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and Liaoyun Zhang1*

1Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China,
2raduate School, Shanxi Medical University, Taiyuan, China, 3Academy of Medical Sciences, Shanxi
Medical University, Taiyuan, China
Background: Chronic progression is a major clinical challenge in human

brucellosis (HB), affecting nearly one-third of patients and leading to long-term

disability. Reliable early prediction tools are lacking, hindering timely risk

stratification and individualized management. This study aimed to develop and

validate machine learning (ML) models to predict chronic progression using

routinely available clinical and laboratory data.

Methods: We retrospectively analyzed 555 patients with confirmed brucellosis

admitted between 2019 and 2024. Clinical characteristics and laboratory

indicators at admission were collected. Feature selection was performed using

Boruta and recursive feature elimination. Six supervised ML models (random

forest [RF], LightGBM, XGBoost, logistic regression [LR], multilayer perceptron

[MLP], and support vector machine [SVM]) were constructed and evaluated by

discrimination, calibration, clinical utility, and predictive metrics. Model

interpretability was assessed using SHapley Additive exPlanations (SHAP), and a

web-based prediction tool was developed.

Results: Of 555 patients, 144 (25.9%) progressed to chronic brucellosis.

Compared with the recovery group, chronic cases presented more frequently

with arthralgia and arthritis and showed distinct biochemical profiles, including

lower alanine aminotransferase (ALT), aspartate aminotransferase (AST),

triglycerides (TG), and higher high-density lipoprotein cholesterol (HDL-C),

albumin (ALB), blood urea nitrogen (BUN), and uric acid (UA). Among the six

models, RF consistently demonstrated the most robust performance across

metrics, achieving the highest AUC in the test set (0.782, 95% CI: 0.701 -

0.856), superior calibration (Emax = 0.155), and the greatest net clinical benefit

in decision curve analysis. SHAP analysis identified TG, HDL-C, UA, eosinophil

count, PA, ALT, BUN, and GLB as the most influential predictors, with biologically

plausible associations.

Conclusion: Using eight routinely available variables, the RF model

demonstrated moderate discrimination with well-calibrated probability
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estimates but limited sensitivity. The tool may assist early risk stratification of

chronic brucellosis when combined with clinical judgment; however, its

predictive performance should be interpreted cautiously until validated in

external, multicenter, and prospective studies.
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1 Introduction

Brucellosis is one of the most prevalent zoonotic infections

worldwide, caused by Brucella spp. and transmitted through direct

contact with infected animals or the ingestion of unpasteurized

animal products (Qureshi et al., 2023). Annually, an estimated 1.6

to 2.1 million new human brucellosis (HB) cases occur globally,

although the true incidence is likely underestimated due to

diagnostic delays and underreporting (Laine et al., 2023).

The disease remains endemic in regions such as the Middle

East, Central Asia, South America, and China, where agricultural

and pastoral practices facilitate ongoing transmission (Chen et al.,

2023). In the Middle East and Central Asia, B. melitensis remains

predominant, with recurrent outbreaks linked to pastoral exposure

(Dean et al., 2012). In sub-Saharan Africa, incidence remains high

—for instance, Kenya reports a national seroprevalence of 6.8%

(95% CI: 6.2–7.4%) and community rates up to 84 per 100,000

person-years (Njeru et al., 2016). In South America, endemic

transmission persists in Peru and Bolivia, mainly through

occupational and foodborne exposure (Munyua et al., 2021). In

China, surveillance shows a renewed rise, from 45,046 cases (3.25/

100,000) in 2019 to 70,439 (4.99/100,000) in 2023, with Inner

Mongolia exceeding 50 per 100,000 (Liu et al., 2025).

Approximately 10–30% of patients progress to chronic or

relapsing disease with musculoskeletal or neurologic involvement

(Maduranga et al., 2024).

Clinically, brucellosis presents with diverse and nonspecific

manifestations that vary between the acute and chronic phases.

Acute brucellosis typically presents with fever, profuse sweating,

hepatosplenomegaly, myalgia, and arthralgia, often mimicking

other febrile or inflammatory illnesses (Liu et al., 2023). In

contrast, chronic brucellosis is characterized by symptom

persistence beyond six months, with predominant features

including persistent fatigue, recurrent arthralgia, osteoarticular

involvement (such as spondyli t is and arthrit is) , and

neuropsychiatric complications (Qureshi et al., 2023). These

chronic manifestations can lead to long-term disability, markedly

impairing quality of life and increasing healthcare burden.

Brucellosis can affect multiple organ systems, resulting in a wide

spectrum of complications. Osteoarticular involvement is the most

frequent, observed in up to 40–60% of cases, and includes

spondylitis, arthritis, and sacroiliitis (Bosilkovski et al., 2004).
02
Neurologic complications, collectively known as neurobrucellosis,

include meningitis, encephalitis, brain abscess, and peripheral

neuropathy, which may lead to lasting deficits (Gul et al., 2009).

Cardiovascular involvement, particularly brucella endocarditis, is

rare (<2% of cases) but accounts for the majority of brucellosis-

related deaths (Vahabi et al., 2019). Hepatic, genitourinary, and

cutaneous involvement have also been reported, further

underscoring the systemic nature of this infection (Jin et al., 2023).

Despite growing recognition of disease chronicity, existing

research has primarily focused on molecular distinctions between

acute and chronic stages to improve diagnosis, with limited

attention to prognostic modeling (Yang et al., 2023; Li et al.,

2024). No validated clinical tools currently exist to predict the

risk of chronic progression at the time of initial diagnosis, hindering

early risk stratification and personalized intervention. While

conventional diagnostic methods such as serology and culture

remain essential for detection, they lack prognostic utility in

forecasting chronic outcomes (Yagupsky et al., 2019).

In recent years, machine learning (ML) has emerged as a

promising method for individualized disease risk prediction by

leveraging high-dimensional clinical and laboratory data (Delpino

et al., 2022). Several ML-based studies have demonstrated high

diagnostic accuracy in identifying brucellosis cases at an early stage

(Wang et al., 2023). However, these models have not addressed disease

trajectory prediction, particularly the risk of chronic progression.

