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Background: Chronic progression is a major clinical challenge in human
brucellosis (HB), affecting nearly one-third of patients and leading to long-term
disability. Reliable early prediction tools are lacking, hindering timely risk
stratification and individualized management. This study aimed to develop and
validate machine learning (ML) models to predict chronic progression using
routinely available clinical and laboratory data.

Methods: We retrospectively analyzed 555 patients with confirmed brucellosis
admitted between 2019 and 2024. Clinical characteristics and laboratory
indicators at admission were collected. Feature selection was performed using
Boruta and recursive feature elimination. Six supervised ML models (random
forest [RF], LightGBM, XGBoost, logistic regression [LR], multilayer perceptron
[MLP], and support vector machine [SVM]) were constructed and evaluated by
discrimination, calibration, clinical utility, and predictive metrics. Model
interpretability was assessed using SHapley Additive exPlanations (SHAP), and a
web-based prediction tool was developed.

Results: Of 555 patients, 144 (25.9%) progressed to chronic brucellosis.
Compared with the recovery group, chronic cases presented more frequently
with arthralgia and arthritis and showed distinct biochemical profiles, including
lower alanine aminotransferase (ALT), aspartate aminotransferase (AST),
triglycerides (TG), and higher high-density lipoprotein cholesterol (HDL-C),
albumin (ALB), blood urea nitrogen (BUN), and uric acid (UA). Among the six
models, RF consistently demonstrated the most robust performance across
metrics, achieving the highest AUC in the test set (0.782, 95% CI: 0.701 -
0.856), superior calibration (Emax = 0.155), and the greatest net clinical benefit
in decision curve analysis. SHAP analysis identified TG, HDL-C, UA, eosinophil
count, PA, ALT, BUN, and GLB as the most influential predictors, with biologically
plausible associations.

Conclusion: Using eight routinely available variables, the RF model
demonstrated moderate discrimination with well-calibrated probability
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estimates but limited sensitivity. The tool may assist early risk stratification of
chronic brucellosis when combined with clinical judgment; however, its
predictive performance should be interpreted cautiously until validated in
external, multicenter, and prospective studies.
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1 Introduction

Brucellosis is one of the most prevalent zoonotic infections
worldwide, caused by Brucella spp. and transmitted through direct
contact with infected animals or the ingestion of unpasteurized
animal products (Qureshi et al., 2023). Annually, an estimated 1.6
to 2.1 million new human brucellosis (HB) cases occur globally,
although the true incidence is likely underestimated due to
diagnostic delays and underreporting (Laine et al., 2023).

The disease remains endemic in regions such as the Middle
East, Central Asia, South America, and China, where agricultural
and pastoral practices facilitate ongoing transmission (Chen et al.,
2023). In the Middle East and Central Asia, B. melitensis remains
predominant, with recurrent outbreaks linked to pastoral exposure
(Dean et al., 2012). In sub-Saharan Africa, incidence remains high
—for instance, Kenya reports a national seroprevalence of 6.8%
(95% CI: 6.2-7.4%) and community rates up to 84 per 100,000
person-years (Njeru et al, 2016). In South America, endemic
transmission persists in Peru and Bolivia, mainly through
occupational and foodborne exposure (Munyua et al., 2021). In
China, surveillance shows a renewed rise, from 45,046 cases (3.25/
100,000) in 2019 to 70,439 (4.99/100,000) in 2023, with Inner
Mongolia exceeding 50 per 100,000 (Liu et al., 2025).
Approximately 10-30% of patients progress to chronic or
relapsing disease with musculoskeletal or neurologic involvement
(Maduranga et al., 2024).

Clinically, brucellosis presents with diverse and nonspecific
manifestations that vary between the acute and chronic phases.
Acute brucellosis typically presents with fever, profuse sweating,
hepatosplenomegaly, myalgia, and arthralgia, often mimicking
other febrile or inflammatory illnesses (Liu et al., 2023). In
contrast, chronic brucellosis is characterized by symptom
persistence beyond six months, with predominant features
including persistent fatigue, recurrent arthralgia, osteoarticular
involvement (such as spondylitis and arthritis), and
neuropsychiatric complications (Qureshi et al., 2023). These
chronic manifestations can lead to long-term disability, markedly
impairing quality of life and increasing healthcare burden.

Brucellosis can affect multiple organ systems, resulting in a wide
spectrum of complications. Osteoarticular involvement is the most
frequent, observed in up to 40-60% of cases, and includes
spondylitis, arthritis, and sacroiliitis (Bosilkovski et al., 2004).
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Neurologic complications, collectively known as neurobrucellosis,
include meningitis, encephalitis, brain abscess, and peripheral
neuropathy, which may lead to lasting deficits (Gul et al., 2009).
Cardiovascular involvement, particularly brucella endocarditis, is
rare (<2% of cases) but accounts for the majority of brucellosis-
related deaths (Vahabi et al, 2019). Hepatic, genitourinary, and
cutaneous involvement have also been reported, further
underscoring the systemic nature of this infection (Jin et al., 2023).

Despite growing recognition of disease chronicity, existing
research has primarily focused on molecular distinctions between
acute and chronic stages to improve diagnosis, with limited
attention to prognostic modeling (Yang et al, 2023; Li et al,
2024). No validated clinical tools currently exist to predict the
risk of chronic progression at the time of initial diagnosis, hindering
early risk stratification and personalized intervention. While
conventional diagnostic methods such as serology and culture
remain essential for detection, they lack prognostic utility in
forecasting chronic outcomes (Yagupsky et al., 2019).

In recent years, machine learning (ML) has emerged as a
promising method for individualized disease risk prediction by
leveraging high-dimensional clinical and laboratory data (Delpino
et al, 2022). Several ML-based studies have demonstrated high
diagnostic accuracy in identifying brucellosis cases at an early stage
(Wang et al,, 2023). However, these models have not addressed disease
trajectory prediction, particularly the risk of chronic progression.

To fill this gap, the present study aimed to develop and validate
an ML-based predictive model capable of identifying patients at risk
of chronic brucellosis. We incorporated explainable artificial
intelligence (AI) techniques to identify key features contributing
to chronicity and compared the performance of multiple algorithms
using comprehensive evaluation metrics, thereby establishing a
clinically interpretable and robust predictive framework.

