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Background: Outer membrane vesicles (OMVs) secreted by enterohemorrhagic

Escherichia coli (EHEC) O157 contain Shiga toxin 2 (Stx2), the major virulence

factor involved in the pathogenesis of EHEC-associated hemolytic uremic

syndrome (EHEC-HUS). However, it remains unclear whether EHEC OMVs

produced in the human intestine during infection play a role in EHEC-HUS

development. Using a mouse model, we investigated whether EHEC O157 OMVs

administered by oral gavage translocate from the gastrointestinal tract to the

bloodstream, enter the kidneys, and induce signs of EHEC-HUS. Because mice,

unlike humans, express the Stx2 receptor Gb3 on the renal tubular epithelium but

not on the glomerular endothelium, we focused on the ability of EHEC O157

OMVs to cause tubular damage, which represents a mechanism that, alongside

glomerular thrombotic microangiopathy (TMA), contributes to acute kidney

failure in EHEC-HUS.

Methods: The sera and kidneys of BALB/c mice orally administered EHEC O157

OMVs were examined for OMVs by immunoelectron and confocal

immunofluorescence microscopy. Histopathological evaluation of the kidneys

was performed by light and electron microscopy, and blood analyses were

conducted using standard methods. The cytotoxicity of EHEC O157 OMVs

toward human renal glomerular endothelial cells (HRGECs) and tubular

epithelial cells (HK-2) was determined by Cell Death ELISA. In addition, sera

from patients with EHEC O157-associated HUS were examined for O157 OMVs

by immunoelectron microscopy.
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Results: EHEC O157 OMVs were detected in the sera and kidneys of mice orally

administered 100–400 µg of OMVs. The mice exhibited renal tubular epithelial

damage and had significantly increased serum creatinine and blood urea

nitrogen levels, indicating acute kidney failure. EHEC O157 OMVs induced

apoptosis in HRGECs and HK-2 cells, the primary targets in EHEC-HUS.

Moreover, EHEC O157 OMVs were found in the sera of patients with EHEC

O157-associated HUS.

Conclusion: Orally administered EHEC O157 OMVs translocated from the

gastrointestinal tract to the kidneys, where they caused tubular epithelial injury

followed by acute kidney failure. Combined with their cytotoxicity toward

HRGECs and HK-2 cells and detection in patient sera, these findings indicate

that EHEC O157 OMVs contribute to the pathogenesis of EHEC-HUS.
KEYWORDS

enterohemorrhagic Escherichia coli (EHEC), Shiga toxin, outer membrane vesicles,
mouse model, oral gavage, hemolytic uremic syndrome, renal tubular damage, acute
kidney failure
1 Introduction

Enterohemorrhagic Escherichia coli (EHEC) of serotype O157:

H7 is a major cause of EHEC-associated hemolytic uremic

syndrome (EHEC-HUS) worldwide (Karch et al., 2005; Tarr et al.,

2005; Mellmann et al., 2008; McKee et al., 2020). EHEC-HUS, the

triad of nonimmune microangiopathic hemolytic anemia,

thrombocytopenia, and acute kidney failure (Tarr et al., 2005),

represents the most severe outcome of EHEC infection. It develops

as an extraintestinal complication in 10%–15% of children with

EHEC diarrhea (Tarr et al., 2005) and is one of the main renal

causes of acute kidney failure in childhood (Siegler and Oakes,

2005). EHEC-HUS is a thrombotic microangiopathy (TMA) that

primarily affects the renal glomeruli but can also involve the large

intestine and the brain (Richardson et al., 1988). In addition to

glomerular endothelial injury, renal histopathology in patients with

EHEC-HUS also reveals severe tubular epithelial damage

(Richardson et al., 1988; Karpman et al., 1998; Porubsky et al.,

2014), which substantially contributes to acute kidney failure

(Porubsky et al., 2014). The mortality rate of acute EHEC-HUS is

3%–5% (Siegler and Oakes, 2005), and up to 30% of survivors

develop late sequelae such as hypertension, proteinuria,

neurological complications, and chronic kidney disease (Bláhová

et al., 2002; Garg et al., 2003; Rosales et al., 2012).

The major EHEC virulence factors involved in EHEC-HUS

pathogenesis are Shiga toxins (Stxs), which are ribosome-

inactivating AB5 holotoxins (Obrig, 2010; Zoja et al., 2010).

During human infection, Stxs are released by EHEC bacteria

colonizing the large intestine, absorbed into the circulation, and

transported to the kidneys, where they injure microvascular
02
endothelial cells (Obrig, 2010; Zoja et al., 2010) and tubular

epithelial cells (Karpman et al., 1998; Porubsky et al., 2014). Stx2,

the most common Stx type produced by EHEC strains isolated from

HUS patients (Mellmann et al., 2008), is released from the bacteria

in two forms: as a free soluble protein and in association with outer

membrane vesicles (OMVs) secreted by EHEC (Kolling and

Matthews, 1999; Yokoyama et al., 2000; Kunsmann et al., 2015;

Bielaszewska et al., 2017). OMVs are nanosized proteoliposomes

ubiquitously produced by Gram-negative bacteria that play multiple

roles in interbacterial and bacteria–host communication, including

the pathogenesis of various diseases (Choi et al., 2015; Park et al.,

2017; Caruana and Walper, 2020; Rueter and Bielaszewska, 2020;

Dıáz-Garrido et al., 2021; Villageliu and Samuelson, 2022; Chen

et al., 2023a, 2023b). EHEC OMVs deliver Stx2 and other toxins to

human microvascular endothelial and intestinal epithelial cells,

causing cellular injury and ultimately apoptosis (Kunsmann et al.,

2015; Bielaszewska et al., 2017). In addition, OMV-associated

lipopolysaccharide (LPS) and flagellin induce secretion of

interleukin-8 from human intestinal epithelial cells (Kunsmann

et al., 2015; Bielaszewska et al., 2018), which may further contribute

to EHEC-HUS pathogenesis, in which proinflammatory cytokines

play key roles (Fitzpatrick et al., 1992; Zoja et al., 2010). Thus,

OMVs are potent EHEC virulence tools that may participate in the

development of EHEC-HUS.

In order to reach the kidneys during infection, OMVs released

by EHEC bacteria in the lumen of the large intestine must cross the

intestinal barrier and enter the bloodstream. This translocation has

been demonstrated for OMVs derived from E. coli laboratory

strains (Bittel et al., 2021; Schaack et al., 2024) and intestinal

microbiota (Tulkens et al., 2020; Schaack et al., 2022; Chen et al.,
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2023b), but whether EHEC OMVs can traverse the intestinal barrier

in vivo has not been investigated. In our previous study, we showed

that EHEC O157 OMVs translocated across model intestinal

epithelial barriers, including polarized Caco-2 cells and human

colonoids (Krsek et al., 2023). In the present study, we used a

mouse model to determine whether EHEC O157 OMVs

administered by oral gavage can cross the gastrointestinal barrier

in vivo, reach the kidneys, and elicit signs of HUS. Because mice

express the functional Stx receptor Gb3 on renal tubular epithelial

cells but not on glomerular endothelial cells (Psotka et al., 2009;

Porubsky et al., 2014), we focused on the ability of EHEC O157

OMVs to cause tubular injury—a TMA-independent

pathophysiological mechanism that significantly contributes to

acute kidney failure in EHEC-HUS (Porubsky et al., 2014). We

demonstrate that EHEC O157 OMVs administered to mice by oral

gavage translocated across the gastrointestinal barrier into the

bloodstream, reached the kidneys, and caused tubular epithelial

damage followed by acute kidney failure and, ultimately, death.
2 Materials and methods

2.1 Isolation and characterization of EHEC
O157 OMVs

OMVs were isolated from EHEC O157:H7 strain 5791/99

originating from a patient with HUS (Friedrich et al., 2006). OMVs

were collected by ultracentrifugation and purified by OptiPrep

(iodixanol; Sigma-Aldrich, Taufkirchen, Germany) density gradient

fractionation as described previously (Bielaszewska et al., 2013, 2021).