To fill this gap, the present study aimed to develop and validate

an ML-based predictive model capable of identifying patients at risk

of chronic brucellosis. We incorporated explainable artificial

intelligence (AI) techniques to identify key features contributing

to chronicity and compared the performance of multiple algorithms

using comprehensive evaluation metrics, thereby establishing a

clinically interpretable and robust predictive framework.
2 Materials and methods

2.1 Study population

This study enrolled 555 participants diagnosed with brucellosis

at the First Hospital of Shanxi Medical University fromMay 2019 to

December 2024. Baseline clinical and laboratory characteristics

were collected for all participants.
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The diagnosis followed the criteria of the national guideline

“Diagnosis for Brucellosis (WS 269-2019)” issued by the National

Health Commission in 2019 (National Health Commission of the

People’s Republic of China, 2025):
Fron
1. Epidemiological exposure, such as close contact with

livestock or animal products suspected of carrying

Brucella, or ingestion of unpasteurized dairy or

undercooked meat.

2. Clinical symptoms including prolonged fever (low- or

high-grade), excessive sweating, fatigue, arthralgia, or

myalgia , some patients had lymphadenopathy,

hepatosplenomegaly, or testicular swelling, while a few

exhibited various rashes or jaundice.

3. Laboratory findings, including positive results of the rose

bengal plate agglutination test (RBT), colloidal gold

immunochromatographic assay (GICA), and enzyme-

linked immunosorbent assay (ELISA). In addition,

Brucella organisms were observed by Gram staining of

cultured isolates.
A clinical diagnosis required meeting criteria 1) and 2), together

with any one of 3) simultaneously.

Patients were categorized into the recovery group or the chronic

group according to whether clinical symptoms persisted after

completing six months of standardized antimicrobial therapy. To

reduce subjectivity, all outcome classifications were independently

adjudicated by two experienced infectious disease physicians; any

discrepancies were resolved through consensus with a third

senior clinician.

The study protocol was approved by the Ethics Committee of

the First Hospital of Shanxi Medical University (NO.KYYJ-2025-

143). Follow-up information was obtained retrospectively through

review of medical records and standardized telephone interviews.

The requirement for consent for retrospective chart review was

waived. This study adhered to the STROBE and TRIPOD

reporting guidelines.
2.2 Candidate predictor variables

Clinical and demographic data, clinical characteristics, and

laboratory variables at admission were retrospectively collected in

this study, shown in Table 1.
2.3 Treatment plan

All included patients were treated in strict accordance with the

Diagnostic Criteria for Brucellosis (WS 269–2019), following the

principles of early, combined, and sufficient antimicrobial therapy

(Liu et al., 2022).
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2.4 Model construction, evaluation and
validation

Feature selection was performed in two stages. Initially, the

Boruta algorithm, based on a random forest classifier, was applied

to identify all-relevant features by comparing their importance

scores with randomized shadow attributes. Subsequently,

recursive feature elimination (RFE), also based on a random

forest estimator, was used to refine feature selection and identify

the optimal subset of variables that contributed most significantly to

classification performance. Feature selection was nested within each

cross-validation split to avoid information leakage. Performance

curves indicated that predictive ability plateaued after the inclusion
TABLE 1 List of the features enrolled in the study.

Categories Variables

Demographics age, gender

Clinical Characteristics

Symptoms fever, myalgia, fatigue, anorexia, headache, arthralgia

Organ Involvement hepatomegaly, splenomegaly, arthritis, neurobrucellosis,
cardiac involvement in brucellosis, genitourinary
involvement in brucellosis

Laboratory Variables

Complete Blood
Count

white blood cell count (WBC), red blood cell (RBC),
hemoglobin concentration (HGB), platelet count (PLT),
lymphocytes, neutrophils, monocytes, eosinophil,
basophil, hematocrit (HCT), mean corpuscular volume
(MCV), mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration
(MCHC), red cell distribution width-coefficient of
variation (RDW-CV), red cell distribution width-
standard deviation (RDW-SD), platelet distribution
width (PDW), platelet-large cell ratio (P-LCR),
plateletcrit (PCT-PLT), mean platelet volume (MPV)

Liver Function Tests alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total protein (TP), albumin
(ALB), globulin (GLB), prealbumin (PA), total bilirubin
(TBil), direct bilirubin (DBIL), indirect bilirubin (IBIL),
alkaline phosphatase (ALP), gamma-glutamyl
transferase (GGT), total bile acid (TBA)

Renal Function
Tests& Electrolytes

urea nitrogen (BUN), creatinine (CRE), uric acid (UA),
potassium (K), sodium (Na), chloride (Cl)

Coagulation
Function Tests

prothrombin activity (PT-S), prothrombin time (PT),
international normalized ratio (INR), activated partial
thromboplastin time (APTT), thrombin time (TT), d-
dimer (D-D), fibrinogen concentration (FIB-C)

Blood Lipid Profile total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C)

Inflammatory
Markers

erythrocyte sedimentation rate (ESR), procalcitonin
(PCT), C-reactive protein (CRP), cyclic citrullinated
peptide antibody (CCP)

Diagnostic Tests blood culture, SAT
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of eight variables; therefore, the top eight predictors were retained

for model construction.

The dataset was randomly split into a training set (70%) and a

test set (30%) using a fixed random seed to ensure reproducibility.

Using Python-based libraries such as scikit-learn and XGBoost, six

supervised machine learning algorithms were constructed: support

vector machine (SVM), extreme gradient boosting (XGBoost), light

gradient boosting machine (LightGBM), random forest (RF),

multilayer perceptron (MLP), and logistic regression (LR). All six

algorithms were trained using these 8 features. Hyperparameters for

each algorithm were optimized through grid search in combination

with five-fold cross-validation to ensure robustness and avoid

overfitting. In addition, tree-based models were constrained by

limiting maximum tree depth, and both tree-based and linear

models incorporated regularization techniques to further reduce

overfitting and enhance generalizability.

To address the class imbalance between recovery and chronic

cases, the Synthetic Minority Oversampling Technique (SMOTE)

was applied to the training dataset. This method generates synthetic

samples of the minority class based on feature-space similarities

between existing minority instances, thereby improving

representation without duplicating records. The SMOTE

procedure was performed only within the training set to avoid

data leakage, and models trained on both original and SMOTE-

balanced data were compared for robustness.

Model performance was evaluated using multiple metrics,

including the area under the receiver operating characteristic

curve (AUC), calibration plots, and decision curve analysis

(DCA). These evaluations were conducted on both the training

and testing sets to assess discrimination, calibration, and

clinical utility.