2 Materials and methods
2.1 Study population

This study enrolled 555 participants diagnosed with brucellosis
at the First Hospital of Shanxi Medical University from May 2019 to

December 2024. Baseline clinical and laboratory characteristics
were collected for all participants.
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The diagnosis followed the criteria of the national guideline
“Diagnosis for Brucellosis (WS 269-2019)” issued by the National
Health Commission in 2019 (National Health Commission of the
People’s Republic of China, 2025):

1. Epidemiological exposure, such as close contact with
livestock or animal products suspected of carrying
Brucella, or ingestion of unpasteurized dairy or
undercooked meat.

2. Clinical symptoms including prolonged fever (low- or
high-grade), excessive sweating, fatigue, arthralgia, or
myalgia, some patients had lymphadenopathy,
hepatosplenomegaly, or testicular swelling, while a few
exhibited various rashes or jaundice.

3. Laboratory findings, including positive results of the rose
bengal plate agglutination test (RBT), colloidal gold
immunochromatographic assay (GICA), and enzyme-
linked immunosorbent assay (ELISA). In addition,
Brucella organisms were observed by Gram staining of
cultured isolates.

A clinical diagnosis required meeting criteria 1) and 2), together
with any one of 3) simultaneously.

Patients were categorized into the recovery group or the chronic
group according to whether clinical symptoms persisted after
completing six months of standardized antimicrobial therapy. To
reduce subjectivity, all outcome classifications were independently
adjudicated by two experienced infectious disease physicians; any
discrepancies were resolved through consensus with a third
senior clinician.

The study protocol was approved by the Ethics Committee of
the First Hospital of Shanxi Medical University (NO.KYYJ-2025-
143). Follow-up information was obtained retrospectively through
review of medical records and standardized telephone interviews.
The requirement for consent for retrospective chart review was
waived. This study adhered to the STROBE and TRIPOD
reporting guidelines.

2.2 Candidate predictor variables
Clinical and demographic data, clinical characteristics, and

laboratory variables at admission were retrospectively collected in
this study, shown in Table 1.

2.3 Treatment plan
All included patients were treated in strict accordance with the
Diagnostic Criteria for Brucellosis (WS 269-2019), following the

principles of early, combined, and sufficient antimicrobial therapy
(Liu et al., 2022).
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TABLE 1 List of the features enrolled in the study.

Categories Variables

Demographics age, gender
Clinical Characteristics
Symptoms

fever, myalgia, fatigue, anorexia, headache, arthralgia

Organ Involvement hepatomegaly, splenomegaly, arthritis, neurobrucellosis,
cardiac involvement in brucellosis, genitourinary

involvement in brucellosis
Laboratory Variables

white blood cell count (WBC), red blood cell (RBC),
hemoglobin concentration (HGB), platelet count (PLT),

Complete Blood

Count
lymphocytes, neutrophils, monocytes, eosinophil,
basophil, hematocrit (HCT), mean corpuscular volume
(MCV), mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration
(MCHC), red cell distribution width-coefficient of
variation (RDW-CV), red cell distribution width-
standard deviation (RDW-SD), platelet distribution
width (PDW), platelet-large cell ratio (P-LCR),
plateletcrit  (PCT-PLT), mean platelet volume (MPV)

Liver Function Tests alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total protein (TP), albumin
(ALB), globulin (GLB), prealbumin (PA), total bilirubin
(TBil), direct bilirubin (DBIL), indirect bilirubin (IBIL),
alkaline phosphatase (ALP), gamma-glutamyl

transferase (GGT), total bile acid (TBA)

Renal Function
Tests& Electrolytes

urea nitrogen (BUN), creatinine (CRE), uric acid (UA),
potassium (K), sodium (Na), chloride (Cl)

Coagulation
Function Tests

prothrombin activity (PT-S), prothrombin time (PT),
international normalized ratio (INR), activated partial
thromboplastin time (APTT), thrombin time (TT), d-
dimer (D-D), fibrinogen concentration (FIB-C)

Blood Lipid Profile total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C)

Inflammatory
Markers

erythrocyte sedimentation rate (ESR), procalcitonin
(PCT), C-reactive protein (CRP), cyclic citrullinated
peptide antibody (CCP)

Diagnostic Tests blood culture, SAT

2.4 Model construction, evaluation and
validation

Feature selection was performed in two stages. Initially, the
Boruta algorithm, based on a random forest classifier, was applied
to identify all-relevant features by comparing their importance
scores with randomized shadow attributes. Subsequently,
recursive feature elimination (RFE), also based on a random
forest estimator, was used to refine feature selection and identify
the optimal subset of variables that contributed most significantly to
classification performance. Feature selection was nested within each
cross-validation split to avoid information leakage. Performance
curves indicated that predictive ability plateaued after the inclusion
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of eight variables; therefore, the top eight predictors were retained
for model construction.

The dataset was randomly split into a training set (70%) and a
test set (30%) using a fixed random seed to ensure reproducibility.
Using Python-based libraries such as scikit-learn and XGBoost, six
supervised machine learning algorithms were constructed: support
vector machine (SVM), extreme gradient boosting (XGBoost), light
gradient boosting machine (LightGBM), random forest (RF),
multilayer perceptron (MLP), and logistic regression (LR). All six
algorithms were trained using these 8 features. Hyperparameters for
each algorithm were optimized through grid search in combination
with five-fold cross-validation to ensure robustness and avoid
overfitting. In addition, tree-based models were constrained by
limiting maximum tree depth, and both tree-based and linear
models incorporated regularization techniques to further reduce
overfitting and enhance generalizability.

To address the class imbalance between recovery and chronic
cases, the Synthetic Minority Oversampling Technique (SMOTE)
was applied to the training dataset. This method generates synthetic
samples of the minority class based on feature-space similarities
between existing minority instances, thereby improving
representation without duplicating records. The SMOTE
procedure was performed only within the training set to avoid
data leakage, and models trained on both original and SMOTE-
balanced data were compared for robustness.

Model performance was evaluated using multiple metrics,
including the area under the receiver operating characteristic
curve (AUC), calibration plots, and decision curve analysis
(DCA). These evaluations were conducted on both the training
and testing sets to assess discrimination, calibration, and
clinical utility.

