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Diabetic peripheral neuropathy (DPN), a prevalent and debilitating complication 
of diabetes, involves complex interactions between peripheral nerve damage and 
central nervous system (CNS) dysfunction. While traditional research has focused 
on peripheral and spinal mechanisms, emerging evidence highlights that the brain 
plays a critical role in the development of painful DPN. This review synthesizes recent 
advances from neuroimaging, spectroscopy, and preclinical studies to delineate 
structural, functional, and neurochemical alterations in the central nervous system 
associated with DPN. Patients exhibit cortical thinning, subcortical atrophy, and 
disrupted connectivity in sensory, affective, and cognitive networks, accompanied by 
metabolic imbalances and excitatory–inhibitory neurotransmitter shifts. Preclinical 
models further implicate maladaptive plasticity, microglial activation, and region-
specific astrocytic responses in amplifying central sensitization and pain chronicity. 
These mechanistic insights underscore the central nervous system as a therapeutic 
target. Non-invasive neuromodulation techniques, such as repetitive transcranial 
magnetic stimulation, and brain-directed pharmacological strategies show promising 
but preliminary benefits in alleviating neuropathic pain. Understanding the interplay 
between peripheral injury and brain dysfunction in DPN not only broadens the 
conceptual framework of its pathophysiology but also provides a foundation for 
developing novel interventions aimed at restoring central network balance and 
improving patient outcomes.
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1 Introduction

Diabetes mellitus is a chronic and complex metabolic disorder characterized by persistent 
hyperglycemia resulting from pancreatic β-cell dysfunction and insulin resistance. Over time, 
this condition leads to absolute or relative insulin deficiency, which contributes to a wide range 
of systemic complications. With rising global prevalence, diabetes has become one of the most 
pressing public health challenges. As of 2021, there were 529 million individuals diagnosed 
with diabetes, and this figure is projected to escalate to 1.3 billion by 2050, driven by an aging 
population, sedentary lifestyles, and dietary changes (Cho et al., 2018; Cole and Florez, 2020; 
Walker et al., 2023). The global economic and healthcare burden of diabetes is immense, 
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requiring sustained efforts to develop effective prevention and 
management strategies (NCD Risk Factor Collaboration, 2016).

One of the most debilitating complications of diabetes is diabetic 
peripheral neuropathy (DPN), a progressive microvascular 
complication affecting approximately 50% of diabetic patients (Faselis 
et al., 2020). Among these patients, 15–25% experience painful DPN 
(Shillo et al., 2019), which is characterized by chronic and persistent 
pain that exacerbates the emotional and psychological challenges of 

managing diabetes (Dyck et al., 1993; Pouwer et al., 2024). Despite the 
profound clinical impact of DPN, effective treatment options remain 
limited, primarily due to an incomplete understanding of 
its pathogenesis.

Traditional research on DPN has predominantly focused on the 
peripheral nervous system and spinal pathways (Yang et al., 2025). 
These studies have identified key mechanisms such as peripheral 
nerve damage, microvascular complications, and oxidative stress. 

GRAPHICAL ABSTRACT
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However, emerging evidence highlights the involvement of the brain 
in the integration and modulation of pain signals in DPN (Kapur, 
2003). Pain perception is not solely determined at the peripheral or 
spinal level, but is shaped by a distributed brain network encompassing 
the cortex, thalamus, hippocampus, and brainstem nuclei (Yang et al., 
2019; Latremoliere and Woolf, 2009). This constellation of brain 
regions, often referred to as the “pain matrix,” integrates sensory-
discriminative, affective, and cognitive dimensions of pain processing 
(Garcia-Larrea and Peyron, 2013; Greig et al., 2014). Under diabetic 
conditions, structural and functional alterations in these brain areas 
can amplify pain sensitivity, disrupt descending inhibitory pathways, 
and contribute to the persistence of neuropathic pain (Segerdahl et al., 
2018). While peripheral mechanisms initiate aberrant nociceptive 
signaling, central changes amplify and modulate these inputs, 
highlighting the complementary yet distinct contributions of 
peripheral and central processes to DPN pathophysiology (Schaible, 
2007; Sloan et al., 2021).

Recognizing DPN as a condition that involves peripheral, spinal, 
and brain changes is essential for advancing our understanding and 
treatment of this complex disease. This review aims to provide a 
comprehensive overview of brain mechanisms implicated in painful 
DPN. Clarifying these brain-specific contributions may facilitate the 
development of novel neuromodulator or pharmacological 
interventions to better manage neuropathic pain in diabetic patients.

2 Structural changes in the brain 
induced by DPN

DPN is increasingly recognized as a condition involving not only 
peripheral nerve damage but also central nervous system (CNS) 
alterations (Tesfaye et  al., 2016; Zang et  al., 2023). Accumulating 
neuroimaging evidence indicates that DPN is associated with 
significant structural changes in the brain, including cortical thinning, 
gray matter atrophy, and regional volume loss (Selvarajah et al., 2023; 
Zhang et al., 2020; Selvarajah et al., 2014). These alterations are closely 
linked to the sensory and affective manifestations of neuropathic pain 
(Zang et al., 2023), highlighting the importance of brain involvement 
in the pathogenesis and clinical expression of DPN (Yang et al., 2025).