To enhance interpretability, SHapley Additive exPlanations

(SHAP) were used to quantify the contribution of each input

feature to model predictions. SHAP-based visualizations,

including summary plots, dependence plots, and beeswarm

diagrams, were generated to demonstrate the influence of

individual variables on chronic brucellosis risk. Higher SHAP

values indicated stronger positive contributions to the model’s

predicted probability, while negative SHAP values suggested

suppressive effects.

Finally, an interactive web-based prediction tool was developed

using the Streamlit framework. The tool enables real-time input of

clinical variables and visual feedback via single-sample SHAP force

plots, making the model accessible and interpretable for clinical

users and researchers alike.
2.5 Statistical analysis

All statistical analyses were conducted using R software

(version 4.3.0) and Python (version 3.10.6). Missing values were

addressed through multiple imputation with the “mice” package,

and variables with more than 20% missingness had already been

excluded during data collection. Continuous variables conforming

to a normal distribution were presented as mean ± standard
Frontiers in Cellular and Infection Microbiology 04
deviation (SD), and intergroup comparisons were assessed using

independent-sample t tests. For continuous variables that did not

follow a normal distribution, results were expressed as median and

interquartile range [M (Q1, Q3)], with differences evaluated via the

Mann–Whitney U test. Categorical data were summarized as

frequencies and proportions [n (%)], and analyzed using the chi-

square test or Fisher’s exact test, depending on sample size. A p-

value < 0.05 (two-tailed) was considered indicative of

statistical significance.
3 Results

The baseline clinical characteristics of the enrolled patients are

summarized in Table 2. A total of 555 patients were included in the

study, of whom 144 (25.95%) progressed to chronic brucellosis

(chronic group), while 411 (74.05%) recovered without chronicity

(recovery group). Compared to the recovery group, patients in the

chronic group exhibited significantly higher incidences of arthralgia,

myalgia, and arthritis, while reporting lower rates of fever, headache,

and splenomegaly (all p < 0.05). These findings suggest that specific

symptom clusters and organ involvement patterns may serve as early

indicators of chronic disease progression.

Laboratory findings revealed multiple statistically significant

differences between the recovery and chronic groups as shown in

Table 3. The chronic group had higher PLT, eosinophils, ALB, PA,

BUN, UA, Cl, TC and HDL-C, and lower ALT, AST, GLB, GGT, PT,

APTT, D-D, FIB-C, TG, ESR, PCT, and CCP. Positive blood culture

was significantly less frequent in the chronic group. These alterations

suggest significant involvement of hepatic function, coagulation

pathways, lipid metabolism, and systemic inflammation in the

pathophysiological transition toward chronic brucellosis.

To identify the most informative predictive variables, we

applied the Boruta algorithm for feature selection. As illustrated

in Figure 1, a total of 14 variables were deemed important (colored

in cyan), including BUN, ALT, GLB, PA, UA, TG, HDL-C, AST,

eosinophil, APTT, CCP, arthralgia, fever, and ALB. These features

demonstrated significantly higher importance scores than rejected

or tentative variables.

Subsequently, the top-ranking features were incorporated

sequentially to evaluate their cumulative impact on model

performance. As shown in Figure 2, model performance

improved rapidly with the initial features and plateaued after the

top 8 were included, suggesting that most of the predictive power

was concentrated within this subset. Therefore, the top 8 features—

BUN, HDL-C, ALT, eosinophil, TG, UA, PA, and GLB—were

selected for final model construction.

The performance of six supervised machine learning models

was compared using ROC curves, as shown in Figure 3. In the

training set, ensemble methods including RF, XGBoost, and

LightGBM exhibited excellent discrimination with AUC values

above 0.93, while LR (AUC = 0.753), SVM (AUC = 0.677), and

MLP (AUC = 0.774) demonstrated lower predictive ability,

suggesting that the tree-based algorithms captured the underlying

patterns more effectively. In the test set, however, performance
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decreased across all models, reflecting reduced generalizability. RF

achieved the highest AUC of 0.782 (95% CI: 0.701 - 0.856), followed

closely by MLP (0.769) and LR (0.763). In contrast, LightGBM

showed the lowest discrimination (AUC = 0.745), and SVM

remained relatively weak (AUC = 0.754). Taken together, these

results indicate that although tree-based methods dominated in the

training set, RF and MLP showed relatively better robustness in the

test set, highlighting their potential suitability for predicting chronic

brucellosis in independent cohorts.

To further assess the influence of class imbalance, additional

analyses were conducted after applying the SMOTE to the training

data (Supplementary Figure 1). Following oversampling, AUC and
Frontiers in Cellular and Infection Microbiology 05
F1-scores of some algorithms (particularly LR and SVM) increased

modestly, whereas ensemble models such as RF remained highly

stable, demonstrating consistent performance across both the

original and balanced datasets. These findings support the

robustness of the RF model and indicate that the observed

superiority of tree-based methods was not driven by

data imbalance.

Calibration analysis is shown in Figure 4. In the training set, RF

achieved the best calibration performance (Emax = 0.058, 95% CI:

0.056 - 0.081), followed by LightGBM (Emax = 0.082) and XGBoost

(Emax = 0.113). In contrast, SVM and MLP exhibited substantial

deviation from the ideal calibration line, reflecting poor probability
FIGURE 2

Feature contribution and model performance in sequential feature.
FIGURE 1

Feature selection results based on Boruta algorithm.
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estimation. Similar results were observed in the test set, where RF

again demonstrated the most favorable agreement between

predicted and observed risks (Emax = 0.155, 95% CI: 0.123 -

0.187), outperforming LightGBM (0.165) and XGBoost (0.174).

These findings suggest that RF provided the most reliable

probability estimates across both datasets. To further evaluate the

effect of class imbalance on model calibration, additional analyses

were performed after applying SMOTE to the training data

(Supplementary Figure 2). The overall calibration trends

remained consistent with the primary results, with RF

maintaining the most stable and well-calibrated probability

predictions among all algorithms.

Decision curve analysis results are presented in Figure 5. In the

training set, RF consistently provided the highest net benefit across

a wide range of threshold probabilities, indicating superior clinical

utility. XGBoost and LightGBM also showed favorable performance

but were consistently outperformed by RF, whereas SVM and MLP

offered little to no net clinical benefit. In the test set, RF again

yielded the greatest net benefit, confirming its robustness and
Frontiers in Cellular and Infection Microbiology 06
practical value for clinical application. To verify the stability of

clinical utility under class imbalance adjustment, we additionally

performed DCA after applying SMOTE to the training data

(Supplementary Figure 3). The overall net benefit profiles

remained comparable to the primary analysis, with RF

maintaining the broadest range of positive net benefit across

threshold probabilities. Minor changes in the magnitude of net

benefit were observed for other algorithms, but the ranking order

and clinical interpretation were largely unchanged.