OMV sizes and counts were determined using nanoparticle tracking

analysis (NTA) with a NanoSight LM10 instrument (Malvern

Panalytical, Great Malvern, UK) as described (Bauwens et al.,

2017). OMV protein concentration was quantified with Roti-

Nanoquant (Carl Roth, Karlsruhe, Germany). Concentrations of

OMV-associated Stx2 and other virulence factors, including

cytolethal distending toxin V (CdtV), EHEC hemolysin (EHEC-

Hly), and H7 flagellin, were determined using calibration curves

generated from purified Stx2, the CdtV-B subunit, EHEC-Hly, and

H7 flagellin, respectively, as described previously (Bielaszewska et al.,

2013; Kunsmann et al., 2015; Bielaszewska et al., 2017). OMV

lipopolysaccharide (LPS) content was measured using the LAL

Chromogenic Endotoxin Quantitation Kit (Thermo Fisher

Scientific, Prague, Czech Republic) according to the manufacturer’s

instructions. The characteristics of purified OMVs from EHECO157:

H7 strain 5791/99 (hereafter referred to as EHEC O157 OMVs) are

summarized in Table 1.
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2.2 Mouse experiments

BALB/c mice (specific-pathogen-free, female, age 8–10 weeks,

weight 16–22 g) were purchased from Charles River (Sulzfeld,

Germany). Mice were housed in cages of four animals each at 24 ±

2 °C with a 12/12-hour light/dark cycle and fed ad libitum with a

standard diet and water. To facilitate OMV absorption from the

gastrointestinal tract, the diet was withdrawn 24 h before the

experiments, and the mice received only water. After an

acclimatization period of at least 7 days, mice were weighed, and

groups of four were administered EHEC O157 OMVs (5 μg, 25 μg,

100 μg, 200 μg, or 400 μg of OMV protein containing 0.73 μg, 3.65 μg,

14.6 μg, 29.2 μg, or 58.4 μg of Stx2, and 11.35 μg, 56.75 μg, 227 μg, 454

μg, or 908 μg of LPS, respectively) by oral gavage using plastic feeding

tubes (Instech Laboratories, Plymouth Meeting, PA, USA). Each

OMV dose was tested in three independent experiments. Four

mice that received PBS instead of OMVs served as negative

controls in each experiment. Selection of mice administered OMVs

or PBS was done randomly. After administration of OMVs or PBS,

mice were monitored daily for clinical symptoms. The severity of

clinical symptoms was determined according to a health score

modified from the HUS score reported previously (Dennhardt

et al., 2018). The health score (0–3) was based on the animals’

activity, reactions, posture, fur condition, and the presence of

neurological symptoms (Supplementary Table S1). When a mouse’s

health status deteriorated, it was euthanized by cervical spine

dislocation after inhalation anesthesia with isoflurane. All mice,

including PBS-treated controls, were sacrificed 72 h after OMV

administration as described above. After weighing, the kidneys,

colon, and blood were collected. Blood collection was performed by

cardiac puncture after isoflurane anesthesia immediately before

cervical spine dislocation.

The animal experiments were performed in a breeding facility

accredited by the National Institute of Public Health, Prague, in

accordance with the guidelines of the Department for Welfare of

Laboratory Animals of the Institute. Throughout the experiments,

animals were treated in accordance with the Act of the Czech

National Council No. 246/1992 Coll. on the Protection of Animals

against Cruelty, as amended.
2.3 Histopathological and
immunofluorescence examinations

For histopathological examinations, tissue samples (kidney,

colon) were fixed in 10% phosphate-buffered formaldehyde

(HistoFor; Medesa, Polička, Czech Republic), embedded in
TABLE 1 Characteristics of OMVs from EHEC O157:H7 strain 5791/99 used in mouse experimentsa.

OMV
diameter
NTA (nm)b

OMV count
(particles/ml x 1010)

OMV protein
concentration (µg/ml)

O157 LPS
(µg/ml)

Stx2
(µg/ml)

CdtV
(µg/ml)

EHEC-Hly
(µg/ml)

H7
flagellin
(µg/ml)

151.7 ± 59.2 2.6 ± 0.9 402 ± 47 916 ± 69 59 ± 18 26 ± 9 1.9 ± 0.5 76 ± 11
aAll values are means ± standard deviations from four independent measurements.
bThe diameter of EHEC O157:H7 5791/99 OMVs determined by dynamic light scattering ranged from 125.3 nm to 180.8 nm (Bielaszewska et al., 2017).
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paraffin, and sectioned. Sections were deparaffinized and stained

with hematoxylin–eosin, periodic acid–Schiff (PAS)/alcian blue,

and trichrome using the Ventana BenchMark Special Stains

instrument (Roche Diagnostics, Prague, Czech Republic) and

examined with a light microscope (Olympus BX53; Olympus

Czech Group, Prague, Czech Republic). Tubular damage was

semiquantified according to Porubsky et al. (2014). Tubular

epithelial cells were first evaluated for the extent of: (a) brush

border loss in proximal tubules; (b) epithelial cell flattening; and (c)

vacuolization. Each phenomenon was separately scored as follows:

0, absent; 0.5, discretely present; 1, slightly present; 2, moderately

present; and 3, severely present. The score for each parameter was

calculated as the sum of the percentage representation of each score

multiplied by the score itself (resulting in values in the range of 0–

300). The pathology score for tubular damage of each mouse was

expressed by adding the scores for all three parameters (resulting in

values in the range of 0–900).

For immunofluorescence microscopy, cryosections from mouse

kidneys prepared after freezing in liquid nitrogen using a cryostat

(Leica CM1950; Leica Biosystems, Richmond, IL, USA) were used.

Cryosections were stained with a goat anti-mouse fibrinogen

antibody conjugated with fluorescein isothiocyanate (Nordic

MUbio, Susteren, The Netherlands) and examined with a

fluorescence microscope (Olympus BX53).
2.4 Transmission electron microscopy of
the mouse kidneys

Blocks (1–2 mm³) of kidney tissue were fixed in 4%

paraformaldehyde (Thermo Fisher Scientific, Prague, Czech

Republic) and postfixed in 2% osmium tetroxide (Sigma-Aldrich,

Schnelldorf, Germany). After washing in distilled water, they were

dehydrated using a graded (50%–96%) alcohol series, embedded in

epoxy resin (Durcupan), and polymerized with epoxy embedding

medium (both Sigma-Aldrich, Schnelldorf, Germany) at 56 °C.

Ultrathin sections (100 nm) were obtained on a Leica Ultracut EM

UC7 ultramicrotome (Leica Biosystems, Richmond, IL, USA),

collected on copper formvar/carbon-coated 200-mesh grids (Plano,

Wetzlar, Germany), stained with 2% uranyl acetate (Merck,

Darmstadt, Germany) and 2% lead citrate (Delta Microscopies,

Mauressac, France), and examined with a JEOL JEM-1400 Plus

electron microscope (JEOL, Tokyo, Japan). Digital images were

acquired using a Megaview G2 Olympus digital camera (Olympus

Czech Group, Prague, Czech Republic). The investigator who

performed histopathology and transmission electron microscopy of

the kidneys was not aware of the mouse allocation to the OMV-

treated or PBS-treated groups.
2.5 Detection of apoptosis in the mouse
kidneys

Approximately 20 mg of kidney tissue from mice administered 5

μg, 25 μg, 100 μg, 200 μg, or 400 μg of EHEC O157 OMVs or PBS
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(negative control) was homogenized in 200 μL of PBS, and the cell

suspension was centrifuged (1600 × g, 20 min) to collect the cell pellet.

Apoptotic DNAwas isolated from the pellet using the Apoptotic DNA

Ladder Extraction Kit (Assay Genie, Dublin, Ireland) according to the

manufacturer’s instructions. DNA from a kidney that had been

exposed to 1 μM staurosporine (Sigma-Aldrich, Schnelldorf,

Germany) for 8 h was used as a positive control. Extracted DNA

was loaded onto a 1.2% (v/w) agarose gel (25 μL/lane) and separated

by electrophoresis at 5 V/cm for 2.5 h. The gel was stained withMidori

Green Advance (Biozym Scientific, Hessisch Oldendorf, Germany)

and visualized and photographed using a Gel Stick Imager (INTAS

Science Imaging Instruments, Göttingen, Germany).
2.6 Hematological and biochemical
investigations

Blood for hematological investigations was collected into

ethylenediaminetetraacetic acid (EDTA)-treated tubes

(MiniCollect Tubes 0.25/0.5 ml, K3EDTA; Dialab, Prague, Czech

Republic). Complete blood cell counts (CBC) and white blood cell

(WBC) differentials were determined using a Sysmex XN-20

automated hematology analyzer (Sysmex Corporation, Kobe,

Japan). The analyzer uses three principles to determine CBCs: the

impedance method with hydrodynamic focusing to determine red

blood cells (RBCs), platelets, and hematocrit; fluorescence flow

cytometry to determine WBCs; and photometric hemoglobin

determination based on the cyanmethemoglobin method with a

cyanide-free reagent.

