivery 
system using an overhead camera tracking system. 

Results 

Cognitive enrichment rescues the spatial 
memory deficits of ELS mice 

First, we induced ELS using the disrupted maternal care 
paradigm (limited bedding and nesting method, LBN) since it 
causes progressive memory deficits as rodents age (Molet et al., 
2016a; Rocha et al., 2021). Following this we assigned mice to either 
enrichment or control groups (Figure 1A). Our previous findings 
suggest that ET training produces broad and dramatic memory 
enhancements (Gattas et al., 2022). We speculated, however, 
that a scaled back version of the ET training protocol would 
more selectively benefit hippocampal circuits that are especially 
vulnerable to ELS (Scholz et al., 2015; Molet et al., 2016b; 
Hoeijmakers et al., 2018; Manno et al., 2022). Thus, we ran our 
enrichment protocol for three 30 min sessions per week, one 
quarter of our original six 1 h sessions per week. 

We then tested both groups (ELS + ET, 4M and 4F, n = 8) and 
(ELS + CT, 4M and 4F, n = 8) on OLM and NOR memory tests 
at mature (6 months), middle (13 months) and old (20 months) 
ages to determine if behavioral gains would last as the mice 
aged (Figures 1A, B). We observed a significant group level (ET 
vs. CT) dierence in OLM [three-way ANOVA, F(1,12) = 8.80, 
p = 0.012] but no significant eect of age [F(1,12) = 1.69, p = 0.218] 
or sex [F(1,12) = 0.97, p = 0.345] (Figure 2A). In contrast to 
OLM and also the results of Gattas et al. (2022), we found no 
significant group [three-way ANOVA, F(1,12) = 0.074, p = 0.791], 
age [F(1,12) = 2.93, p = 0.113], or sex [F(1,12) = 0.11, p = 0.744] 

eect in the NOR test (Figure 2B). In the final OLM/NOR time-
point (18 months), the mice, unfortunately, did not spend enough 
time exploring the objects to get accurate testing scores (values 
are the sum of investigation times for both objects). Compared 
to their mature and middle-age scores, these older mice spent 
significantly less time investigating the objects [Supplementary 
Figure 2B, two-way ANOVA, P < 0.0001, F(2,88) = 30.86]; likely 
due to habituation to the OLM/NOR setup, an age-dependent 
reduction in exploratory behavior, or a combination of both. To 
reinvigorate their exploratory behavior, we switched to a completely 
novel setup, the spatial Y-maze. On test day, we found that ET mice 
(2M &3F, n = 5) spent significantly more time exploring the novel 
arm than CT mice (3M &4F, n = 7) in a group comparison [two-way 
ANOVA, F(1,8) = 19.89, p = 0.002], with no significant eect of sex 
[F(1,8) = 1.81, p = 0.215], suggesting that ET produced a life-long 
rescue of spatial memory formation or retention (Figures 2C, D). 

Importantly, our design mitigates the exercise confound since 
both groups must run laps to receive rewards. In fact, the control 
track (CT) group, that ran over simple ramps, completed more 
laps than the ET group that had to navigate through complex 
obstacles (Supplementary Figure 1C, unpaired two-tailed t-test, 
p < 0.0001). Thus, additional exercise cannot account for these 
observed memory enhancements in the ET group. 

ELS causes spatial memory deficits 

Many studies have shown that ELS causes significant memory 
disruptions (Brunson et al., 2005; Cui et al., 2006; Rice et al., 2008; 
Ivy et al., 2010; Wang et al., 2011; Naninck et al., 2015, 2017; Molet 
et al., 2016a; Hoeijmakers et al., 2018). To confirm these findings, 
we tested a separate non-enriched group of male mice under either 
ELS or typical rearing (TR) conditions (Figure 1A, chartreuse 
arrow). These ELS mice and their age-matched TR controls 
remained under normal housing conditions until behavioral testing 
at mature adult ages (∼6 months). The ELS group (6 months) 
showed memory impairments in the OLM task (p = 0.032, two-
tailed t-test, Figure 2E bottom) but not in NOR (p = 0.613, Figure 2F 
bottom). Taken together, our findings are consistent with other 
studies that ELS can cause a selective disruption of hippocampal -
dependent memories (Molet et al., 2016b; Hoeijmakers et al., 2018) 
but also see (Ivy et al., 2010; Naninck et al., 2015). 

Cognitive enrichment does not change 
gross hippocampal morphology 

Studies have shown that enrichment and ELS can cause 
volumetric changes in hippocampal subfields such as the mossy 
fiber (MF) pathway (Brunson et al., 2005; Galimberti et al., 2006; 
Molet et al., 2016b; Teicher et al., 2016; Humphreys et al., 2019; 
Youssef et al., 2019; Bramati et al., 2023). This prompted us to 
examine whether these ELS GCaMP-expressing mice mice had any 
gross morphological changes in their hippocampal structure. We 
used Thy1- because our earlier pilot images revealed that their DG 
neurons and axons (the MF pathway) were filled with GCaMP 
signal. One month following the final Y-maze test (21 months of 
age), we extracted brains for fluorescent imaging of endogenous 
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FIGURE 2 

