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Background: Despite advances and successes in precision oncology, pancreatic

cancer (PC) remains a tumor with extremely low survival rates, andmany of these

cases experienced postoperative recurrence and metastasis. Alterations in the

gut microbiota have been linked to the survival rates of PC patients. Nevertheless,

the complexity of gut microbiota composition poses significant challenges in

identifying definitive clinical biomarkers for PC.

Methods: Fecal samples were collected from PC patients, half of whom had

metastasis, and their matched healthy controls (HCs). A metagenomic analysis

was employed to further investigate the functional features of gut microbiota

with both PC and metastatic PC. The clinical correlations, microbial metabolic

pathways and antibiotic resistome were further assessed. In a follow-up

validation, intraoperative tumor tissue and pancreatic fluid were sampled from

PC patients and underwent comprehensive microbiological analysis, including

bacterial culture, mass spectrometry-based identification, and third-generation

whole-genome sequencing of Klebsiella pneumoniae isolates.

Results:We observed a significant alteration of the gut microbiota in PC patients,

highlighted by an overall increase in microbial diversity compared to healthy

controls (p < 0.05). Comparative abundance analysis identified 59 differentially

abundant microbial species in non-metastatic pancreatic cancer (NMPC) (56

increased, 3 decreased) and 21 in metastatic pancreatic cancer (MPC) (19

increased, 2 decreased), alongside 18 significantly altered microbial metabolic

pathways (FDR-adjusted p < 0.05). Notably, Klebsiella pneumoniae, Klebsiella

oxytoca, and Akkermansia muciniphila were identified as prominent antibiotic

resistance gene (ARG) carriers in the gut microbiota of PC patients, with 653 ARG

subtypes detected across fecal samples, 38–47% of which were shared among

groups. Strong co-occurrence patterns between ARGs (e.g., acrB, mdtC, cpxA,

emr, pmrF) and the above species were observed predominantly in MPC samples
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(p < 0.05). Whole-genome sequencing of 14 isolates obtained from tumor tissue

and pancreatic fluid revealed consistent ARG profiles and virulence genes,

corroborating the metagenomic findings and supporting the hypothesis of

gut-to-tumor translocation and potential intratumoral colonization.

Conclusion: This study provides a comprehensive microbiome-based insight

into PC and its metastatic subtypes. By integrating microbiome analysis with

microbial culture, this study provides direct evidence of gut-derived multidrug-

resistant (MDR) K. pneumoniae colonization in PC tissues.
KEYWORDS

antibiotic resistance gene (ARG), gut microbiome, pancreatic cancer, whole-genome
sequencing, metagenomic analysis, Klebsiella pneumoniae
1 Introduction

Pancreatic cancer (PC) was considered to be one of the most

lethal malignant tumors of the digestive tract, with a five-year

overall survival rate of less than 12% (Siegel et al., 2023). This

prognosis worsened with the onset of metastasis, dropping survival

rate to a mere 3% (Siegel et al., 2022). Despite advancements in

multimodal diagnostic and treatment strategies, the efficacy of

surgical interventions, which were crucial for effective PC

management was significantly hindered by the challenges in the

early detection (Vuijk et al., 2020). Metastasis was recognized as

another main cause of the death of PC patients and treatment

failure (Zheng et al., 2020). Although immunotherapy was

demonstrated to be effective in a wide variety of metastatic

cancers, it failed in PC because of its inherently “non-

immunogenic” nature. Therefore, it is still necessary to explore

new diagnosis and treatment strategies for PC (Li et al., 2023; Ni

et al., 2023). The leading gene therapy and precision medicine

strategies for PC, including KRAS-targeted interventions, miRNA-

based treatments, and immunotherapies such as CAR-T, hold great

promise yet face substantial challenges due to significant inter-

individual variability in treatment response (Dwivedi et al., 2025;

Sharma et al., 2025). Emerging evidence now identifies the gut

microbiome, particularly through gut-to-tumor translocation, as a

clinically detectable and individualized factor in PC progression and

treatment resistance (Sethi et al., 2018; Kirsoy et al., 2024; Dwivedi

et al., 2025).

The gut microbiota, residing within a complex and dynamic

ecosystem, was closely linked to human immunity, primarily

through its influence on intestinal permeability (Pushalkar et al.,

2018). Contrary to prior beliefs of a sterile pancreas, emerging

evidence suggests that gut microbiota can migrate to the pancreas

via lymph nodes and dendritic cells, thereby facilitating the
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colonization of the pancreas by various microorganisms (Fan

et al., 2018). This migration was implicated in the neoplastic

transformation, with significant increases in the abundance of

specific microbial taxa like Proteobacteria, Synergistetes and

Euryarchaeota observed in PC patients (Thomas and Jobin,

2020). Additionally, early PC stages have been associated with

alterations in microbiota’s metabolic pathways, notably in

polyamine and nucleotide biosynthesis, establishing a link

between these microbial processes and PC development (Mendez

et al., 2020). Moreover, carbohydrates produced byMalassezia have

been identified to stimulate PC cell growth through interaction with

mannose-binding lectin, thereby initiating inflammatory immune

responses (Zhong et al., 2023). Recent therapeutic strategies aimed

at microbiota modulation, including fecal transplants and probiotic

supplementation, have shown promise in offering new therapeutic

benefits for PC patients, with fecal transplant therapies currently

undergoing phase one clinical trials. The potential therapeutic

impact of beneficial bacteria, such as Aspergillus oryzae and

Lactobacillus, in inducing PC cell death and reducing gemcitabine

drug resistance, brought new hope for cancer treatments (Chen

et al., 2020).