Blood for biochemical investigations was collected into

Eppendorf tubes without anticoagulant, allowed to clot for 30 min

at room temperature, and centrifuged (2000 × g, 15 min, 4°C). Serum

was used fresh or frozen at −80°C. Creatinine was determined using

the Creatinine Assay Kit, and blood urea nitrogen (BUN) using the

Urea Assay Kit (both Sigma-Aldrich, Schnelldorf, Germany)

according to the manufacturer’s instructions. Serum concentrations

of sodium and potassium were determined using the Sodium Assay

Kit (Sigma-Aldrich, Schnelldorf, Germany) and the Potassium Assay

Kit (Thermo Fisher Scientific, Prague, Czech Republic), respectively,

as recommended by the manufacturers. Lactate dehydrogenase

(LDH) was determined using the Lactate Dehydrogenase Activity

Assay Kit (Thermo Fisher Scientific, Prague, Czech Republic). All

assays were performed in 96-well plates (Sigma-Aldrich, Schnelldorf,

Germany), and absorbance was measured with a Multiskan FC

microplate reader (Thermo Fisher Scientific, Prague, Czech

Republic). The investigators who performed hematological and

biochemical investigations were not aware of the mouse allocation

to the OMV-treated or PBS-treated groups.
2.7 Detection of EHEC O157 OMVs in the
mouse sera

Serum samples were centrifuged at 1000 × g for 10 min followed

by 12000 x g for 30 min to remove cellular debris (Ou et al., 2023).
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Subsequently, sera were transferred into polypropylene centrifuge

tubes (5 × 20 mm; Beckman Coulter, Inc., Brea, CA, USA) with

inserted copper formvar/carbon-coated 400-mesh grids (Ted Pella,

Inc., Redding, CA, USA) and centrifuged in an Airfuge

ultracentrifuge (Beckman Coulter, Inc., Brea, CA, USA) at

102,000–110,000 × g for 20 min at room temperature. Grids were

washed with distilled water, blocked in 1% bovine serum albumin

(BSA; Sigma-Aldrich, Schnelldorf, Germany), and stained with

rabbit polyclonal anti-E. coli O157 lipopolysaccharide (LPS)

antibody (Bielaszewska et al., 2017, 2021), followed by goat anti-

rabbit IgG conjugated with 10 nm colloidal gold (Sigma-Aldrich,

Schnelldorf, Germany). Staining with the secondary antibody alone

served as a control for the specificity of OMV immunogold staining

(Supplementary Figure S1A). After washing with PBS, grids were

contrasted with 1% uranyl acetate dihydrate (Merck, Darmstadt,

Germany), rinsed with distilled water, and examined using a

Hitachi HT7800 electron microscope (Hitachi High-Tech, Tokyo,

Japan). Digital images were acquired using a TEM CCD camera

AMT XR16 (AMT Imaging, Woburn, MA, USA).
2.8 Detection of EHEC O157 OMVs in the
mouse kidneys

OMVs in the mouse kidneys were detected by fluorescence

confocal laser-scanning microscopy (CLSM) and transmission

electron microscopy after immunogold staining. For CLSM,

cryosections (prepared as described in section 2.3) were fixed

with 4% paraformaldehyde, quenched with 0.2 M glycine (pH

7.2), permeabilized with 0.25% Triton X-100, and blocked with

5% BSA (all Sigma-Aldrich, Schnelldorf, Germany). OMVs were

stained with rabbit polyclonal anti-E. coli O157 LPS antibody

(Bielaszewska et al., 2017, 2021) and Cy3-conjugated goat anti-

rabbit IgG (Jackson ImmunoResearch, Cambridge, UK). Staining

with Cy3 alone served as a control for the specificity of OMV

staining (Supplementary Figures S1B, C). Glomerular endothelial

cells and tubular epithelial cells were stained with anti-CD31 rat

monoclonal antibody (MEC 7.46; Abcam, Cambridge, UK) and

anti-CD324 (E-cadherin) rat monoclonal antibody (DECMA-1;

Thermo Fisher Scientific, Prague, Czech Republic), respectively,

followed by goat anti-rat IgG conjugated with Alexa Fluor 488

(Thermo Fisher Scientific, Prague, Czech Republic). Nuclei were

stained with 4′,6-diamidino-2-phenylindole (DAPI; Thermo Fisher

Scientific, Prague, Czech Republic). Preparations were mounted in a

fluorescence mounting medium (Dako, Hamburg, Germany) and

analyzed using a confocal laser-scanning microscope Leica TCS SP8

with Acousto-Optical Beam Splitter equipped with Diode 405 nm,

Argon, and DPSS 561 nm lasers and an HC PL APO CS2 63x/1.4

immersion oil objective (Leica Microsystems, Wetzlar, Germany).

Z-stacks (0.23 μm per slice) were acquired using Leica LAS X

version 3.5.7.23225 software (Leica Microsystems, Wetzlar,

Germany). 3D images were obtained using the Leica LAS X 3D

viewer (Leica Microsystems, Wetzlar, Germany). Images were

processed with ImageJ software version 1.53t.
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For OMV immunogold staining, copper formvar/carbon-

coated 200-mesh grids with renal ultrathin sections (prepared as

described in section 2.4) were washed in 0.02 M glycine, blocked

with 1% BSA (both Sigma-Aldrich, Schnelldorf, Germany), and

incubated with rabbit polyclonal anti-E. coli O157 LPS antibody

(Bielaszewska et al., 2017, 2021). After washing with 0.1% BSA, the

primary antibody was detected with goat anti-rabbit IgG conjugated

with 10 nm colloidal gold (Sigma-Aldrich, Schnelldorf, Germany).

The grids were washed with PBS, postfixed with 1% glutaraldehyde

(Serva, Heidelberg, Germany), contrasted with 2% uranyl acetate

dihydrate (Merck, Darmstadt, Germany) and 3% lead citrate (Delta

Microscopies, Mauressac, France), rinsed with distilled water, and

examined using a Hitachi HT7800 electron microscope (Hitachi

High-Tech, Tokyo, Japan). Digital images were acquired using a

TEM CCD camera AMT XR16 (AMT Imaging, Woburn,

MA, USA).
2.9 Interactions of EHEC O157 OMVs with
cultured human renal cells

Human renal glomerular endothelial cells (HRGECs; ScienCell

Research Laboratories, Carlsbad, CA, USA) were cultured in

endothelial cell medium supplemented with 5% fetal bovine

serum and 1% endothelial cell growth supplement (all from

ScienCell Research Laboratories). Human proximal tubular

epithelial cells (HK-2) (Ryan et al., 1994; ATCC, Manassas, VA,

USA) were cultured in keratinocyte serum-free medium

supplemented with human recombinant epidermal growth factor

and bovine pituitary extract (Thermo Fisher Scientific, Prague,

Czech Republic). The uptake of EHEC O157 OMVs by the cells

was tested as described previously (Bielaszewska et al., 2017).

Briefly, cells grown in 96-well plates with black frames (Dialab,

Prague, Czech Republic) were incubated for 1–24 h with EHEC

O157 OMVs (4 μg/mL of OMV protein) labeled with rhodamine

isothiocyanate B-R18 (Thermo Fisher Scientific, Prague, Czech

Republic). Fluorescence was measured using a fluorescence plate

reader (FLUOstar OPTIMA; BMG Labtech, Ortenberg, Germany)

and normalized to the fluorescence of rhodamine isothiocyanate B-

R18-labeled OMVs without cells.