Enrichment track (ET) training reverses life-long spatial memory deficits caused by early-life stress (ELS). Longitudinal testing of ELS mice on 
object-location (OLM) and novel object recognition (NOR) at mature (6 months) and middle-age (13 months) time points revealed that. (A) The 
ELS + ET group (orange, n = 8 mice) had improved 24 h memory [double-sided arrow, three-way repeated measures ANOVA, F(1,12) = 8.80, 
p = 0.012] for OLM relative to the ELS + CT control group (dark blue, n = 8). There was no significant effect of age or sex. (B) In contrast for NOR, we 
found no group difference [F(1,12) = 0.074, p = 0.791] and no effect of age or sex. The same mice (n = 16) were tested on OLM and NOR. A value of 1 
represents equal time with both objects (dashed line). (C) In a final (20 months) Y-maze test, the surviving mice (5M and 7F, n = 12) explored the two 
open arms for 5 min while the third arm remained blocked (transparent walls surrounded by distinct external cues) followed 24 h later by testing 
(5 min session) where mice were allowed to freely explore all three arms. (D) The ELS + ET group (orange, n = 5) spent significantly more time 
exploring the novel arm in comparison to the ELS + CT group (dark blue, n = 7) [two-way ANOVA, F(1,8) = 19.89, p = 0.002]. We calculated the active 
exploration ratios by dividing the occupancy times of the novel arm by that of the familiar arm (we excluded periods of immobility lasting longer 
than 1 s). (E,F) To verify that ELS alone (in the absence of EE) induced memory deficits, we tested mice on OLM and NOR using the same conditions 
as group 1. (E) In OLM, the TR group (black dots, n = 6 males) had significantly higher discrimination ratios (moved/fixed) compared to the ELS group 
(cyan dots, n = 6 males), indicating that they spent more relative time investigating the moved object (p = 0.0323, unpaired two-tailed t-test with 
Welch’s correction). (F) For NOR we observed that no significant difference in discrimination ratios between the same TR and ELS groups (p = 0.613, 
unpaired two-tailed t-test). Plots include values from individual mice [circles in (D–F)], mean [bar height and circles in (A,B)], and SEM (error bars). 

GCaMP and DAPI signals in the dorsal hippocampus. Importantly, 
this GCaMP signal was absent from CA3 neurons, indicating 

that the GCaMP signal in the CA3 subfield was specific to MFs 
(Figure 3B lower right inset). As expected, there was sparse GCaMP 

expression in CA1 neurons (Figure 3B top inset). 

Given the specificity of our GCaMP signal in combination 

with DAPI staining, we measured the areas of the GC Layer, the 

Hilus, and the suprapyramidal blade of the MF. After normalization 

to total hippocampal area (Supplementary Figure 4A), we did 

not detect any significant dierences in these areas between 
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FIGURE 3 

Large synaptic clusters containing mossy fiber boutons surround CA3 cell bodies in aged ELS mice (20 months). (A) Colocalization of postsynaptic 
marker αPSD-95 nanobody (red) with presynaptic marker αSynaptotagmin nanobody (SYN1, green) reveals the presence of large synaptic clusters 
(yellow) around CA3 soma (bottom inset) but not in the CA1 pyramidal subfield (top inset). (B) High expression of GCaMP signal (green) in the 
dentate gyrus cells show that mossy fibers project and appear to terminate near CA3 cell bodies (purple, DAPI). GCaMP signal is not detectable 
inside CA3 neurons (right inset) but it does fill a large percentage CA1 pyramidal neurons (top inset) as expected from imaging studies. (C–F) Super 
resolution single-plane optical section imaging of the stratum pyramidale [(C), CA3 cell bodies labeled with DAPI, purple] stained for mossy fiber 
boutons [(C), green], postsynaptic PSD-95 [(D), red] and presynaptic SYN-1 [(E), blue] yields extensive triple colocalization [(F), white] that consists of 
larger clusters and smaller individual puncta consistent with the hallmarks of MF synapses. Max Z projections of zoomed in z-stack images from a 
single cell body [(C–E), insets] demonstrate that these synaptic clusters surround the cell in all three dimensions. 

ELS + ET (n = 5) and ELS + CT (n = 7) mice (Supplementary 
Figure 4B). The number of CA3 neurons per 0.01 mm2 was not 
significantly dierent between groups. Altogether, this suggests 
that ET training does not cause gross structural changes in 
the DG to CA3 circuit when compared to our exercise alone 
control group (CT). 

Identification of atypical MF synapses 
surrounding CA3 cell bodies 

To visualize synapses, we found it necessary to use nanobodies 
that are capable of penetrating fixed tissue (Kilisch et al., 2023) 
allowing us to compare presynaptic and postsynaptic markers 

as well as the endogenous GCaMP signal (the MF indicator) in 
the same slice. Immunostaining with synaptotagmin and PSD-
95 revealed the presence of prominent large synaptic clusters 
surrounding the CA3 soma that were not as visible in other areas 
such as the CA1 subfield (Figure 3A top inset). 

The large synaptic clusters, consistent with MF boutons, 
were particularly notable in the CA3 stratum pyramidale, which 
was unexpected. To confirm these were bona fide MF synapses, 
we individually visualized all three signals: mossy fiber GCaMP 
(Figure 3C, green), postsynaptic PSD-95 (Figure 3D, red), and 
presynaptic synaptotagmin (Figure 3E, blue). Around CA3 cells 
(purple staining in Figure 3C), we observed many clusters in the 
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same location across all three images (white arrows in Figures 3C– 
E). The observed putative MF boutons colocalized with PSD-95 
(Figures 3C, D) as well as VGLUT1 (Supplementary Figure 5) 
suggesting that they were excitatory synapses. 

