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Diabetic peripheral neuropathy (DPN), a prevalent and debilitating complication
of diabetes, involves complex interactions between peripheral nerve damage and
central nervous system (CNS) dysfunction. While traditional research has focused
on peripheral and spinal mechanisms, emerging evidence highlights that the brain
plays a critical role in the development of painful DPN. This review synthesizes recent
advances from neuroimaging, spectroscopy, and preclinical studies to delineate
structural, functional, and neurochemical alterations in the central nervous system
associated with DPN. Patients exhibit cortical thinning, subcortical atrophy, and
disrupted connectivity in sensory, affective, and cognitive networks, accompanied by
metabolic imbalances and excitatory—inhibitory neurotransmitter shifts. Preclinical
models further implicate maladaptive plasticity, microglial activation, and region-
specific astrocytic responses in amplifying central sensitization and pain chronicity.
These mechanistic insights underscore the central nervous system as a therapeutic
target. Non-invasive neuromodulation techniques, such as repetitive transcranial
magnetic stimulation, and brain-directed pharmacological strategies show promising
but preliminary benefits in alleviating neuropathic pain. Understanding the interplay
between peripheral injury and brain dysfunction in DPN not only broadens the
conceptual framework of its pathophysiology but also provides a foundation for
developing novel interventions aimed at restoring central network balance and
improving patient outcomes.

KEYWORDS

diabetic peripheral neuropathy, brain mechanisms, neuroimaging, neuroinflammation,
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1 Introduction

Diabetes mellitus is a chronic and complex metabolic disorder characterized by persistent
hyperglycemia resulting from pancreatic f-cell dysfunction and insulin resistance. Over time,
this condition leads to absolute or relative insulin deficiency, which contributes to a wide range
of systemic complications. With rising global prevalence, diabetes has become one of the most
pressing public health challenges. As of 2021, there were 529 million individuals diagnosed
with diabetes, and this figure is projected to escalate to 1.3 billion by 2050, driven by an aging
population, sedentary lifestyles, and dietary changes (Cho et al., 2018; Cole and Florez, 2020;
Walker et al., 2023). The global economic and healthcare burden of diabetes is immense,
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cell group; Glu, glutamate; PKM, protein kinase M zeta; NA, noradrenaline; 5-HT, 5-hydroxytryptamine (serotonin); CXCL12, C-X-C motif chemokine
ligand 12; CXCR4, C-X-C motif chemokine receptor 4; ROS, reactive oxygen species; TSPO, 18-kDa translocator protein; Iba-1, ionized calcium-
binding adaptor molecule 1; GFAP, glial fibrillary acidic protein; TNF-a, tumor necrosis factor alpha; IL-1f, interleukin-1 beta.

requiring sustained efforts to develop effective prevention and
management strategies (NCD Risk Factor Collaboration, 2016).

One of the most debilitating complications of diabetes is diabetic
peripheral neuropathy (DPN), a progressive microvascular
complication affecting approximately 50% of diabetic patients (Faselis
etal, 2020). Among these patients, 15-25% experience painful DPN
(Shillo et al.,

pain that exacerbates the emotional and psychological challenges of

2019), which is characterized by chronic and persistent
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1993; Pouwer et al,, 2024). Despite the
profound clinical impact of DPN, effective treatment options remain

managing diabetes (Dyck et al.,

limited, primarily due to an incomplete understanding of
its pathogenesis.

Traditional research on DPN has predominantly focused on the
peripheral nervous system and spinal pathways (Yang et al., 2025).
These studies have identified key mechanisms such as peripheral
nerve damage, microvascular complications, and oxidative stress.
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However, emerging evidence highlights the involvement of the brain
in the integration and modulation of pain signals in DPN (Kapur,
2003). Pain perception is not solely determined at the peripheral or
spinal level, but is shaped by a distributed brain network encompassing
the cortex, thalamus, hippocampus, and brainstem nuclei (Yang et al.,
2019; Latremoliere and Woolf, 2009). This constellation of brain
regions, often referred to as the “pain matrix;” integrates sensory-
discriminative, affective, and cognitive dimensions of pain processing
(Garcia-Larrea and Peyron, 2013; Greig et al., 2014). Under diabetic
conditions, structural and functional alterations in these brain areas
can amplify pain sensitivity, disrupt descending inhibitory pathways,
and contribute to the persistence of neuropathic pain (Segerdahl et al,,
2018). While peripheral mechanisms initiate aberrant nociceptive
signaling, central changes amplify and modulate these inputs,
highlighting the complementary yet distinct contributions of
peripheral and central processes to DPN pathophysiology (Schaible,
2007; Sloan et al., 2021).

Recognizing DPN as a condition that involves peripheral, spinal,
and brain changes is essential for advancing our understanding and
treatment of this complex disease. This review aims to provide a
comprehensive overview of brain mechanisms implicated in painful
DPN. Clarifying these brain-specific contributions may facilitate the
development of novel neuromodulator or pharmacological
interventions to better manage neuropathic pain in diabetic patients.

