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Ulcerative colitis (UC), a chronic and complex inflammatory bowel disorder, presents

ongoing therapeutic challenges. Although multi-tiered anti-inflammatory strategies

represent significant advances, issues like treatment resistance and adverse effects

persist. Consequently, identifying more effective therapeutic targets and potentially

curative strategies remains imperative. Emerging evidence underscores neutrophils,

particularly through neutrophil extracellular trap (NET) formation, as pivotal

contributors to UC pathogenesis. In affected individuals, excessive NET

accumulation exacerbates intestinal inflammation, compromises the epithelial

barrier, activates coagulation pathways, promotes resistance to biologic therapies,

and may even facilitate malignant transformation. Critically, a bidirectional interplay

exists between NETs and the gut microbiota (GM) in this disease. Recent research

indicates that certain traditional Chinese medicine (TCM) herbal extracts and

formulas hold promise for modulating aberrant NET generation and GM

composition. This review examines the roles of NETs and GM in UC pathogenesis

and synthesizes evidence on potential TCM-based interventions targeting these

pathways, offering novel perspectives for future therapeutic development.
KEYWORDS

ulcerative colitis, gut microbiota, neutrophil extracellular traps, traditional Chinese
medicine, inflammation
1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory disorder characterized by recurring

mucosal inflammation in the colon (Ungaro et al., 2017). Affected individuals experience

recurrent bloody diarrhea, abdominal pain, and tenesmus, severely compromising quality

of l i fe . Current management employs aminosalicylates, glucocorticoids,
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immunomodulatory agents, and biologic therapies. Despite these

advances, roughly 40% of patients fail to respond to anti-tumor

necrosis factor (TNF)-a therapy (Gorelik et al., 2022). Moreover,

prolonged biologic use elevates infection and malignancy risks

(Kobayashi et al., 2021). This highlights the critical need for

deeper mechanistic understanding and novel therapeutic

approaches for UC.

The activation of neutrophils, especially the formation of

neutrophil extracellular traps (NETs), is increasingly recognized

in UC pathogenesis (Dos Santos Ramos et al., 2021). These

structures , composed of decondensed chromatin and

antimicrobial proteins, are extruded by neutrophils to capture

pathogens. Excessive NET generation can cause tissue damage

and exacerbate inflammation (Herre et al., 2023; Dos Santos

Ramos et al., 2021). Additionally, NETs mediate processes like

immuno-thrombosis (Skendros et al., 2020), contribute to biologic

therapy resistance (Curciarello et al., 2020), and play a role in

inflammation-associated carcinogenesis (Van Der Windt et al.,

2018). However, neutrophil-targeting methods have not achieved

satisfying efficacy in UC (Danne et al., 2024). Dysbiosis of the gut

microbiota (GM) remains a crucial factor in UC development

(Wang et al., 2023a). The microbiota interacts with the immune

system, influencing neutrophil generation, maturation, and

activation (Wang et al., 2023a). Therefore, targeting this crosstalk

to modulation NET formation may offer novel therapeutic avenues

for improving UC clinical outcomes.

The integration of traditional Chinese medicine (TCM) into UC

management has gained significant interest due to its multifaceted

therapeutic mechanisms. Clinical evidence confirms that specific

herbal formulations effectively induce clinical remission and

promote mucosal healing in UC patients (Shen et al., 2021; Gong

et al., 2012; Sugimoto et al., 2016). Further research revealed that

these therapeutic outcomes are attributed to the modulation of GM

composition, restoration of intestinal barrier integrity, and

regulation of immune responses (Li et al., 2022a; Wei et al., 2021;

Yan et al., 2018). The crosstalk between NETs and microbiota

represents a key focus in UC research, receiving growing attention

in TCM studies. Deciphering TCM's regulatory effects on NETs and

gut flora in UC may advance targeted therapeutic development.

This review emphasizes the role of NETs and GM in UC,

alongside TCM interventions targeting this crosstalk. We aim to

offer actionable perspectives for advancing TCM-based strategies

that modulate these targets to optimize UC management.
2 Neutrophils in ulcerative colitis: an
overview

Neutrophils are integral to the pathophysiology of UC, with

peripheral neutrophil counts significantly higher in active UC

patients compared to healthy controls or those in remission

(Bamias et al., 2022).Elevated neutrophil counts correlate with

poor responses to biologic therapies and a worse prognosis. The

neutrophil-to-lymphocyte ratio (NLR) before treatment has been

linked to clinical relapse following tacrolimus induction in UC
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patients (Nishida et al., 2019). A cohort study found that an elevated