The triple colocalization image (overlay of all three RGB 
colors) revealed that many clusters were white, suggesting they 
were composed of all three markers (Figure 3F). These clusters 
varied in size, from larger clusters (top three arrows, Figure 3F) to 
individual puncta (bottom three arrows, Figure 3F). We performed 
a 2D spatial cross-correlation on these images to statistically 
determine the extent of colocalization. A pairwise analysis of all 
three combinations (PSD95-SYN1, PSD95-GCaMP, and SYN1-
GCaMP) revealed significant overlap, with peaks higher than the 
shued distribution (Sup Fig. 3). This statistically significant triple 
colocalization of mossy fiber boutons and pre- and postsynaptic 
markers strongly supports the presence of excitatory MF synapses 
in the CA3 pyramidal layer. 

Characterization of atypical MF synapses 
in the SP layer 

Next, we examined quantitative dierences in putative 
excitatory MF synapses between the ELS + ET and ELS + CT mice. 
We immunostained sections for postsynaptic PSD-95 (red) and 
presynaptic synaptotagmin 1 (SYN1, green) as this combination 
of synaptic markers had the highest overlap score (see the green 
line, Supplementary Figure 3). We tiled a large area of the CA3 
bend to identify MF synapses (yellow clusters and white arrows) 
of various sizes as well as CA3 cell bodies (dark circles) (Figure 4A). 
Regardless of size, colocalized clusters in the stratum pyramidale 
(SP) region (dashed white line) of the CA3, appeared to be 
composed of individual puncta with an area = ∼200 pixels or 
0.37 µm2 (Figure 4A). 

We used automated counting to determine frequency and size 
of clusters in the tiled images (2 per mice) between ELS + ET 
and ELS + CT mice. In total, ELS + ET mice had 10,497 clusters 
(n = 7 mice) while ELS + CT mice had 5,847 clusters (n = 5 
mice). Statistical analysis between the pooled groups using rank-
based (Mann-Whitney, p = 0.035) and cumulative (Kolmogorov-
Smirnov, p = 0.0001) methods indicated significant dierences in 
their size distributions. ELS + ET mice (orange line) had fewer large 
clusters and proportionally more smaller clusters than ELS + CT 
controls (blue line, Figure 4B). ELS + ET mice had a corresponding 
shift in puncta per cluster in (Figure 4B inset); assuming that the 
larger clusters are composed of discrete puncta. 

In a mouse-by-mouse analysis, normalized per CA3 neuron, 
we found that ELS + ET mice had on average 27% fewer clusters 
(4.75 ± 0.15, n = 5, orange dots) compared to ELS + CT 
controls (6.31 ± 0.63, n = 7, dark blue dots, two-way ANOVA, 
F(1,8) = 6.07, p = 0.039) with no significant sex dierences 
[F(1,8) = 0.043, p = 0.841 Figure 4D). There was no significant 
group or sex dierence in median cluster size [two-way ANOVA, 
group: F(1,8) = 4.36, p = 0.070; sex: F(1,8) = 0.0009, p = 0.976, 
Figure 4C], although there was a small trend for smaller synapses 
in ELS + ET mice consistent with our distribution analysis. These 
findings suggest that ET training reduces the number of mossy 

fiber (MF) synapses surrounding CA3 somas in ELS mice without 
significantly aecting the size of individual synaptic clusters. 

Discussion 

In a mouse model of ELS, we found that cognitive enrichment 
training during young adulthood leads to long-lasting changes in 
spatial memory and hippocampal structure. To our knowledge 
this is the first demonstration of these eects in a rodent 
model of maternal neglect. Compared to exercise alone controls 
(ELS + CT), mice that underwent enrichment training (ELS + ET) 
showed significant improvements in long-term OLM (24 h) 
memory at both mature (6 months) and middle-ages (13 months). 
Additionally, at 20 months, ELS + ET mice performed better 
memory in a final spatial Y-maze test. However, we found no group 
dierences in NOR, a task which relies less on the hippocampus 
(Oliveira et al., 2010; Barker and Warburton, 2011; Cohen and 
Stackman, 2015). Surprisingly, our anatomical analysis of the 
hippocampus revealed that aged ELS mice had prominent MF-
associated excitatory clusters surrounding the CA3 neurons, an 
area not typically associated with MF synapses. Furthermore, we 
found that in aged ELS mice early enrichment reduced the number 
of these atypical MF synapses by ∼25%. 