To enhance interpretability, SHapley Additive exPlanations
(SHAP) were used to quantify the contribution of each input
feature to model predictions. SHAP-based visualizations,
including summary plots, dependence plots, and beeswarm
diagrams, were generated to demonstrate the influence of
individual variables on chronic brucellosis risk. Higher SHAP
values indicated stronger positive contributions to the model’s
predicted probability, while negative SHAP values suggested
suppressive effects.

Finally, an interactive web-based prediction tool was developed
using the Streamlit framework. The tool enables real-time input of
clinical variables and visual feedback via single-sample SHAP force
plots, making the model accessible and interpretable for clinical
users and researchers alike.

2.5 Statistical analysis

All statistical analyses were conducted using R software
(version 4.3.0) and Python (version 3.10.6). Missing values were
addressed through multiple imputation with the “mice” package,
and variables with more than 20% missingness had already been
excluded during data collection. Continuous variables conforming
to a normal distribution were presented as mean + standard
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deviation (SD), and intergroup comparisons were assessed using
independent-sample t tests. For continuous variables that did not
follow a normal distribution, results were expressed as median and
interquartile range [M (Q;, Q3)], with differences evaluated via the
Mann-Whitney U test. Categorical data were summarized as
frequencies and proportions [n (%)], and analyzed using the chi-
square test or Fisher’s exact test, depending on sample size. A p-
value < 0.05 (two-tailed) was considered indicative of
statistical significance.

3 Results

The baseline clinical characteristics of the enrolled patients are
summarized in Table 2. A total of 555 patients were included in the
study, of whom 144 (25.95%) progressed to chronic brucellosis
(chronic group), while 411 (74.05%) recovered without chronicity
(recovery group). Compared to the recovery group, patients in the
chronic group exhibited significantly higher incidences of arthralgia,
myalgia, and arthritis, while reporting lower rates of fever, headache,
and splenomegaly (all p <0.05). These findings suggest that specific
symptom clusters and organ involvement patterns may serve as early
indicators of chronic disease progression.

Laboratory findings revealed multiple statistically significant
differences between the recovery and chronic groups as shown in
Table 3. The chronic group had higher PLT, eosinophils, ALB, PA,
BUN, UA, Cl, TC and HDL-C, and lower ALT, AST, GLB, GGT, PT,
APTT, D-D, FIB-C, TG, ESR, PCT, and CCP. Positive blood culture
was significantly less frequent in the chronic group. These alterations
suggest significant involvement of hepatic function, coagulation
pathways, lipid metabolism, and systemic inflammation in the
pathophysiological transition toward chronic brucellosis.

To identify the most informative predictive variables, we
applied the Boruta algorithm for feature selection. As illustrated
in Figure 1, a total of 14 variables were deemed important (colored
in cyan), including BUN, ALT, GLB, PA, UA, TG, HDL-C, AST,
eosinophil, APTT, CCP, arthralgia, fever, and ALB. These features
demonstrated significantly higher importance scores than rejected
or tentative variables.

Subsequently, the top-ranking features were incorporated
sequentially to evaluate their cumulative impact on model
performance. As shown in Figure 2, model performance
improved rapidly with the initial features and plateaued after the
top 8 were included, suggesting that most of the predictive power
was concentrated within this subset. Therefore, the top 8 features—
BUN, HDL-C, ALT, eosinophil, TG, UA, PA, and GLB—were
selected for final model construction.

The performance of six supervised machine learning models
was compared using ROC curves, as shown in Figure 3. In the
training set, ensemble methods including RF, XGBoost, and
LightGBM exhibited excellent discrimination with AUC values
above 0.93, while LR (AUC = 0.753), SVM (AUC = 0.677), and
MLP (AUC = 0.774) demonstrated lower predictive ability,
suggesting that the tree-based algorithms captured the underlying
patterns more effectively. In the test set, however, performance
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Feature selection results based on Boruta algorithm.

decreased across all models, reflecting reduced generalizability. RF
achieved the highest AUC of 0.782 (95% CI: 0.701 - 0.856), followed
closely by MLP (0.769) and LR (0.763). In contrast, LightGBM
showed the lowest discrimination (AUC = 0.745), and SVM
remained relatively weak (AUC = 0.754). Taken together, these
results indicate that although tree-based methods dominated in the
training set, RF and MLP showed relatively better robustness in the
test set, highlighting their potential suitability for predicting chronic
brucellosis in independent cohorts.

To further assess the influence of class imbalance, additional
analyses were conducted after applying the SMOTE to the training
data (Supplementary Figure 1). Following oversampling, AUC and

Fl-scores of some algorithms (particularly LR and SVM) increased
modestly, whereas ensemble models such as RF remained highly
stable, demonstrating consistent performance across both the
original and balanced datasets. These findings support the
robustness of the RF model and indicate that the observed
superiority of tree-based methods was not driven by
data imbalance.

Calibration analysis is shown in Figure 4. In the training set, RF
achieved the best calibration performance (Emax = 0.058, 95% CI:
0.056 - 0.081), followed by Light GBM (Emax = 0.082) and XGBoost
(Emax = 0.113). In contrast, SVM and MLP exhibited substantial
deviation from the ideal calibration line, reflecting poor probability
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ROC curve of six models for prediction of chronic brucellosis. (a) training set (b) test set.

estimation. Similar results were observed in the test set, where RF
again demonstrated the most favorable agreement between
predicted and observed risks (Emax = 0.155, 95% CI: 0.123 -
0.187), outperforming LightGBM (0.165) and XGBoost (0.174).
These findings suggest that RF provided the most reliable
probability estimates across both datasets. To further evaluate the
effect of class imbalance on model calibration, additional analyses
were performed after applying SMOTE to the training data
(Supplementary Figure 2). The overall calibration trends
remained consistent with the primary results, with RF
maintaining the most stable and well-calibrated probability
predictions among all algorithms.