Predictive performance metrics on the test set are presented in

Table 4. Overall, RF demonstrated the most stable and balanced

performance across multiple evaluation indices. RF achieved an

accuracy of 0.76, comparable to LR and LightGBM, and achieved

relatively higher sensitivity than XGBoost and SVM; however, the

absolute sensitivity value remained modest, underscoring the need

for further optimization. Importantly, RF maintained competitive

F1 and kappa scores, reflecting a strong balance between precision

and recall as well as agreement with ground truth labels. By

contrast, SVM consistently showed the weakest performance
FIGURE 4

Calibration curve of six models for prediction of chronic brucellosis. (a) training set (b) test set.
FIGURE 3

ROC curve of six models for prediction of chronic brucellosis. (a) training set (b) test set.
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across all metrics. Taken together, RF exhibited the most balanced

performance across metrics, suggesting potential clinical

applicability for predicting chronic brucellosis.

Among the compared algorithms, RF performed best overall,

with moderate discrimination and well-calibrated probabilities but

limited sensitivity; therefore, its use should be regarded as

exploratory and intended to assist rather than replace

clinical judgment.

Feature importance analysis based on the RF model is presented

in Figure 6. Panel (a) ranks predictors according to their mean

absolute SHAP values, with TG emerging as the most influential

feature, followed by HDL-C, eosinophil count, UA, PA, ALT, BUN,

and GLB. These findings highlight that both lipid metabolism

indicators (TG, HDL-C) and immune-inflammatory markers

(eosinophils, GLB) play central roles in RF-driven risk

stratification for chronic brucellosis.

The SHAP summary plot further illustrates the directional

impact of individual variables on the RF model’s output. Higher

levels of HDL-C, eosinophils, UA, PA, and BUN were associated

with positive SHAP values, indicating an increased probability of

chronic disease. Conversely, TG, GLB, and ALT exerted negative

SHAP contributions, and the higher values suggested potential

protective effects. Importantly, these patterns are consistent with

the clinical relevance of lipid and immune dysregulation in chronic

infection, underscoring the robustness of the RF model in capturing

biologically meaningful predictors.

To further examine the stability of feature importance under

class imbalance adjustment, SHAP analysis was repeated after

applying SMOTE to the training data (Supplementary Figure 4).

The same eight features were consistently identified as the top

predictors, with only minor shifts in their relative ranking. This

high degree of overlap indicates that the feature–outcome

associations captured by the RF model remained stable despite

resampling, confirming the intrinsic robustness and biological

relevance of the identified predictors.

Figure 7 displays SHAP dependence plots for the eight most

influential variables identified by the RF model, illustrating their
Frontiers in Cellular and Infection Microbiology 07
nonlinear effects on prediction outcomes. BUN, HDL-C, eosinophil

count, and UA showed positive associations with risk, where higher

values corresponded to increased SHAP values and thus greater

chronicity probability. In contrast, TG and GLB exhibited inverse

associations, with lower levels driving elevated risk, and ALT

demonstrated a pronounced negative relationship as well, with

reduced levels strongly linked to higher predicted probability. PA

displayed a J-shaped curve, indicating that both very low and high

concentrations may contribute to chronic progression.

These dependence plots highlight the heterogeneous influence

and threshold effects of biochemical and immune-inflammatory

indicators, reinforcing their biological plausibility. By revealing

feature-specific inflection points, the RF-based SHAP analysis

enhances model transparency and supports its clinical

interpretability in the prediction of chronic brucellosis.

In addition, two case-level force plots were provided to illustrate

the interpretability of the model (Figure 8). In these plots, red

features indicate positive contributions to the prediction (increasing

risk), whereas blue features indicate negative contributions

(decreasing risk). The driving factors varied across individuals: in

case (a), higher GLB (25.8), BUN (7.08), ALT (14.0), PA (239.0),

and HDL-C (1.36) collectively increased the predicted probability of

chronic brucellosis, whereas lower UA (222.0) and TG (2.06),

provided modest protective effects. Conversely, in case (b),

elevated TG (2.06) and UA (222.0) acted as risk-enhancing

contributors, while higher HDL-C (1.36), PA (239.0), ALT (14.0),

BUN (7.08), and GLB (25.8) exerted strong protective influences.

Together, these SHAP-based interpretability tools provide

robust insights into the contribution, directionality, and threshold

behavior of individual predictors. By uncovering feature-specific

inflection points, they enhance the clinical interpretability of the

model and support its application in real-world decision-making.

To facilitate clinical application and enhance accessibility, we

developed an online risk prediction tool based on the final model

incorporating the top-ranking SHAP features. All selected variables

are routinely available in clinical settings, allowing for convenient

input and real-time prediction. As illustrated in Figure 9, ‘1’ indicates
FIGURE 5

DCA of six models for prediction of chronic brucellosis. (a) training set (b) test set.
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a positive prediction for chronic progression, while ‘0’ denotes a

negative prediction. The value in parentheses represents the predicted

probability. The web-based risk calculator is publicly available at:

https://brucellosis-prediction-rf-hm4jkzjnytrnaygmhqvevk.

streamlit.app/, offering clinicians an intuitive platform to assess

individual patient risk profiles based on key clinical indicators. To

ensure transparency and reproducibility, the full implementation

code has also been made available at https://github.com/

moresaying98/Brucellosis-Prediction-RF/blob/main/Firday.py.
4 Discussion

In this study, we developed and validated a machine learning-

based model to predict chronic progression in patients with

brucellosis, using a comprehensive set of clinical and laboratory

features. Among six tested algorithms, RF achieved the best overall

performance in terms of discrimination, calibration, and clinical
Frontiers in Cellular and Infection Microbiology 08
utility. Its predictive power was further enhanced through SHAP,

which enabled transparent interpretation of feature contributions.

Brucellosis remains a significant public health concern in

endemic regions, owing to its zoonotic transmission,

heterogeneous clinical manifestations, and substantial risk of

chronic complications (Shen et al., 2022). In China alone, 684,380

cases were officially reported between 1950 and 2018, ranking

brucellosis among the top ten notifiable infectious diseases

nationwide (Yang et al., 2020). This sustained burden underscores

the persistent challenges in interspecies transmission control and

the unmet need for early identification of patients at risk of

chronicity (Ghssein et al., 2025).