High-resolution structural magnetic resonance imaging (MRI), 
particularly surface-based morphometry (SBM) and voxel-based 
morphometry (VBM) have enabled accurate evaluation of cortical 
morphology in DPN patients (Zhang et al., 2020; Tae et al., 2025; 
Scheliga et al., 2024). Cortical thickness, typically assessed by SBM, 
measures the distance between the white matter and pial surfaces, 
whereas gray matter volume, quantified through VBM, incorporates 
both thickness and surface area (Clarkson et al., 2011; Tang et al., 
2018). Although related, these markers are derived through distinct 
computational approaches and may reveal complementary, 
non-redundant aspects of cortical pathology (Clarkson et al., 2011; 
Schwarz et al., 2016).

2.1 Cortical alterations: thinning and 
volume loss

Cortical alterations in DPN primarily manifest as reductions in 
cortical thickness and volume, reflecting neuronal loss, dendritic 

retraction, or glial changes (Muhlau et al., 2007; Vidal-Pineiro et al., 
2020). These structural deficits are commonly observed in brain 
regions involved in pain processing, sensorimotor integration, 
emotional regulation, and attentional modulation, and are more 
pronounced in painful DPN, suggesting a central contribution to pain 
chronification (Selvarajah et  al., 2023; Davis and Moayedi, 2013; 
Tracey and Mantyh, 2007; Hostrup et al., 2025).

Cortical thinning in DPN reflects region-specific reductions in 
thickness, often seen as localized microstructural damage. Notably, 
cortical thinning has been reported in several key brain regions, 
including the primary somatosensory cortex (S1, postcentral gyrus) 
(Selvarajah et al., 2023; Zhang et al., 2020; Selvarajah et al., 2014; 
Hostrup et  al., 2025; Selvarajah et  al., 2019; Hansen et  al., 2022a; 
Frokjaer et al., 2013), primary motor cortex (M1, precentral gyrus) 
(Selvarajah et  al., 2023; Zhang et  al., 2020; Hansen et  al., 2022a), 
insular cortex (Selvarajah et al., 2023; Zhang et al., 2020), anterior 
cingulate cortex (ACC) (Selvarajah et al., 2023; Zhang et al., 2020), 
middle cingulate cortex (Zhang et al., 2020), superior parietal gyrus/
lobule (Hansen et al., 2022b), and supramarginal gyrus (Selvarajah 
et al., 2014; Hostrup et al., 2025). These changes are typically more 
marked in painful DPN and are thought to reflect maladaptive 
plasticity triggered by chronic peripheral nerve injury (Li et al., 2016). 
Thinning in regions such as the insula and S1 has been associated with 
enhanced pain intensity and disrupted sensory-emotional integration, 
potentially contributing to central sensitization (Selvarajah et al., 2023; 
Zhang et al., 2020; Hansen et al., 2022b; He et al., 2025; Chao et al., 
2022a). Cortical thinning is commonly associated with normal aging 
(Cao et  al., 2017) and is often accelerated in neurodegenerative 
diseases such as Alzheimer’s disease (Wu et al., 2021). In the context 
of DPN, however, cortical thinning likely reflects a combination of 
diabetes-related systemic effects and central nervous system 
adaptations to chronic neuropathic pain (Hostrup et al., 2025).

Cortical volume loss, on the other hand, integrates cortical 
thickness with surface area and folding patterns, offering a broader 
perspective on atrophy (Winkler et al., 2010; Lemaitre et al., 2012). 
Reductions in gray matter volume have been identified in the S1 
(Selvarajah et  al., 2014; Hansen et  al., 2022a), M1 (Hansen et  al., 
2022a), cingulate cortex (Selvarajah et  al., 2023; Selvarajah et  al., 
2014), supramarginal gyrus (Selvarajah et al., 2014), and inferior/
superior occipital gyrus (Hansen et  al., 2022a). These volumetric 
losses often overlap with thinning regions but may also indicate more 
extensive neuronal compromise. In painful DPN, greater volume loss 
in areas such as the ACC has been linked to intensified affective 
symptoms like distress and catastrophizing (Penzo and Gao, 2021; 
Sifuentes-Franco et al., 2017), while atrophy in the posterior cingulate 
cortex and parietal regions may impair the sensory-discriminative 
components of pain perception. Mechanistically, chronic 
hyperglycemia, oxidative stress (Penzo and Gao, 2021; Sifuentes-
Franco et al., 2017), and microvascular injury (Van Dam et al., 2013) 
may drive these structural alterations through neurodegenerative and 
neuroinflammatory pathways (see Table 1).

2.2 Subcortical alterations: volume loss

Subcortical volume loss, often quantified through voxel-based 
morphometry, has been consistently reported in DPN, particularly 
affecting deep gray matter nuclei integral to pain modulation and 
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sensory processing (Selvarajah et al., 2014; Hansen et al., 2022b). 
Significant atrophy has been identified in the thalamus (Selvarajah 
et al., 2023; Zhang et al., 2020; Selvarajah et al., 2014; Selvarajah et al., 
2019; Hansen et al., 2022b), putamen (Zhang et al., 2020; Hansen 
et al., 2022b; He et al., 2025), caudate nucleus (Zhang et al., 2020; 
Hansen et al., 2022b; He et al., 2025), pallidum (Zhang et al., 2020; He 
et al., 2025), hippocampus (Zhang et al., 2020), and amygdala (Zhang 
et  al., 2020)—critical nodes in ascending and descending pain 
pathways that facilitate sensory processing, motor-sensory 
integration, autonomic regulation, and pain inhibition. Reductions in 
putamen and caudate nucleus volumes may disrupt basal ganglia-
mediated modulation of sensorimotor and affective pain components 