In recent years, antibiotics have gradually been utilized to

sensitize anti-tumor drugs and assist in prolonging the survival of

cancer patients. However, the presence of antibiotic-resistant

bacteria posed a significant challenge, potentially weakening

antibiotic effectiveness and, in some cases, promoting tumor

progression. Studies have shown that the survival rates of PC

patients can be positively influenced by the application of

quinolones in cases with high levels of K. pneumoniae, whereas

resistance to these antibiotics can adversely affect patient outcomes

(Konishi et al., 2021). The adjunct use of antibiotics, such as

ciprofloxacin, has been observed to mitigate drug resistance,

particularly against gemcitabine in colon cancer, highlighting the

role of antibiotics in enhancing the response to immunosuppressive

treatment (Mohindroo et al., 2021). The recent surge in extensive

drug resistance and pan-drug resistance strains posed a significant

global health challenge (Weniger et al., 2021), emphasizing the
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importance of identifying resistance genes for informed antibiotic

selection in PC treatment. Despite the critical need, research into

the resistome of tumor-associated bacteria remained limited.

Moreover, few studies have validated the presence and genomic

features of such tumor-associated bacteria using culture-based

approaches combined with high-resolution sequencing. This

study aims to systematically investigate the gut microbial

composition and resistome in both metastatic and non-metastatic

PC patients, identify potential microbial biomarkers and functional

pathways, and provide evidence for the translocation and

colonization of antibiotic-resistant K. pneumoniae from the gut to

the tumor microenvironment through culture-based and genomic

validation. By integrating metagenomic analysis of the fecal

microbiome with whole-genome sequencing of tumor-derived

isolates, this study seeks to investigate the microbial signatures

associated with metastasis, chemoresistance, and tumor

microenvironment modulation in PC.
2 Materials and methods

2.1 Ethical considerations

This investigation was conducted with strict adherence to

ethical guidelines, ensuring informed consent and voluntary

participation from all involved. The study cohort comprised 24

participants, including 13 pancreatic cancer (PC) patients, 1

intraductal papillary mucinous neoplasm (IPMN) patient, and 10

cohabitating spouses or family members of the PC patients. The

study was conducted according to the guidelines of the Declaration

of Helsinki, and approved by the Medical Science Research Ethics

Committee of the First Hospital of China Medical University

(protocol code [2022] 329 in July 2022). Informed consent was

obtained from all subjects involved in the study.
2.2 Participant recruitment and sample
collection

For metagenomic study, ten PC patients with a confirmed PC

diagnosis with surgery and pathology were recruited between 2022

and 2023 from the First Hospital of China Medical University in

Shenyang (Table 1). This included 5 patients with metastases (Group

MPC: A1-A5) and 5 without (Group NMPC: B1-B5). Group MPC,

A1, A4, and A5 were identified as those who experienced rapid

recurrence within three months following surgery. 10 healthy

controls (HCs), matched on age, gender, lifestyle, and dietary

habits, were selected from the patient’s immediate circles (CA1-

CA5 and CB1-CB3, CB5), with one exception where a patient’s

daughter served as the control (CB4). To minimize inter-individual

variability and control for lifestyle-related confounding factors,

controls were selected from the patients’ immediate social

networks (household members or close contacts). This matching

strategy was chosen to ensure that the control group shared similar
Frontiers in Cellular and Infection Microbiology 03
dietary habits, living environment, and healthcare access with the PC

patients. Although this approach may reduce between-group

differences, it maximizes the likelihood of identifying microbial

signatures and antibiotic resistance gene (ARG) profiles specifically

associated with PC rather than external exposures. Exclusion criteria

encompassed recent antibiotic use within 3 months, probiotic or

antifungal use within 1 month, significant physical impairments, and

the presence of postoperative infections. The control group was

screened according to the same fundamental criteria applied to PC

patients, with the added stipulation of a minimum six-month

antibiotic-free period. Fecal samples were collected 8 weeks after

the discontinuation of antibiotics, with antibiotic use restricted to a

maximum of 5 days, in postoperative patients. One patient (A3) in

the MPC group did not undergo surgery; thus, samples were

collected prior to the initiation of treatment. All samples were

prepared in duplicate for analytical and backup purposes, and

stored at −80 °C in sterile tubes.

For bacterial culture and following third-generation sequencing,

pancreatic tumor tissue and pancreatic fluid were collected

intraoperatively from four patients diagnosed with PC and IPMN

under approved institutional ethical guidelines. Tissue

homogenates and fluid samples were inoculated onto Columbia

blood agar plates and incubated at 37°C for 18–24 hours under

aerobic conditions. Control samples included operating room and

non-tumorous surgical materials.
2.3 Metagenomic study for fecal samples

2.3.1 DNA extraction and metagenomic
sequencing

Genomic DNA was extracted using the TIANamp Stool DNA

Kit as per the manufacturer’s guidelines, with its concentration and

purity verified through agarose gel electrophoresis and UV

absorbance measurements (NanoDrop ND1000). Sequencing

libraries were prepared using the Illumina TruSeq® DNA PCR-

Free Sample Preparation Kit, assessed for quality, and sequenced on

an Illumina platform to achieve 150 bp paired-end reads, which

were filtered based on quality score (minimum Q30 for 90% of

bases), removal of adapter sequences, and minimum read length

(≥50 bp), generating approximately 10 GB of clean data per sample.

The clean data were evaluated for sequencing quality using

MultiQC. Data output statistics for both the raw and cleaned data

were generated using ReSeqTools. Further, host-derived reads were

removed by aligning sequences against the human genome using

BMTagger, as recommended by NCBI.

2.3.2 Microbiome characterization
Kraken2 (Simpson et al., 2021) was used to process all the

metagenomic sequencing data and Bracken (Lu et al., 2017) was for

correction. A cladogram was produced by GraPhlAn (Wood et al.,

2019). HUMAnN3 (Franzosa et al., 2018) (nucleotide-database:

chocophlan; protein-database: uniref 90) software was performed to

determine microbial pathways and abundances.
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TABLE 1 Clinical and demographic features of PCs and HCs.