An important caveat in our findings is that within the stratum 
pyramidale, we cannot distinguish between atypical excitatory 
mossy fiber boutons that synapse onto pyramidal cells versus 
those that synapse onto inhibitory interneurons (Henze et al., 
2000; Urban et al., 2001). However, excitatory pyramidal neurons 
vastly outnumber inhibitory interneurons in the CA3 pyramidal 
layer, with interneurons comprising only approximately 10%– 
15% of the total neuronal population (Freund and Buzsáki, 1996; 
Klausberger and Somogyi, 2008). This numerical predominance 
suggests that the reduction in excitatory mossy fiber synaptic 
clusters we quantified likely represents connections onto pyramidal 
cells. Nevertheless, given that interneurons in this layer provide 
feed-forward inhibition that regulates CA3 excitability (Jinde et al., 
2012), and that environmental enrichment has been shown to 
modulate inhibitory neurotransmission (Speisman et al., 2013; 
Cortese et al., 2018), changes in mossy fiber connectivity onto 
inhibitory neurons could alter CA3 pattern separation. Future 
studies using cell-type-specific markers or electrophysiological 
approaches will be necessary to determine whether cognitive 
enrichment and/or ELS dierentially alters these synapses. 

There are important similarities and dierences between our 
behavioral observations and those of previous studies. Earlier 
studies found that ELS can cause wide-ranging spatial (e.g., OLM) 
and recognition (e.g., NOR) memory impairments (Brunson et al., 
2005; Hoeijmakers et al., 2018; Ivy et al., 2010; Molet et al., 2016a; 
Naninck et al., 2017; Bolton et al., 2020; Short et al., 2020; Rice et al., 
2008). These impairments; however, appear to occur at dierent 
rates during aging. A careful study, in rats, found that spatial 
memory deficits start during adolescence whereas the eects of ELS 
on NOR memory does not occur until older ages (Molet et al., 
2016b) [however, see male mice in Naninck et al. (2015) study]. 
Similarly, we found that our ELS alone mice (6 months) had normal 
NOR memory but significant deficits in OLM, consistent with the 
model that the hippocampus is more susceptible to assaults from 
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FIGURE 4 

Enrichment track (ET) training reduces the density of putative mossy fiber (MF) synapses in the CA3. (A) A representative tiled image from an 
ELS + ET mouse (brain harvested following Y-maze) double-stained with PSD95 (red) and SYN1 (green) nanobodies. In the stratum pyramidale (SP) 
region (dashed white line) of the CA3, colocalized (yellow) clusters appear to be comprised of individual puncta (area = ∼200 pixels or 0.37 µm 2 ).
Clusters smaller than 150 pixels were removed from subsequent analysis. (B) Histogram of log-transformed cluster sizes (pooled) and estimated 
number of puncta/cluster (inset) identified from ELS + ET (10,497 clusters, n = 7 mice) and ELS + CT mice (5,847 clusters, n = 5 mice). Statistical 
analysis between the groups using rank-based (Mann Whitney, p = 0.035) and cumulative (Kolmogorov-Smirnov, p = 0.0001) methods indicate 
significant differences (asterisk) in their distributions, likely due to fewer puncta per cluster in ELS + ET mice (inset). Dashed line indicates the 
x-intercept corresponding to our estimated size of a single puncta. (C,D) A mouse-by-mouse analysis reveals that ELS + ET mice (n = 5, orange 
dots) have fewer clusters compared to ELS + CT controls (n = 7, dark blue dots, two-way ANOVA, F(1,8) = 6.07, p = 0.039, asterisk, (D). There was a 
trend for smaller median cluster sizes in the ELS + ET group (two-way ANOVA, F(1,8) = 4.36, p = 0.070, (C). Tiled sections were normalized to counts 
to the total number of CA3 neurons. 

ELS than other brain regions. Interestingly our observations also 

suggest the ET protocol has a more selective eect on hippocampus 
function because between ET and CT mice we found no group 

dierences in NOR. This finding seemingly contrasts with our 

initial use of the ET protocol, where we found broad memory 

enhancements (Gattas et al., 2022). The original study; however, 
used a more extensive protocol (six 1 h sessions/week versus three 

30 min sessions/week) that started at an earlier age. This suggests 
that the abbreviated ET protocol used in this study produces a more 

limited eect that is biased toward improvements in hippocampal 
function. 

Contrary to our predictions, we found no dierences in MF 

volume between the ELS + ET and ELS + CT groups. Other studies, 
conducted with non-stressed mice, report that enrichment causes 
mossy fiber expansion beyond the SL layer (Galimberti et al., 2006; 
Bramati et al., 2023). Unlike our design, those studies did not 
control for exercise, as only the EE group had access to a running 

wheel. Since exercise alone contributes to mossy fiber sprouting 

(Toscano-Silva et al., 2010), it may be exercise, rather than cognitive 

enrichment, that drives the growth of mossy fibers toward the CA3 
cell bodies. 

Several factors could explain why these synapses remain 
uncharacterized, despite their previous observation (Amaral and 
Dent, 1981; Dailey et al., 1994; Qin et al., 2001; Banks et al., 
2024). Age and ELS cause CA3 dendritic atrophy and mossy fiber 
sprouting (Brunson et al., 2001; Galimberti et al., 2006; Adams et al., 
2010; Molet et al., 2016b), which may be an attempt by the MFs to 
compensate for synaptic loss, shifting synapse density toward CA3 
cell bodies. Another possibility is our use of nanobodies, which are 
∼10 times smaller than antibodies. This increases their ability to 
detect antigens in fixed tissue (Kilisch et al., 2023; Fridy et al., 2024). 