2 Structural changes in the brain
induced by DPN

DPN is increasingly recognized as a condition involving not only
peripheral nerve damage but also central nervous system (CNS)
alterations (Tesfaye et al., 2016; Zang et al., 2023). Accumulating
neuroimaging evidence indicates that DPN is associated with
significant structural changes in the brain, including cortical thinning,
gray matter atrophy, and regional volume loss (Selvarajah et al., 2023;
Zhang et al., 2020; Selvarajah et al., 2014). These alterations are closely
linked to the sensory and affective manifestations of neuropathic pain
(Zang et al., 2023), highlighting the importance of brain involvement
in the pathogenesis and clinical expression of DPN (Yang et al., 2025).

High-resolution structural magnetic resonance imaging (MRI),
particularly surface-based morphometry (SBM) and voxel-based
morphometry (VBM) have enabled accurate evaluation of cortical
morphology in DPN patients (Zhang et al., 2020; Tae et al., 2025;
Scheliga et al., 2024). Cortical thickness, typically assessed by SBM,
measures the distance between the white matter and pial surfaces,
whereas gray matter volume, quantified through VBM, incorporates
both thickness and surface area (Clarkson et al., 2011; Tang et al,
2018). Although related, these markers are derived through distinct
computational approaches and may reveal complementary,
non-redundant aspects of cortical pathology (Clarkson et al., 2011;
Schwarz et al., 2016).

2.1 Cortical alterations: thinning and
volume loss

Cortical alterations in DPN primarily manifest as reductions in
cortical thickness and volume, reflecting neuronal loss, dendritic
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retraction, or glial changes (Muhlau et al., 2007; Vidal-Pineiro et al,,
2020). These structural deficits are commonly observed in brain
regions involved in pain processing, sensorimotor integration,
emotional regulation, and attentional modulation, and are more
pronounced in painful DPN, suggesting a central contribution to pain
chronification (Selvarajah et al., 2023; Davis and Moayedi, 2013;
Tracey and Mantyh, 2007; Hostrup et al., 2025).

Cortical thinning in DPN reflects region-specific reductions in
thickness, often seen as localized microstructural damage. Notably,
cortical thinning has been reported in several key brain regions,
including the primary somatosensory cortex (S1, postcentral gyrus)
(Selvarajah et al., 2023; Zhang et al., 2020; Selvarajah et al., 2014;
Hostrup et al., 2025; Selvarajah et al., 2019; Hansen et al., 2022a;
Frokjaer et al., 2013), primary motor cortex (M1, precentral gyrus)
(Selvarajah et al., 2023; Zhang et al., 2020; Hansen et al., 2022a),
insular cortex (Selvarajah et al., 2023; Zhang et al., 2020), anterior
cingulate cortex (ACC) (Selvarajah et al., 2023; Zhang et al., 2020),
middle cingulate cortex (Zhang et al., 2020), superior parietal gyrus/
lobule (Hansen et al., 2022b), and supramarginal gyrus (Selvarajah
et al,, 2014; Hostrup et al., 2025). These changes are typically more
marked in painful DPN and are thought to reflect maladaptive
plasticity triggered by chronic peripheral nerve injury (Li et al., 2016).
Thinning in regions such as the insula and S1 has been associated with
enhanced pain intensity and disrupted sensory-emotional integration,
potentially contributing to central sensitization (Selvarajah et al., 2023;
Zhang et al., 2020; Hansen et al., 2022b; He et al., 2025; Chao et al,,
2022a). Cortical thinning is commonly associated with normal aging
(Cao et al, 2017) and is often accelerated in neurodegenerative
diseases such as Alzheimer’s disease (Wu et al., 2021). In the context
of DPN, however, cortical thinning likely reflects a combination of
diabetes-related systemic effects and central nervous system
adaptations to chronic neuropathic pain (Hostrup et al., 2025).

Cortical volume loss, on the other hand, integrates cortical
thickness with surface area and folding patterns, offering a broader
perspective on atrophy (Winkler et al.,, 2010; Lemaitre et al., 2012).
Reductions in gray matter volume have been identified in the S1
(Selvarajah et al., 2014; Hansen et al., 2022a), M1 (Hansen et al.,
2022a), cingulate cortex (Selvarajah et al., 2023; Selvarajah et al.,
2014), supramarginal gyrus (Selvarajah et al.,, 2014), and inferior/
superior occipital gyrus (Hansen et al., 2022a). These volumetric
losses often overlap with thinning regions but may also indicate more
extensive neuronal compromise. In painful DPN, greater volume loss
in areas such as the ACC has been linked to intensified affective
symptoms like distress and catastrophizing (Penzo and Gao, 2021;
Sifuentes-Franco et al., 2017), while atrophy in the posterior cingulate
cortex and parietal regions may impair the sensory-discriminative
components of pain perception. Mechanistically, chronic
hyperglycemia, oxidative stress (Penzo and Gao, 20215 Sifuentes-
Franco et al,, 2017), and microvascular injury (Van Dam et al., 2013)
may drive these structural alterations through neurodegenerative and
neuroinflammatory pathways (see Table 1).

2.2 Subcortical alterations: volume loss
Subcortical volume loss, often quantified through voxel-based

morphometry, has been consistently reported in DPN, particularly
affecting deep gray matter nuclei integral to pain modulation and
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TABLE 1 Summary of structural, connectivity, and mechanistic changes in the brain in DPN.