(Chudler and Dong, 1995), potentially exacerbating movement-
related symptoms and emotional distress in DPN (Zhang et al., 2020; 
Hansen et  al., 2022b; He et  al., 2025). Similarly, atrophy in the 
hippocampus and amygdala could impair descending inhibitory 
control, promoting pain persistence and contributing to associated 
emotional dysregulation, such as anxiety (Zhang et  al., 2020). 
Phenotype-specific patterns have also emerged. For instance, thalamic 
volume appears more reduced in painless DPN than in painful DPN, 
particularly on the right side (Novo et al., 2022). Conversely, painful 
DPN may involve relatively preserved thalamic structure but 
dysfunctional thalamo-cortical signaling, contributing to abnormal 
nociceptive amplification (Hansen et al., 2022a; Novo et al., 2022).

TABLE 1  Summary of structural, connectivity, and mechanistic changes in the brain in DPN.

Change type Region/structure Functional/
pathological 
significance

Mechanism/key 
findings

References

Structural changes—cortex Sensory and motor cortices (S1, 

M1, superior parietal/

supramarginal gyrus)

Thinning/volume loss; disrupts 

sensory-motor integration and 

increases pain intensity

Maladaptive plasticity from 

hyperglycemia/oxidative stress; 

impairs sensory processing

Selvarajah et al. (2023), Zhang 

et al. (2020), Selvarajah et al. 

(2014), Hostrup et al. (2025), 

Selvarajah et al. (2019), Hansen 

et al. (2022a), Frokjaer et al. 

(2013), Hansen et al. (2022b)

Affective and Integrative 

Cortices (ACC/Midcingulate, 

Insula)

Thinning/volume loss; abnormal 

affective regulation; heightens 

distress/catastrophizing

Neuronal degeneration and central 

sensitization; disrupts emotional 

integration

Selvarajah et al. (2023), Zhang 

et al. (2020), Selvarajah et al. 

(2014)

Structural changes—

subcortical

Thalamus and Basal Ganglia 

(Putamen/Caudate)

Volume loss (more in painless 

DPN); impairs sensory/motor 

modulation and emotion-related 

pain

Thalamo-cortical dysfunction and 

neurodegeneration; phenotype-

specific amplification

Selvarajah et al. (2023), Zhang 

et al. (2020), Selvarajah et al. 

(2014), Selvarajah et al. (2019), 

Hansen et al. (2022b), He et al. 

(2025)

Limbic Structures 

(Hippocampus/Amygdala)

Volume loss; impairs emotional 

regulation and inhibition

Neuroinflammation/degeneration; 

promotes pain persistence and 

anxiety

Zhang et al. (2020)

Connectivity Changes Thalamocortical and 

Thalamus–S1 Networks

FC ↓; impairs sensory 

transmission and amplifies pain

Thalamocortical dysrhythmia; 

linked to peripheral damage

Cauda et al. (2009), Teh et al. 

(2021)

Thalamus–Insula and 

Thalamus–Parietal/Occipital

FC ↑; heightens affective-

attentional and aberrant sensory 

processing

Hyperactivation in pain circuits; 

correlates with pain scores

Teh et al. (2021), Chao et al. 

(2022b), Croosu et al. (2023), 

Liu et al. (2021)

Limbic-ACC/Hippocampus/

Temporal Lobe

Connectivity ↓, efficiency ↓; 

impairs emotional control

White matter damage; reduces 

network integration

Chao et al. (2022a)

Mechanistic findings 

(Rodents)

Synaptic/Neurotransmitter 

Dysregulation (ACC, LC, PAG)

Glutamate/PKMζ ↑, output ↓, 

imbalance; causes sensitization 

and inhibition loss

Synaptic potentiation; IGF-1 

restores function/reduces 

hyperalgesia

Li et al. (2014), Li et al. (2022), 

Suehiro et al. (2013), Mesa-

Lombardo et al. (2023), 

Morgado et al. (2011)

Microglial Activation (ACC, 

Cortex, Thalamus, RVM)

Activation ↑, ON-cell ↑; 

enhances signaling and 

facilitation

Neuroinflammation via CXCL12/

CXCR4 and TRPV1/5-HT3; 

amplifies nociception

Wang et al. (2024), Zhang et al. 

(2022), Song et al. (2023), Silva 

et al. (2016)

Astrocytic Activation (Motor 

cortex, PVT, vlPAG, 

Hippocampus)

GFAP/P2X7/Ca2+ ↑; amplifies 

pain and inflammation

Cytokine release (TNF-α/IL-1β); 

inhibition alleviates allodynia; 

dihydromyricetin protects

Lu et al. (2021), Chen et al. 