Parameters
MPC and paired HCs NMPC and paired HCs

PC patient (n = 5) Control (n = 5) PC patient (n = 5) Control (n = 5)

Age, years

< 65 3 3 2 3

≥65 2 2 3 2

Gender

Female 2 3 2 4

Male 3 2 3 1

Tumor status

T1 0 1

T2 1 4

T3 3 0

T4 1 0

Nodal status

N0 3 5

N1 2 0

Metastatic status

M0 3 5

M1 2 0

Pathologic status

Stage I A 0 1

Stage I B 1 4

Stage II A 1 0

Stage II B 1 0

Stage III 0 0

Stage IV 2 0

Pancreatic tumor site

Head 2 1

Body 2 3

Tail 1 1

Sites of metastasis

Liver 4 0

Lung 1 0

Others 0 0

Surgical treatment

PD 1 1

DPS 2 4

ERBD 1 0

Non-Surgical Treatment 1 0

(Continued)
F
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2.3.3 Metagenome assembly and identification of
ARGs

Assigned based on specific barcode and primer sequences,

paired-end reads underwent stringent quality control. High-

quality reads were assembled using MEGAHIT, with open

reading frames predicted by MetaGeneMark and subsequently

clustered to minimize redundancy. The assembled genomes were

evaluated for completeness and contamination, with taxonomic

profiling of open reading frames conducted via DIAMOND against

a comprehensive microbial database. ARG sequences were classified

into more than 20 categories using data from the Comprehensive

Antibiotic Resistance Database (CARD), followed by taxonomic

assignment of ARG-carrying contigs using Kraken2. Host-ARG

associations were further refined using stringent thresholds and

strong correlation analyses, including sequence coverage (≥90%)

and identity (≥95%). Additionally, the identified ARGs were cross-
Frontiers in Cellular and Infection Microbiology 05
checked against two public databases: NT (Nucleotide Sequence

Database) and RefSeq (NCBI Reference Sequence Database).
2.4 Isolation and characterization of
bacteria from PC tissue and pancreatic
fluid

2.4.1 Whole genome sequencing and assembly
To validate the presence of K. pneumoniae identified via

metagenomics, we employed aerobic culture using blood agar

medium, guided by the taxonomic and resistance profiles derived

from fecal sequencing, a strategy focused on this specific facultative

pathogen rather than on broad microbial diversity. Given that K.

pneumoniae was the most prominent species enriched in PC

patients and showed strong ARG associations, the culture
TABLE 1 Continued

Parameters
MPC and paired HCs NMPC and paired HCs

PC patient (n = 5) Control (n = 5) PC patient (n = 5) Control (n = 5)

Pathology

Pancreatic ductal adenocarcinoma 5 5

Smoking 1 2 1 0

Alcohol 1 0 0 0

Diabetes 0 0 1 0

Metformin 0 1 1 1

Obesity 0 0 0 0

Gastrointestinal Disease 0 0 0 0

ECOG PS

0 1 4

1 4 1

2 0 0

3 0 0

4 0 0

5 0 0

BMI 20.02 24.16

TBIL (umol/L) 64.2 21.2

DBlL (umol/L) 49.4 6.8

TC (mmol/L) 4.8 5.08

CA19-9 (U/mL) 355.85 248.49

CEA (U/mL) 3.86 3.44

CA12-5 (U/mL) 17.25 17.32

CA15-3 (U/mL) 17.22 10.352

CA72-4 (U/mL) 5.11 3.186
PC, Pancreatic cancer; PD, Pancreaticoduodenectomy; DPS, Distal pancreatectomy and splenectomy; ERBD, Endoscopic retrograde biliary drainage; ECOG PS, Eastern Cooperative Oncology
Group Performance Status; TC, Total cholesterol; DBIL, Direct bilirubin; TBIL, Total bilirubin. Values of BMI, TBIL, DBIL, TC, CA19-9, CEA, CA12-5, CA15-3, CA72–4 were expressed as the
mean ± SD. TNM, UICC/AJCC TNM staging for pancreatic cancer (8th ed., 2017).
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conditions were specifically optimized for its isolation and

downstream genomic confirmation. A total of 14 K. pneumoniae

isolates from tumor tissue (PANC strains) and pancreatic fluid

(PANF strains) were subjected to whole-genome sequencing using

the Oxford Nanopore MinION platform. Genomic DNA was

extracted using a QIAamp DNA Mini Kit (Qiagen) and

quantified using a Qubit fluorometer. Libraries were prepared

with the Rapid Barcoding Kit (Oxford Nanopore Technologies)

and sequenced with R9.4.1 flow cells. Base calling was performed

using Guppy, and reads were assembled de novo with Flye (v2.9).

2.4.2 Genome annotation and functional gene
prediction

The assembled contigs were annotated using ABRicate (v1.0.1).

ARGs were identified using the CARD (Comprehensive Antibiotic

Resistance Database), while virulence factors were annotated

against the VFDB (Virulence Factors Database). Genomic islands

and gene clusters of interest were visualized on circular genome

plots using CGView.

2.4.3 Phylogenetic analysis and comparative
genomics

To investigate evolutionary relationships among isolates, core

genome alignments were generated using Roary and multiple

sequence alignments were performed with MAFFT. A maximum

likelihood phylogenetic tree was constructed using FastTree and

visualized with iTOL. Tree topologies were annotated with

presence/absence heatmaps for virulence and resistance genes, as

well as predicted antibiotic resistance phenotypes.
2.5 Statistical analysis

Alpha diversity was quantified using the Shannon index and

analyzed with R software, employing the Wilcox.test for between-

group comparisons. Metastats facilitated the identification of

significant taxonomic differences, while network analysis,

supported by Pearson’s rank correlations in Cytoscape, elucidated

microbial and ARGs co-occurrence patterns. Significance was

established at a p-value threshold of <0.05. To compare the

species differences of group PC with group HC, categorical data

were tested using the”edgeR”package (Pereira et al., 2018)