Change type

Region/structure

Functional/
pathological

Mechanism/key
findings

10.3389/fncel.2025.1637357

References

Structural changes—cortex

Sensory and motor cortices (S1,
M1, superior parietal/

supramarginal gyrus)

significance
Thinning/volume loss; disrupts

sensory-motor integration and

increases pain intensity

Maladaptive plasticity from
hyperglycemia/oxidative stress;

impairs sensory processing

Selvarajah et al. (2023), Zhang
et al. (2020), Selvarajah et al.
(2014), Hostrup et al. (2025),
Selvarajah et al. (2019), Hansen
et al. (2022a), Frokjaer et al.
(2013), Hansen et al. (2022b)

Affective and Integrative
Cortices (ACC/Midcingulate,

Insula)

Thinning/volume loss; abnormal
affective regulation; heightens

distress/catastrophizing

Neuronal degeneration and central
sensitization; disrupts emotional

integration

Selvarajah et al. (2023), Zhang
et al. (2020), Selvarajah et al.

(2014)

and inhibition loss

Structural changes— Thalamus and Basal Ganglia Volume loss (more in painless Thalamo-cortical dysfunction and | Selvarajah et al. (2023), Zhang
subcortical (Putamen/Caudate) DPN); impairs sensory/motor neurodegeneration; phenotype- et al. (2020), Selvarajah et al.
modulation and emotion-related | specific amplification (2014), Selvarajah et al. (2019),
pain Hansen et al. (2022b), He et al.
(2025)
Limbic Structures Volume loss; impairs emotional Neuroinﬂammation/degeneration; Zhang et al. (2020)
(Hippocampus/Amygdala) regulation and inhibition promotes pain persistence and
anxiety
Connectivity Changes Thalamocortical and FC |; impairs sensory Thalamocortical dysrhythmia; Cauda et al. (2009), Teh et al.
Thalamus-S1 Networks transmission and amplifies pain linked to peripheral damage (2021)
Thalamus-Insula and FC 1; heightens affective- Hyperactivation in pain circuits; Teh et al. (2021), Chao et al.
Thalamus—Parietal/Occipital attentional and aberrant sensory correlates with pain scores (2022b), Croosu et al. (2023),
processing Liu et al. (2021)
Limbic-ACC/Hippocampus/ Connectivity |, efficiency |; White matter damage; reduces Chao et al. (2022a)
Temporal Lobe impairs emotional control network integration
Mechanistic findings Synaptic/Neurotransmitter Glutamate/PKM( 1, output |, Synaptic potentiation; IGF-1 Li et al. (2014), Li et al. (2022),
(Rodents) Dysregulation (ACC, LC, PAG) | imbalance; causes sensitization restores function/reduces Suehiro et al. (2013), Mesa-

hyperalgesia

Lombardo et al. (2023),
Morgado et al. (2011)

Microglial Activation (ACC,
Cortex, Thalamus, RVM)

Activation 1, ON-cell 1;
enhances signaling and

facilitation

Neuroinflammation via CXCL12/
CXCR4 and TRPV1/5-HT3;

amplifies nociception

Wang et al. (2024), Zhang et al.
(2022), Song et al. (2023), Silva
et al. (2016)

Astrocytic Activation (Motor
cortex, PVT, vIPAG,
Hippocampus)

GFAP/P2X7/Ca* 1; amplifies

pain and inflammation

Cytokine release (TNF-a/IL-1p);
inhibition alleviates allodynia;

dihydromyricetin protects

Lu et al. (2021), Chen et al.
(2025), Yang L. et al. (2022), Ge
et al. (2020)

ACG, anterior cingulate cortex; CXCL12, chemokine ligand 12; CXCR4, C-X-C chemokine receptor type 4; DPN, diabetic peripheral neuropathy; FC, functional connectivity; GFAP, glial
fibrillary acidic protein; IGF-1, insulin-like growth factor 1; IL-1p, interleukin-1 beta; LC, locus coeruleus; M1, primary motor cortex; P2X7, purinergic receptor P2X7; PAG, periaqueductal
gray; PKMC, protein kinase M zeta; PVT, paraventricular thalamic nucleus; RVM, rostral ventromedial medulla; S1, primary somatosensory cortex; TNF-a, tumor necrosis factor alpha;
TRPV]1, transient receptor potential vanilloid 1; vVIPAG, ventrolateral periaqueductal gray; 5-HT3, 5-hydroxytryptamine receptor 3.