Decision curve analysis results are presented in Figure 5. In the
training set, RF consistently provided the highest net benefit across
a wide range of threshold probabilities, indicating superior clinical
utility. XGBoost and LightGBM also showed favorable performance
but were consistently outperformed by RF, whereas SVM and MLP
offered little to no net clinical benefit. In the test set, RF again
yielded the greatest net benefit, confirming its robustness and

practical value for clinical application. To verify the stability of
clinical utility under class imbalance adjustment, we additionally
performed DCA after applying SMOTE to the training data
(Supplementary Figure 3). The overall net benefit profiles
remained comparable to the primary analysis, with RF
maintaining the broadest range of positive net benefit across
threshold probabilities. Minor changes in the magnitude of net
benefit were observed for other algorithms, but the ranking order
and clinical interpretation were largely unchanged.

Predictive performance metrics on the test set are presented in
Table 4. Overall, RF demonstrated the most stable and balanced
performance across multiple evaluation indices. RF achieved an
accuracy of 0.76, comparable to LR and LightGBM, and achieved
relatively higher sensitivity than XGBoost and SVM; however, the
absolute sensitivity value remained modest, underscoring the need
for further optimization. Importantly, RF maintained competitive
F1 and kappa scores, reflecting a strong balance between precision
and recall as well as agreement with ground truth labels. By
contrast, SVM consistently showed the weakest performance
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across all metrics. Taken together, RF exhibited the most balanced
performance across metrics, suggesting potential clinical
applicability for predicting chronic brucellosis.

Among the compared algorithms, RF performed best overall,
with moderate discrimination and well-calibrated probabilities but
limited sensitivity; therefore, its use should be regarded as
exploratory and intended to assist rather than replace
clinical judgment.

Feature importance analysis based on the RF model is presented
in Figure 6. Panel (a) ranks predictors according to their mean
absolute SHAP values, with TG emerging as the most influential
feature, followed by HDL-C, eosinophil count, UA, PA, ALT, BUN,
and GLB. These findings highlight that both lipid metabolism
indicators (TG, HDL-C) and immune-inflammatory markers
(eosinophils, GLB) play central roles in RF-driven risk
stratification for chronic brucellosis.

The SHAP summary plot further illustrates the directional
impact of individual variables on the RF model’s output. Higher
levels of HDL-C, eosinophils, UA, PA, and BUN were associated
with positive SHAP values, indicating an increased probability of
chronic disease. Conversely, TG, GLB, and ALT exerted negative
SHAP contributions, and the higher values suggested potential
protective effects. Importantly, these patterns are consistent with
the clinical relevance of lipid and immune dysregulation in chronic
infection, underscoring the robustness of the RF model in capturing
biologically meaningful predictors.

To further examine the stability of feature importance under
class imbalance adjustment, SHAP analysis was repeated after
applying SMOTE to the training data (Supplementary Figure 4).
The same eight features were consistently identified as the top
predictors, with only minor shifts in their relative ranking. This
high degree of overlap indicates that the feature-outcome
associations captured by the RF model remained stable despite
resampling, confirming the intrinsic robustness and biological
relevance of the identified predictors.

Figure 7 displays SHAP dependence plots for the eight most
influential variables identified by the RF model, illustrating their
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nonlinear effects on prediction outcomes. BUN, HDL-C, eosinophil
count, and UA showed positive associations with risk, where higher
values corresponded to increased SHAP values and thus greater
chronicity probability. In contrast, TG and GLB exhibited inverse
associations, with lower levels driving elevated risk, and ALT
demonstrated a pronounced negative relationship as well, with
reduced levels strongly linked to higher predicted probability. PA
displayed a J-shaped curve, indicating that both very low and high
concentrations may contribute to chronic progression.

These dependence plots highlight the heterogeneous influence
and threshold effects of biochemical and immune-inflammatory
indicators, reinforcing their biological plausibility. By revealing
feature-specific inflection points, the RF-based SHAP analysis
enhances model transparency and supports its clinical
interpretability in the prediction of chronic brucellosis.

In addition, two case-level force plots were provided to illustrate
the interpretability of the model (Figure 8). In these plots, red
features indicate positive contributions to the prediction (increasing
risk), whereas blue features indicate negative contributions
(decreasing risk). The driving factors varied across individuals: in
case (a), higher GLB (25.8), BUN (7.08), ALT (14.0), PA (239.0),
and HDL-C (1.36) collectively increased the predicted probability of
chronic brucellosis, whereas lower UA (222.0) and TG (2.06),
provided modest protective effects. Conversely, in case (b),
elevated TG (2.06) and UA (222.0) acted as risk-enhancing
contributors, while higher HDL-C (1.36), PA (239.0), ALT (14.0),
BUN (7.08), and GLB (25.8) exerted strong protective influences.

Together, these SHAP-based interpretability tools provide
robust insights into the contribution, directionality, and threshold
behavior of individual predictors. By uncovering feature-specific
inflection points, they enhance the clinical interpretability of the
model and support its application in real-world decision-making.

To facilitate clinical application and enhance accessibility, we
developed an online risk prediction tool based on the final model
incorporating the top-ranking SHAP features. All selected variables
are routinely available in clinical settings, allowing for convenient
input and real-time prediction. As illustrated in Figure 9, 1’ indicates
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FIGURE 6

SHAP-based feature importance and distribution in model prediction (a) Bar plot of mean SHAP values (b) SHAP summary plot.

a positive prediction for chronic progression, while ‘0> denotes a
negative prediction. The value in parentheses represents the predicted
probability. The web-based risk calculator is publicly available at:
https://brucellosis-prediction-rf-hm4jkzjnytrnaygmhqvevk.
streamlitapp/, offering clinicians an intuitive platform to assess
individual patient risk profiles based on key clinical indicators. To
ensure transparency and reproducibility, the full implementation
code has also been made available at https://github.com/
moresaying98/Brucellosis-Prediction-RF/blob/main/Firday.py.

4 Discussion

In this study, we developed and validated a machine learning-
based model to predict chronic progression in patients with
brucellosis, using a comprehensive set of clinical and laboratory
features. Among six tested algorithms, RF achieved the best overall
performance in terms of discrimination, calibration, and clinical
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utility. Its predictive power was further enhanced through SHAP,
which enabled transparent interpretation of feature contributions.

Brucellosis remains a significant public health concern in
endemic regions, owing to its zoonotic transmission,
heterogeneous clinical manifestations, and substantial risk of
chronic complications (Shen et al., 2022). In China alone, 684,380
cases were officially reported between 1950 and 2018, ranking
brucellosis among the top ten notifiable infectious diseases
nationwide (Yang et al., 2020). This sustained burden underscores
the persistent challenges in interspecies transmission control and
the unmet need for early identification of patients at risk of
chronicity (Ghssein et al., 2025).