Although most cases of brucellosis are acute and responsive to

treatment, a substantial proportion progress to chronic disease,

resulting in increased morbidity and healthcare burden (Qureshi

et al., 2023). Despite growing clinical awareness, reliable early

prediction of chronicity remains elusive. Prior studies have

predominantly focused on molecular and serological distinctions

between acute and chronic stages, rather than on clinically
FIGURE 6

SHAP-based feature importance and distribution in model prediction (a) Bar plot of mean SHAP values (b) SHAP summary plot.
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applicable predictive modeling. For instance, differential expression

of miR-1238-3p, miR-494, and miR-6069 has been proposed as

potential markers of chronic disease (Budak et al., 2016), and

proteomic analyses have identified several candidate proteins with

predictive value for chronic progression (Li et al., 2024). However,

these approaches are limited by high cost, limited accessibility, and

lack of clinical validation. As a result, routinely available clinical and

laboratory indicators remain the most feasible data sources for risk

prediction in real-world practice.

Recently, ML has emerged as a powerful tool for disease

forecasting and personalized risk assessment (Contreras and Vehi,

2018; Smith et al., 2023). ML applications in brucellosis have shown

encouraging results in early detection, outbreak surveillance, and
Frontiers in Cellular and Infection Microbiology 09
patient stratification. For example, Wang et al. developed a high-

accuracy diagnostic model using support vector machines, although

it did not address chronic progression (Wang et al., 2023). Shen

et al. applied a convolutional long short-term memory

(ConvLSTM) model to analyze the spatiotemporal dynamics of

brucellosis in Europe, demonstrating superiority over conventional

ARIMA approaches (Shen et al., 2022). Nonetheless, predictive

modeling specifically targeting chronic brucellosis remains scarce.

To our knowledge, the present study is the first to develop a

clinically interpretable, ML-based risk prediction tool for chronic

progression in brucellosis using routinely collected data.

In the final model, 8 variables were retained based on their

contribution to predictive performance, including BUN, HDL-C,
FIGURE 7

SHAP dependence plots of top predictive features.
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ALT, eosinophil, TG, UA, PA, and GLB. Although the directionality

of some predictors may appear counterintuitive, this is consistent

with the SHAP dependence plots. Such discrepancies between

overall group differences and conditional model contributions

likely reflect pathway interactions within tree-based algorithms.

Both TG and HDL-C emerged as critical lipid-related features

in our model. Patients who progressed to chronic brucellosis tended

to exhibit lower TG levels and higher HDL-C levels at admission - a

pattern not previously reported in the brucellosis literature. While

lipid metabolism dysregulation has been well-documented in

various infectious and inflammatory conditions, including
Frontiers in Cellular and Infection Microbiology 10
COVID-19 and HIV/AIDS (Funderburg and Mehta, 2016; Ryrsø

e t a l . , 2022) . HDL-C i s known for i t s p l e io t rop ic

immunomodulatory effects, including neutralization of

lipopolysaccharide (LPS), attenuation of oxidative stress, and

modulation of cytokine signaling (Bonacina et al., 2021). It has

thus been hypothesized that elevated HDL-C may serve as a

compensatory anti-inflammatory response in chronic infection.

However, clinical evidence also points toward a U-shaped

relationship between HDL-C and infection outcomes. In the

ILLUMINATE trial, for example, pharmacologic elevation of

HDL-C was paradoxically associated with increased infection-
FIGURE 8

SHAP force plots for individual predictions by the chronic brucellosis model. (a) SHAP force plot for the prediction of having Chronic progression.
(b) SHAP force plot for the prediction of not having Chronic progression.
FIGURE 9

Web-based prediction interface of the Random Forest model for chronic brucellosis risk assessment.
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related mortality, despite improved lipid profiles (Barter et al.,

2007). Mechanistically, HDL-C has been proposed to disrupt lipid

rafts by depleting membrane cholesterol, potentially triggering

unintended immune activation via protein kinase C signaling

(van der Vorst et al., 2017). Therefore, the elevated HDL-C

observed in chronic brucellosis may reflect either a protective

adaptation or a maladaptive response contributing to

persistent inflammation.

In contrast, lower TG levels were observed in chronic cases,

opposing trends reported in diseases such as tuberculosis, where

hypertriglyceridemia is linked to foam cell formation and impaired

macrophage function (Agarwal et al., 2021). This discrepancy

highl ights pathogen-specific differences in host l ipid

reprogramming. One possible explanation is that Brucella

infection induces an early hypometabolic shift or mitochondrial

dysfunction, leading to TG depletion as part of a distinct metabolic

phenotype. Altered hepatic lipid processing and systemic

inflammation may further exacerbate this effect, potentially

predisposing patients to chronic progression.

Eosinophils also emerged as a significant predictor of chronic

brucellosis in our model, with higher counts observed in patients

who progressed to chronic disease. This finding contrasts with most
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existing literature, which has primarily associated eosinopenia with

brucellosis severity. For example, Jiao et al. reported that over 75%

of patients exhibited eosinophil depletion at diagnosis, suggesting

its value in early detection (Jiao et al., 2015). Similarly, Yang et al.

found that eosinopenia correlated with higher complication rates

and longer hospital stays (Yang et al., 2024). These studies indicate

that eosinophil suppression may reflect systemic inflammatory

burden in the acute phase.

However, several reports suggest that eosinophil levels may rise

during recovery, and are often higher in chronic or prolonged cases

(Jiang et al., 2017). This pattern aligns with our observations and

supports the hypothesis that elevated eosinophil counts may reflect

ongoing immune dysregulation or unresolved tissue injury in

chronic disease states. In murine models of immune-mediated

hepatic damage, eosinophils have been shown to infiltrate injured

liver tissue and secrete interleukin-4, promoting hepatocyte

proliferation and tissue regeneration (Aoki et al., 2021). While

these data are primarily derived from tissue-level investigations,

they suggest that peripheral eosinophil elevation in chronic

brucellosis may serve as an indirect marker of localized

immunologic remodeling or reparative activity. Nonetheless, the

precise role of eosinophils in brucellosis pathogenesis - whether
TABLE 2 Baseline clinical characteristics of patients with and without chronic brucellosis.