sensory processing (Selvarajah et al., 2014; Hansen et al., 2022b).
Significant atrophy has been identified in the thalamus (Selvarajah
etal,, 2023; Zhang et al., 2020; Selvarajah et al., 2014; Selvarajah et al.,
2019; Hansen et al., 2022b), putamen (Zhang et al., 2020; Hansen
et al,, 2022b; He et al., 2025), caudate nucleus (Zhang et al., 20205
Hansen et al., 2022b; He et al., 2025), pallidum (Zhang et al., 2020; He
etal., 2025), hippocampus (Zhang et al., 2020), and amygdala (Zhang
et al., 2020)—critical nodes in ascending and descending pain
pathways that facilitate sensory processing, motor-sensory
integration, autonomic regulation, and pain inhibition. Reductions in
putamen and caudate nucleus volumes may disrupt basal ganglia-
mediated modulation of sensorimotor and affective pain components
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(Chudler and Dong, 1995), potentially exacerbating movement-
related symptoms and emotional distress in DPN (Zhang et al., 20205
Hansen et al, 2022b; He et al, 2025). Similarly, atrophy in the
hippocampus and amygdala could impair descending inhibitory
control, promoting pain persistence and contributing to associated
emotional dysregulation, such as anxiety (Zhang et al., 2020).
Phenotype-specific patterns have also emerged. For instance, thalamic
volume appears more reduced in painless DPN than in painful DPN,
particularly on the right side (Novo et al., 2022). Conversely, painful
DPN may involve relatively preserved thalamic structure but
dysfunctional thalamo-cortical signaling, contributing to abnormal
nociceptive amplification (Hansen et al., 2022a; Novo et al., 2022).
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3 Brain dysfunction induced by DPN

Advances in neuroimaging techniques, such as functional
magnetic resonance imaging (fMRI), have facilitated the identification
of microstructural and functional impairments within the central
nervous system (Yen et al., 2023; Ugurbil et al., 2003). Using fMRI,
functional disruptions in brain networks involved in the affective and
cognitive modulation of pain can be revealed (Zhang L. B. et al., 2024;
Martucci and Mackey, 2018).

3.1 Resting-state functional connectivity:
disruptions in pain and sensory networks

Resting-state fMRI is a powerful tool used to evaluate spontaneous
brain activity by measuring functional connectivity (Barkhof et al.,
2014). RS-fMRI detects low-frequency blood-oxygen-level-dependent
(BOLD) fluctuations, allowing for analysis of temporal correlations
between spatially distinct brain regions—termed functional
connectivity (FC)—and thus provides insights into brain network
alterations without task-related stimulation (Baracchini et al., 2021;
Allen et al., 2014).

One of the earliest studies applying RS-fMRI in DPN
demonstrated significantly reduced thalamocortical functional
connectivity in patients with painful DPN (PDN) (Cauda et al., 2009).
Specifically, FC between the ventral posterior lateral (VPL) and
mediodorsal thalamic nuclei and the S1 was diminished, supporting
the notion that chronic pain disrupts thalamocortical feedback loops,
a concept known as thalamocortical dysrhythmia (Cauda et al., 2009).
Concurrently, modulation of the dorsolateral prefrontal cortex—
anterior cingulate cortex-medial thalamus loop has been proposed in
PDN, consistent with decreased anterior cingulate perfusion
during rest.

A more recent study stratified DPN patients by nociceptor
phenotype and found a double dissociation in thalamocortical FC:
thalamus-insula FC was positively associated with neuropathic pain
scores, while thalamus-somatosensory cortex FC was inversely
correlated with the severity of peripheral nerve damage (T¢ch et al.,
2021). The insula, implicated in affective and attentional pain
processing, may be hyperactive in pain-promoting circuits among
individuals with preserved nociceptor input.

In a diffusion MRI study assessing structural connectivity (SC),
reduced thalamic and hypothalamic SC with the amygdala and insula
has been reported in PDN, compared to both painless DPN and
healthy controls (Chao et al., 2022b). Lower SC in the anterior
cingulate cortex correlated with greater autonomic dysfunction,
linking limbic disconnection to both pain and dysautonomia.

Furthermore, FC alterations appear phenotype-specific. A 2023
study found that, compared to painful DPN and controls, type 1
diabetes patients without neuropathy exhibited hyperconnectivity
between the thalamus/postcentral gyrus and motor areas (Croosu
etal, 2023). In contrast, PDN was associated with reduced FC in these
pathways, with stronger associations observed between thalamic FC
and both pain scores and nerve conduction deficits.

Another RS-fMRI study reported enhanced thalamic FC with the
parietal and occipital cortices in patients with type 2 diabetes and
PDN,
pathophysiology of pain (Liu et al., 2021).

implicating  thalamoparietal ~overactivation in the
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Complementing functional studies, graph theory analysis of
structural networks constructed from diffusion tractography showed
PDN-specific reductions in white matter connectivity within the
insula, hippocampus, and temporal lobe, along with decreased global
efficiency and betweenness centrality—indicative of widespread
disintegration of integrative brain networks (Chao et al., 2022a).

Collectively, these studies demonstrate that PDN is associated
with altered thalamocortical and limbic connectivity, involving both
sensory-discriminative and affective-emotional components of pain.
Such connectivity patterns are further modulated by disease
phenotype and severity, suggesting potential for FC-based biomarkers
in diagnosis and monitoring of DPN.

3.2 Task-based imaging: cortical
reorganization and pain modulation

Task-based fMRI approach measures brain activity in response to
specific stimuli or tasks, providing insights into the functional
reorganization of neural circuits in response to sensory inputs or
motor demands (Huang et al., 2024).

Studies using this technique have revealed how the brain responds
to sensory stimuli in diabetic peripheral neuropathy. During thermal
nociceptive stimulation, patients with severe diabetic distal
symmetrical polyneuropathy exhibit expanded activation of the
primary somatosensory cortex, with abnormal representations
extending into non-somatotopic areas such as the facial and lip
cortices (Selvarajah et al., 2019). This pattern reflects central plasticity
resulting from peripheral deafferentation and suggests a cortical
spread of nociceptive encoding.