Although most cases of brucellosis are acute and responsive to
treatment, a substantial proportion progress to chronic disease,
resulting in increased morbidity and healthcare burden (Qureshi
et al,, 2023). Despite growing clinical awareness, reliable early
prediction of chronicity remains elusive. Prior studies have
predominantly focused on molecular and serological distinctions
between acute and chronic stages, rather than on clinically
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SHAP dependence plots of top predictive features.

applicable predictive modeling. For instance, differential expression
of miR-1238-3p, miR-494, and miR-6069 has been proposed as
potential markers of chronic disease (Budak et al, 2016), and
proteomic analyses have identified several candidate proteins with
predictive value for chronic progression (Li et al., 2024). However,
these approaches are limited by high cost, limited accessibility, and
lack of clinical validation. As a result, routinely available clinical and
laboratory indicators remain the most feasible data sources for risk
prediction in real-world practice.

Recently, ML has emerged as a powerful tool for disease
forecasting and personalized risk assessment (Contreras and Vehi,
2018; Smith et al., 2023). ML applications in brucellosis have shown
encouraging results in early detection, outbreak surveillance, and
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patient stratification. For example, Wang et al. developed a high-
accuracy diagnostic model using support vector machines, although
it did not address chronic progression (Wang et al., 2023). Shen
et al. applied a convolutional long short-term memory
(ConvLSTM) model to analyze the spatiotemporal dynamics of
brucellosis in Europe, demonstrating superiority over conventional
ARIMA approaches (Shen et al., 2022). Nonetheless, predictive
modeling specifically targeting chronic brucellosis remains scarce.
To our knowledge, the present study is the first to develop a
clinically interpretable, ML-based risk prediction tool for chronic
progression in brucellosis using routinely collected data.

In the final model, 8 variables were retained based on their

contribution to predictive performance, including BUN, HDL-C,
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SHAP force plots for individual predictions by the chronic brucellosis model. (a) SHAP force plot for the prediction of having Chronic progression.

(b) SHAP force plot for the prediction of not having Chronic progression.

ALT, eosinophil, TG, UA, PA, and GLB. Although the directionality
of some predictors may appear counterintuitive, this is consistent
with the SHAP dependence plots. Such discrepancies between
overall group differences and conditional model contributions
likely reflect pathway interactions within tree-based algorithms.
Both TG and HDL-C emerged as critical lipid-related features
in our model. Patients who progressed to chronic brucellosis tended
to exhibit lower TG levels and higher HDL-C levels at admission - a
pattern not previously reported in the brucellosis literature. While
lipid metabolism dysregulation has been well-documented in
various infectious and inflammatory conditions, including

COVID-19 and HIV/AIDS (Funderburg and Mehta, 2016; Ryrso
et al., 2022). HDL-C is known for its pleiotropic
immunomodulatory effects, including neutralization of
lipopolysaccharide (LPS), attenuation of oxidative stress, and
modulation of cytokine signaling (Bonacina et al., 2021). It has
thus been hypothesized that elevated HDL-C may serve as a
compensatory anti-inflammatory response in chronic infection.
However, clinical evidence also points toward a U-shaped
relationship between HDL-C and infection outcomes. In the
ILLUMINATE trial, for example, pharmacologic elevation of
HDL-C was paradoxically associated with increased infection-
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TABLE 2 Baseline clinical characteristics of patients with and without chronic brucellosis.

Variables Total (n = 555)

Recovery group (n = 411)

Chronic group (n = 144) P

Demographics

Age 523 +14.3 51.8 £ 15.0 53.8 £ 11.9 0.131
Gender 0.239
Female 160 (28.83) 124 (30.17) 36 (25.00)

Male 395 (71.17) 287 (69.83) 108 (75.00)

Symptoms

Fever 438 (78.92) 351 (85.40) 87 (60.42) < 0.001
Myalgia 246 (44.32) 172 (41.85) 74 (51.39) 0.047
Fatigue 376 (67.75) 279 (67.88) 97 (67.36) 0.908
Anorexia 337 (60.72) 255 (62.04) 82 (56.94) 0.281
Headache 100 (18.02) 87 (21.17) 13 (9.03) 0.001
Arthralgia < 0.001
No arthralgia 276 (49.73) 238 (57.91) 38 (26.39)

Monoarticular pain 182 (32.79) 116 (28.22) 66 (45.83)

Polyarticular pain 97 (17.48) 57 (13.87) 40 (27.78)

Organ Involvement

Hepatomegaly 62 (11.17) 51 (12.41) 11 (7.64) 0.118
Splenomegaly 253 (45.59) 205 (49.88) 48 (33.33) < 0.001
Arthritis 171 (30.81) 102 (24.82) 69 (47.92) < 0.001
Neurobrucellosis 27 (4.86) 19 (4.62) 8 (5.56) 0.654
Cardiac involvement in brucellosis 7 (1.26) 4(0.97) 3 (2.08) 0.383
Genitourinary involvement in brucellosis = 34 (6.13) 24 (5.84) 10 (6.94) 0.634

related mortality, despite improved lipid profiles (Barter et al,
2007). Mechanistically, HDL-C has been proposed to disrupt lipid
rafts by depleting membrane cholesterol, potentially triggering
unintended immune activation via protein kinase C signaling
(van der Vorst et al,, 2017). Therefore, the elevated HDL-C
observed in chronic brucellosis may reflect either a protective
adaptation or a maladaptive response contributing to
persistent inflammation.

In contrast, lower TG levels were observed in chronic cases,
opposing trends reported in diseases such as tuberculosis, where
hypertriglyceridemia is linked to foam cell formation and impaired
macrophage function (Agarwal et al, 2021). This discrepancy
highlights pathogen-specific differences in host lipid
reprogramming. One possible explanation is that Brucella
infection induces an early hypometabolic shift or mitochondrial
dysfunction, leading to TG depletion as part of a distinct metabolic
phenotype. Altered hepatic lipid processing and systemic
inflammation may further exacerbate this effect, potentially
predisposing patients to chronic progression.