Variables Total (n = 555) Recovery group (n = 411) Chronic group (n = 144) P

Demographics

Age 52.3 ± 14.3 51.8 ± 15.0 53.8 ± 11.9 0.131

Gender 0.239

Female 160 (28.83) 124 (30.17) 36 (25.00)

Male 395 (71.17) 287 (69.83) 108 (75.00)

Symptoms

Fever 438 (78.92) 351 (85.40) 87 (60.42) < 0.001

Myalgia 246 (44.32) 172 (41.85) 74 (51.39) 0.047

Fatigue 376 (67.75) 279 (67.88) 97 (67.36) 0.908

Anorexia 337 (60.72) 255 (62.04) 82 (56.94) 0.281

Headache 100 (18.02) 87 (21.17) 13 (9.03) 0.001

Arthralgia < 0.001

No arthralgia 276 (49.73) 238 (57.91) 38 (26.39)

Monoarticular pain 182 (32.79) 116 (28.22) 66 (45.83)

Polyarticular pain 97 (17.48) 57 (13.87) 40 (27.78)

Organ Involvement

Hepatomegaly 62 (11.17) 51 (12.41) 11 (7.64) 0.118

Splenomegaly 253 (45.59) 205 (49.88) 48 (33.33) < 0.001

Arthritis 171 (30.81) 102 (24.82) 69 (47.92) < 0.001

Neurobrucellosis 27 (4.86) 19 (4.62) 8 (5.56) 0.654

Cardiac involvement in brucellosis 7 (1.26) 4 (0.97) 3 (2.08) 0.383

Genitourinary involvement in brucellosis 34 (6.13) 24 (5.84) 10 (6.94) 0.634
fro
ntiersin.org

https://doi.org/10.3389/fcimb.2025.1700233
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2025.1700233
TABLE 3 Laboratory findings of patients with and without chronic brucellosis.

Variables Total (n = 555) Recovery group (n = 411) Chronic group (n = 144) P

Complete Blood Count

WBC, 10^9 /L 4.90 (3.70, 6.60) 4.90 (3.60, 6.70) 4.90 (4.00, 6.53) 0.987

RBC, 10^12 /L 4.17 (3.76, 4.53) 4.13 (3.74, 4.49) 4.24 (3.84, 4.65) 0.116

HGB, g/L 124.00 (111.00, 137.00) 124.00 (111.00, 135.00) 126.50 (113.00, 142.25) 0.989

PLT, 10^9 /L 206.00 (140.00, 267.00) 197.00 (138.50, 261.00) 220.00 (157.00, 279.00) 0.044

Lymphocytes, 10^9 /L 1.56 (1.20, 2.08) 1.56 (1.18, 2.08) 1.56 (1.29, 2.04) 0.974

Neutrophils, 10^9 /L 2.69 (1.77, 3.88) 2.64 (1.73, 4.04) 2.80 (2.07, 3.75) 0.267

Monocytes, 10^9 /L 0.41 (0.30, 0.59) 0.42 (0.30, 0.60) 0.40 (0.29, 0.55) 0.718

Eosinophil, 10^9 /L 0.03 (0.01, 0.09) 0.02 (0.01, 0.08) 0.06 (0.02, 0.15) < 0.001

Basophil, 10^9 /L 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.02 (0.01, 0.02) 0.249

HCT, % 37.52 ± 5.44 37.27 ± 5.19 38.24 ± 6.05 0.065

MCV, fL 91.00 (87.35, 94.85) 90.90 (87.30, 94.50) 91.15 (87.40, 94.90) 0.73

MCH, pg 30.00 (28.65, 31.35) 30.00 (28.65, 31.30) 30.10 (28.67, 31.63) 0.072

MCHC, g/L 329.00 (322.00, 337.00) 329.00 (321.50, 337.00) 328.00 (322.00, 337.00) 0.569

RDW-CV, % 13.50 (12.80, 14.50) 13.50 (12.80, 14.35) 13.50 (12.80, 14.72) 0.132

RDW-SD, fL 44.00 (41.70, 47.30) 43.80 (41.75, 47.05) 44.65 (41.70, 48.23) 0.049

PDW, fL 15.30 (11.80, 16.30) 15.40 (11.70, 16.30) 15.15 (11.90, 16.10) 0.646

P-LCR, % 25.50 (17.90, 32.60) 25.70 (18.20, 32.50) 24.90 (16.90, 33.73) 0.951

PCT-PLT, % 0.20 (0.15, 0.26) 0.20 (0.14, 0.25) 0.21 (0.16, 0.26) 0.084

MPV, fL 10.10 (9.00, 11.00) 10.10 (9.00, 10.90) 10.00 (8.70, 11.10) 0.993

Liver Function Tests

ALT, U/L 33.00 (19.00, 61.00) 39.00 (22.00, 70.00) 23.00 (15.00, 38.25) < 0.001

AST, U/L 32.00 (21.00, 53.00) 35.00 (23.00, 59.00) 25.00 (18.00, 35.25) < 0.001

TP, g/L 63.40 (59.00, 67.40) 63.20 (59.00, 67.40) 63.55 (59.08, 67.28) 0.812

ALB, g/L 35.18 ± 5.04 34.69 ± 4.84 36.58 ± 5.32 < 0.001

GLB, g/L 27.20 (24.45, 31.10) 27.70 (25.00, 31.30) 26.05 (23.10, 29.27) 0.002

PA, mg/L 158.00 (115.00, 209.50) 146.00 (113.50, 200.50) 183.00 (121.00, 237.50) < 0.001

TBIL, mmol/L 11.30 (8.35, 15.50) 11.40 (8.40, 15.50) 11.05 (8.25, 15.43) 0.628

DBIL, mmol/L 4.40 (3.00, 6.10) 4.50 (3.00, 6.20) 4.00 (3.00, 5.90) 0.537

IBIL, mmol/L 6.70 (5.10, 9.70) 6.70 (5.20, 9.60) 6.70 (5.00, 9.93) 0.83

ALP, U/L 94.00 (73.00, 126.00) 96.00 (74.00, 132.50) 89.00 (69.75, 111.00) 0.075

GGT, U/L 48.00 (27.00, 104.00) 53.00 (29.00, 116.00) 35.50 (22.00, 75.00) < 0.001

TBA, mmol/L 4.30 (2.90, 7.80) 4.30 (2.90, 7.75) 4.90 (2.88, 8.50) 0.537

Renal Function Tests& Electrolytes

BUN, mmol/L 4.05 (3.19, 5.41) 3.85 (3.05, 5.13) 4.71 (3.69, 5.99) < 0.001

CRE, mmol/L 60.00 (52.00, 70.00) 59.70 (52.00, 70.00) 60.00 (51.00, 71.47) 0.793

UA, mmol/L 237.00 (181.50, 296.00) 227.00 (172.50, 288.00) 269.00 (212.75, 319.50) < 0.001

K, mmol/L 3.95 (3.70, 4.22) 3.93 (3.67, 4.21) 3.99 (3.74, 4.31) 0.101

(Continued)
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pathogenic, compensatory, or epiphenomenal - remains to be

clarified. Further studies are warranted to determine whether

eosinophilia in chronic brucellosis reflects a reactive immune

phenotype, impaired resolution, or organ-specific immune

responses not captured in peripheral blood.