Additionally, in response to noxious heat stimulation, patients
with painful DPN show increased BOLD activation in the ACC,
anterior insula, and supplementary motor areas—changes that
positively correlate with pain intensity and affective distress (Tseng
etal, 2013). In contrast, patients with painless DPN display reduced
activation in the ACC and S1, highlighting distinct patterns of central
reorganization between DPN subtypes.

Further supporting this, a study (Li et al,, 2018) found that
compared to healthy individuals and diabetic patients without
neuropathy, those with DPN showed significantly stronger activation
in somatosensory-related regions—including the right insula, left
caudate nucleus, frontal gyrus, and cingulate cortex—in response to
thermal stimuli. These findings underscore the potential of task-based
fMRI as a sensitive tool for detecting early central nervous system
involvement in DPN.

3.3 Neurochemical and metabolic
alterations in the brain: insights from
magnetic resonance spectroscopy (MRS)

MRS studies have been used to identify metabolic abnormalities
in key brain regions to understand changes across chronic pain
conditions (Cruz-Almeida and Porges, 2021). In addition to functional
imaging insights, clinical metabolic and neurochemical assessments
further implicate central involvement in DPN (Zhao et al., 2018).

Sloan et al. demonstrated that patients with painful DPN exhibit
significantly reduced phosphocreatine-to-ATP (PCr: ATP) ratios in
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the primary somatosensory (S1) cortex compared with painless DPN,
indicating higher cortical energy consumption in pain phenotypes
(Sloan et al., 2023). Moreover, lower PCr: ATP ratios correlated with
greater pain intensity, suggesting that altered cortical bioenergetics
may serve as a biomarker of painful DPN.

Beyond high-energy phosphate changes, several MRS studies have
identified alterations in metabolites reflecting neuronal integrity, glial
activity, and membrane turnover. Selvarajah et al. (2008) found
preserved S1 cortical metabolites but reduced thalamic
N-acetylaspartate (NAA) -to-creatine (Cr) ratio in advanced painless
DPN, with preservation in painful DPN, suggesting that intact
thalamic neuronal function may be a prerequisite for pain perception.
Similarly, Hansen et al. reported decreased NAA/Cr ratios and
increased myo-inositol/Cr in parietal and cingulate regions in type 1
diabetes, with greater reductions linked to more severe DPN (Hansen
et al,, 2024). Painful DPN was further associated with increased
glycerophosphocholine/Cr and elevated thalamic glutamate,
indicating enhanced membrane turnover and heightened excitatory
neurotransmission in pain phenotypes.

Altered neurotransmitter balance has also been reported in
DPN. Petrou et al. found significantly higher glutamate/glutamine and
lower y-aminobutyric acid (GABA) levels in the posterior insula of
patients with diabetic neuropathy and positive sensory symptoms
compared with healthy controls, indicating an excitatory/inhibitory
imbalance in key pain-processing areas (Petrou et al, 2012).
Supporting this, Shillo et al. reported that painless DPN was
characterized by the lowest thalamic GABA: H,O ratio compared with
both healthy volunteers and diabetes patients without DPN, whereas
painful DPN maintained partially preserved GABA levels, suggesting
that central GABAergic pathways may be critical for neuropathic pain
mechanisms (Shillo et al., 2024).

Taken together, clinical neuroimaging studies consistently support
phenotype-specific central alterations in DPN, suggesting that painful
and painless subtypes may follow partially distinct neurobiological
trajectories. This distinction provides an important framework for

interpreting mechanistic findings from preclinical models.

4 Brain-centered mechanistic findings
from rodent models of DPN

To complement clinical imaging findings, preclinical studies in
rodent models have been widely used to explore brain-specific
mechanisms underlying diabetic neuropathic pain. These studies help
elucidate cellular and molecular processes that are difficult to access
in human subjects. As illustrated in Graphical abstract, the following
sections summarize key brain mechanisms identified in animal
models of DPN.

4.1 Synaptic and neurotransmitter
dysregulation

Preclinical studies provide mechanistic validation for clinical
findings and offer deeper insight into specific neural circuits
involved in DPN.

In diabetic rodent models, elevated glutamatergic activity has been
observed in ACC neurons (Li et al., 2014). This is driven by both
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increased presynaptic glutamate release and enhanced postsynaptic
elevated PKMC(
phosphorylation. Pharmacological blockade of PKMC reversed thermal

receptor responsiveness, accompanied by
hyperalgesia and mechanical allodynia and normalized synaptic
activity, underscoring its role in central sensitization (Li et al., 2014).

Further studies highlight dysfunction in descending pain
modulation systems, particularly the locus coeruleus (LC) -spinal
noradrenergic circuits. In DPN rats, reduced LC output correlates
with diminished inhibition of spinal nociceptive transmission, poor
analgesic efficacy, and persistent spinal glial activation (Li et al., 2022;
Suehiro et al., 2013; Mesa-Lombardo et al., 2023). Moreover, LC
dysfunction impairs regulation of emotional tone, exacerbating
depressive and anxiety-like behaviors, consistent with clinical affective
symptoms in DPN (Alba-Delgado et al., 2016; Espana et al., 2024).

