

OPEN ACCESS

EDITED AND REVIEWED BY Annemarie H. Meijer, Leiden University, Netherlands

*CORRESPONDENCE

Marc Herb

™ marcherb@amx.de

Nirmal Robinson

□ nirmal.robinson@unisa.edu.au

[†]PRESENT ADDRESS

Marc Herb.

City Hall Kerpen, Kerpen, Germany

[‡]These authors share last authorship

RECEIVED 23 October 2025 ACCEPTED 28 October 2025 PUBLISHED 17 November 2025

Herb M, Gluschko A, Ganesan R and Robinson N (2025) Editorial: Exploring macrophage metabolic adaptations to bacterial infection: pathways and immune responses. Front. Cell. Infect. Microbiol. 15:1730767. doi: 10.3389/fcimb.2025.1730767

COPYRIGHT

© 2025 Herb, Gluschko, Ganesan and Robinson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Exploring macrophage metabolic adaptations to bacterial infection: pathways and immune responses

Marc Herb 1*†, Alexander Gluschko 1, Raja Ganesan 2‡ and Nirmal Robinson 1,3,4,5**

¹Faculty of Medicine and University Hospital of Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany, ²Institute for Molecular Immunology, CECAD Research Center, University Hospital Cologne, Cologne, Germany, ³Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany, ⁴Center for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia, ⁵Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA Australia

KEYWORDS

immunometabolism, macrophages, bacterial infection, antioxidative responses, keyword

Editorial on the Research Topic

Exploring macrophage metabolic adaptations to bacterial infection: pathways and immune responses

Macrophages undergo profound metabolic changes during bacterial infections. This metabolic reprogramming is recognized as central to their function and is the focus of this Research Topic. It brings together original research articles, reviews, and perspectives that illuminate how intracellular bacterial pathogens manipulate the host metabolism to

Peng et al. identified Rv3737 of M. tb., a transmembrane protein and a homolog of threonine transporter, as a novel virulence factor. It promotes macrophage polarization toward an anti-inflammatory state, aiding bacterial survival. Ju et al., performed comprehensive proteomic analyses to distinguish between smear-positive and smearnegative tuberculosis, revealing distinct immune activation and lipid metabolism that could open avenues for precision diagnostics and targeted therapies.

Autophagy is a process by which cells degrade damaged organelles and protein aggregates to maintain metabolic and cellular homeostasis. Hos et al. reveal that the inflammasome complex (ASC specks) degradation through autophagy is regulated by p62, establishing it as a metabolic mediator between autophagy and inflammation. Wang et al. explored foamy macrophages in leprosy, showing that lipid-induced changes enhance immune activation, with CXCL13 playing a central role in lymphocyte recruitment. Perez-Toledo and Llibre compared metabolic responses to M.tb and S.t. infections, noting that, while both pathogens induce glycolysis and lipid synthesis, they exploit these pathways differently: M.tb utilizes lipids as nutrients, while S.t. prefers carbohydrates. Autophagy again emerges as a pivotal process, with pathogen-specific outcomes.

Herb et al. 10.3389/fcimb.2025.1730767

Ting's review on Hypoxia-Inducible Factors (HIFs) and nuclear factor erythroid 2-related factor 2 (NRF2) underscores their key role in macrophage metabolism. HIF-1 α drives glycolysis under hypoxia, while NRF2 regulates redox balance and enhances phagocytosis and lysosomal fusion by upregulating the phagocytic receptor Macrophage Receptor with Collagenous Structure (MARCO). These regulators are modulated by metabolites like itaconate and p62, forming a complex network of immune control. Deramaudt et al. reinforces the therapeutic potential of targeting NRF2 by demonstrating that CDDO-Me, a NRF2 activator, lowers bacterial burden both *in vitro* and *in vivo*.

Jiang and Huiang's mini review on extracellular vesicles (EVs) reveal their dual role in bacterial communication and immune modulation. EVs from different bacteria elicit varied macrophage responses, influencing inflammation, cell death, and even antiviral defenses. Engineered EVs hold promise for targeted immunotherapies.

Together, these studies highlight the intricate metabolic choreography between macrophages and pathogens. Understanding these dynamics opens new avenues for precision medicine, offering strategies to harness or modulate immune metabolism in the fight against infectious diseases.

Author contributions

MH: Writing – review & editing, Writing – original draft. AG: Writing – review & editing. RG: Writing – review & editing. NR: Writing – review & editing, Writing – original draft.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. The work in the lab of

NR is supported by grants from the National Health and Medical Research Council of Australia (NHMRC; 2030541 and 2020285), Neurosurgical Research Foundation (NRF), and the Tour de Cure.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were editorial board members of Frontiers at the time of submission. This had no impact on the peer review process or the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.