(calcNormFactors: trimmed mean of M-values method). The

statistical analysis for differentially expressed (DE) was done

using edgeR (glmLRT test). Significant differences of in functional

pathways among groups were determined by performing

the”EasyAovWlxPlot.R” package. The microbial community

heatmap was clustered and visualized by the “ComplexHeatmap”

package. To account for potential false positives arising from

multiple hypothesis testing, we have applied false discovery rate

(FDR) corrections using the Benjamini-Hochberg procedure

throughout the study. The Spearman rank correlation coefficient

was used to evaluate the correlation between phenotypes and the
Frontiers in Cellular and Infection Microbiology 06
correlation between microbiome features. Correlations with

corresponding empirical p-values less than 0.05 were retained.
3 Results

3.1 Illumina sequencing read statistics

Illumina sequencing generated on average 11.6 GB of base-

called data across 20 metagenomics libraries (Supplementary Table

S1). The sequencing depth was verified to be adequate, as indicated

by the stability of rarefaction curves using the Shannon index,

observed species, and the Chao1 estimator (Supplementary Figure

S1). Approximately 91.2% of bases across all samples achieved an

average Phred score of Q30 or above, indicating high-quality of

nucleobase that generated by DNA. A total 1,561,203 high-quality

(length > 500bp) assembled contigs were generated from all 20

samples with a range of 23,678–154,881 sequences per sample

(Supplementary Table S2). Regarding the contigs number and

length of all samples, no significant differences were observed

between cases and controls either between the MPC group

NMPC group.
3.2 Alterations of microbiome communities

To investigate the differences in gut microbiota between PC and

the paired HC group, a metagenomic analysis was conducted. The

whole bacterial diversity of the gut microbiota in PC and HC groups

was shown in Figure 1B. Dividing the PC group into NMPC and

MPC subgroups, we observed distinct microbial communities. The

top ten phylum and genus of bacteria (Figures 1C, D) particularly

revealed differences at the genus levels between NMPC, MPC and

HC groups. Dominant genera such as Bacteroides fragilis, Escherichia

coli and Parabacteroides merdae in NMPC fecal samples, and

Phoceaicola dorei, Bacteroides uniformis and Bacteroides

thetaiotaomicron in MPC fecal samples were particularly

contrasting with those in HC fecal samples (Figures 1E, F).
3.3 Analysis of microbiome diversity

Extending our examination to the role of the microbiome in PC

patients, principal coordinate analysis was utilized to assess beta

diversity. Our results indicated distinct clustering within the NMPC

group, in contrast to the MPC and HC groups (Figure 2A). Then

alpha diversity at the phylum and class level were conducted for

diversity comparison. The Shannon index value for the NMPC

group was significantly higher than that for the HC group at

phylum level, indicating increased bacterial diversity in fecal

samples of the NMPC than in the HC group. No significant

differences were observed between MPC and HC groups

(Figure 2B). These data suggested enhanced microbial gut
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microbiota diversity within gut microbiota of PC patients,

particularly in NMPC subgroup.
3.4 Changes of species abundance

Upon examining changes of relative abundance in bacterial

community, we noted distinct patterns between MPC (Figure 2C)

and NMPC (Figure 2D) when compared to HC group. Significant
Frontiers in Cellular and Infection Microbiology 07
differences in 21 species were observed between MPC and HCs,

with 19 increased and 2 decreased species. Conversely, the NMPC

and HC comparison revealed 59 species with significant abundance

shifts, with 56 increased and 3 decreased species. Notably, both

MPC and NMPC groups exhibited significant depletion of

Megamonas funiformis, known for its probiotic properties.

Moreover, the presence of Felixounavirus, Citrobacter, Klebsiella,

Escherichia and Raoultella was most significantly linked to PC. The

normalized abundance of dominant species in the gut microbiota
FIGURE 1

Compositional analysis of bacterial gut microbiota. (A) Metagenomic study design process diagram. (B) The taxonomic tree for different samples at
genus taxonomic level. Different taxonomic type was represented by different color of nodes. (C, D) Different compositions of gut microbiota from
HC, MPC and NMPC groups’ fecal sample at the phylum level (C), at the genus level (D). (E, F) The corresponding microbial composition analysis of
each sample and relative frequency of the top 10 at the phylum level (E), at the genus level (F). Certain icons used in subfigure A were obtained from
Flaticon (https://www.flaticon.com) under proper license.
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across samples was shown as a heatmap (p < 0.05) in Figure 3A.

Correlations between dominant species and clinical features of PC

patients were further explored. The results included the strong and

positive correlation of the genus Citrobacter (especially Citrobacter

sp. RHB35_C21, Citrobacter sp. RHB36_C18 and Citrobacter sp.

RHBSTW 01013) with both total and direct bilirubin levels,

however, a relatively weak and positive correlation with CEA in
Frontiers in Cellular and Infection Microbiology 08
blood. It’s also worthy to mention that the significant correlations

were observed between PC biomarkers of CEA, CA12-5, CA15–3

and Citrobacter freundii or Citrobacter braakii species. A microbial

community heatmap with cluster analysis, and the color intensity in

each grid shows the percentage in a sample, referring to the color

key at the right (Figure 3B). Microbial genus Citrobacter was

significantly clustered in the PC group. These results suggested
FIGURE 2

Changes of gut microbiota in PC patients. (A) Principal component analysis (PCA) of gut microbiota profiles (species level) from NMPC, MPC, and HC
groups. The first two principal components (PC1 and PC2) explain ~36% of the total variance across samples and reflect the major axes of microbial
community differentiation. (B) Alpha diversity assessed by the Shannon index across NMPC, MPC, and HC groups. Boxplots show medians and
interquartile ranges; statistical significance determined by Wilcoxon test. (C, D) Differentially abundant bacterial species in fecal samples from MPC
(C, n = 21 species) and NMPC (D, n = 59 species) compared to HC, identified using the edgeR package (glmLRT test, p < 0.05). Each dot represents
a sample’s relative abundance. Horizontal axes list species names, with red labels indicating increased abundance and blue labels indicating
decreased abundance in MPC or NMPC versus HC. Vertical axes show normalized relative abundance. Horizontal lines denote the median values
across samples in each group.
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the potential role of the differential bacterial species within the gut

microbiota in the diagnosis of PC patients.
3.5 Functional enrichment analysis of
microbial metabolic pathways