Eosinophils also emerged as a significant predictor of chronic
brucellosis in our model, with higher counts observed in patients
who progressed to chronic disease. This finding contrasts with most
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existing literature, which has primarily associated eosinopenia with
brucellosis severity. For example, Jiao et al. reported that over 75%
of patients exhibited eosinophil depletion at diagnosis, suggesting
its value in early detection (Jiao et al., 2015). Similarly, Yang et al.
found that eosinopenia correlated with higher complication rates
and longer hospital stays (Yang et al., 2024). These studies indicate
that eosinophil suppression may reflect systemic inflammatory
burden in the acute phase.

However, several reports suggest that eosinophil levels may rise
during recovery, and are often higher in chronic or prolonged cases
(Jiang et al., 2017). This pattern aligns with our observations and
supports the hypothesis that elevated eosinophil counts may reflect
ongoing immune dysregulation or unresolved tissue injury in
chronic disease states. In murine models of immune-mediated
hepatic damage, eosinophils have been shown to infiltrate injured
liver tissue and secrete interleukin-4, promoting hepatocyte
proliferation and tissue regeneration (Aoki et al, 2021). While
these data are primarily derived from tissue-level investigations,
they suggest that peripheral eosinophil elevation in chronic
brucellosis may serve as an indirect marker of localized
immunologic remodeling or reparative activity. Nonetheless, the
precise role of eosinophils in brucellosis pathogenesis - whether
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TABLE 3 Laboratory findings of patients with and without chronic brucellosis.

Variables

Total (n = 555)

Recovery group (n = 411)

10.3389/fcimb.2025.1700233

Chronic group (n = 144)

Complete Blood Count

WBC, 10" /L 4.90 (3.70, 6.60) 4.90 (3.60, 6.70) 4.90 (4.00, 6.53) 0.987
RBC, 102 /L 4.17 (3.76, 4.53) 4.13 (3.74, 4.49) 4.24 (3.84, 4.65) 0.116
HGB, g/L 124.00 (111.00, 137.00) 124.00 (111.00, 135.00) 126.50 (113.00, 142.25) 0.989
PLT, 10" /L 206.00 (140.00, 267.00) 197.00 (138.50, 261.00) 220.00 (157.00, 279.00) 0.044
Lymphocytes, 10" /L 1.56 (1.20, 2.08) 1.56 (1.18, 2.08) 1.56 (1.29, 2.04) 0.974
Neutrophils, 10" /L 2.69 (1.77, 3.88) 2.64 (1.73, 4.04) 2.80 (2.07, 3.75) 0.267
Monocytes, 10" /L 0.41 (0.30, 0.59) 0.42 (0.30, 0.60) 0.40 (0.29, 0.55) 0.718
Eosinophil, 10" /L 0.03 (0.01, 0.09) 0.02 (0.01, 0.08) 0.06 (0.02, 0.15) < 0.001
Basophil, 10" /L 0.01 (0.01, 0.02) 0.01 (0.01, 0.02) 0.02 (0.01, 0.02) 0.249
HCT, % 37.52 + 5.44 37.27 +5.19 38.24 + 6.05 0.065
MCYV, fL 91.00 (87.35, 94.85) 90.90 (87.30, 94.50) 91.15 (87.40, 94.90) 0.73
MCH, pg 30.00 (28.65, 31.35) 30.00 (28.65, 31.30) 30.10 (28.67, 31.63) 0.072
MCHC, g/L 329.00 (322.00, 337.00) 329.00 (321.50, 337.00) 328.00 (322.00, 337.00) 0.569
RDW-CV, % 13.50 (12.80, 14.50) 13.50 (12.80, 14.35) 13.50 (12.80, 14.72) 0.132
RDW-SD, fL 44.00 (41.70, 47.30) 43.80 (41.75, 47.05) 44.65 (41.70, 48.23) 0.049
PDW, fL 15.30 (11.80, 16.30) 15.40 (11.70, 16.30) 15.15 (11.90, 16.10) 0.646
P-LCR, % 25.50 (17.90, 32.60) 25.70 (18.20, 32.50) 24.90 (16.90, 33.73) 0.951
PCT-PLT, % 0.20 (0.15, 0.26) 0.20 (0.14, 0.25) 0.21 (0.16, 0.26) 0.084
MPV, fL 10.10 (9.00, 11.00) 10.10 (9.00, 10.90) 10.00 (8.70, 11.10) 0.993
Liver Function Tests

ALT, U/L 33.00 (19.00, 61.00) 39.00 (22.00, 70.00) 23.00 (15.00, 38.25) < 0.001
AST, U/L 32.00 (21.00, 53.00) 35.00 (23.00, 59.00) 25.00 (18.00, 35.25) < 0.001
TP, g/L 63.40 (59.00, 67.40) 63.20 (59.00, 67.40) 63.55 (59.08, 67.28) 0.812
ALB, g/L 35.18 + 5.04 34.69 + 4.84 36.58 + 5.32 < 0.001
GLB, g/L 27.20 (2445, 31.10) 27.70 (25.00, 31.30) 26.05 (23.10, 29.27) 0.002
PA, mg/L 158.00 (115.00, 209.50) 146.00 (113.50, 200.50) 183.00 (121.00, 237.50) < 0.001
TBIL, pmol/L 11.30 (8.35, 15.50) 11.40 (8.40, 15.50) 11.05 (8.25, 15.43) 0.628
DBIL, pmol/L 4.40 (3.00, 6.10) 4.50 (3.00, 6.20) 4.00 (3.00, 5.90) 0.537
IBIL, tmol/L 6.70 (5.10, 9.70) 6.70 (5.20, 9.60) 6.70 (5.00, 9.93) 0.83
ALP, U/L 94.00 (73.00, 126.00) 96.00 (74.00, 132.50) 89.00 (69.75, 111.00) 0.075
GGT, U/L 48.00 (27.00, 104.00) 53.00 (29.00, 116.00) 35.50 (22.00, 75.00) < 0.001
TBA, pmol/L 4.30 (2.90, 7.80) 4.30 (2.90, 7.75) 4.90 (2.88, 8.50) 0.537
Renal Function Tests& Electrolytes