NLR can predict relapse even in patients with mucosal healing

(Kurimoto et al., 2023). Other studies have identified additional

neutrophil-related indicators for predicting UC activity. The

neutrophil-to-bilirubin ratio is positively associated with disease

activity, with lower ratios seen in those who achieve mucosal

healing (Huang et al., 2023). Another study suggested that the

neutrophil-to-albumin ratio might predict clinical outcomes and

long-term prognosis in UC patients treated with infliximab (IFX)

(Zhang et al., 2024). A study on newly diagnosed, treatment-naive

UC patients found that differentially expressed genes were primarily

enriched in neutrophil-related pathways, such as chemotaxis,

activation, and degranulation (Juzenas et al., 2022).The C-X-C

motif chemokine receptor 1/2 (CXCR1/2) genes are central to the

co-expression module in UC, with their expression levels

significantly correlating with clinical indicators like albumin and

C-reactive protein (Juzenas et al., 2022).

Excessive neutrophil recruitment to the colonic mucosa is a

hallmark of UC. Upon activation, these infiltrating neutrophils

release various pro-inflammatory mediators, such as reactive

oxygen species (ROS), myeloperoxidase (MPO), matrix

metalloproteinases (MMPs), and neutrophil elastase (NE), which

are central to tissue damage and the inflammatory process in the

affected mucosa (Kolaczkowska and Kubes, 2013). ROS cause

cellular injury by damaging cell membranes and activating

inflammatory pathways, while MMPs and NE degrade cell

junctions, leading to crypt distortion and abscess formation,

typical of UC pathology (Kang et al., 2022). Fecal calprotectin

(FC), a calcium-binding protein dimer found in neutrophils, is a

reliable biomarker for intestinal inflammation (Tibble et al., 2000).

FC levels below 100 mg/g have shown ≥85% accuracy in predicting

histological remission (Singh et al., 2024). A multicenter study

found that histological assessment of neutrophil infiltration can

predict long-term UC outcomes, including the need for treatment

adjustments, colectomy, or biologic therapy escalation (Parigi et al.,

2023). A large cohort study also revealed that persistent neutrophil

infiltration at week 14 is linked to failure in achieving endoscopic

and histological healing by week 52 in UC patients receiving

biologic treatments (Narula et al., 2022).
3 Roles of neutrophil extracellular
traps in ulcerative colitis

3.1 Formation-clearance imbalance of
neutrophil extracellular traps

NETs, first identified in 2004 (Brinkmann et al., 2004), are an

important part of the neutrophil response. NET formation, which

can be either lytic or non-lytic, is triggered by various stimuli (Long

et al., 2024). NETs are composed of DNA, citrullinated histones,

and granule proteins such as MPO, NE, cathepsin G, and MMP-9

(Boeltz et al., 2019). The process begins with the activation of

NADPH, ROS, and increased intracellular calcium, leading to the

translocation of NE, MPO, and peptidylarginine deiminase-4
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(PAD4), which results in histone citrullination, chromatin

decondensation, and DNA extrusion (Long et al., 2024). NETs

help immobilize and remove pathogens, but in pathological

conditions, they can exacerbate inflammation and contribute to

tissue damage (Schoen et al., 2022). The balance between NET

formation and clearance is crucial for maintaining homeostasis, and

when disrupted, it can lead to disease development (See Figure 1).

Emerging evidence indicates a heightened formation of NETs in

UC. Multiple techniques such as immunohistochemistry and

western blotting have all consistently shown elevated levels of

NET-associated components in intestinal mucosa or fecal

samples, such as cell-free DNA, MPO, NE, lactoferrin,

calprotectin, neutrophil defensin 3, cathepsin G, citrullinated

histone H3, and complexes of DNA, MPO, and NE (Lehmann

et al., 2019; Bennike et al., 2015; Li et al., 2020). Notably, PAD4

expression is increased in UC colon tissues (Leppkes et al., 2022),

with PAD4 being crucial for NET formation by catalyzing histone

H3 citrullination. Additionally, CD177+ (Zhou et al., 2018) and

CCR5+ (Neuenfeldt et al., 2022) neutrophils are more prevalent in

the blood and inflamed mucosa of UC patients, as these cells are

known to be more prone to NET generation.
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NET formation can be triggered by damage-associated