(2025), Yang L. et al. (2022), Ge 

et al. (2020)

ACC, anterior cingulate cortex; CXCL12, chemokine ligand 12; CXCR4, C-X-C chemokine receptor type 4; DPN, diabetic peripheral neuropathy; FC, functional connectivity; GFAP, glial 
fibrillary acidic protein; IGF-1, insulin-like growth factor 1; IL-1β, interleukin-1 beta; LC, locus coeruleus; M1, primary motor cortex; P2X7, purinergic receptor P2X7; PAG, periaqueductal 
gray; PKMζ, protein kinase M zeta; PVT, paraventricular thalamic nucleus; RVM, rostral ventromedial medulla; S1, primary somatosensory cortex; TNF-α, tumor necrosis factor alpha; 
TRPV1, transient receptor potential vanilloid 1; vlPAG, ventrolateral periaqueductal gray; 5-HT3, 5-hydroxytryptamine receptor 3.
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3 Brain dysfunction induced by DPN

Advances in neuroimaging techniques, such as functional 
magnetic resonance imaging (fMRI), have facilitated the identification 
of microstructural and functional impairments within the central 
nervous system (Yen et al., 2023; Ugurbil et al., 2003). Using fMRI, 
functional disruptions in brain networks involved in the affective and 
cognitive modulation of pain can be revealed (Zhang L. B. et al., 2024; 
Martucci and Mackey, 2018).

3.1 Resting-state functional connectivity: 
disruptions in pain and sensory networks

Resting-state fMRI is a powerful tool used to evaluate spontaneous 
brain activity by measuring functional connectivity (Barkhof et al., 
2014). RS-fMRI detects low-frequency blood-oxygen-level-dependent 
(BOLD) fluctuations, allowing for analysis of temporal correlations 
between spatially distinct brain regions—termed functional 
connectivity (FC)—and thus provides insights into brain network 
alterations without task-related stimulation (Baracchini et al., 2021; 
Allen et al., 2014).

One of the earliest studies applying RS-fMRI in DPN 
demonstrated significantly reduced thalamocortical functional 
connectivity in patients with painful DPN (PDN) (Cauda et al., 2009). 
Specifically, FC between the ventral posterior lateral (VPL) and 
mediodorsal thalamic nuclei and the S1 was diminished, supporting 
the notion that chronic pain disrupts thalamocortical feedback loops, 
a concept known as thalamocortical dysrhythmia (Cauda et al., 2009). 
Concurrently, modulation of the dorsolateral prefrontal cortex–
anterior cingulate cortex–medial thalamus loop has been proposed in 
PDN, consistent with decreased anterior cingulate perfusion 
during rest.

A more recent study stratified DPN patients by nociceptor 
phenotype and found a double dissociation in thalamocortical FC: 
thalamus–insula FC was positively associated with neuropathic pain 
scores, while thalamus–somatosensory cortex FC was inversely 
correlated with the severity of peripheral nerve damage (Teh et al., 
2021). The insula, implicated in affective and attentional pain 
processing, may be hyperactive in pain-promoting circuits among 
individuals with preserved nociceptor input.

In a diffusion MRI study assessing structural connectivity (SC), 
reduced thalamic and hypothalamic SC with the amygdala and insula 
has been reported in PDN, compared to both painless DPN and 
healthy controls (Chao et  al., 2022b). Lower SC in the anterior 
cingulate cortex correlated with greater autonomic dysfunction, 
linking limbic disconnection to both pain and dysautonomia.

Furthermore, FC alterations appear phenotype-specific. A 2023 
study found that, compared to painful DPN and controls, type 1 
diabetes patients without neuropathy exhibited hyperconnectivity 
between the thalamus/postcentral gyrus and motor areas (Croosu 
et al., 2023). In contrast, PDN was associated with reduced FC in these 
pathways, with stronger associations observed between thalamic FC 
and both pain scores and nerve conduction deficits.

Another RS-fMRI study reported enhanced thalamic FC with the 
parietal and occipital cortices in patients with type 2 diabetes and 
PDN, implicating thalamoparietal overactivation in the 
pathophysiology of pain (Liu et al., 2021).

Complementing functional studies, graph theory analysis of 
structural networks constructed from diffusion tractography showed 
PDN-specific reductions in white matter connectivity within the 
insula, hippocampus, and temporal lobe, along with decreased global 
efficiency and betweenness centrality—indicative of widespread 
disintegration of integrative brain networks (Chao et al., 2022a).

Collectively, these studies demonstrate that PDN is associated 
with altered thalamocortical and limbic connectivity, involving both 
sensory-discriminative and affective-emotional components of pain. 
Such connectivity patterns are further modulated by disease 
phenotype and severity, suggesting potential for FC-based biomarkers 
in diagnosis and monitoring of DPN.

3.2 Task-based imaging: cortical 
reorganization and pain modulation

Task-based fMRI approach measures brain activity in response to 
specific stimuli or tasks, providing insights into the functional 
reorganization of neural circuits in response to sensory inputs or 
motor demands (Huang et al., 2024).

Studies using this technique have revealed how the brain responds 
to sensory stimuli in diabetic peripheral neuropathy. During thermal 
nociceptive stimulation, patients with severe diabetic distal 
symmetrical polyneuropathy exhibit expanded activation of the 
primary somatosensory cortex, with abnormal representations 
extending into non-somatotopic areas such as the facial and lip 
cortices (Selvarajah et al., 2019). This pattern reflects central plasticity 
resulting from peripheral deafferentation and suggests a cortical 
spread of nociceptive encoding.

Additionally, in response to noxious heat stimulation, patients 
with painful DPN show increased BOLD activation in the ACC, 
anterior insula, and supplementary motor areas—changes that 
positively correlate with pain intensity and affective distress (Tseng 
et al., 2013). In contrast, patients with painless DPN display reduced 
activation in the ACC and S1, highlighting distinct patterns of central 
reorganization between DPN subtypes.