Cell death following exposure to EHEC O157 OMVs was

determined using the Cell Death Detection ELISA Plus kit (Roche

Diagnostics, Mannheim, Germany) as described (Bauwens et al.,

2011; Bielaszewska et al., 2017). Briefly, confluent cell cultures

grown in 96-well plates (P-LAB, Prague, Czech Republic) were

incubated for 72 h with 4 μg/mL of EHEC O157 OMVs (containing

approximately 585 ng/mL Stx2), purified Stx2 (Bauwens et al., 2011)

(585 ng/mL), 1 μM staurosporine (Sigma-Aldrich, Schnelldorf,

Germany), PBS, or remained untreated (negative control).

Subsequently, cells were processed using the ELISA kit according

to the manufacturer’s instructions to quantify DNA fragments in

cell culture supernatants (to determine necrosis) and cell lysates (to

determine apoptosis). Optical density at 405 nm (OD405) was

measured using a Multiskan FC microplate reader (Thermo
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Fisher Scientific, Prague, Czech Republic), and enrichment factors

for apoptosis and necrosis were calculated by dividing the OD405

values of sample-treated cells by that of untreated cells
2.10 Detection of EHEC O157 OMVs in the
sera of patients with EHEC O157-
associated HUS

Two patients aged 16 months and 4.5 years were hospitalized at

the Department of Pediatrics, University Hospital Motol, Prague,

for HUS. EHEC O157:H7 strains harboring the stx2 gene were

detected in the patients’ stool samples using methods described

previously (Marejková et al., 2013). Serum samples from the

pat i en t s were examined for EHEC O157 OMVs by

immunoelectron microscopy using rabbit polyclonal anti-E. coli

O157 LPS antibody and goat anti-rabbit IgG conjugated with 10 nm

colloidal gold, as described for mouse sera (section 2.7). Staining

with the secondary antibody alone served as a control for the

specificity of OMV immunogold staining (Supplementary Figure

S2). Serum from a child (3.5 years) without EHEC O157 infection

was used as a negative control.
2.11 Statistical analysis

Data from two or multiple groups were analyzed using the

Student’s t-test or one-way analysis of variance (ANOVA) with

Tukey’s honest significant difference (HSD) or Dunnett’s multiple

comparison post hoc test, as appropriate. Changes in body weight

over time (0 and 72 h) were analyzed by two-way repeated measures

(RM) ANOVA followed by Dunnett’s post hoc test for comparisons

with the control group. Survival was assessed using Kaplan–Meier

curves, and statistical significance between groups was evaluated

using the log-rank (Mantel–Cox) test. Differences in health scores

between groups were analyzed using Fisher’s exact test, and

pathology scores were compared using one-way ANOVA with

Dunnett’s post hoc test versus the control group. P-values < 0.05

were considered statistically significant. Statistical analyses were

performed using GraphPad Prism software, versions 5.04 and 10.03.
3 Results

3.1 EHEC O157 OMVs administered by oral
gavage translocate from the
gastrointestinal tract to the bloodstream
and reach the kidneys

To determine whether EHEC O157 OMVs administered to

BALB/c mice by oral gavage translocated from the gastrointestinal

tract to the bloodstream and reached the kidneys—a key

prerequisite for their involvement in the pathogenesis of EHEC-
Frontiers in Cellular and Infection Microbiology 06
HUS—we first examined serum samples from OMV-treated mice

for the presence of EHEC O157 OMVs using immunoelectron

microscopy. We used sera from mice administered 100 μg, 200 μg,

or 400 μg of OMVs because these doses caused clinical symptoms

and kidney damage, as described below. OMVs stained with anti-E.

coli O157 LPS antibody and gold-conjugated secondary antibody,

confirming their identity as EHEC O157 OMVs, were detected in

the sera from OMV-treated mice (Figure 1A; Supplementary Figure

S3A) but not in the sera from PBS-treated control mice (Figure 1B;

Supplementary Figure S3B). Sera from the control mice contained

OMV-like structures that did not react with anti-E. coli O157 LPS

antibody (Figure 1B; Supplementary Figure S3B) and might have

originated from the mouse gut microbiota (Ou et al., 2023).

To assess whether EHEC O157 OMVs reached the kidneys, we

examined kidney sections from the above mice for the presence of

OMVs by CLSM and immunoelectron microscopy. CLSM revealed

OMVs that reacted with anti-E. coli O157 LPS antibody in the

glomeruli (Figure 1C; Supplementary Figures S3C, S4A, S5A) and in

the tubular epithelial cells (Figures 1E, G; Supplementary Figures

S3E, S4C, S5C). Electron microscopy using immunogold staining

with anti-E. coli O157 LPS antibody detected EHEC O157 OMVs in

the renal cortex near the tubular basement membrane (Figures 2A,

B; Supplementary Figures S6A, B) and in a peritubular capillary

(Figures 2C, D; Supplementary Figures S7A, B). No OMVs reactive

with anti-E. coli O157 LPS antibody were found in the kidneys of

PBS-treated mice by either CLSM (Figures 1D, F, H; Supplementary

Figures S3D, F, S4B, D, S5B, D) or immunoelectron microscopy

(Supplementary Figure S8). Altogether, these findings

demonstrated that after administration to the gastrointestinal

tract, EHEC O157 OMVs crossed the intestinal barrier, entered

the bloodstream, and reached the kidneys, thereby enabling their

involvement in the pathogenesis of EHEC-HUS.
3.2 EHEC O157 OMVs cause signs of
disease and death in mice

To assess whether orally administered EHEC O157 OMVs affect

the health of mice, we administered OMVs (5–400 μg of OMV

protein) to 82 BALB/c mice by oral gavage and monitored their

health status daily. Twenty-one mice that received PBS served as

controls. Nineteen of 82 OMV-treated mice, all administered 100–

400 μg of OMVs, died between 66 and 71 h after OMV

administration (Table 2). The survival rates were 71.4% in mice

treated with 100 μg or 200 μg of OMVs and 68.2% in mice treated

with 400 μg of OMVs (Figure 3A; Table 2). Forty-five surviving mice

treated with 100–400 μg of OMVs developed signs of disease 72 h

after administration, including decreased activity, reduced motility,

ruffled fur, apathy, lethargy, and sometimes ataxia or tremor,

resulting in health scores of 1–3 (Figure 3B). The body weight of

mice that died or became ill or moribund was significantly decreased

after 72 h compared with the weight before OMV administration

(time 0) (Figure 3C). Eighteen of 82 OMV-treated mice that received
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FIGURE 1

EHEC O157 OMVs administered by oral gavage translocate from the gastrointestinal tract to the bloodstream and reach the kidneys. Detection of
EHEC O157 OMVs in the serum (A, B), glomeruli (C, D), and tubules (E–H) of mice administered EHEC O157 OMVs (A, C, E, G) or PBS (B, D, F, H).
(A, B) EHEC O157 OMVs in serum samples were detected with rabbit anti-E. coli O157 LPS antibody and goat anti-rabbit IgG conjugated with 10 nm
colloidal gold. (C, D) In the glomeruli, EHEC O157 OMVs (red) were stained with rabbit anti-E. coli O157 LPS antibody and Cy3-conjugated goat anti-
rabbit IgG, glomerular endothelial cells (green) with anti-CD31 rat antibody and Alexa Fluor 488–conjugated goat anti-rat IgG, and nuclei (blue) with
DAPI. (E, F) In the tubules, EHEC O157 OMVs (red) were stained with rabbit anti-E. coli O157 LPS antibody and Cy3-conjugated goat anti-rabbit IgG,
tubular epithelial cells (green) with anti-CD324 rat antibody and Alexa Fluor 488–conjugated goat anti-rat IgG, and nuclei (blue) with DAPI. Panels
(G, H) show enlarged areas indicated by frames in (E, F), respectively. OMVs in panels (C), (E), and (G) are indicated by arrows. Scale bars in panels
(A, B) are 100 nm; in panels (C–H), 10 µm. Images are representative of findings in mice treated with 100 µg, 200 µg, or 400 µg of EHEC O157
OMVs or with PBS. Crops of representative immunogold-stained and CLSM images are shown. Entire original immunoelectron microscopy images
are shown in Supplementary Figures S3A, B, and separate red, green, and blue CLSM channels in Supplementary Figures S4A–D.
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5 μg or 25 μg of OMVs survived until 72 h (Figure 3A; Table 2). They