How the size and function of these atypical MF synapses 
compare to that of MF synapses in the SL layer remains 
unclear. Electron microscopy 3D reconstruction studies estimate 
the average MF bouton’s cross-sectional area to be ∼5 µm 2 

(Rollenhagen et al., 2007; Rollenhagen and Lübke, 2010; Murray 
et al., 2020), whereas our 2D average cluster size is ∼1.5 µm2 . 
This smaller size could be because our puncta only consist of the 
synaptic junction (colocalization of pre- and postsynaptic markers) 
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portion of the larger MF structure. Future structural studies with 
high resolution imaging such as electron microscopy are needed to 
determine whether these atypical synapses are similar in size to the 
typical “MF” synapses in the SL layer. Nevertheless, the proximity 
of these atypical MF synapses to the spike initiation zone suggests a 
tight coupling between changes in their density and CA3 activity. 
We suspect that the presence of these synapses would make a 
significant contribution to the unusually strong property of the MF-
CA3 synapses (i.e., “conditional detonator”) as originally proposed 
by McNaughton and Morris (1987) and theorized by Marr (1971). 

The reason why our cognitively enriched mice have fewer 
MF synapses remains an outstanding question. One possibility is 
increased synaptic pruning triggered by plasticity such as repeated 
bouts of long-term depression (LTD) (Bastrikova et al., 2008; 
Becker et al., 2008; Shinoda et al., 2010). The occurrence of LTD 
and LTP in the hippocampus largely depends on the nature of the 
behavioral learning task (Hagena and Manahan-Vaughan, 2024). At 
MF-CA3 synapses, exposure to a simple novel context facilitates 
LTP, while introducing large items and rearranging them, even 
when familiar, facilitates LTD (Kemp and Manahan-Vaughan, 2008; 
Hagena and Manahan-Vaughan, 2011). Our ET includes large 
obstacles frequently changed and rearranged, suggesting LTP may 
occur initially, followed by ongoing LTD and pruning as mice 
continue learning in the same context. 

The fact that MFs from adult-born DG neurons expand beyond 
the SL layer (Cole et al., 2020) raises the possibility that these 
atypical synapses preferentially belong to adult-born DG neurons. 
A recent study found that increases in the sparse activity of 
CA3 place cells due to enrichment requires neurogenesis (Ventura 
et al., 2024). EE can also rescue the survival of newborn neurons 
following ELS (Rule et al., 2021) and newborn neurons are more 
plastic (Ge et al., 2007; Massa et al., 2011). However, enrichment 
typically promotes growth factor signaling, enhancing DG-CA3 
LTP and MF synaptogenesis (Gogolla et al., 2009; Bednarek and 
Caroni, 2011; Schildt et al., 2013; Cao et al., 2014). And, whether 
adult-born DG neurons have altered MF plasticity with CA3 
remains unclear. Alterations in the fraction of newborn neurons 
that form atypical MF synapses could represent a mechanism by 
which experience and neurogenesis fine tune hippocampal activity. 

Our results suggest that targeted cognitive enrichment 
training may be especially beneficial to individuals that have 
suered from ELS. A potential therapeutic avenue is playing 
video action games, which significantly improves spatial 
reasoning and memory in humans. For instance, 3D video 
game players outperformed non-players on hippocampal-
mediated memory functions such as mental rotation 
and spatial visualization tasks (Green and Bavelier, 2003; 
Uttal et al., 2013; Clemenson and Stark, 2015). Moreover, 
neuroimaging studies confirm that video game training increases 
gray matter in the hippocampus and prefrontal cortex (Kühn et al., 
2014). Future studies, however, are needed to determine whether 
accessible interventions like 3D video games can mitigate the 
long-term cognitive and hippocampal structural deficits induced 
by early life adversity. 

Our findings suggest a potential mechanism to restore spatial 
learning and hippocampal function in aged ELS mice. Studies 
show that age and ELS increase DG and CA3 excitability (Barnes 
and McNaughton, 1980; Wilson et al., 2005; Patrylo et al., 2007; 
Simkin et al., 2015; Villanueva-Castillo et al., 2017); changes that 

FIGURE 5 

Hypothetical model that illustrates how enrichment could improve 
pattern separation in aged early-life stress (ELS) mice. (A) Age and 
stress (red dashed arrow) increase the excitability of dentate gyrus 
(DG) and CA3 which may cause mossy fiber (MF) input (solid 
inverted arrow) to drive dense recurrent activity (solid circular 
arrow). These dynamics could produce large overlaps (yellow 
shading) between context specific representations (A and B). (B) In 
enriched mice, age and stress may still lead to high levels of DG and 
CA3 excitability. However, a 27 percent reduction in the number of 
atypical MF synapses, per CA3 neuron, (open inverted arrow) could 
help to restore pattern separation by driving sparser recurrent 
activity (dashed circular arrow) that orthogonalizes (less yellow 
shading) context specific representations (A and B). 

would increase population activity and impair the ability of the 
hippocampus to pattern separate (Barnes et al., 1997; Tanila et al., 
1997a, 1997b; Redish et al., 1998; Wilson et al., 2005; Jinde et al., 
2012; Figure 5A). Our cognitive enrichment causes a 27% decrease 
in the number of atypical MF synapses which could counteract 
high excitability by reducing the number of MF synapses. The 
resulting increase in sparse activity would favor pattern separation 
and improve spatial learning, as distinct contexts would have 
more orthogonal CA3 and CA1 representations (McNaughton and 
Morris, 1987; McHugh et al., 2007; Figure 5B). 