molecular patterns (DAMPs), pathogen-associated molecular

patterns (PAMPs) and cytokines. DAMPs, including extracellular

ATP (Sofoluwe et al., 2019) and high-mobility group box 1

(HMGB1) (Zhang et al., 2022b), signal endogenous damage and

are thought to trigger NET formation. PAMPs, such as

lipopolysaccharide (LPS) (Dinallo et al., 2019), are external

pathogens that can provoke NETosis in UC. Pro-inflammatory

cytokines like TNF (Neuenfeldt et al., 2022; Dinallo et al., 2019), and

interleukin (IL)-6 (Joshi et al., 2013) contribute to the inflammatory

environment and encourage NET formation in UC. C-X-C family

chemokines bind to corresponding receptors on neutrophils,

causing changes in calcium ion concentration and inducing

activation of downstream NOX2 pathways and ERK pathways,

promoting the colon residence of neutrophils and the formation

of ROS, thereby triggering NETosis (Zhu et al., 2021). A study

explored the interaction between inflamed intestinal epithelial cells

(IECs) and neutrophils. When IECs were stimulated with LPS,

TNF-a, IL-1b, and interferon (IFN)-g, they transferred LINC00668

via exosomes to neutrophils. This transfer enabled NE to translocate

into the nucleus, promoting NET formation (Zhang et al., 2023b).
RE 1FIGU

The unbalance of NET formation and clearance in UC. The accumulation of NETs is primarily due to an imbalance between NET formation and
clearance. Increased NET formation is potentially triggered by proinflammatory cytokines, DAMPs, and PAMPs. These stimuli interact with receptors
on neutrophils, leading to elevated intracellular calcium, NADPH, and ROS. This is followed by the translocation of NE, MPO, and PAD4, which
collectively induce histone citrullination, chromatin decondensation, and DNA extrusion. Simultaneously, NET degradation capacity is reduced due
to decreased levels of DNase I. Additionally, the development of ANCAs in UC may serve as a protective factor against NET degradation. NET,
neutrophil extracellular trap; DAMP, damage-associated molecular pattern; PAMP, pathogen-associated molecular pattern; ROS, reactive oxygen
species; NE, neutrophil elastase; MPO, myeloperoxidase; PAD, peptidylarginine deiminase; ANCA, antineutrophil cytoplasmic antibodies; UC,
ulcerative colitis; cfDNA, cell-free DNA; citH3, citrullinated histone H3.
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However, in Crohn’s disease (CD), several studies have reported

conflicting results. A study using immunohistochemical analysis

found that the expression of NET markers NE, MPO, and citH3 in

the affected areas of colon tissue of CD patients was significantly

higher than that in the control group and non-involved areas, and

the expression in the affected areas increased synchronously with

the histopathological score (Schroder et al., 2022). However, Dinallo

et al. found that elevated TNF-a levels in the colon, PAD4 or NET

formation does not increase (Dinallo et al., 2019).

In UC, the timely clearance of NETs is compromised. DNases

trigger NET disassembly, followed by macrophage-mediated uptake

and degradation (Lazzaretto and Fadeel, 2019). Studies reported

diminished NET degradation in UC patients and dextran sulfate

sodium (DSS)-induced animal model due to markedly lower DNase

I levels (Malıč́ková et al., 2011; Vrablicova et al., 2020). However,

supplementing DNase I only partially restores this function,

suggesting other inhibitors of NET breakdown exist (Li et al.,

2020). Since anti-NET antibodies can block DNase I access

(Hakkim et al., 2010), antineutrophil cytoplasmic antibodies

(ANCAs) in UC may act as such protective factors.
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3.2 Pathophysiological mechanisms of
neutrophil extracellular traps

The excessiveness of NETs triggers multiple pathological effects,

including the sustained amplification of immunological and

inflammatory signals, and disruption of the intestinal epithelial

barrier (See Figure 2). These changes actively promote UC

development and significantly complicate its treatment.

3.2.1 Immuno-inflammatory responses
Emerging research highlights NETs as pivotal drivers of

persistent immune activation and central mediators in UC

pathogenesis. Beyond cytokine-induced formation, NETs

exacerbate inflammation through further cytokine release,

creating a self-perpetuating cycle (Dinallo et al., 2019; Li et al.,

2020). They amplify neutrophil activation by triggering the

secretion of inflammatory mediators, such as ROS generation via

NOX2-dependent mechanisms (Dömer et al., 2021). They also

promote C-X-C motif ligand 8 (CXCL8) release, a key chemokine

that binds CXCR1/CXCR2 receptors to recruit additional
FIGURE 2

Excessive NETs induce multiple pathological changes and mutually interact with GM. The excessive accumulation of NETs lead to a series of
pathological changes in UC, such as aggravating intestinal immuno-inflammatory responses, disrupting epithelial barrier and ECM, activating
coagulation cascades, mediating resistance to biological treatment, and inducing malignant transformation. Crucially, NETs mutually interact with
GM. NETs modulate GM composition while GM shifts and metabolites modulate NET formation. NET, neutrophil extracellular trap; UC, ulcerative
colitis; GM, gut microbiota; TNF, tumor necrosis factor; NE, neutrophil elastase; MMP, matrix metalloproteinases; ANCA, antineutrophil cytoplasmic
antibodies; IFX, infliximab; ADA, adalimumab; PS, phosphatidylserine; MP, microparticles.
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neutrophils (Dömer et al., 2021). Notably, UC-associated NETs