showed no apparent signs of disease (Figure 3B) and experienced

only slight, nonsignificant weight loss (Figure 3C). All 21 PBS-treated

control mice survived (Figure 3A; Table 2) and remained healthy
Frontiers in Cellular and Infection Microbiology 08
(Figure 3B; Table 2) up to 72 h after OMV administration. These data

demonstrated that EHEC O157 OMVs administered to BALB/c mice

by oral gavage caused disease, the severity of which correlated with

the OMV dose.
FIGURE 2

Detection of EHEC O157 OMVs administered by oral gavage in the mouse kidneys by immunoelectron microscopy. Ultrathin sections from the
kidneys of two OMV-treated mice stained with rabbit anti-E. coli O157 LPS antibody and goat anti-rabbit IgG conjugated with 10 nm colloidal gold.
(A, B) Mouse treated with 400 µg of OMVs; (C, D) mouse treated with 100 µg of OMVs. Panels (A, C) (magnification 40,000×; scale bars, 200 nm)
show detailed views of immunogold-labeled OMVs (arrows). Panels (B, D) (magnification 10,000×; scale bars, 1 µm) show OMVs from panels
(A, C), respectively, in context with surrounding structures, demonstrating localization of OMVs (arrows) in the interstitium of the renal cortex near
the basement membrane of the tubular epithelial cell (BMTEC) (B) and in a peritubular capillary (D). BMTEC, basement membrane of tubular
epithelial cell; BLTEC, basal labyrinth of tubular epithelial cell (cell membrane invaginations in the basal part of the cell with numerous mitochondria
typical for electrolyte- and water-transporting cells); M, mitochondria; RBC, red blood cell. Crops of representative immunoelectron microscopy
images are shown. Entire original images are shown in Supplementary Figures S6 and S7.
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Háček et al. 10.3389/fcimb.2025.1704731
3.3 EHEC O157 OMVs cause tubular
epithelial damage in the mouse kidneys
leading to apoptosis

We performed histopathological and electron microscopic

examinations of the kidneys from OMV-treated mice to

determine whether EHEC O157 OMVs caused renal damage. On

histopathological examination, all 64 mice that received 100–400 μg

of OMVs demonstrated damage to the proximal tubules (Table 2),

which were dilated and showed regressive epithelial changes,

including epithelial cell flattening, vacuolization, and focal

desquamation into the tubular lumen (Figures 4A, B;

Supplementary Figure S9A).

In electron microscopy, mice treated with 100–400 μg of OMVs

showed extensive microvacuolization and macrovacuolization of

the tubular epithelium (Figures 4D, E; Supplementary Figure S9C),

with the brush border being preserved (Figure 4D; Supplementary

Figure S9C) or lost (Figure 4E). In some tubules, epithelial cell

flattening was observed (Figure 4D). Seventeen of 18 mice

administered 5 μg or 25 μg of EHEC O157 OMVs did not show

any tubular changes on light or electron microscopy (Table 2). One

mouse that received 25 μg of OMVs showed vacuolization of the

tubular epithelium (Supplementary Figures S10A, B). None of the

21 control mice that received PBS instead of OMVs had any

histopathological or electron microscopic changes in the tubules

(Figures 4C, F; Supplementary Figures S9B, D; Table 2).

Semiquantification of tubular epithelial damage using the

pathology score, based on the extent of brush border loss,
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epithelial cell flattening, and vacuolization, demonstrated that the

damage was significantly higher in mice administered 100–400 μg

of OMVs than in control mice administered PBS (Figure 4G).

Because tubular epithelial cells in the kidneys of mice treated

with 100–400 μg of EHEC O157 OMVs occasionally displayed

apoptotic features such as condensed nuclei (Figure 4E), we

examined the kidneys from OMV-treated mice for DNA

fragmentation, a hallmark of apoptosis (Nagata, 2000). The

kidneys from mice treated with 100–400 μg of OMVs displayed a

typical DNA ladder pattern resulting from internucleosomal DNA

cleavage during apoptosis (Figure 4H, lanes 2–4; Supplementary

Figure S9E). A similar DNA pattern was observed in the kidney

treated with the apoptosis-inducing agent staurosporine (Figure 4H,

lane 8). In contrast, no apparent DNA fragmentation was present in

kidneys of mice treated with 5 μg or 25 μg of OMVs or with PBS

(Figure 4H, lanes 1, 5–7). Taken together, these data demonstrated

that EHEC O157 OMVs administered to mice by oral gavage

caused, in a dose-dependent manner, renal tubular epithelial

damage leading to apoptosis.

The glomeruli of mice administered 100–400 μg of OMVs

showed, on histopathological examination, RBC capillary

congestion (Figure 5A), but no fibrin microthrombi were detected

in the capillaries by histopathology or by immunofluorescence

staining with anti-fibrinogen antibody (Figure 5C). There were no

pathological changes in the renal arterioles and arteries (Figure 5E).

The renal interstitium was congested, with no inflammatory

infiltration or fibrosis (Figure 5A). By electron microscopy, RBC

congestion in the glomerular capillaries was sometimes observed
TABLE 2 Summary of clinical, histopathological, and laboratory findings in BALB/c mice administered EHEC O157 OMVs or PBS by oral gavage.

Sample administered to mice 100 µg OMVs 200 µg OMVs 400 µg OMVs 5 µg OMVs 25 µg OMVs PBS

OMV-associated Stx2 amount 14.6 μg 29.2 μg 58.4 μg 0.73 μg 3.65 μg n.a.

No. of mice administered the sample 21 21 22 8 10 21

Number of mice with finding 72 hours after OMV administration

Death (%) 6 (28.6) 6 (28.6) 7 (31.8) 0 (0) 0 (0) 0 (0)

Survival (%) 15 (71.4) 15 (71.4) 15 (68.2) 8 (100) 10 (100) 21 (100)

Clinical symptoms 15 15 15 0 0 0

Significant weight lossa 15 15 15 0 0 0

Tubular damage (histology+TEM) 21 21 22 0 1b 0

Glomerular TMA (histology+IF+TEM) 0 0 0 0 0 0

Colitis (histology) 5 5 7 0 0 0

Acute renal failurec,d 15 15 15 0 1b 0

Thrombocytopeniad 0 0 0 0 0 0

Hemolytic anemiad 0 0 0 0 0 0

Neutrophiliad 15 15 15 8 10 0

Hemoconcentrationd 15 15 15 8 10 0
aIn 45 mice that survived and in 12 mice that died (7 mice that died were not weighed).
bThe same mouse; serum creatinine and BUN were 0.67 ± 0.12 mg/dl and 91 ± 12 mg/dl, respectively.
cSignificantly increased serum concentrations of creatinine and BUN.
dHematological and biochemical examinations were performed in mice that survived (blood could not be collected from 19 mice that died).
TEM, transmission electron microscopy; IF, immunofluorescence microscopy; TMA, thrombotic microangiopathy; n.a., not applicable.
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(Figure 5F), but no microthrombi were detected (Figure 5G). There

were no pathological changes in the glomerular endothelium or

podocytes (Figure 5G). None of the 18 mice administered 5 μg or 25

μg of EHEC O157 OMVs, and none of the 21 PBS-treated control

mice, showed any histopathological or electron microscopic

changes in the renal glomeruli (Figures 5B, D, H; Table 2).
3.4 EHEC O157 OMVs cause acute kidney
failure in mice

To evaluate the impact of the tubular epithelial damage induced

by EHEC O157 OMVs on kidney function, we measured

concentrations of creatinine and BUN in the sera from mice that

did or did not develop tubular damage after OMV treatment. Mice

treated with 100–400 μg of OMVs that developed tubular damage

(Figures 4A, B, D, E; Supplementary Figures S9A, C) and from

whom blood was available for examination had significantly

increased serum creatinine and BUN concentrations compared

with control mice (Figures 6A, B). Moreover, they had
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significantly decreased sodium and significantly increased

potassium concentrations in the sera (Figures 6C, D), indicating

severe tubular dysfunction.