Further supporting this, a study (Li et  al., 2018) found that 
compared to healthy individuals and diabetic patients without 
neuropathy, those with DPN showed significantly stronger activation 
in somatosensory-related regions—including the right insula, left 
caudate nucleus, frontal gyrus, and cingulate cortex—in response to 
thermal stimuli. These findings underscore the potential of task-based 
fMRI as a sensitive tool for detecting early central nervous system 
involvement in DPN.

3.3 Neurochemical and metabolic 
alterations in the brain: insights from 
magnetic resonance spectroscopy (MRS)

MRS studies have been used to identify metabolic abnormalities 
in key brain regions to understand changes across chronic pain 
conditions (Cruz-Almeida and Porges, 2021). In addition to functional 
imaging insights, clinical metabolic and neurochemical assessments 
further implicate central involvement in DPN (Zhao et al., 2018).

Sloan et al. demonstrated that patients with painful DPN exhibit 
significantly reduced phosphocreatine-to-ATP (PCr: ATP) ratios in 

https://doi.org/10.3389/fncel.2025.1637357
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Wei et al.� 10.3389/fncel.2025.1637357

Frontiers in Cellular Neuroscience 06 frontiersin.org

the primary somatosensory (S1) cortex compared with painless DPN, 
indicating higher cortical energy consumption in pain phenotypes 
(Sloan et al., 2023). Moreover, lower PCr: ATP ratios correlated with 
greater pain intensity, suggesting that altered cortical bioenergetics 
may serve as a biomarker of painful DPN.

Beyond high-energy phosphate changes, several MRS studies have 
identified alterations in metabolites reflecting neuronal integrity, glial 
activity, and membrane turnover. Selvarajah et  al. (2008) found 
preserved S1 cortical metabolites but reduced thalamic 
N-acetylaspartate (NAA) -to-creatine (Cr) ratio in advanced painless 
DPN, with preservation in painful DPN, suggesting that intact 
thalamic neuronal function may be a prerequisite for pain perception. 
Similarly, Hansen et  al. reported decreased NAA/Cr ratios and 
increased myo-inositol/Cr in parietal and cingulate regions in type 1 
diabetes, with greater reductions linked to more severe DPN (Hansen 
et  al., 2024). Painful DPN was further associated with increased 
glycerophosphocholine/Cr and elevated thalamic glutamate, 
indicating enhanced membrane turnover and heightened excitatory 
neurotransmission in pain phenotypes.

Altered neurotransmitter balance has also been reported in 
DPN. Petrou et al. found significantly higher glutamate/glutamine and 
lower γ-aminobutyric acid (GABA) levels in the posterior insula of 
patients with diabetic neuropathy and positive sensory symptoms 
compared with healthy controls, indicating an excitatory/inhibitory 
imbalance in key pain-processing areas (Petrou et  al., 2012). 
Supporting this, Shillo et  al. reported that painless DPN was 
characterized by the lowest thalamic GABA: H2O ratio compared with 
both healthy volunteers and diabetes patients without DPN, whereas 
painful DPN maintained partially preserved GABA levels, suggesting 
that central GABAergic pathways may be critical for neuropathic pain 
mechanisms (Shillo et al., 2024).

Taken together, clinical neuroimaging studies consistently support 
phenotype-specific central alterations in DPN, suggesting that painful 
and painless subtypes may follow partially distinct neurobiological 
trajectories. This distinction provides an important framework for 
interpreting mechanistic findings from preclinical models.

4 Brain-centered mechanistic findings 
from rodent models of DPN

To complement clinical imaging findings, preclinical studies in 
rodent models have been widely used to explore brain-specific 
mechanisms underlying diabetic neuropathic pain. These studies help 
elucidate cellular and molecular processes that are difficult to access 
in human subjects. As illustrated in Graphical abstract, the following 
sections summarize key brain mechanisms identified in animal 
models of DPN.

4.1 Synaptic and neurotransmitter 
dysregulation

Preclinical studies provide mechanistic validation for clinical 
findings and offer deeper insight into specific neural circuits 
involved in DPN.

In diabetic rodent models, elevated glutamatergic activity has been 
observed in ACC neurons (Li et  al., 2014). This is driven by both 

increased presynaptic glutamate release and enhanced postsynaptic 
receptor responsiveness, accompanied by elevated PKMζ 
phosphorylation. Pharmacological blockade of PKMζ reversed thermal 
hyperalgesia and mechanical allodynia and normalized synaptic 
activity, underscoring its role in central sensitization (Li et al., 2014).

Further studies highlight dysfunction in descending pain 
modulation systems, particularly the locus coeruleus (LC) -spinal 
noradrenergic circuits. In DPN rats, reduced LC output correlates 
with diminished inhibition of spinal nociceptive transmission, poor 
analgesic efficacy, and persistent spinal glial activation (Li et al., 2022; 
Suehiro et  al., 2013; Mesa-Lombardo et  al., 2023). Moreover, LC 
dysfunction impairs regulation of emotional tone, exacerbating 
depressive and anxiety-like behaviors, consistent with clinical affective 
symptoms in DPN (Alba-Delgado et al., 2016; Espana et al., 2024).