Similarly, the periaqueductal gray (PAG)—a central hub for pain
modulation—exhibits neurotransmitter dysregulation in DPN models
(Morgado et al., 2011). Serotonin and noradrenaline imbalances
impair descending inhibition, while insulin-like growth factor 1
(IGF-1) treatment has been shown to restore neurotransmitter balance
within the PAG, leading to significant reductions in mechanical
hyperalgesia (Morgado et al., 2011).

4.2 Microglial activation: linking
neuroinflammation to neuronal injury

Microglia, the primary immune effector cells of the CNS, are
central to neuroinflammation, and play a critical role in the central
mechanisms underlying DPN (Wang et al., 2024).

In one study, positron emission tomography/computed tomography
(PET/CT) imaging revealed increased translocator protein expression
in the cortex and thalamus of diabetic rats, coupled with higher
numbers of Iba-1-positive microglial cells (Zhang et al., 2022). These
alterations are correlated with reduced mechanical and thermal pain
thresholds, underscoring the role of microglia in pain hypersensitivity.

Further evidence from streptozotocin (STZ)-induced diabetic
mouse models reveals marked microglial activation in the ACC, along
with upregulated expression of the chemokine CXCL12 and its neuronal
receptor CXCR4 (Song et al., 2023). This CXCL12/CXCR4 signaling
enhances glutamatergic neuron excitability in the ACC, contributing to
central sensitization and persistent mechanical pain in DPN.

The rostral ventromedial medulla (RVM), a brainstem center
involved in descending pain facilitation, also shows early-stage
microglial reactivity in DPN (Silva et al., 2016). Diabetic rodents
demonstrate increased ON-cell activity, spinal 5-HT3 receptor
expression, and TRPV1 upregulation, all of which facilitate nociceptive
signal amplification (Silva et al., 2016). As DPN progresses, oxidative
stress and microglial activation within the RVM further exacerbate
neuroinflammation and neurodegeneration.

4.3 Region-specific astrocytic responses in
central pain processing

Astrocytes, the most abundant glial cells in the CNS, play a crucial
role in maintaining homeostasis, regulating neuronal activity, and
mediating inflammatory responses (Giovannoni and Quintana, 2020).
In DPN, astrocytic changes exhibit regional heterogeneity, with their
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activation contributing differentially to central pain amplification
across pain-modulating brain structures (Cheng et al., 2022).

In STZ-induced diabetic models, the significantly increased
expression of glial fibrillary acidic protein (GFAP)—a hallmark of
astrocyte activation—has been detected in the motor cortex following
the onset of DPN, indicating the involvement of motor cortex
astrocytes in the pathogenesis of DPN (Lu et al., 2021). Functional
inhibition of astrocytes in this region alleviated mechanical allodynia,
alongside reduced expression of pro-inflammatory cytokine, including
TNF-a and IL-1p.

The paraventricular thalamic nucleus (PVT), a midline thalamic
structure crucial for sensory and nociceptive signal processing (Penzo
and Gao, 2021), also exhibits significant astrocytic activation during
DPN. In a study of DPN male rat, astrocytic activity within the PVT
is markedly upregulated, accompanied by decreased neuronal activity
at around 14 days following STZ administration (Chen et al., 2025).
Chemogenetic inhibition of astrocytes in this region alleviates
mechanical allodynia, whereas artificial activation in healthy rodents
is sufficient to induce pain behavior.

Astrocyte activation is also evident in the ventrolateral
periaqueductal gray (vIPAG), a core component of the descending
pain inhibitory pathway (Tracey and Mantyh, 2007). Astrocytes in this
region exhibit time-dependent activation and morphological changes,
becoming significantly reactive after 14 days of STZ administration
(Yang L. etal., 2022). Chemogenetic activation of VIPAG astrocytes in
naive rats induces pain-like behaviors and aversion, while their
inhibition in DPN model rats alleviates mechanical hypersensitivity
and promotes preference behavior.

In vitro studies mimicking DPN with depression have shown that
high glucose, substance P, and corticosterone exposure lead to astrocyte
damage (Ge et al., 2020). This is marked by upregulated P2X7 receptor
expression, elevated TNF-a and IL-1p levels, increased cytoplasmic
Ca’*, and enhanced ERK1/2 phosphorylation. Notably, dihydromyricetin
treatment protects primary hippocampal astrocytes from cytotoxicity
and reduces inflammation, underscoring the importance of targeting
astrocyte dysfunction to manage comorbidities in DPN.

5 Potential therapeutic strategies

The neuroimaging and mechanistic findings summarized above
not only deepen our understanding of central alterations in DPN but
also provide a critical basis for therapeutic development. Cortical
reorganization and disrupted network activity revealed by
neuroimaging point to neuromodulation of specific brain regions as a
potential strategy (Chao et al., 2022a; Zeng et al., 2020; Li and Gao,
2025), while evidence of neuroinflammation and glial activation
highlights molecular targets for pharmacological intervention (Kaur
etal, 2025; Cheng et al,, 2024). Building on these insights, the following
section discusses emerging therapeutic approaches that exemplify how
mechanistic discoveries can be translated into clinical strategies.