In addition to conventional clinical and biochemical indicators,

UA has been suggested as a potential predictor of chronicity.

Although no prior studies have systematically examined the
Frontiers in Cellular and Infection Microbiology 13
association between UA and chronic brucellosis, case reports have

described patients with Brucella-induced septic arthritis who

presented with hyperuricemia (Elzein and Sherbeeni, 2016). From

a mechanistic perspective, brucellosis has been shown to impair

both tubular and glomerular function, which may partially explain

the elevated levels of UA observed in our chronic cohort (Conkar

et al., 2018). Indeed, in our dataset, patients who progressed to

chronic disease exhibited higher levels of BUN and CRE compared
TABLE 3 Continued

Variables Total (n = 555) Recovery group (n = 411) Chronic group (n = 144) P

Renal Function Tests& Electrolytes

Na, mmol/L 138.00 (135.00, 140.00) 138.00 (135.00, 140.00) 139.00 (137.00, 140.25) 0.776

Cl, mmol/L 103.10 (100.00, 105.40) 103.00 (99.80, 105.25) 103.40 (100.97, 105.82) 0.029

Coagulation Function Tests

PT, s 12.90 (12.10, 13.80) 13.10 (12.20, 13.90) 12.65 (11.90, 13.60) 0.022

PT-S, % 81.40 (71.05, 92.00) 80.20 (70.70, 90.90) 82.60 (72.35, 96.50) 0.074

INR 1.11 (1.04, 1.21) 1.12 (1.04, 1.21) 1.08 (1.03, 1.17) 0.197

APTT, s 32.30 (28.90, 36.75) 33.00 (29.30, 37.60) 30.05 (27.60, 33.85) < 0.001

TT, s 17.00 (16.10, 17.90) 16.90 (15.90, 17.80) 17.10 (16.30, 18.40) 0.209

D-D, mg/L 1.33 (0.61, 4.40) 1.59 (0.70, 5.68) 0.91 (0.38, 2.54) < 0.001

FIB-C, g/L 3.47 (2.71, 4.75) 3.59 (2.79, 4.78) 3.21 (2.51, 4.42) 0.003

Blood Lipid Profile

TC, mmol/L 3.70 (3.22, 4.40) 3.69 (3.21, 4.33) 3.88 (3.34, 4.78) 0.008

TG, mmol/L 1.35 (0.95, 1.91) 1.43 (1.04, 1.97) 1.09 (0.85, 1.60) < 0.001

HDL-C, mmol/L 0.84 (0.69, 1.04) 0.80 (0.68, 0.97) 0.97 (0.80, 1.21) < 0.001

LDL-C, mmol/L 2.19 (1.80, 2.67) 2.16 (1.77, 2.64) 2.29 (1.89, 2.78) 0.227

Inflammatory Markers

ESR, mm/h 25.00 (12.00, 50.00) 29.00 (15.00, 50.00) 20.00 (10.00, 45.00) 0.008

PCT, ng/mL 0.14 (0.06, 0.31) 0.16 (0.07, 0.33) 0.08 (0.05, 0.20) < 0.001

CCP, RU/ml 12.40 (10.10, 16.05) 13.00 (10.10, 17.00) 11.65 (9.70, 14.03) < 0.001

CRP, mg/L < 0.001

≤6 335 (60.36) 227 (55.23) 108 (75.00)

>6 220 (39.64) 184 (44.77) 36 (25.00)

Diagnostic Tests

Blood culture positive 117 (21.08) 105 (25.55) 12 (8.33) < 0.001

SAT 0.313

1:25 16 (2.88) 12 (2.92) 4 (2.78)

1:50 56 (10.09) 38 (9.25) 18 (12.5)

1:100 79 (14.23) 52 (12.65) 27 (18.75)

1:200 305 (54.95) 236 (57.42) 69 (47.92)

1:400 26 (4.68) 19 (4.62) 7 (4.86)

not performed 73 (13.15) 54 (13.14) 19 (13.19)
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with acute cases, although these variables were not included in the

final predictive model. This observation supports the hypothesis

that increased UA may reflect renal dysfunction and could

contribute to the risk of chronic progression.

Beyond brucellosis, elevated UA has been linked to adverse

outcomes in other infectious and inflammatory conditions,

reinforcing its potential role as a biomarker. A recent meta-

analysis demonstrated that serum UA levels were significantly

higher in patients with severe malaria compared to non-severe

cases, and UA levels rose progressively with disease severity

(Kuraeiad et al., 2023). Similarly, in chronic obstructive

pulmonary disease (COPD), serum UA has been positively

associated with acute exacerbations, and higher UA levels showed

predictive value for AECOPD events (Zhao and Lv, 2024).

Collectively, these findings suggest that UA may serve as a

marker of systemic inflammation and metabolic-immune

dysregulation across different disease contexts. At the

pathophysiological level, UA, a byproduct of purine metabolism,

can promote oxidative stress and low-grade systemic inflammation,

which may provide a plausible explanation for its observed

association with chronic infectious states (Qin et al., 2025).

PA was also identified as a relevant predictor, with higher PA

values associated with an increased probability of chronic

progression according to the SHAP analysis. Although low

prealbumin is conventionally viewed as a marker of inflammation

or malnutrition, PA levels may behave dynamically in the setting of

chronic infection. In prolonged inflammatory states, the liver may

respond to sustained immune activation with a compensatory

upregulation of protein synthesis, resulting in relatively higher PA

levels (Kaysen et al., 2002; Zinellu and Mangoni, 2021). This

phenomenon has also been observed in other conditions, where

PA reflects not only nutritional status but also hepatic synthetic

response under persistent immune stress (Lim et al., 2005). In

brucellosis, hepatic involvement and protein metabolic alterations

are well documented, which may explain the positive association

between PA and chronic progression observed in our model

(Giambartolomei and Delpino, 2019).