Similarly, the periaqueductal gray (PAG)—a central hub for pain 
modulation—exhibits neurotransmitter dysregulation in DPN models 
(Morgado et  al., 2011). Serotonin and noradrenaline imbalances 
impair descending inhibition, while insulin-like growth factor 1 
(IGF-1) treatment has been shown to restore neurotransmitter balance 
within the PAG, leading to significant reductions in mechanical 
hyperalgesia (Morgado et al., 2011).

4.2 Microglial activation: linking 
neuroinflammation to neuronal injury

Microglia, the primary immune effector cells of the CNS, are 
central to neuroinflammation, and play a critical role in the central 
mechanisms underlying DPN (Wang et al., 2024).

In one study, positron emission tomography/computed tomography 
(PET/CT) imaging revealed increased translocator protein expression 
in the cortex and thalamus of diabetic rats, coupled with higher 
numbers of Iba-1-positive microglial cells (Zhang et al., 2022). These 
alterations are correlated with reduced mechanical and thermal pain 
thresholds, underscoring the role of microglia in pain hypersensitivity.

Further evidence from streptozotocin (STZ)-induced diabetic 
mouse models reveals marked microglial activation in the ACC, along 
with upregulated expression of the chemokine CXCL12 and its neuronal 
receptor CXCR4 (Song et al., 2023). This CXCL12/CXCR4 signaling 
enhances glutamatergic neuron excitability in the ACC, contributing to 
central sensitization and persistent mechanical pain in DPN.

The rostral ventromedial medulla (RVM), a brainstem center 
involved in descending pain facilitation, also shows early-stage 
microglial reactivity in DPN (Silva et  al., 2016). Diabetic rodents 
demonstrate increased ON-cell activity, spinal 5-HT3 receptor 
expression, and TRPV1 upregulation, all of which facilitate nociceptive 
signal amplification (Silva et al., 2016). As DPN progresses, oxidative 
stress and microglial activation within the RVM further exacerbate 
neuroinflammation and neurodegeneration.

4.3 Region-specific astrocytic responses in 
central pain processing

Astrocytes, the most abundant glial cells in the CNS, play a crucial 
role in maintaining homeostasis, regulating neuronal activity, and 
mediating inflammatory responses (Giovannoni and Quintana, 2020). 
In DPN, astrocytic changes exhibit regional heterogeneity, with their 
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activation contributing differentially to central pain amplification 
across pain-modulating brain structures (Cheng et al., 2022).

In STZ-induced diabetic models, the significantly increased 
expression of glial fibrillary acidic protein (GFAP)—a hallmark of 
astrocyte activation—has been detected in the motor cortex following 
the onset of DPN, indicating the involvement of motor cortex 
astrocytes in the pathogenesis of DPN (Lu et al., 2021). Functional 
inhibition of astrocytes in this region alleviated mechanical allodynia, 
alongside reduced expression of pro-inflammatory cytokine, including 
TNF-α and IL-1β.

The paraventricular thalamic nucleus (PVT), a midline thalamic 
structure crucial for sensory and nociceptive signal processing (Penzo 
and Gao, 2021), also exhibits significant astrocytic activation during 
DPN. In a study of DPN male rat, astrocytic activity within the PVT 
is markedly upregulated, accompanied by decreased neuronal activity 
at around 14 days following STZ administration (Chen et al., 2025). 
Chemogenetic inhibition of astrocytes in this region alleviates 
mechanical allodynia, whereas artificial activation in healthy rodents 
is sufficient to induce pain behavior.

Astrocyte activation is also evident in the ventrolateral 
periaqueductal gray (vlPAG), a core component of the descending 
pain inhibitory pathway (Tracey and Mantyh, 2007). Astrocytes in this 
region exhibit time-dependent activation and morphological changes, 
becoming significantly reactive after 14 days of STZ administration 
(Yang L. et al., 2022). Chemogenetic activation of vlPAG astrocytes in 
naive rats induces pain-like behaviors and aversion, while their 
inhibition in DPN model rats alleviates mechanical hypersensitivity 
and promotes preference behavior.

In vitro studies mimicking DPN with depression have shown that 
high glucose, substance P, and corticosterone exposure lead to astrocyte 
damage (Ge et al., 2020). This is marked by upregulated P2X7 receptor 
expression, elevated TNF-α and IL-1β levels, increased cytoplasmic 
Ca2+, and enhanced ERK1/2 phosphorylation. Notably, dihydromyricetin 
treatment protects primary hippocampal astrocytes from cytotoxicity 
and reduces inflammation, underscoring the importance of targeting 
astrocyte dysfunction to manage comorbidities in DPN.

5 Potential therapeutic strategies

The neuroimaging and mechanistic findings summarized above 
not only deepen our understanding of central alterations in DPN but 
also provide a critical basis for therapeutic development. Cortical 
reorganization and disrupted network activity revealed by 
neuroimaging point to neuromodulation of specific brain regions as a 
potential strategy (Chao et al., 2022a; Zeng et al., 2020; Li and Gao, 
2025), while evidence of neuroinflammation and glial activation 
highlights molecular targets for pharmacological intervention (Kaur 
et al., 2025; Cheng et al., 2024). Building on these insights, the following 
section discusses emerging therapeutic approaches that exemplify how 
mechanistic discoveries can be translated into clinical strategies.

5.1 Transcranial non-invasive treatment of 
DPN

The following section summarizes findings primarily derived 
from clinical studies in human participants, focusing on non-invasive 

neuromodulatory approaches, particularly those targeting central pain 
processing pathways (Knotkova et al., 2021).