Materials and methods 

Experimental animals 

For the longitudinal study we used Thy1-GCaMP6f-GP5.17 
(Jackson) mice due to the absence of reporter expression in the 
CA3. Upon reaching early-adulthood (2.5 months) GCaMP6f+ 

litter-mates were double-housed (after ELS) so that each cage had a 
mouse that ran ET and CT. This consisted of four cages of females 
(n = 8) and four cages of males (n = 8) for a total of (n = 16). Due to 
the longevity of this study, three males and one female mouse died 
of natural causes before reaching the final 20 months timepoint. 
After removal of the GCaMP6f+ mice, there remained six male 
GCamP6f− littermates (three cages). These were grouped with age 
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typically reared (TR) age-matched C57BL/6J male mice purchased 
from Jackson (n = 6) for the ELS vs. TR experiment (Figures 2E, F). 

Early-life stress and cognitive enrichment 

The experiments conducted were in accordance with the 
guidelines set by the Institutional Animal Care and Use Committee 
(IACUC) at the University of California, Irvine. We used the 
ELS protocol (developed in the Baram lab) whereby mouse 
litters receive limited bedding and nesting (LBN) conditions from 
postnatal days 2–10 in their rearing cages to modify maternal 
behavior during early development, (Figures 1A, B). Briefly, on 
postnatal day 2, we replaced the normal bedding (∼6 L) with a fitted 
metal grate (large enough to allow dropping to collect underneath) 
and two nestlets so that the dam could make a rudimentary nest. On 
postnatal day 10, we restored the normal bedding conditions. The 
control group (3 L), referred to as typically reared (TR), remained 
in their normal cages. After reaching adulthood (3.5 months), we 
ran a subset of the ELS mice (N = 16) on either enrichment (ET) 
or control track (CT) for ten weeks (3 × 30 min sessions/week), 
(Gattas et al., 2022; Figure 1C). Briefly, the enrichment setup 
consisted of two juxtaposed square tracks: one containing obstacles, 
while the other had simple ramps with one-way doors located 
at diagonal corners (Supplementary Figures 1A, B). Initially, we 
trained both groups of mice (2 weeks) to run laps around the track 
loaded with simple ramps (12) while receiving a single milk reward 
dispensed from a mounted lick tube triggered at the conclusion of 
each lap. In the next phase, we introduced complex obstacles only 
to the ET group, which continued for 8 weeks (Figure 1B). 

Object location memory and novel 
object recognition 

For each time point, we conducted a set of OLM (first week) 
and NOR (second week) behaviors over a 2 weeks period (10 days 
total). The first 3 days of each week served as habituation sessions, 
during which animals explored empty square boxes (10 × 9 inches) 
for 10 min. On the training day (fourth day), mice were exposed 
to two identical objects for 10 min. On the test day (fifth day), one 
object was relocated to a new position (OLM, week 1, Figure 2A, 
top) or replaced with a novel object in the same position (NOR, 
week 2, Figure 2B, top). We used the same context box but dierent 
objects for each round of OLM and NOR to avoid object familiarity-
related confounds. Boxes had unique markings on two of the walls 
(vertical and horizontal stripes) so that mice could easily associate 
the position of the objects with the box (Supplementary Figures 2A, 
B). All behaviors were recorded with an overhead camera using 
infrared emitters for low-light conditions. 

Y-maze 

The Y-maze setup had three identical arms (3.5 inches wide and 
10.5 inches long) with transparent walls and was surrounded by 
distinct external cues (Figure 2C). We always placed mice in the 
start arm at the beginning of each session. On training day (the 

first exposure to the Y-maze), we barricaded the to-be novel arm 
(opaque blocker) so that mice could only explore the two open 
arms (start and familiar) for 10 min. On test day (24 h later), we 
removed the blocker so that mice were free to explore all three arms 
for 5 min. A single top-view camera captured training and testing 
session videos. 

Behavioral analysis 

The behavior videos were analyzed manually using BORIS 
software (Friard and Gamba, 2016) to count the duration each 
animal spent within 2 cm of each object (OLM/NOR) and moving 
inside the novel arm (spatial Y-maze). Memory performance in 
each behavior test was measured using discrimination ratio (DR), 
calculated as the ratio of time spent near novel conditions (object 
in a novel location for OLM or novel object for NOR or novel arm 
in spatial Y-maze) to time spent near familiar conditions (object in 
a familiar location for OLM or familiar object for NOR or familiar 
arm in spatial Y-maze). 

Immunofluorescence staining 

Following isoflurane anesthesia, mice were transcardially 
perfused with cold phosphate buer solution (PBS), followed by 
4% paraformaldehyde (PFA), and the extracted brain was stored 
in 4% PFA at 4 ◦C. Before slicing, brains were transferred to 
30% sucrose/PBS solution and stored at 4 ◦C for cryoprotection. 
Brains were sectioned at 40 µm using a cryostat (Thermo Scientific 
HM525 NX) at −20 ◦C, and each section was stored in well plates 
containing cryoprotectant solution. 