We further explored the enrichment of functional pathways in

microbial metabolism. Analysis of metagenomic data identified 18

significantly altered metabolic pathways (p < 0.05, Figure 4A), with

the MPC group showing a significant increase in HSERMETANA-

PWY compared to the HC group, and in PWY 7456 compared to

the NMPC group. Among the pathways showing significant

changes in the NMPC group, there were 9 increased pathways

and 7 decreased pathways. The classification of functional pathways

as amino acid (ARGININE SYN4 PWY, BRANCHED CHAIN AA

SYN PWY, PWY 6292, COBALSYN PWY, HSERMETANA PWY),

carbohydrate (PWY 6588, CENTFERM PWY, GLYCOLYSIS, PWY

5484, ANAEROFRUCAT PWY, PWY 6590), nucleotide
Frontiers in Cellular and Infection Microbiology 09
metabolism (PWY 7220, 7221, 7222, 7228), and fatty acid

(PWY66 429, PWY0 1477) were summarized in Table 2. Their

corresponding stratified contributions analysis of HSERMETANA-

PWY (Figure 4B), ARGININE SYN4 PWY (Figure 4C) and PWY

6588 pyruvate (Figure 4D) and other pathways (Supplementary

Figure S2) also demonstrated the significant metabolic alterations

among MPC and NMPC patients.
3.6 Occurrence of gut microbial ARG
profiles

A total of 653 ARG subtypes conferring resistance to 37 different

antibiotic classes were detected across all fecal samples, with 130

overlapping ARGs present in all samples, accounting for 38%-47% of

ARGs detected in each group (Figure 5A). The gene tetQ, encoding

resistance to tetracycline, was the most common across samples,

except in group NMPC (Figure 5B). Resistance genes to tetracycline

had the highest frequency in all sample types, especially in HC group
FIGURE 3

Correlation between dominant species and clinical features of PC patients. (A) Correlation of relative abundance of differentially expressed bacterial
species and PC’s clinical features by Spearman’s rank correlation. The pink and blue heat map representing positive and negative correlation,
respectively, *p < 0.05, **p < 0.01, ***p < 0.001. (B) Microbial community heatmap with cluster analysis, and the color intensity in each grid showed
the percentage in a sample, referring to color key at the right.
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samples. In addition to tetQ, adeF (the multidrug efflux transporter)

and macrolide resistance genes (ErmB and ErmF) were also prevalent

(Figure 5B). The detected ARG subtypes represent major resistance

mechanisms, including cellular protection, antibiotic inactivation,

efflux pumps, and antibiotic target alteration.
3.7 Co-occurrence pattern between
targeted bacteria and ARGs

Network analysis was employed to investigate co-occurrence

patterns between microbial taxa and ARG subtypes. Three bacterial
Frontiers in Cellular and Infection Microbiology 10
species were identified as probable ARG hosts based on co-

occurrence analysis results (Figures 5C, D), specifically K.

pneumoniae, Klebsiella oxytoca, and A.muciniphila, all of which

have been implicated in the differentially expressed species of PC

patients. Notably, these strong connections were observed

exclusively in samples from the NMPC group, with stronger

correlations in samples from PC with metastases (Figure 5C) and

K. pneumoniae, K. oxytoca, and A. muciniphila, all of which have

been implicated in the differentially expressed species of PC

patients. Notably, these strong connections were observed

exclusively in samples from the PC group, with stronger

correlations in samples from PC with metastases (Figure 5C,
FIGURE 4

Enrichment of microbial metabolic pathways. (A) Significant alterations of 18 metabolic pathway of each sample among gut microbiota in MPC,
NMPC group and paired HCs. Red color represented a significant increase of microbial abundance compared to HC, while green color represented
a decrease. Stratified contributions of the microbial pathways of (B) HSERMETANA-PWY, (C) ARGININE_SYN4 PWY and (D) PWY 6588 pyruvate were
showed as examples.
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Supplementary Table S3) compared to those without metastases

(Figure 5D, Supplementary Table S4). Both K. pneumoniae and K.

oxytoca, classified as Gammaproteobacteria, commonly carried the

MdtC and ArcB genes, associated with multidrug resistance and the

regulation of detoxification-related genes, respectively. K.

pneumoniae was also a potential host for the polymyxin

resistance gene (pmrF) and an efflux pump pump gene (cpxA),

whereas A. muciniphila harbored up to seven ARGs, including

those conferring resistance to tetracycline (tet32, tet40, tetO), MLS

(ermB), b-lactam (cfxA3), and lincomycin (lnuC). Moreover, K.

pneumoniae was associated with five ARG subtypes, including

resistance genes for tetracycline (tet_W_N_W), MLS (ermF), and

multidrugs (mdtF, msbA, and emrK). Finally, we filtered and

validated the ARGs carried by the targeted host bacteria,

including K. pneumoniae, Klebsiella oxytoca, and A.muciniphila.

The results were presented in Supplementary Table S5, with

associations between ARGs and host bacteria in samples from PC

patients highlighted in bold for clarity.
3.8 Isolation and identification of K.
pneumoniae from PC tissue and pancreatic
fluid

In the initial stage of this study, fecal metagenomic sequencing of

PC patients revealed a strong positive correlation between K.

pneumoniae and a broad array of ARGs, including key efflux

pump-related genes such as acrB, mdtC, cpxA, baeR, and H-NS.

These genes are known to play critical roles in multidrug resistance

mechanisms and suggested a potential for stable intestinal

colonization and resistance development. To validate these findings

and assess possible bacterial translocation beyond the gut, we

collected tumor tissue and pancreatic fluid samples intraoperatively

from 3 PC patients (Table 3). Additionally, samples obtained from a

patient with IPMN were utilized as negative controls to ensure the

specificity of our observations. Blood agar culturing revealed that in

one patient (Case 1), K. pneumoniae was successfully isolated from

both tumor tissue and pancreatic fluid (Figure 6A). Mass

spectrometry-based species identification confirmed high-

confidence hits of K. pneumoniae in both compartments (PANC1

and PANF1), while no bacterial growth was observed in the control

group or other patients (Figure 6B). This result suggested that K.
TABLE 2 Enriched 18 differently expressed metabolic pathways in HC,
MPC and NMPC groups.