5.1 Transcranial non-invasive treatment of
DPN

The following section summarizes findings primarily derived
from clinical studies in human participants, focusing on non-invasive
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neuromodulatory approaches, particularly those targeting central pain
processing pathways (Knotkova et al., 2021).

Transcranial magnetic stimulation (TMS), especially in the form
of repetitive protocols (rTMS), utilizes pulsed magnetic fields to
generate localized electric currents in targeted cortical areas (Davidson
et al., 2024). This technique allows for precise modulation of neural
circuits involved in pain perception and emotional regulation (Weise
et al., 2023; Jayathilake et al., 2025).

A single-blinded randomized controlled trial investigated
prolonged continuous theta burst stimulation (pcTBS) targeting both
M1 and dorsolateral PFC in neuropathic pain patients (Thakkar et al,,
2023). Neurophysiological assessments revealed modulation of motor
corticospinal excitability and GABAergic activity, while no significant
changes were observed in ascending/descending endogenous pain
modulation systems. Although standardized pain scores remained
unchanged, self-reported acute pain intensity showed a 13%
improvement post-intervention, suggesting transient analgesic effects.

Similarly, another study evaluated the effect of a single-session
pcTBS targeting the same cortical regions in patients with DPN
(Thakkar et al., 2024). Findings indicated multidimensional analgesic
effects, with improvements reported across sensory-discriminative,
affective-motivational, and cognitive-evaluative domains of pain
perception. Importantly, no adverse events were observed within 24 h
post-intervention, supporting the safety and clinical feasibility of this
non-invasive approach.

Further evidence was provided by a study that assessed the
therapeutic efficacy of rTMS in DPN patients immediately after
treatment and at a one-week follow-up (Yang S. et al., 2022). The
results showed a sustained reduction in pain intensity along with
improvements in overall quality of life. Specifically, both physical and
mental component scores showed significant enhancements,
underscoring the potential of rTMS not only to alleviate pain but also
to improve psychosocial well-being.

These preliminary findings support transcranial non-invasive
neuromodulation as a promising adjunctive strategy for the treatment
of DPN. However, further research is needed to determine optimal
stimulation parameters, treatment frequency, and patient selection
criteria, which will be critical for maximizing clinical outcomes and
individualizing therapy.

5.2 Brain-targeting compounds

Emerging research highlights the therapeutic potential of diverse
compounds—ranging from natural phytochemicals to synthetic
drugs—for the treatment of DPN (Qureshi et al., 2022; Arora et al,,
2021; Zhang E. X et al,, 2024). However, the studies discussed in this
section are derived entirely from preclinical/basic research in animal
models. While they offer important mechanistic insights, their direct
applicability to clinical practice remains to be established through
rigorous translational and clinical studies.

Given the well-established role of neuroinflammation in DPN
pathogenesis, strategies aimed at modulating central glial activation,
particularly astrocytes and microglia, have garnered increasing
interest (Llorian-Salvador et al., 2024). One promising example is
Koumine, a bioactive alkaloid derived from Gelsemium elegans Benth.,
which has demonstrated anti-inflammatory and analgesic effects in
preclinical studies (Que et al., 2021). Its therapeutic actions include
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the suppression of astrocyte activation in the basolateral amygdala and
the subsequent reduction of proinflammatory cytokine release (Lu
et al., 2023). These mechanisms are associated with attenuated
mechanical hyperalgesia in rodent models of DPN.

In addition, an experimental study investigated fluorocitrate and
neurotropin as potential therapies for DPN via central astrocyte
modulation (Liu et al., 2022). Fluorocitrate, a glial-specific metabolic
inhibitor that disrupts Krebs cycle activity (Zhuang et al., 2025), and
neurotropin, a biologic agent derived from vaccinia virus-inoculated
rabbit skin (Sprumont et al., 1995), were evaluated in diabetic rats.
Both agents reduced mechanical hypersensitivity and normalized
astrocyte activation markers in the vVIPAG when administered via
intrathecal (fluorocitrate) or systemic (neurotropin) routes (Liu et al.,
2022). Critically, these analgesic effects occurred without altering
blood glucose levels, suggesting a glucose-independent mechanism of
action centered on astrocyte regulation. These findings highlight
astrocytes as potential therapeutic targets for DPN management.

Beyond astrocytic modulation, other compounds targeting
neuroinflammation through different mechanisms have also shown
efficacy. Thalidomide, a derivative of glutamic acid, exhibits
immunomodulatory and anti-inflammatory effects (Millrine and
Kishimoto, 2017). RVM microinjections of thalidomide in Zucker
diabetic fatty (ZDF) rats significantly reduced mechanical allodynia
and thermal hyperalgesia (Yang et al., 2016). The analgesic effects were
correlated with localized suppression of pro-inflammatory mediators
(INF-a, IL-1p) and NF-kB RVM
microenvironment. However, systemic cytokine levels remained

signaling within the

unchanged, indicating region-specific anti-inflammatory action rather
than global immunomodulation. It should be noted, nevertheless, that
despite these mechanistic insights, the clinical application of
thalidomide is limited by its well-documented toxicity concerns
(Matthews and McCoy, 2003).