Anatomical targeting: Dorsal hippocampal sections were 
selected at approximately −1.8 mm from bregma (anterior-
posterior coordinate) according to the Paxinos and Watson 
mouse brain atlas to visualize mossy fiber (MF) synapses in 
the distal CA3 region. This anatomical level was chosen to 
ensure regional consistency, as synaptogenesis is region-specific 
within hippocampal subfields, particularly in the septal versus 
temporal hippocampus. 

Immunohistochemistry protocol: Initial attempts using 
traditional PSD-95 and presynaptic antibodies yielded poor results 
with low signal and poor colocalization. Subsequent optimization 
using nanobodies showed dramatic improvements. First, we 
incubated sections for 2 h (at room temperature) in PBS blocking 
buer containing 5% normal goat serum (NGS) and 0.3% Triton 
X-100. Sections were then incubated with nanobodies (purchased 
from NanoTag Biotechnologies) that contained the appropriate 
combination of either anti-PSD-95 nanobody (FluoTag R -X2 
anti-PSD95, Cat No: N3702-AF647-L, 2 nM, Alexa647), anti-
synaptotagmin 1 nanobody (FluoTag R -X2 anti-Synaptotagmin 
1, Cat No: N2302-AF568-L, 0.2 nM, AZDye568) or VGLUT1 
nanobody (FluoTag R -X2 anti-VGLUT1, Cat No: N1602-AF568-L, 
1 nM, AZDye568). Incubation was performed with shaking at 4 
◦C for 24 h in PBS containing 0.3% Triton X-100. Sections were 
washed four times for 10 min each alternating between PBS and 
TBS. At these low concentrations, fluorescent signals were more 
prominent in the stratum pyramidale (SP) layer compared to the 
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stratum lucidum (SL) layer. Sections were mounted onto slides 
with media containing DAPI (Invitrogen SlowFade Glass Soft-set 
Antifade Mountant with DAPI, catalogue #S36917). 

Gross morphological analysis 

We took images of the entire dorsal hippocampus with a 
Keyence BZ-X1810 widefield fluorescence microscope with a 20x 
objective lens with DAPI and GCaMP filter cubes to visualize cell 
bodies and endogenous GCaMP6 signal. Images were loaded in 
Zeiss Zen software so that we could manually trace hippocampal 
subfields using the active contour tool. Following each outline, we 
took reported areas and normalized them to the total hippocampal 
area. To determine number of CA3 neuron we counted the 
number of easily identifiable large dark circles in the tiled images 
(described below). All tracing and counting was done by a double-
blind observer. 

Mossy fiber synaptic analysis 

Confocal imaging: Tiled images of the distal CA3 bend were 
captured using an LSM 900 microscope equipped with Airyscan 2 
and a 63X objective lens. PSD-95 and synaptotagmin-1 were excited 
using 653 and 568 nm diode lasers, respectively. Images were over-
sampled (2x) to facilitate super-resolution post-processing with 
Zeiss’ Super Resolution Airyscan mode (2D, auto). No additional 
deconvolution was applied beyond the Airyscan super-resolution 
processing. Images were manually aligned using Imaris Stitcher, 
creating two composite panels per mouse (approximately 20 
stitched images for each z-plane panel) selected systematically from 
the dorsal and ventral aspects of the CA3 bend. These panels 
were roughly 8,000 × 10,000 pixels (∼350 × 420 µm), 16-bit 
TIFF files, featuring red (PSD-95) and green (synaptotagmin-1) 
channels. Imaging parameters including laser power (2.3% for 
640 nm and 3.0% for 561 nm), gain, and oset were kept constant 
across all samples to ensure quantitative comparisons. As expected, 
nanobody penetration was lowest in the middle of the slice so for 
each mouse we constructed two composite panels at 10 and 30 µm 
positions within the 40 µm slice. We used the same settings for 
non-tiled images with the following additions: laser 405 nm at 1.5% 
and laser 488 nm power at 1.3%. Z-stacks consisted of 15 optical 
sections centered at 10 µm with a 1 µm step size. Reconstructed 3D 
images of synapses surrounding the cell body are max Z projections 
of all 15 slices. 

Quantitative analysis: For subsequent analysis on the tiled 
images, FIJI was used to crop images focusing on the pyramidal 
cell bodies of the SP layer. These cropped, composite images served 
as input for the MF synapse detection algorithm. Each channel 
was independently thresholded based on fluorescence intensity to 
create binary masks of equal size. Threshold values of 515 for PSD-
95 and 350 for Synaptotagmin were selected because they captured 
all identifiable clusters while excluding apparent noise, with similar 
mask sizes observed with threshold variations within a 5% range. 
The masks were combined using a pixel-wise AND operation and 
applied to the original 2-channel image, retaining only pixel values 
above the respective thresholds, with all other pixels set to 0 (black). 