BUN, mmol/L 4.05 (3.19, 5.41) 3.85 (3.05, 5.13) 4.71 (3.69, 5.99) < 0.001
CRE, pmol/L 60.00 (52.00, 70.00) 59.70 (52.00, 70.00) 60.00 (51.00, 71.47) 0.793
UA, umol/L 237.00 (181.50, 296.00) 227.00 (172.50, 288.00) 269.00 (212.75, 319.50) < 0.001
K, mmol/L 3.95 (3.70, 4.22) 3.93 (3.67, 4.21) 3.99 (3.74, 4.31) 0.101
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TABLE 3 Continued

Variables Total (n = 555)

Recovery group (n = 411)

Chronic group (n = 144)

Renal Function Tests& Electrolytes

Na, mmol/L 138.00 (135.00, 140.00) 138.00 (135.00, 140.00) 139.00 (137.00, 140.25) 0.776

Cl, mmol/L 103.10 (100.00, 105.40) 103.00 (99.80, 105.25) 103.40 (100.97, 105.82) 0.029

Coagulation Function Tests

PT, s 12.90 (12.10, 13.80) 13.10 (12.20, 13.90) 12.65 (11.90, 13.60) 0.022
PT-S, % 81.40 (71.05, 92.00) 80.20 (70.70, 90.90) 82.60 (72.35, 96.50) 0.074
INR 1.11 (1.04, 1.21) 112 (1.04, 1.21) 1.08 (1.03, 1.17) 0.197
APTT, s 32.30 (28.90, 36.75) 33.00 (29.30, 37.60) 30.05 (27.60, 33.85) <0.001
TT, s 17.00 (16.10, 17.90) 16.90 (15.90, 17.80) 17.10 (16.30, 18.40) 0.209
D-D, mg/L 1.33 (0.61, 4.40) 1.59 (0.70, 5.68) 0.91 (0.38, 2.54) <0.001
FIB-C, g/L 3.47 (2.71, 4.75) 3.59 (2.79, 4.78) 321 (2,51, 4.42) 0.003
Blood Lipid Profile

TC, mmol/L 3.70 (3.22, 4.40) 3.69 (3.21, 4.33) 3.88 (3.34, 4.78) 0.008
TG, mmol/L 1.35 (0.95, 1.91) 1.43 (1.04, 1.97) 1.09 (0.85, 1.60) < 0.001
HDL-C, mmol/L 0.84 (0.69, 1.04) 0.80 (0.68, 0.97) 0.97 (0.80, 1.21) <0.001
LDL-C, mmol/L 2.19 (1.80, 2.67) 2.16 (1.77, 2.64) 2.29 (1.89, 2.78) 0.227
Inflammatory Markers

ESR, mm/h 25.00 (12.00, 50.00) 29.00 (15.00, 50.00) 20.00 (10.00, 45.00) 0.008
PCT, ng/mL 0.14 (0.06, 0.31) 0.16 (0.07, 0.33) 0.08 (0.05, 0.20) <0.001
CCP, RU/ml 12.40 (10.10, 16.05) 13.00 (10.10, 17.00) 11.65 (9.70, 14.03) <0.001
CRP, mg/L <0.001
<6 335 (60.36) 227 (55.23) 108 (75.00)

>6 220 (39.64) 184 (44.77) 36 (25.00)

Diagnostic Tests

Blood culture positive 117 (21.08) 105 (25.55) 12 (8.33) < 0.001
SAT 0.313
1:25 16 (2.88) 12 (2.92) 4 (2.78)

1:50 56 (10.09) 38 (9.25) 18 (12.5)

1:100 79 (14.23) 52 (12.65) 27 (18.75)

1:200 305 (54.95) 236 (57.42) 69 (47.92)

1:400 26 (4.68) 19 (4.62) 7 (4.86)

not performed 73 (13.15) 54 (13.14) 19 (13.19)

pathogenic, compensatory, or epiphenomenal - remains to be
clarified. Further studies are warranted to determine whether
eosinophilia in chronic brucellosis reflects a reactive immune
phenotype, impaired resolution, or organ-specific immune
responses not captured in peripheral blood.

In addition to conventional clinical and biochemical indicators,
UA has been suggested as a potential predictor of chronicity.
Although no prior studies have systematically examined the
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association between UA and chronic brucellosis, case reports have
described patients with Brucella-induced septic arthritis who
presented with hyperuricemia (Elzein and Sherbeeni, 2016). From
a mechanistic perspective, brucellosis has been shown to impair
both tubular and glomerular function, which may partially explain
the elevated levels of UA observed in our chronic cohort (Conkar
et al,, 2018). Indeed, in our dataset, patients who progressed to
chronic disease exhibited higher levels of BUN and CRE compared
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TABLE 4 Comparison of predictive metrics for six models on the test set.

Metrics SVM XGBoost LightGBM
accuracy 0.73 0.77 0.76
sensitivity 0.00 0.18 0.30
specificity 0.99 0.97 0.92
F1 score 0.00 0.29 0.40
Kappa score -0.01 0.21 0.27

with acute cases, although these variables were not included in the
final predictive model. This observation supports the hypothesis
that increased UA may reflect renal dysfunction and could
contribute to the risk of chronic progression.

Beyond brucellosis, elevated UA has been linked to adverse
outcomes in other infectious and inflammatory conditions,
reinforcing its potential role as a biomarker. A recent meta-
analysis demonstrated that serum UA levels were significantly
higher in patients with severe malaria compared to non-severe
cases, and UA levels rose progressively with disease severity
(Kuraeiad et al, 2023). Similarly, in chronic obstructive
pulmonary disease (COPD), serum UA has been positively
associated with acute exacerbations, and higher UA levels showed
predictive value for AECOPD events (Zhao and Lv, 2024).
Collectively, these findings suggest that UA may serve as a
marker of systemic inflammation and metabolic-immune
dysregulation across different disease contexts. At the
pathophysiological level, UA, a byproduct of purine metabolism,
can promote oxidative stress and low-grade systemic inflammation,
which may provide a plausible explanation for its observed
association with chronic infectious states (Qin et al., 2025).