In contrast, among 18 mice treated with 5 μg or 25 μg of OMVs,

only one mouse that received 25 μg of OMVs and showed

vacuolization of the tubular epithelium (Supplementary Figures

S10A, B) had significantly increased creatinine (0.67 ± 0.12 mg/dl)

and BUN (91 ± 12 mg/dl) (Table 2). In the remaining 17 mice, in

which no tubular epithelial damage was detected microscopically,

serum concentrations of creatinine and BUN did not differ from

those in PBS-treated mice (Supplementary Figures S11A, B).

These findings demonstrated that EHEC O157 OMVs in doses

capable of damaging tubular epithelium caused acute kidney failure

in mice and that OMV-mediated tubular epithelial damage alone,

without glomerular TMA, was sufficient to induce kidney failure.

Moreover, the correlation between the OMV ability to cause tubular

epithelial damage, acute kidney failure, and disease symptoms

including death (Table 2) suggests that OMV-mediated acute

kidney failure was responsible for the clinical symptoms observed

in OMV-treated mice.
FIGURE 3

Mouse survival, health status, and weight change 72 h after administration of 5–400 µg of EHEC O157 OMVs or PBS by oral gavage. Data are
representative of three experiments. (A) Survival curves show the percentage of mice that survived 72 h after administration of 5 µg of OMVs
(containing 0.73 µg of Stx2), 25 µg of OMVs (3.65 µg of Stx2), 100 µg of OMVs (14.6 µg of Stx2), 200 µg of OMVs (29.2 µg of Stx2), or 400 µg of
OMVs (58.4 µg of Stx2), or PBS. **p < 0.01 for mice treated with 100–400 µg of OMVs compared with mice treated with PBS (log-rank test).
(B) Health score (0–3) was based on animals’ activity, reactions, posture, fur condition, and presence of neurological symptoms (for details, see
Supplementary Table S1). Data are means ± standard deviations for groups of mice administered the indicated OMV doses or PBS. ****p < 0.0001
for mice treated with 100–400 µg of OMVs compared with mice treated with PBS (Fisher’s exact test). (C) Weight change between time 0 (just
before sample administration) and 72 h after administration in mice treated with the indicated OMV doses or PBS. Data are means ± standard
deviations for groups of mice administered the indicated OMV doses or PBS. *p < 0.05, ***p < 0.001, and ****p < 0.0001 for mice treated with 400
µg, 200 µg, or 100 µg of OMVs, respectively, compared with mice treated with PBS (two-way RM ANOVA).
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FIGURE 4

EHEC O157 OMVs administered to mice by oral gavage cause tubular epithelial damage and apoptosis. Histopathology of paraffin sections stained with
hematoxylin–eosin (A–C) and transmission electron microscopy (D–F) of the kidneys from mice treated with 100–400 µg of OMVs (A, B, D, E) and from
PBS-treated mice (C, F). (A) Tubular epithelial cell flattening (black arrows) and intraluminal detached epithelial cells (asterisks). (B) Tubular epithelial flattening
(black arrows), extensive vacuolization (blue arrows), detached intraluminal epithelial cells (asterisks). (C) Normal tubules (arrows) and glomeruli in a PBS-
treated mouse. (D) Microvacuolization (thin white arrows), macrovacuolization (thick white arrows), and flattening of tubular epithelial cells with a preserved
brush border (white asterisks). (E) Macrovacuolization of tubular epithelial cells (red arrows) with lost brush border; the green arrow indicates an apoptotic
nucleus. (F) Normal tubule in a PBS-treated mouse; the yellow arrow indicates a normal tubular epithelial cell and the white asterisk a preserved brush
border. (A–C) Magnification 400x; (D–F) scale bars, 5 µm. Images are representative of findings in mice treated with 100 µg, 200 µg, or 400 µg of EHEC
O157 OMVs or PBS. (G) Pathology score for tubular epithelial damage was assessed based on the extent of brush border loss, epithelial cell flattening, and
vacuolization after 72 h. Data are means ± standard deviations for groups of mice administered the indicated OMV dose or PBS; ****p < 0.0001 for mice
treated with 100–400 µg of OMVs compared with mice treated with PBS (one-way ANOVA). (H) Apoptosis shown as DNA laddering in the kidneys of mice
treated with 100 µg (lane 2), 200 µg (lane 3), or 400 µg (lane 4) of OMVs for 72 h Lanes 1 and 5, kidneys from mice treated with 5 µg and 25 µg of OMVs,
respectively. Lanes 6 and 7, kidneys from mice treated with PBS. Lane 8, kidney treated with 1 µM staurosporine (positive control). Lanes M, molecular size
marker (100 bp ladder). The entire original gel is shown in Supplementary Figure S9E.
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Háček et al. 10.3389/fcimb.2025.1704731
FIGURE 5

EHEC O157 OMVs administered to mice by oral gavage do not induce glomerular thrombotic microangiopathy. Histopathology of paraffin sections
stained with hematoxylin–eosin (A, B, E), immunofluorescence microscopy with anti-fibrinogen antibody (C, D), and transmission electron
microscopy (F–H) of the kidneys from mice treated with 100–400 µg of OMVs (A, C, E, F, G) or with PBS (B, D, H). (A, F) OMV-treated mice
demonstrated RBC congestion in the glomerular capillaries [arrow in (A); white asterisks in (F)], but no capillary fibrin microthrombi were detected
(C, G). (C) Glomerulus without microthrombi (arrow). (G) Normal glomerular endothelial cells (red arrows), podocytes (blue arrows), and single RBCs
in capillary lumen (green arrows). (E) Arteriole (arrow) with a free lumen without thrombus. No histopathological and electron microscopic
abnormalities were found in the glomeruli of control mice (B, D, H). (B, D) Normal glomeruli (black and white arrows, respectively). (H) Normal
glomerular endothelial cells (red arrows), podocytes (blue arrows), and single RBCs in capillary lumen (green arrows). (A–E) Magnification 400×; (F–
H) scale bars, 2 µm. Images are representative of findings in mice treated with 100 µg, 200 µg, or 400 µg of EHEC O157 OMVs or PBS.
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3.5 Colitis is not necessary for EHEC O157
OMV-mediated tubular damage

Because colitis frequently occurs in patients with EHEC O157

infection (Griffin et al., 1990; Kelly et al., 1990), we investigated

whether OMV-treated mice developed colitis. Histopathological

examination of the colon demonstrated that 17 of 64 mice that

received 100–400 μg of OMVs (26.6%) developed colitis (Table 2),
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characterized by inflammatory infiltration of the mucosa, mucosal

erosions, and ulcerations (Supplementary Figures S12B, C). Colitis

was not observed in any of the 18 mice that received 5 μg or 25 μg of

OMVs (Table 2). The colons from PBS-treated mice did not show

any histopathological changes (Supplementary Figure S12A).

These findings indicated that although colitis development in

mice increases intestinal permeability and enables OMV

translocation from the intestine to the circulation (Ou et al.,
FIGURE 6

EHEC O157 OMVs administered by oral gavage cause acute renal failure but not thrombocytopenia and hemolytic anemia in mice. Serum
concentrations of (A) creatinine, (B) blood urea nitrogen (BUN), (C) sodium, and (D) potassium in mice treated with the indicated doses of OMVs or
PBS. (E–L) Hematological findings in mice treated with OMVs or PBS, including (E) platelet counts, (F) red blood cell counts, (G) hemoglobin
concentration, (H) hematocrit, (I) percentage of reticulocytes, (J) serum LDH concentration, (K) total white blood cell (WBC) counts and total counts
of neutrophils, lymphocytes, and monocytes, and (L) WBC differential. Neutro, neutrophils; lympho, lymphocytes; mono, monocytes. Data are
means ± standard deviations from the values in OMV-treated mice (OMVs) and PBS-treated mice (PBS). **p < 0.01 or *p < 0.05 for differences
between OMV-treated and PBS-treated mice (one-way ANOVA with Tukey’s HSD and Student’s t-test).
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2023), this pathology was not necessary for OMVs to induce renal

tubular damage in mice.
3.6 EHEC O157 OMVs cause
hemoconcentration and neutrophilia but
not thrombocytopenia and hemolytic
anemia in mice

Consistent with the absence of glomerular TMA (Figures 5C,

G), there was no decrease in platelet counts in EHEC O157 OMV-

treated mice compared with control mice (Figure 6E). Moreover,

OMV-treated mice showed no decrease in RBC counts or

hemoglobin concentration and no increase in reticulocyte counts

or serum LDH (Figures 6F, G, I, J), demonstrating the absence of

hemolytic anemia. In fact, RBC counts, hemoglobin concentration,

and hematocrit were significantly increased in OMV-treated mice

compared with control mice (Figures 6F, G, H), suggesting

dehydration and hemoconcentration.