Classifications ID Description

Amino acid
metabolism

ARGININE SYN4 PWY L ornithine biosynthesis
II g Bacteroides.s
Bacteroides ovatus

BRANCHED CHAIN AA
SYN PWY

superpathway of
branched chain amino
acid biosynthesis g
Flavonifractor.s
Flavonifractor plautii

PWY 6292 superpathway of L
cysteine biosynthesis
(mammalian)

COBALSYN PWY superpathway of
adenosylcobalamin
salvage from
cobinamide I

#HSERMETANA PWY L methionine
biosynthesis III

Nucleotide
metabolism

PWY 7220 adenosine
deoxyribonucleotides de
novo biosynthesis II g
Bacteroides.s Bacteroides
ovatus

PWY 7221 guanosine
ribonucleotides de novo
biosynthesis g
Bacteroides.s Bacteroides
ovatus

PWY 7222 guanosine
deoxyribonucleotides de
novo biosynthesis II g
Bacteroides.s Bacteroides
ovatus

PWY 7228 superpathway of
guanosine nucleotides
de novo biosynthesis I g
Bacteroides.s Bacteroides
ovatus

Carbohydrate
metabolism

PWY 6588 pyruvate fermentation
to acetone g
Flavonifractor.s
Flavonifractor plautii

CENTFERM PWY pyruvate fermentation
to butanoate

GLYCOLYSIS from glucose 6
phosphate

PWY 5484 glycolysis II (from
fructose 6 phosphate)

ANAEROFRUCAT PWY homolactic fermentation

PWY 6590 superpathway of
Clostridium
acetobutylicum
acidogenic fermentation

*PWY 7456 6 b (1,4) mannan
degradation

(Continued)
TABLE 2 Continued

Classifications ID Description

Fatty Acid
metabolism

PWY66 429 fatty acid biosynthesis
initiation
(mitochondria) g
Bacteroides.s Bacteroides
ovatus

PWY0 1477 ethanolamine utilization
MPC, Metastatic pancreatic cancer; NMPC, Non-metastatic pancreatic cancer. Note,
microbial pathways and abundance were determined by HUMAnN3. The statistical
analyses were performed by “EasyAovWlxPlot.R” package. ID names that marked with
*represented the comparison between MPC and NMPC, while # represented the comparison
between MPC and NMPC, others were the comparison between NMPC and HC.
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pneumoniae may colonize the tumor-associated microenvironment

or migrate retrogradely through the pancreatic duct system.
3.9 Whole-genome sequencing confirms
ARG and virulence profiles consistent with
fecal metagenomics

To further characterize the genetic basis of these strains, we

performed whole-genome sequencing (WGS) of 14 K. pneumoniae

isolates using Oxford Nanopore long-read technology. The

assembled circular genomes of PANC1 and PANF1 demonstrated

conserved genomic architecture with rich annotations of both

ARGs and virulence factors (Figures 6C, D). Notably, long-read

WGS confirmed the presence of several resistance determinants

previously identified in fecal metagenomes, including acrB, mdtC,

cpxA, baeR, H-NS, and multiple emr-family efflux genes (emrK,

emrD, etc.), validating the consistency of ARG profiles across

intestinal and extraintestinal compartments. In addition, core

genome phylogenetic analysis (Figure 6E, left) revealed high
Frontiers in Cellular and Infection Microbiology 12
genomic similarity between tumor- and fluid-derived isolates,

supporting a common clonal origin or intra-host migration. The

heatmap summary (Figure 6E, right) showed that nearly all strains

carried classic hypervirulence genes (rmpA, iucA, ybtA, wzi) and a

wide spectrum of ARGs, including blaSHV-190, oqxA/B, and fosA,

as well as resistance to aminoglycosides, cephalosporins, and

carbapenems. Taken together, these results suggest that K.

pneumoniae can translocate from the gut to tumor tissues and

pancreatic fluid, maintaining its MDR and virulent nature. The

convergence of metagenomic and isolate-based ARG detection

underscores the potential clinical risk posed by intratumoral

colonization of MDR K. pneumoniae, which may impair the

efficacy of chemotherapeutic agents such as gemcitabine and

increase the likelihood of treatment resistance.
4 Discussion

Pancreatic cancer (PC) remains one of the deadliest malignancies

in the digestive tract, with limited survival improvements despite
FIGURE 5

Profiling and network analysis of antibiotic resistance genes (ARGs) in fecal samples from different participant groups. (A) Stacked bar chart showing the
relative abundance of the top 10 dominant ARG subtypes across four groups. (B) Venn diagram depicting the distribution of shared and distinct ARG
subtypes within the samples of four groups. (C, D) representing the network analysis between the targeted bacterial species and ARGs conducted in
fecal samples of group MPC and NMPC, respectively. The charts have specifically been drawn to highlight which ARGs and targeted bacteria are
actually linked. A connection represents an extremely strong (Pearson’s r >0.9) and significant (p < 0.001) correlation. The nodes with green and orange
colors represent targeted bacteria and ARGs, respectively. The size of each node is proportional to the number of connections between nodes.
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advances in precision oncology. Although surgery remains the most

effective treatment for PC, postoperative recurrence and metastasis

remain urgent clinical challenges. The absence of precise biomarkers

and specific early symptoms contributes to delayed diagnosis and

poor prognosis. While smoking, alcohol consumption, type 2

diabetes, chronic pancreatitis, and familial genetic predisposition

are recognized as key risk factors for PC (Rawla et al., 2019), many

patients develop the disease without presenting these feature. Recent

evidence has highlighted the influence of host-associated microbial

communities on PC development, suggesting their potential as early

diagnostic markers for PC (Riquelme et al., 2019). In this study, we

systematically analyzed gut microbiota signatures in metastatic and

non-metastatic PC patients through metagenomic profiling. Given

the impact of host environment on microbiota (Lao et al., 2024), we

included matched HCs to control for inter-individual variation. The

strict inclusion criteria and pair-matched design, while constraining

the sample size, were instrumental in identifying a reliable microbial

signature with minimal confounding. The agreement between

computational and culture-based evidence not only confirms the

gut-to-tumor translocation of MDR (Figure 7). Although aerobic

culture but also provides compelling biological validation for this

process. Therefore, this work should be regarded as a foundational

study that provides a validated target and a methodological

framework for subsequent large-scale validation. Our data revealed

significantly increased microbial diversity in PC patients compared

to HCs, with distinct community structures between NMPC

and MPC.