In addition to direct anti-inflammatory approaches, receptor-
based interventions have emerged as another promising strategy.
Among these, glucagon-like peptide-1 receptor agonists (GLP-1RA),
commonly used for type 2 diabetes, have shown additional potential
in DPN (Dhanapalaratnam et al, 2024). In animal models,
intracerebroventricular administration of GLP-1RA has been shown
to alleviate thermal and mechanical allodynia in DPN rats and
suppress microglial activation in the cortex and thalamus, suggesting
that GLP-1RA attenuates DPN, likely through inhibition of NLRP3
inflammasome activation in brain microglia (Zhang et al., 2022).

Beyond neuroinflammation and receptor ~modulation,
mitochondrial dysfunction has been increasingly recognized as a
shared pathological mechanism in neuropathic pain, including DPN
(Yu et al., 2025; Espinoza and Papadopoulos, 2025). In the ZDF rat
model, chronic oral administration of NSI-189, a neurogenic
compound, ameliorated indices of neuropathy by improving
mitochondrial bioenergetics (Jolivalt et al., 2022). Specifically, NSI-189
enhanced expression of mitochondrial respiratory complex subunits
(IIT and V) and restored the activities of complexes I and IV in the
brain cortex, changes that were accompanied by improved memory
function and synaptic plasticity. These findings suggest that
mitochondrial protection may represent an additional therapeutic
avenue for targeting CNS dysfunction in DPN, though clinical
translation remains to be established.

In summary, brain-targeting compounds primarily act by
modulating central neuroinflammatory pathways, engaging specific
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receptor targets, or protecting mitochondrial function. While
preclinical findings are encouraging, further translational research is
required to clarify their clinical

safety, efficacy, and

applicability in DPN.

5.3 Clinical translation and future
perspectives

Collectively, the integration of neuroimaging and preclinical
findings provides a mechanistic foundation that can inform clinical
interventions in DPN. For example, evidence of cortical and
subcortical reorganization has guided the application of non-invasive
brain stimulation techniques such as rTMS (Zeng et al., 2020), while
the identification of neuroinflammatory and mitochondrial pathways
has stimulated the search for brain-targeting pharmacological agents
(Kaur et al,, 2025; Zhu et al., 2023). Although most compounds
remain at the preclinical stage, these mechanistic insights highlight
promising therapeutic avenues that may complement existing
symptomatic treatments. Importantly, future clinical trials should
be designed to bridge these translational gaps, incorporating
neuroimaging biomarkers to stratify patients and monitor treatment
responses (Zhu et al., 2023; Hermann et al., 2025). Such an approach
may accelerate the development of mechanism-based and personalized
therapies for painful DPN (Atmaca et al., 2024).

While the present review highlights CNS alterations in DPN, it is
equally important to consider how patient heterogeneity shapes these
changes and modulates treatment responses, which is critical for
advancing personalized therapy (Yang et al., 2019; Sloan et al., 2021;
Teh et al., 2021; Croosu et al., 2023; Bonhof et al., 2019). Variability in
pain phenotypes (e.g., painful vs. painless DPN), diabetes duration,
and comorbidities such as anxiety or depression can influence the
progression of CNS alterations (Shillo et al., 2019; Rosenberger et al.,
20205 Gore et al,, 2005; Lee and Won, 2025). For instance, patients
with longer disease duration or genetic predispositions may show
more pronounced thalamic atrophy or altered somatosensory
connectivity, leading to greater central sensitization (Teh et al., 2021).
Such heterogeneity contributes to differential CNS plasticity and
variable responsiveness to interventions: neuromodulation (e.g.,
rTMS) may benefit certain phenotypes, whereas pharmacological
therapies may be less effective in those with comorbid depression or
genetic variants affecting drug metabolism (Sloan et al., 2021; Zeng
et al., 2020; Zhu et al., 2023; Bonhof et al., 2019). To address these
challenges, future studies should prioritize patient stratification based
on phenotypes, CNS biomarkers, and complementary measures such
as quantitative sensory testing or neuroimaging profiles, thereby
facilitating more tailored and effective therapies (Yang et al., 2019;
Sloan et al., 2021; Zhu et al., 2023; Atmaca et al., 2024; Bonhof et al.,
2019; Lee and Won, 2025).

6 Conclusion

DPN is not solely a peripheral disorder; it involves profound
changes in the brain’s pain-processing and modulation networks.
Structural alterations, such as cortical thinning and subcortical
atrophy, along with functional disruptions in connectivity and
excitatory-inhibitory imbalance, contribute to central sensitization
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and pain persistence. Neuroinflammatory processes driven by
microglial and astrocytic activation further amplify neuronal
dysfunction and exacerbate chronic pain states.

These diverse alterations converge within the pain matrix,
integrating sensory, emotional, and cognitive aspects of pain.
Maladaptive reorganization of this matrix in DPN provides a
unifying explanation for how peripheral injury, central
sensitization, and higher-order processes interact to sustain
chronic pain.

Understanding the role of the pain matrix in DPN provides a
foundation for developing targeted therapies. Interventions aimed at
restoring functional connectivity, reducing neuroinflammation, and
enhancing descending inhibition hold promise for addressing the
brain mechanisms of pain. Future research should prioritize
longitudinal studies to elucidate the progression of central changes in
DPN and explore multimodal approaches that integrate peripheral

and central treatments for optimal pain management.
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