Transcranial magnetic stimulation (TMS), especially in the form 
of repetitive protocols (rTMS), utilizes pulsed magnetic fields to 
generate localized electric currents in targeted cortical areas (Davidson 
et al., 2024). This technique allows for precise modulation of neural 
circuits involved in pain perception and emotional regulation (Weise 
et al., 2023; Jayathilake et al., 2025).

A single-blinded randomized controlled trial investigated 
prolonged continuous theta burst stimulation (pcTBS) targeting both 
M1 and dorsolateral PFC in neuropathic pain patients (Thakkar et al., 
2023). Neurophysiological assessments revealed modulation of motor 
corticospinal excitability and GABAergic activity, while no significant 
changes were observed in ascending/descending endogenous pain 
modulation systems. Although standardized pain scores remained 
unchanged, self-reported acute pain intensity showed a 13% 
improvement post-intervention, suggesting transient analgesic effects.

Similarly, another study evaluated the effect of a single-session 
pcTBS targeting the same cortical regions in patients with DPN 
(Thakkar et al., 2024). Findings indicated multidimensional analgesic 
effects, with improvements reported across sensory-discriminative, 
affective-motivational, and cognitive-evaluative domains of pain 
perception. Importantly, no adverse events were observed within 24 h 
post-intervention, supporting the safety and clinical feasibility of this 
non-invasive approach.

Further evidence was provided by a study that assessed the 
therapeutic efficacy of rTMS in DPN patients immediately after 
treatment and at a one-week follow-up (Yang S. et al., 2022). The 
results showed a sustained reduction in pain intensity along with 
improvements in overall quality of life. Specifically, both physical and 
mental component scores showed significant enhancements, 
underscoring the potential of rTMS not only to alleviate pain but also 
to improve psychosocial well-being.

These preliminary findings support transcranial non-invasive 
neuromodulation as a promising adjunctive strategy for the treatment 
of DPN. However, further research is needed to determine optimal 
stimulation parameters, treatment frequency, and patient selection 
criteria, which will be critical for maximizing clinical outcomes and 
individualizing therapy.

5.2 Brain-targeting compounds

Emerging research highlights the therapeutic potential of diverse 
compounds—ranging from natural phytochemicals to synthetic 
drugs—for the treatment of DPN (Qureshi et al., 2022; Arora et al., 
2021; Zhang E. X. et al., 2024). However, the studies discussed in this 
section are derived entirely from preclinical/basic research in animal 
models. While they offer important mechanistic insights, their direct 
applicability to clinical practice remains to be established through 
rigorous translational and clinical studies.

Given the well-established role of neuroinflammation in DPN 
pathogenesis, strategies aimed at modulating central glial activation, 
particularly astrocytes and microglia, have garnered increasing 
interest (Llorian-Salvador et al., 2024). One promising example is 
Koumine, a bioactive alkaloid derived from Gelsemium elegans Benth., 
which has demonstrated anti-inflammatory and analgesic effects in 
preclinical studies (Que et al., 2021). Its therapeutic actions include 
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the suppression of astrocyte activation in the basolateral amygdala and 
the subsequent reduction of proinflammatory cytokine release (Lu 
et  al., 2023). These mechanisms are associated with attenuated 
mechanical hyperalgesia in rodent models of DPN.

In addition, an experimental study investigated fluorocitrate and 
neurotropin as potential therapies for DPN via central astrocyte 
modulation (Liu et al., 2022). Fluorocitrate, a glial-specific metabolic 
inhibitor that disrupts Krebs cycle activity (Zhuang et al., 2025), and 
neurotropin, a biologic agent derived from vaccinia virus-inoculated 
rabbit skin (Sprumont et al., 1995), were evaluated in diabetic rats. 
Both agents reduced mechanical hypersensitivity and normalized 
astrocyte activation markers in the vlPAG when administered via 
intrathecal (fluorocitrate) or systemic (neurotropin) routes (Liu et al., 
2022). Critically, these analgesic effects occurred without altering 
blood glucose levels, suggesting a glucose-independent mechanism of 
action centered on astrocyte regulation. These findings highlight 
astrocytes as potential therapeutic targets for DPN management.

Beyond astrocytic modulation, other compounds targeting 
neuroinflammation through different mechanisms have also shown 
efficacy. Thalidomide, a derivative of glutamic acid, exhibits 
immunomodulatory and anti-inflammatory effects (Millrine and 
Kishimoto, 2017). RVM microinjections of thalidomide in Zucker 
diabetic fatty (ZDF) rats significantly reduced mechanical allodynia 
and thermal hyperalgesia (Yang et al., 2016). The analgesic effects were 
correlated with localized suppression of pro-inflammatory mediators 
(TNF-α, IL-1β) and NF-κB signaling within the RVM 
microenvironment. However, systemic cytokine levels remained 
unchanged, indicating region-specific anti-inflammatory action rather 
than global immunomodulation. It should be noted, nevertheless, that 
despite these mechanistic insights, the clinical application of 
thalidomide is limited by its well-documented toxicity concerns 
(Matthews and McCoy, 2003).