Importantly, the MPC group included patients with confirmed

metastasis and those who experienced rapid postoperative

recurrence, suggesting that gut microbiota profiles may carry

prognostic value. These results support previous studies linking

microbiota to PC progression (Liu et al., 2024). Specifically, 59 and

21 species showed significant differences between PC/HC and

MPC/HC, respectively. We confirmed the depletion of M.

funiformis (Zhou et al., 2021) in PC patients and observed a

reduction in Citrobacter freundii, a species previously linked to

methionine g-lyase with potential anti-tumor effects (Kharofa et al.,

2023). Interestingly, Veillonella atypica, previously reported in

tumor and oral microbiota (Raboni et al., 2018), was significantly
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reduced in the gut of MPC patients. Additionally, pathogens such as

Edwardsiella anguillarum, Lelliottia amnigena, Klebsiella variicola,

and Shigella flexneri showed altered abundance, which has not been

reported in PC before (McKinley et al., 2023). Microbiota signatures

also revealed clinical associations that may provide functional

insights. The infection-associated genera Citrobacter (Koeninger

et al., 2021) and Raoultella ornithinolytica (Seixas et al., 2021), both

known gastrointestinal pathogens, were positively associated with

elevated bilirubin levels in PC patients. These results further

emphasized the interaction between gut-derived bacteria and

systemic inflammation in PC. Our analysis also revealed

significant alterations in 18 metabolic pathways in PC patients,

with notable contributions from specific microbial species,

particularly A. muciniphila and K. pneumoniae, to these

metabolic changes. Of particular significance was the marked

alteration of the L-methionine pathway in MPC patients. This

observation was of substantial clinical relevance, as methionine

has been well-documented to play crucial roles in both intestinal

function and barrier integrity (Chen et al., 2014), as well as in tumor

metastasis, including PC progression (Govaerts et al., 2021; He

et al., 2022). These findings were further substantiated by emerging

evidence demonstrating the pivotal role of gut microbiota in host

methionine metabolism (Sanderson et al., 2019; Kaiser, 2020; Zhao

and Lum, 2022).

Currently, the growing recognition of the role of pathogenic

bacterial overgrowth within tumors in tumorigenesis and

chemoresistance (Cruz et al., 2024).The intratumoral microbiota

plays an emerging role in shaping chemotherapy response and

tumor immune environment. Gammaproteobacteria in tumors

have been shown to inactivate gemcitabine via cytidine deaminase

isoforms (Sayin and Mitchell, 2023), reducing its efficacy. On the

other hand, tryptophan-derived indole-3-acetic acid has been

reported to amplify gemcitabine effects (Tintelnot et al., 2023).

Another study of high ethanolamine (EA) levels not only proved to

be associated with worse survival (Battini et al., 2017), but also proved

to participate in Klebsiella’s adaptive drug resistance (Norsigian et al.,

2019). Adjunctive antibiotics like quinolones have been proposed to

overcome resistance (Weniger et al., 2021). However, the wide spread

of ARGs among gut microbes may hinder these interventions. Our
TABLE 3 Clinical and demographic features of PC and IPMN patients.

Parameters PC patient (Case 1) PC patient (Case 2) PC patient (Case 3) IPMN patient (Case 4)

Age 76 72 76 60

Gender Male Female Male Male

Pathologic status Stage II B Stage II B Stage II A –

Pathological Lesion Site The pancreatic head The pancreatic head The pancreatic body-tail
The pancreatic

body-tail

Tumor status T2 T2 T3 –

Nodal status N1 N1 N0 –

Metastatic status M0 M0 M0 –

Surgical Treatment PD PD DPS DPS
PC, Pancreatic cancer; IPMN, Intraductal papillary mucinous neoplasm;PD, Pancreaticoduodenectomy; DPS, Distal pancreatectomy and splenectomy.
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results further implicated K. pneumoniae as a central contributor to

ARG burden and potential chemoresistance in PC. Both K.

pneumoniae and K.oxytoca (Gammaproteobacteria) demonstrated

significant enrichment in PC samples, particularly among patients

in the MPC patients. Notably, these bacterial species exhibited strong

associations with diverse antibiotic ARGs, with K. pneumoniae
Frontiers in Cellular and Infection Microbiology 14
showing prominent correlation. Moreover, the intraoperative

isolation of MDR K. pneumoniae from matched tumor and

pancreatic fluid provides direct microbiological evidence for our

central hypothesis of gut-to-tumor translocation, confirming its

role as a clinically significant pathogen in PC. A previous study

suggested bacteria class Gammaproteobacteria (e.g., K. pneumoniae)
FIGURE 6

Isolation, identification, genomic and functional profiling of K. pneumoniae from pancreatic tumor tissue and pancreatic fluid. (A) Blood agar culture
results of tumor tissue and pancreatic fluid from four patients with pancreatic cancer. Among them, only Case 1 yielded colonies from both tumor
tissue and pancreatic fluid, while the other three cases showed no visible growth. Controls from operating room remained sterile. (B) MALDI-TOF
MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) identification of bacterial isolates. Eight strains were confirmed
as K. pneumoniae with high identification scores and high consistency, and most were closely related to K. variicola, indicating potential
phylogenetic affiliation. (C–D) Circular genome maps of one K. pneumoniae strain (PANC1 from tumor tissue) generated using Oxford Nanopore
long-read sequencing. The assembled genome was annotated using ABRicate with two different databases: CARD for (C) and VFDB (Virulence
Factors Database) for virulence genes (D). The outermost rings display coding sequences (CDSs) on both DNA strands, with annotated resistance
and virulence genes labeled. The inner rings represent GC content (green/red) and GC skew (purple/blue). Resistance genes and virulence genes are
prominently marked, illustrating the multidrug-resistant and hypervirulent potential of the strain. (E) Phylogenetic tree and heatmap of 14 K.
pneumoniae strains (PANC, from tumor tissue; PANF, from pancreatic fluid) based on whole genome sequencing. The left dendrogram shows
genomic relationships, while heatmaps to the right illustrate the presence (colored) or absence (blank) of virulence genes (blue), antibiotic resistance
genes (purple), and corresponding antibiotic resistance phenotypes (green). The PANC1 and PANF1 strains from the same patient clustered closely,
suggesting a common origin. The figure highlights diverse resistance and virulence profiles among the isolates. (F) Schematic illustration of the
translocation of MDR K. pneumoniae from the gut to pancreatic tumor tissue. Certain icons used in subfigure A were obtained from Flaticon
(https://www.flaticon.com) under proper license.
frontiersin.org