PA was also identified as a relevant predictor, with higher PA
values associated with an increased probability of chronic
progression according to the SHAP analysis. Although low
prealbumin is conventionally viewed as a marker of inflammation
or malnutrition, PA levels may behave dynamically in the setting of
chronic infection. In prolonged inflammatory states, the liver may
respond to sustained immune activation with a compensatory
upregulation of protein synthesis, resulting in relatively higher PA
levels (Kaysen et al., 2002; Zinellu and Mangoni, 2021). This
phenomenon has also been observed in other conditions, where
PA reflects not only nutritional status but also hepatic synthetic
response under persistent immune stress (Lim et al, 2005). In
brucellosis, hepatic involvement and protein metabolic alterations
are well documented, which may explain the positive association
between PA and chronic progression observed in our model
(Giambartolomei and Delpino, 2019).

Interestingly, the SHAP dependence pattern for ALT suggested
an inverse relationship with chronic progression, where lower ALT
values were associated with higher predicted chronic risk. Emerging
evidence from other infectious settings suggests that low ALT levels
may reflect hepatic immune suppression or metabolic dysfunction,
rather than the absence of injury. For example, critically ill patients
with reduced ALT have shown poorer outcomes, possibly due to
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Logistic regression Random forest MLP
0.77 0.76 0.79
023 030 025
0.95 091 0.97
0.34 039 038
0.24 026 0.29

impaired hepatocellular immunity or mitochondrial exhaustion
(Ttelman et al, 2022; Genzel et al, 2023). Similar findings in
chronic hepatitis B indicate that ALT normalization may signal
immune tolerance or insufficient cytotoxic response, rather than
true resolution of inflammation (Jiang et al., 2023). In this context,
our finding of low ALT being linked to chronic brucellosis risk may
reflect a dysregulated hepatic immune response, potentially driven
by Brucella's stealth mechanisms. Indeed, Brucella has been shown
to induce a low-inflammatory, immune-tolerant environment
within hepatic and reticuloendothelial tissues (Ahmed et al,
2016). These findings support the hypothesis that reduced ALT
may serve as a surrogate marker of ineffective immune activation,
although further validation in mechanistic studies is warranted.

BUN emerged as a significant variable in our model: higher
baseline BUN was associated with greater risk of chronic
progression. Although classically interpreted as a marker of
reduced renal clearance or enhanced catabolism, BUN in
infectious and inflammatory settings can also reflect broader
systemic stress. Notably, in critically ill cohorts, elevated
admission BUN independently predicts mortality even when
serum creatinine is within the normal range, indicating
prognostic information beyond overt renal failure (Beier et al,
2011). In brucellosis, host cells undergo metabolic reprogramming
—including a Warburg-like shift and TCA-cycle attenuation—
supporting the concept that nitrogen handling and organ-axis
coordination may be perturbed during persistent infection (Czyz
et al,, 2017; Ponzilacqua-Silva et al., 2024). Taken together, higher
BUN may serve as an accessible integrative marker of systemic
metabolic stress rather than isolated renal impairment in patients at
risk for chronic brucellosis, a hypothesis that warrants longitudinal
and mechanistic validation.

GLB was identified as a key variable in our model, with lower
values predicting higher chronic progression risk. As serum
globulin integrates immunoglobulins, complement, and hepatic
proteins, its decrease may reflect impaired humoral immunity or
hepatic dysfunction. Persistent antigenic stimulation in chronic
infections can induce T-cell exhaustion and immune
dysregulation (Wherry, 2011). In Brucella infection, B-cell-T
interactions have been shown to suppress CD4" T-cell responses
independent of antibody production, facilitating chronic
persistence (Dadelahi et al., 2023). Hepatic involvement and
disturbed protein metabolism may further reduce globulin
synthesis (Giambartolomei and Delpino, 2019). Together, these
findings suggest that decreased GLB may serve as an integrative
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marker of immune suppression and hepatic impairment in
chronic brucellosis.

These mechanistic explanations are hypothesis-generating and
require validation in prospective and mechanistic studies, as no
direct evidence currently exists linking these biomarkers to chronic
brucellosis. While our findings partially align with known patterns
observed in other diseases, the pathophysiological implications of
lipid and immune dysregulation in brucellosis require further
investigation through mechanistic and longitudinal studies.

Although the RF model demonstrated the best overall
discrimination and satisfactory calibration among the tested
algorithms, its relatively low sensitivity limits its immediate
clinical applicability. In real-world practice, this modest sensitivity
indicates that some chronic brucellosis cases—particularly those at
early or atypical stages—could be missed. Accordingly, the model
should be viewed as a supplementary decision-support tool to assist
clinicians in risk stratification rather than as an independent
diagnostic method. Further optimization, including threshold
fine-tuning, integration of additional biomarkers, and prospective
external validation, will be essential to enhance recall and ensure
safe, reliable translation into clinical practice.

This study has several notable strengths. First, it leverages a real-
world clinical cohort from a brucellosis-endemic region, enhancing
ecological validity. Second, the model’s interpretability via SHAP
addresses a common limitation of machine learning in healthcare -
namely, the lack of transparency in decision-making. Third, the
deployment of the model as a web-based tool facilitates practical
integration into clinical workflows and supports broader
translational application.

This study has several limitations. First, the definition of
chronic brucellosis is inherently heterogeneous across the
literature and remains largely symptom-based; although our
operational definition was guideline-consistent, the absence of
universally accepted objective criteria may still introduce
misclassification. Second, the retrospective, single-center design
may have introduced selection bias, as only hospitalized patients
were included. This design limits causal inference and underscores
the need for cautious interpretation of associations identified by the
model. Third, while the RF model outperformed other algorithms,
its sensitivity in the test set remained limited, highlighting that the
model should be regarded as exploratory and potentially used in
combination with other clinical or molecular indicators. Forth,
residual confounding cannot be excluded, as variables such as
treatment adherence, initial regimen choice, and delay from
symptom onset to therapy were not incorporated into the final
model. Finally, the lack of external and temporal validation further
restricts generalizability. External, multicenter, and prospective
validation should be prioritized in future work to ensure the
model’s stability and real-world applicability.

In conclusion, this study presents a clinically interpretable,
machine learning-based model for early prediction of chronic
brucellosis using routinely collected data. Our RF-based model
shows promise as a clinically interpretable tool for early risk
stratification. Nevertheless, external validation and integration
with molecular markers are warranted before clinical adoption.
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