Clusters smaller than 150 pixels were removed from subsequent 
analysis to eliminate imaging artifacts, so only clusters with an 
area exceeding 75% of 0.37 µm2 (0.27 µm2) were included. Large 
images were processed in parallel using smaller blocks of 500 × 500 
pixels, with a flood-fill algorithm applied to every fourth pixel 
(provided it was a non-zero value) to detect cluster masks. Visual 
inspections were performed on two images by manual counting to 
validate the automated detection, showing 97% agreement between 
automated and manual counts. Duplicate detections at block edges 
were filtered to ensure a unique set of clusters. Mossy fiber bouton 
density was quantified as the number of synaptic clusters per CA3 
neuron within the pyramidal cell layer, normalized across the two 
composite panels per mouse. All image acquisition and quantitative 
analyses were performed by investigators blinded to experimental 
groups. The analysis code is freely available online at GitHub.1 

Statistical analysis 

Behavioral tests were analyzed using repeated measures and 
two-way ANOVA designs (α = 0.05). Object location memory 
(OLM) and novel object recognition (NOR) were analyzed using 
three-way repeated measures ANOVA (Age × Group × Sex) with 
n = 16 mice total (ELS + ET: 4M and 4F, n = 8; ELS + CT: 4M and 
4F, n = 8). For OLM, only the Group main eect was statistically 
significant [F(1,12) = 8.80, p = 0.012], while all other main 
eects and interactions were non-significant: Age [F(1,12) = 1.69, 
p = 0.218], Sex [F(1,12) = 0.97, p = 0.345], Age × Group 
[F(1,12) = 0.16, p = 0.700], Age × Sex [F(1,12) = 0.081, p = 0.780], 
Group × Sex [F(1,12) = 0.0004, p = 0.984], and Age × Group × Sex 
[F(1,12) = 0.33, p = 0.579]. For NOR, no main eects or interactions 
reached statistical significance: Age [F(1,12) = 2.93, p = 0.113], 
Group [F(1,12) = 0.074, p = 0.791], Sex [F(1,12) = 0.11, p = 0.744], 
Age × Group [F(1,12) = 1.66, p = 0.222], Age × Sex [F(1,12) = 0.53, 
p = 0.479], Group × Sex [F(1,12) = 4.48, p = 0.056], and 
Age × Group × Sex [F(1,12) = 0.55, p = 0.472]. Object exploration 
time (OLM and NOR combined) was analyzed using a two-way 
ANOVA (Test Type × Group) with the same sample sizes. Only the 
Test Type main eect was statistically significant [F(2,88) = 30.86, 
p < 0.0001], while Group [F(1,88) = 0.886, p = 0.349] and Test 
Type × Group interaction [F(2,88) = 0.101, p = 0.904] were non-
significant. Y-maze data were analyzed using two-way ANOVA 
(Group × Sex) with n = 12 mice total (ELS + ET: 2M and 3F, 
n = 5; ELS + CT: 3M and 4F, n = 7). Only the Group main 
eect was statistically significant [F(1,8) = 19.89, p = 0.002], while 
Sex [F(1,8) = 1.81, p = 0.215] and Group × Sex interaction 
[F(1,8) = 0.81, p = 0.393] were non-significant. 

Synaptic analyses were conducted using two-way ANOVA 
(Group × Sex, α = 0.05) with n = 12 mice total (ELS + ET: 2M 
and 3F, n = 5; ELS + CT: 3M and 4F, n = 7). A significant Group 
main eect was found for cluster count [F(1,8) = 6.07, p = 0.039], 
with Sex [F(1,8) = 0.043, p = 0.841] and Group × Sex interaction 
[F(1,8) = 0.073, p = 0.794] being non-significant. For cluster size, no 
main eects or interactions reached statistical significance: Group 
[F(1,8) = 4.36, p = 0.070], Sex [F(1,8) = 0.0009, p = 0.976], and 
Group × Sex interaction [F(1,8) = 0.42, p = 0.535]. 

1 https://github.com/bainro/MF-synapse-analysis 
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Gross morphological analyses were conducted using two-way 
ANOVA (Group × Sex, α = 0.05) with n = 12 mice total (ELS + ET: 
2M and 3F, n = 5; ELS + CT: 3M and 4F, n = 7). All hippocampal 
morphology measures showed non-significant results including 
CA3 neuron density [Group: F(1,8) = 1.734, p = 0.224; Sex: 
F(1,8) = 0.026, p = 0.876; Group × Sex: F(1,8) = 0.012, p = 0.917], 
hilus area [Group: F(1,8) = 0.318, p = 0.589; Sex: F(1,8) = 0.268, 
p = 0.619; Group × Sex: F(1,8) = 0.117, p = 0.741], mossy fiber area 
[Group: F(1,8) = 0.596, p = 0.462; Sex: F(1,8) = 4.265, p = 0.073; 
Group × Sex: F(1,8) = 0.144, p = 0.714], and dentate gyrus area 
[Group: F(1,8) = 0.024, p = 0.881; Sex: F(1,8) = 4.056, p = 0.079; 
Group × Sex: F(1,8) = 0.098, p = 0.762]. Sex eects approached 
significance for both mossy fiber area (p = 0.073) and dentate gyrus 
area (p = 0.079). 

Summary of significant findings: Cognitive enrichment training 
(ET) significantly improved spatial memory performance in ELS 
mice, as evidenced by significant Group eects in both OLM 
(p = 0.012) and Y-maze (p = 0.002) tasks, but not in the 
hippocampus-independent NOR task. At the synaptic level, ET 
training significantly reduced the number of atypical mossy 
fiber synaptic clusters surrounding CA3 cell bodies (p = 0.039), 
while gross hippocampal morphology remained unchanged. These 
findings suggest that cognitive enrichment rescues ELS-induced 
spatial memory deficits through selective modifications of synaptic 
connectivity rather than gross structural changes. 
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