Regarding WBCs, OMV-treated mice demonstrated

significantly increased total counts and percentages of neutrophils

compared with control mice, while lymphocytes and monocytes did

not significantly differ between the two groups (Figures 6K, L).

Taken together, due to the inability of EHEC O157 OMVs to induce

TMA in Gb3-negative mouse glomeruli, the OMVs did not cause

thrombocytopenia or hemolytic anemia in mice. Instead, they

caused neutrophilia and hemoconcentration.
3.7 EHEC O157 OMVs cause apoptosis of
human renal glomerular endothelial cells
and tubular epithelial cells in vitro

We further investigated whether EHEC O157 OMVs interact

with human renal glomerular endothelial cells and tubular epithelial

cells, which both contain Gb3 (Porubsky et al., 2014; Legros et al.,

2017) and are major targets of Stx2 during EHEC-HUS. We found

that EHEC O157 OMVs labeled with rhodamine isothiocyanate B-

R18 (EHEC O157 R18-OMVs) were taken up by primary human

renal glomerular endothelial cells (HRGECs) and the proximal

tubular epithelial cell line HK-2 in a time-dependent manner

(Figure 7A). After 72 h of incubation with the cells, EHEC O157

OMVs induced significant apoptosis in both HRGEC and HK-2

cells, the extent of which was similar to that caused by purified Stx2

(585 ng/mL, present in OMVs) and staurosporine used as a positive

control (Figure 7B). In contrast, necrosis induced by EHEC O157

OMVs was comparable to that caused by PBS and to the

background necrosis of untreated cells (Figure 7B).

Altogether, these findings demonstrated that EHEC O157

OMVs interacted with HRGEC and HK-2 cells and caused their

death via apoptosis, which was largely mediated by Stx2. The OMVs

may thus be involved in the injury of human renal glomerular

endothelial and tubular epithelial cells in patients with EHEC-HUS.
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3.8 EHEC O157 OMVs are present in the
sera of patients with EHEC O157-
associated HUS

To determine whether EHEC O157 OMVs produced in the

human intestine during EHEC infection (Bauwens et al., 2017)

translocate to the bloodstream, we examined serum samples from

two pediatric patients with HUS caused by EHEC O157:H7 strains

for the presence of EHEC O157 OMVs. OMVs that reacted with

anti-E. coli O157 LPS antibody were detected in the sera of both

patients (Figures 8A–D; Supplementary Figures S13A–D) but not in

the serum from a control child without EHEC O157 infection

(Figures 8E, F; Supplementary Figures S13E, F). Consistent with the

findings in mice, this strongly supports the involvement of EHEC

O157 OMVs in the pathogenesis of EHEC-HUS in humans.
4 Discussion

In recent decades, membrane vesicles secreted by various

bacterial species have been implicated in the pathogenesis of a

number of infectious and non-infectious diseases (Rueter and

Bielaszewska, 2020; Wei et al., 2020; Zhang et al., 2021; Han

et al., 2022; Chen et al., 2023a, 2023b; Xie et al., 2023a, 2023b;

Wang et al., 2023; Liang et al., 2024; Liu et al., 2024; Olovo et al.,

2024; Liu et al., 2025; Wei et al., 2025). OMVs from EHEC O157:H7

carry approximately 50% of Stx2, the major virulence factor

produced by EHEC bacteria, while the other 50% of the toxin is

released as a free, OMV-unbound protein (Bielaszewska et al.,

2017). Although the role of free Stx2 in the pathogenesis of

EHEC-HUS has been demonstrated in numerous studies that

applied to experimental animals purified Stx2 alone or with LPS

(Tesh et al., 1993; Palermo et al., 2000; Keepers et al., 2006; Rasooly

et al., 2010; Porubsky et al., 2014; Dennhardt et al., 2018), the

pathogenetic involvement of Stx2-containing OMVs is poorly

understood. In the only study that addressed this issue (Kim

et al., 2011), OMVs were administered to mice intraperitoneally,

allowing them to bypass the intestinal barrier, which they must

overcome during EHEC infection. To the best of our knowledge,

our study is the first that investigated the involvement of EHEC

OMVs in the pathogenesis of EHEC-HUS by administering OMVs

to the gastrointestinal tract, where they are produced during

EHEC infection.

Using the mouse model, with its limitations, we demonstrated

that EHEC O157 OMVs meet the requirements for participation in

the pathogenesis of EHEC-HUS. Specifically, after administration

to the mouse gastrointestinal tract, EHEC O157 OMVs translocated

to the bloodstream (Figure 1A; Figures 2C, D) and reached the

kidneys, where they localized in glomerular endothelial cells

(Figure 1C; Supplementary Figure S3C) and tubular epithelial

cells (Figures 1E, G; Supplementary Figure S3E). Due to the

absence of the Stx2 receptor Gb3 in mouse glomerular endothelial

cells (Psotka et al., 2009; Porubsky et al., 2014), OMV-treated mice
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did not develop Stx2-mediated glomerular endothelial damage and

the associated glomerular TMA (Figures 5C, G), thrombocytopenia,

and hemolytic anemia (Figures 6E–J), which are hallmarks of

EHEC-HUS in humans (Tarr et al., 2005), who possess Gb3 on

the glomerular endothelium (Obrig, 2010; Porubsky et al., 2014;

Legros et al., 2017). However, mice orally treated with EHEC O157

OMVs developed, like patients with EHEC-HUS (Karpman et al.,

1998; Porubsky et al., 2014), severe tubular epithelium injury

(Figures 4A, B, D, E), which led to apoptosis (Figure 4H) and was

followed by acute kidney failure (Figures 6A, B), a defining

characteristic of EHEC-HUS (Tarr et al., 2005). Our observation

that tubular epithelial injury and kidney failure were induced by

100–400 μg of OMVs containing 14.6–58.4 μg of Stx2 (Table 2), but

not by lower OMV doses (containing 0.73–3.65 μg of Stx2), is in
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agreement with a study in which 50 μg of purified Stx2 administered

by oral gavage was required to induce tubular apoptosis and death

in mice, while lower toxin doses (0.5 μg and 1 μg) failed to do so

(Rasooly et al., 2010).

It should be emphasized that EHEC O157 OMVs are complex

structures that carry, in addition to Stx2, several other putative

EHEC virulence proteins and LPS (Table 1). EHEC O157 OMV-

associated LPS and flagellin induce secretion of interleukin-8 from

human intestinal epithelial cells (Bielaszewska et al., 2018), which

may also contribute to the pathogenesis of EHEC-HUS (Zoja et al.,

2010). Although our observation that Gb3-positive renal tubular

epithelial cells were major targets of OMV-mediated injury in mice

is consistent with a specific Stx2-mediated effect, experiments with

OMVs from a stx2-deletion mutant should be performed in a future
FIGURE 7

EHEC O157 OMVs are taken up by and cause apoptosis of human renal glomerular endothelial cells (HRGEC) and proximal tubular epithelial cells
(HK-2). (A) Time-dependent uptake of EHEC O157 OMVs labeled with rhodamine isothiocyanate B-R18 (EHEC O157 R18-OMVs) by HRGEC and HK-
2 cells. R-18 net fluorescence is the fluorescence of cells incubated with EHEC O157 R18-OMVs normalized to the fluorescence of EHEC O157 R-18
OMVs without cells. (B) Apoptosis and necrosis caused by EHEC O157 OMVs in HRGEC and HK-2 cells after 72 h of incubation as determined by
Cell Death Detection ELISA. Enrichment factors were calculated by dividing OD405 values of sample-treated cells by those of untreated cells. Data
are means ± standard deviations from three experiments. **p < 0.01 for differences between apoptosis of cells exposed to EHEC O157 OMVs, Stx2,
or staurosporine on one hand, and to PBS or no treatment on the other; and between apoptosis and necrosis caused by EHEC O157 OMVs, Stx2,
and staurosporine (one-way ANOVA with Tukey’s HSD).
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study. This would allow to determine the specific contribution of

OMV-associated Stx2 to the disease phenotype observed in EHEC

O157 OMV-treated mice and distinguish it from the contributions

of other OMV-associated virulence factors, in particular LPS, which

potentiates pathological effects of Stx2 in a mouse model (Keepers

et al., 2006).