Interestingly, the SHAP dependence pattern for ALT suggested

an inverse relationship with chronic progression, where lower ALT

values were associated with higher predicted chronic risk. Emerging

evidence from other infectious settings suggests that low ALT levels

may reflect hepatic immune suppression or metabolic dysfunction,

rather than the absence of injury. For example, critically ill patients

with reduced ALT have shown poorer outcomes, possibly due to
Frontiers in Cellular and Infection Microbiology 14
impaired hepatocellular immunity or mitochondrial exhaustion

(Itelman et al., 2022; Genzel et al., 2023). Similar findings in

chronic hepatitis B indicate that ALT normalization may signal

immune tolerance or insufficient cytotoxic response, rather than

true resolution of inflammation (Jiang et al., 2023). In this context,

our finding of low ALT being linked to chronic brucellosis risk may

reflect a dysregulated hepatic immune response, potentially driven

by Brucella's stealth mechanisms. Indeed, Brucella has been shown

to induce a low-inflammatory, immune-tolerant environment

within hepatic and reticuloendothelial tissues (Ahmed et al.,

2016). These findings support the hypothesis that reduced ALT

may serve as a surrogate marker of ineffective immune activation,

although further validation in mechanistic studies is warranted.

BUN emerged as a significant variable in our model: higher

baseline BUN was associated with greater risk of chronic

progression. Although classically interpreted as a marker of

reduced renal clearance or enhanced catabolism, BUN in

infectious and inflammatory settings can also reflect broader

systemic stress. Notably, in critically ill cohorts, elevated

admission BUN independently predicts mortality even when

serum creatinine is within the normal range, indicating

prognostic information beyond overt renal failure (Beier et al.,

2011). In brucellosis, host cells undergo metabolic reprogramming

—including a Warburg-like shift and TCA-cycle attenuation—

supporting the concept that nitrogen handling and organ-axis

coordination may be perturbed during persistent infection (Czyż

et al., 2017; Ponzilacqua-Silva et al., 2024). Taken together, higher

BUN may serve as an accessible integrative marker of systemic

metabolic stress rather than isolated renal impairment in patients at

risk for chronic brucellosis, a hypothesis that warrants longitudinal

and mechanistic validation.

GLB was identified as a key variable in our model, with lower

values predicting higher chronic progression risk. As serum

globulin integrates immunoglobulins, complement, and hepatic

proteins, its decrease may reflect impaired humoral immunity or

hepatic dysfunction. Persistent antigenic stimulation in chronic

infections can induce T-cell exhaustion and immune

dysregulation (Wherry, 2011). In Brucella infection, B-cell–T

interactions have been shown to suppress CD4+ T-cell responses

independent of antibody production, facilitating chronic

persistence (Dadelahi et al., 2023). Hepatic involvement and

disturbed protein metabolism may further reduce globulin

synthesis (Giambartolomei and Delpino, 2019). Together, these

findings suggest that decreased GLB may serve as an integrative
TABLE 4 Comparison of predictive metrics for six models on the test set.

Metrics SVM XGBoost LightGBM Logistic regression Random forest MLP

accuracy 0.73 0.77 0.76 0.77 0.76 0.79

sensitivity 0.00 0.18 0.30 0.23 0.30 0.25

specificity 0.99 0.97 0.92 0.95 0.91 0.97

F1 score 0.00 0.29 0.40 0.34 0.39 0.38

Kappa score -0.01 0.21 0.27 0.24 0.26 0.29
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marker of immune suppression and hepatic impairment in

chronic brucellosis.

These mechanistic explanations are hypothesis-generating and

require validation in prospective and mechanistic studies, as no

direct evidence currently exists linking these biomarkers to chronic

brucellosis. While our findings partially align with known patterns

observed in other diseases, the pathophysiological implications of

lipid and immune dysregulation in brucellosis require further

investigation through mechanistic and longitudinal studies.

Although the RF model demonstrated the best overall

discrimination and satisfactory calibration among the tested

algorithms, its relatively low sensitivity limits its immediate

clinical applicability. In real-world practice, this modest sensitivity

indicates that some chronic brucellosis cases—particularly those at

early or atypical stages—could be missed. Accordingly, the model

should be viewed as a supplementary decision-support tool to assist

clinicians in risk stratification rather than as an independent

diagnostic method. Further optimization, including threshold

fine-tuning, integration of additional biomarkers, and prospective

external validation, will be essential to enhance recall and ensure

safe, reliable translation into clinical practice.

This study has several notable strengths. First, it leverages a real-

world clinical cohort from a brucellosis-endemic region, enhancing

ecological validity. Second, the model’s interpretability via SHAP

addresses a common limitation of machine learning in healthcare -

namely, the lack of transparency in decision-making. Third, the

deployment of the model as a web-based tool facilitates practical

integration into clinical workflows and supports broader

translational application.

This study has several limitations. First, the definition of

chronic brucellosis is inherently heterogeneous across the

literature and remains largely symptom-based; although our

operational definition was guideline-consistent, the absence of

universally accepted objective criteria may still introduce

misclassification. Second, the retrospective, single-center design

may have introduced selection bias, as only hospitalized patients

were included. This design limits causal inference and underscores

the need for cautious interpretation of associations identified by the

model. Third, while the RF model outperformed other algorithms,

its sensitivity in the test set remained limited, highlighting that the

model should be regarded as exploratory and potentially used in

combination with other clinical or molecular indicators. Forth,

residual confounding cannot be excluded, as variables such as

treatment adherence, initial regimen choice, and delay from

symptom onset to therapy were not incorporated into the final

model. Finally, the lack of external and temporal validation further

restricts generalizability. External, multicenter, and prospective

validation should be prioritized in future work to ensure the

model’s stability and real-world applicability.

In conclusion, this study presents a clinically interpretable,

machine learning-based model for early prediction of chronic

brucellosis using routinely collected data. Our RF-based model

shows promise as a clinically interpretable tool for early risk

stratification. Nevertheless, external validation and integration

with molecular markers are warranted before clinical adoption.
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