In addition to direct anti-inflammatory approaches, receptor-
based interventions have emerged as another promising strategy. 
Among these, glucagon-like peptide-1 receptor agonists (GLP-1RA), 
commonly used for type 2 diabetes, have shown additional potential 
in DPN (Dhanapalaratnam et  al., 2024). In animal models, 
intracerebroventricular administration of GLP-1RA has been shown 
to alleviate thermal and mechanical allodynia in DPN rats and 
suppress microglial activation in the cortex and thalamus, suggesting 
that GLP-1RA attenuates DPN, likely through inhibition of NLRP3 
inflammasome activation in brain microglia (Zhang et al., 2022).

Beyond neuroinflammation and receptor modulation, 
mitochondrial dysfunction has been increasingly recognized as a 
shared pathological mechanism in neuropathic pain, including DPN 
(Yu et al., 2025; Espinoza and Papadopoulos, 2025). In the ZDF rat 
model, chronic oral administration of NSI-189, a neurogenic 
compound, ameliorated indices of neuropathy by improving 
mitochondrial bioenergetics (Jolivalt et al., 2022). Specifically, NSI-189 
enhanced expression of mitochondrial respiratory complex subunits 
(III and V) and restored the activities of complexes I and IV in the 
brain cortex, changes that were accompanied by improved memory 
function and synaptic plasticity. These findings suggest that 
mitochondrial protection may represent an additional therapeutic 
avenue for targeting CNS dysfunction in DPN, though clinical 
translation remains to be established.

In summary, brain-targeting compounds primarily act by 
modulating central neuroinflammatory pathways, engaging specific 

receptor targets, or protecting mitochondrial function. While 
preclinical findings are encouraging, further translational research is 
required to clarify their safety, efficacy, and clinical 
applicability in DPN.

5.3 Clinical translation and future 
perspectives

Collectively, the integration of neuroimaging and preclinical 
findings provides a mechanistic foundation that can inform clinical 
interventions in DPN. For example, evidence of cortical and 
subcortical reorganization has guided the application of non-invasive 
brain stimulation techniques such as rTMS (Zeng et al., 2020), while 
the identification of neuroinflammatory and mitochondrial pathways 
has stimulated the search for brain-targeting pharmacological agents 
(Kaur et  al., 2025; Zhu et  al., 2023). Although most compounds 
remain at the preclinical stage, these mechanistic insights highlight 
promising therapeutic avenues that may complement existing 
symptomatic treatments. Importantly, future clinical trials should 
be  designed to bridge these translational gaps, incorporating 
neuroimaging biomarkers to stratify patients and monitor treatment 
responses (Zhu et al., 2023; Hermann et al., 2025). Such an approach 
may accelerate the development of mechanism-based and personalized 
therapies for painful DPN (Atmaca et al., 2024).

While the present review highlights CNS alterations in DPN, it is 
equally important to consider how patient heterogeneity shapes these 
changes and modulates treatment responses, which is critical for 
advancing personalized therapy (Yang et al., 2019; Sloan et al., 2021; 
Teh et al., 2021; Croosu et al., 2023; Bonhof et al., 2019). Variability in 
pain phenotypes (e.g., painful vs. painless DPN), diabetes duration, 
and comorbidities such as anxiety or depression can influence the 
progression of CNS alterations (Shillo et al., 2019; Rosenberger et al., 
2020; Gore et al., 2005; Lee and Won, 2025). For instance, patients 
with longer disease duration or genetic predispositions may show 
more pronounced thalamic atrophy or altered somatosensory 
connectivity, leading to greater central sensitization (Teh et al., 2021). 
Such heterogeneity contributes to differential CNS plasticity and 
variable responsiveness to interventions: neuromodulation (e.g., 
rTMS) may benefit certain phenotypes, whereas pharmacological 
therapies may be less effective in those with comorbid depression or 
genetic variants affecting drug metabolism (Sloan et al., 2021; Zeng 
et al., 2020; Zhu et al., 2023; Bonhof et al., 2019). To address these 
challenges, future studies should prioritize patient stratification based 
on phenotypes, CNS biomarkers, and complementary measures such 
as quantitative sensory testing or neuroimaging profiles, thereby 
facilitating more tailored and effective therapies (Yang et al., 2019; 
Sloan et al., 2021; Zhu et al., 2023; Atmaca et al., 2024; Bonhof et al., 
2019; Lee and Won, 2025).

6 Conclusion

DPN is not solely a peripheral disorder; it involves profound 
changes in the brain’s pain-processing and modulation networks. 
Structural alterations, such as cortical thinning and subcortical 
atrophy, along with functional disruptions in connectivity and 
excitatory–inhibitory imbalance, contribute to central sensitization 
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and pain persistence. Neuroinflammatory processes driven by 
microglial and astrocytic activation further amplify neuronal 
dysfunction and exacerbate chronic pain states.

These diverse alterations converge within the pain matrix, 
integrating sensory, emotional, and cognitive aspects of pain. 
Maladaptive reorganization of this matrix in DPN provides a 
unifying explanation for how peripheral injury, central 
sensitization, and higher-order processes interact to sustain 
chronic pain.

Understanding the role of the pain matrix in DPN provides a 
foundation for developing targeted therapies. Interventions aimed at 
restoring functional connectivity, reducing neuroinflammation, and 
enhancing descending inhibition hold promise for addressing the 
brain mechanisms of pain. Future research should prioritize 
longitudinal studies to elucidate the progression of central changes in 
DPN and explore multimodal approaches that integrate peripheral 
and central treatments for optimal pain management.
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