Our observation that EHEC O157 OMVs caused acute kidney

failure in mice through tubular epithelial damage, without inducing

glomerular TMA—which underlies acute kidney failure in EHEC-

HUS patients (Tarr et al., 2005; Obrig, 2010)—is in agreement with

studies that used purified Stx2 in mice (Palermo et al., 2000;

Porubsky et al., 2014) or oral infection with Stx2-producing

EHEC strains (Wadolkowski et al., 1990; Mohawk et al., 2010).
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Porubsky and colleagues demonstrated, using transgenic mice

lacking Gb3 in tubular epithelial cells, that the tubular absence of

Gb3 protected mice against Stx2-mediated tubular injury, acute

kidney failure, and death observed in wild-type mice that carried

Gb3 on tubular epithelial cells (Porubsky et al., 2014). Neither the

wild-type nor the tubular Gb3-lacking mice developed glomerular

endothelial injury and TMA (Porubsky et al., 2014). Based on these

observations, the authors concluded that tubular epithelial damage

represents a separate pathophysiological mechanism that

importantly contributes to Stx2-mediated acute kidney failure,

most likely due to electrolyte disturbance (Porubsky et al., 2014),

which also occurred in our mice treated with EHEC O157 OMVs

(Figures 6C, D). A clinical parallel to this observation in mice was
FIGURE 8

EHEC O157 OMVs are present in the sera from patients with HUS caused by EHEC O157:H7 strains, but not of a person without EHEC O157
infection. Immunoelectron microscopy of serum samples from HUS patient 1 (A, B), HUS patient 2 (C, D), and a control person without EHEC O157
infection (E, F). EHEC O157 OMVs were detected with rabbit anti-E. coli O157 LPS antibody and goat anti-rabbit IgG conjugated with 10 nm colloidal
gold. Scale bars, 100 nm. Crops of representative immunoelectron microscopy images are shown. Entire original images are shown in
Supplementary Figure S13.
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the authors’ finding that two of 10 patients with EHEC-HUS who

developed acute kidney failure did not have glomerular TMA, but

all of them displayed renal tubular injury (Porubsky et al., 2014).

In addition to the ability of EHEC O157 OMVs to reach and

injure kidneys after oral administration to mice, two additional

findings in our study support their causative role in the

pathogenesis of EHEC-HUS in humans. First, the OMVs induced

apoptosis of human glomerular endothelial cells and tubular

epithelial cells in vitro (Figure 7B), demonstrating their toxic

effect toward the major target cells affected during EHEC-HUS. A

similar extent of apoptosis induced by Stx2-containing EHEC O157

OMVs and by purified Stx2 in the amount present in OMVs

(Figure 7B) indicated that Stx2 was the major OMV component

responsible for the apoptosis of glomerular endothelial cells and

tubular epithelial cells. This is in accordance with our previous

observation in human microvascular endothelial cells (Bielaszewska

et al., 2017) and with the report that purified Stx2 induced a dose-

and time-dependent apoptosis of HK-2 cells (Porubsky et al., 2014).

The toxicity of OMV-associated Stx2 toward human glomerular

endothelial and tubular epithelial cells leading to their apoptosis is

consistent with the presence of Gb3 in both cell types (Porubsky

et al., 2014; Legros et al., 2017). Second, we detected EHEC O157

OMVs in the serum samples of pediatric patients with HUS caused

by EHEC O157:H7 strains (Figures 8A–D). This demonstrates that,

as in mice, in humans EHEC O157 OMVs translocate from the

intestine, where they are produced during EHEC infection

(Bauwens et al., 2017), to the bloodstream, which enables them to

reach the kidneys. It should be emphasized that staining of the

serum OMVs in these HUS patients (as well as in OMV-treated

mice) with an antibody against E. coli O157 LPS, which is the major

component of EHEC O157 OMVs (Table 1), confirms that the

OMVs were derived from EHEC O157 bacteria. This specific

staining enables differentiation of EHEC O157 OMVs in the sera

from HUS patients and OMV-treated mice from other vesicular

structures such as exosomes and microvesicles originating from

host cells (Ståhl et al., 2019; Karpman and Tontanahal, 2021) and

from OMVs derived from other bacteria, e.g., intestinal microbiota

(Jones et al., 2020; Schaack et al., 2022). Our findings of EHEC O157

OMVs in the sera of patients with EHEC O157-associated HUS and

in the sera of mice orally administered EHEC O157 OMVs extend

previous reports on the detection of OMVs from nonpathogenic

bacteria, mostly intestinal microbiota, in the blood of humans with

disrupted (Tulkens et al., 2020) or intact intestinal barriers (Schaack

et al., 2022) and of mice orally administered OMVs (Jones et al.,

2020) or colonized with OMV-producing bacteria (Bittel et al.,

2021; Ou et al., 2023).

Although, due to the absence of Gb3 in the mouse glomerular

endothelium, EHEC O157 OMVs did not cause thrombocytopenia

or hemolytic anemia in mice (Figures 6E–J), the OMV-treated mice

developed hemoconcentration and neutrophilia (Figures 6F–H, K,

L), which are poor prognostic markers in patients with EHEC-HUS

(Walters et al., 1989; Fitzpatrick et al., 1992; Ardissino et al., 2015;

Loos et al., 2021). Hemoconcentration and neutrophilia were also

observed in mice treated with purified Stx2 (Dennhardt et al., 2018).

Hemoconcentration at EHEC-HUS onset is a predictor of severe
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ischemic organ damage and central nervous system involvement

with neurological complications (Ardissino et al., 2015; Alconcher

et al., 2018; Loos et al., 2021), which are the most common cause of

death in the acute phase of EHEC-HUS (Gerber et al., 2002; Zieg

et al., 2012; Alconcher et al., 2018). Moreover, hemoconcentration

was a risk factor for severe long-term sequelae following the acute

phase (Ardissino et al., 2015). Early volume expansion in patients

with EHEC-HUS was shown to be essential for reducing ischemic

organ damage and improving short-term and long-term outcomes

(Ake et al., 2005; Ardissino et al., 2016; Böckenhauer et al., 2024). In

addition to hemoconcentration and neutrophilia, mice treated with

EHEC O157 OMVs also developed hyponatremia (Figure 6C),

which has been identified as a predictor of HUS development in

patients with EHEC infection (McKee et al., 2020) and a predictor

of death in patients with HUS (Alconcher et al., 2018). Since mice

treated with EHEC O157 OMVs exhibited hemoconcentration,

neutrophilia, and hyponatremia, they might be utilized as a

model for managing these complications in patients with EHEC-

HUS. However, distinct mechanisms that likely underlie the

pathophysiology of these disorders in mice and HUS patients

need to be considered.

In conclusion, our data demonstrate that EHEC O157 OMVs

meet the criteria for acting as EHEC virulence tools in vivo and for

being involved in the pathogenesis of EHEC-HUS. We hypothesize

that during human EHEC infection, both Stx2-containing OMVs

and free Stx2 translocate from the intestine to the bloodstream and

enter the kidneys, where they injure glomerular endothelial cells

and tubular epithelial cells, which leads to acute kidney failure. The

role of EHEC O157 OMVs in the pathogenesis of EHEC-HUS is

further supported by their high production in the human intestine

(Bauwens et al., 2017) and by their detection in the sera of patients

with EHEC-HUS. The mode of transport of Stx2-carrying OMVs in

the blood, and their interactions in EHEC-HUS pathogenesis with

microvesicles and exosomes that transport free Stx2 (Ståhl et al.,

2015; Karpman and Tontanahal, 2021), needs to be determined in

future studies.
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