https://www.flaticon.com
https://doi.org/10.3389/fcimb.2025.1694479
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fcimb.2025.1694479
harbored in PC tumor was able to metabolize the gemcitabine to the

inactive 2’, 2’-difluorodeoxyuridine through a long isoform of the

enzyme cytidine deaminase (Ertz-Archambault et al., 2017; Geller

et al., 2017; Sayin and Mitchell, 2023; Horvat et al., 2024). Moreover,

bacteria within tumors can inactivate chemotherapeutic agents such

as gemcitabine via bacterial enzymes like cytidine deaminase (CDD)

(Pushalkar et al., 2018). Notably, ARGs such as acrB, mdtC, cpxA,

baeR, H-NS, and emr genes were frequently co-localized with

K.pneumoniae, suggesting potential roles in chemoresistance.

With an intact intestinal barrier, the pancreas and its alkaline

secretions were historically considered a sterile environment.

However, studies have identified the presence of intratumoral

microbiota within PC tissues, which has been linked to PC

outcomes (Riquelme et al., 2019; Abe et al., 2024). Moreover, the

presence of gut microbiota in pancreatic tissues under normal

conditions (Sammallahti et al., 2021) highlights the physiological

relevance of the gut–pancreas axis (Ahuja et al., 2017). Although

these results provide valuable insights, the role of ARGs within

intratumoral microbiota in pancreatic tissues remains significantly

understudied in current research literature. To directly validate gut–

tumor translocation, we isolated K. pneumoniae strains from tumor

and pancreatic fluid in PC patients (Figure 6F). Out of four patients

sampled, one yielded positive cultures from both tumor tissue and

pancreatic fluid; 14 isolates underwent Nanopore sequencing.

Although aerobic culture on a single medium may limit the

detection of obligate anaerobes or fastidious organisms, our

approach was hypothesis-driven: based on metagenomic findings

indicating K. pneumoniae as a key ARG carrier in PC patients, we

designed culture conditions specifically to isolate and validate this

species from tumor and pancreatic fluid samples. The successful

recovery of 14 strains with concordant genomic features supports the

targeted nature of our cultivation strategy.” Core genome-based

phylogeny revealed close relatedness between PANC and PANF

strains, indicating intra-patient spread. These isolates harbored the
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same resistance genes identified in metagenomic analysis, including

efflux pump (acrB, mdtC) cells, regulators (H-NS, cpxA) (Nikaido,

2009; Paczosa and Mecsas, 2016), and membrane transport genes

(emr family). These findings align with the concept of gut microbes

seeding the tumor microenvironment via anatomical continuity or

barrier disruption (Pushalkar et al., 2018; Riquelme et al., 2019).

Tumor-associated hypervirulence loci (rmpA, iucA, ybtA) further

suggest these bacteria may evade host defenses and persist in hostile

environments (Lam et al., 2019). Consequently, our findings

provided a focused validation of a key pathobiont but do not

represent a comprehensive census of the viable tumor microbiota.

Future studies employing multi-media culturomics and anaerobic

techniques will be crucial to fully elucidate the ecological complexity

and functional roles of the entire microbial community in PC. As the

antibiotic treatment also required the involvement of adaptive

immunity thereby improving the tumor microenvironment,

suggesting that the action was not simply through a direct

inhibitory effect on tumorigenesis (Horvat et al., 2024) Therefore,

with consideration of ARGs, the presence of resistant K. pneumoniae

in pancreatic fluid increases the risk of post-operative infections and

may necessitate broader-spectrum prophylaxis.

While computational biology has successfully identified genetic

biomarkers and immunomodulatory targets in PC (Kaviyaprabha

et al., 2025; Tian et al., 2025), our findings have important

implications for understanding cancer metastasis, chemoresistance

management, and microbial biomarker development in PC. Through

non-invasive fecal metagenomic screening, we identified PC patients

carrying tumor-resident K. pneumoniae with coexisting ARGs and

virulence factors, raising concerns about both postoperative infections

and reduced chemotherapy efficacy. Our phylogenetic data support

intra-patient spread and point to the need for gut microbiota

surveillance. More importantly, by employing an innovative

approach to track ARG transmission patterns, we provide

compelling evidence that the translocation and intratumoral
FIGURE 7

Certain icons used in subfigure A were obtained from Flaticon (https://www.flaticon.com) under proper license.
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colonization of MDR K. pneumoniae implicates the gut-tumor axis as

a clinically relevant pathway influencing both chemoresistance and

immune microenvironment remodeling. This evidence supported a

multidimensional therapeutic strategy integrating conventional

treatments with microbiota-targeting interventions to overcome

chemoresistance rooted in bacterial colonization. Future multi-

center studies that also account for genetic influences will be

essential to validate and generalize these findings. In conclusion, K.

pneumoniae may act as a gut-derived pathobiont in PC, bridging

microbial dysbiosis and therapeutic resistance.
5 Conclusion

By integrating metagenomic data with genomic evidence from

isolates, this work provides direct evidence of the gut-to-tumor

translocation of MDR K. pneumoniae in pancreatic cancer. The

presence of these ARG-carrying strains links the gut microbiome to

chemoresistance and postoperative infection risk, suggesting that

fecal metagenomic monitoring could serve as a predictive tool for

personalizing patient management.
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