carry bioactive IL-1b, a signature feature of colonic inflammation

(Angelidou et al., 2018). Exposure to UC-derived NETs upregulated

cytokine expression in lamina propria mononuclear cells (LPMCs)

and peripheral blood mononuclear cells (PBMCs) (Dinallo et al.,

2019). Mechanistically, NETs boost TNF-a and IL-1b secretion in

PBMCs through ERK/MAPK signaling and heighten macrophage

sensitivity to LPS (Li et al., 2020). Additionally, NETs activate

caspase-1 and caspase-8 pathways in J774 macrophages, driving IL-

1b production (Hu et al., 2017).

T helper cell 17 (Th17) play a well-established pathogenic role

in UC. NET-mediated inflammation initiates robust T cell

activation, as NET-deficient mice fail to exhibit inflammatory

signal-induced immune cell population changes (Warnatsch et al.,

2015). Th17 cell differentiation typically requires an IL-6 and

transforming growth factor (TGF)-b-rich milieu, with IL-23 and

IL-1b further enhancing their pathogenicity (Jiang et al., 2023).

NET components facilitate this process through multiple

mechanisms. First, NETs create a pro-inflammatory environment

by stimulating myeloid cells to secrete IL-6 and IL-1b (Lambert

et al., 2019). Second, histones directly bind to T cell surface toll-like

receptor (TLR)-2, triggering STAT3 phosphorylation and RORgt
expression independent of cytokines (Wilson et al., 2022).

Meanwhile, Th17-derived granulocyte-macrophage colony

stimulating factor and IL-17A stimulate neutrophil activation

through CXCR1 signaling, establishing a positive feedback loop

(Wu et al., 2020). Furthermore, Th17 cells directly trigger NET

release (Tohme et al., 2019), leading to excessive NET accumulation

and amplifying inflammation.

Key components of NETs such as MPO have been recognized as

important autoantigens that stimulate ANCAs, which may function

as an indicator of disease progression with extended circulation

time (Wen et al., 2022).
3.2.2 Epithelial barrier dysfunction
The intestinal epithelial barrier is vital for defending against

external pathogens and ensuring selective permeability of the

intestinal mucosa. Its structural integrity is critical for sustaining

intestinal homeostasis. Research using DSS-induced colitis models

has demonstrated that NETs disrupt intercellular junctions,

elevating the expression of E-cadherin, ZO-1 and occludin (Lin

et al., 2020). Evidence suggests that NET-derived proteins

contribute to mucosal injury. For instance, histones impair

intestinal epithelial permeability by disrupting tight junctions and

triggering epithelial cell death (Lai et al., 2023). Similarly, cathepsin

G cleaves protease-activated receptor 4 (PAR-4), increasing

paracellular permeability and exacerbating barrier impairment

(Kriaa et al., 2020). Furthermore, NE, cathepsin G, and MMPs

degrade extracellular matrix (ECM) components, which has dual

consequences. First, fragmented ECM proteins may act as

immunogenic stimuli, amplifying inflammatory cell recruitment

(Kriaa et al., 2020). Second, since the ECM supports the

subepithelial layer, its breakdown compromises the epithelial cell

microenvironment, promoting apoptosis. Notably, MMP-9
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deficiency mitigates DSS-induced colitis severity, reduces

intestinal NET formation, and improves barrier function

(Castaneda et al., 2005).

3.2.3 Thromboembolic risks
Growing evidence indicates UC patients demonstrate elevated

thrombotic risk (Zezos et al., 2014), with venous thrombosis

occurrence rates two or three times greater than healthy

individuals (Carvalho et al., 2022). Studies increasingly implicate

NETs as pivotal mediators in thrombus formation (Laridan et al.,

2019). While NETs normally function in host defense by trapping

pathogens through coagulation mechanisms (Massberg et al., 2010),

their overactivation may trigger pathological clotting (Pfeiler et al.,

2017). NETs promote thrombosis by offering a framework for

platelet aggregation and erythrocyte binding via adhesive proteins

(Fuchs et al., 2010), and directly engaging with coagulation factor

XII (Von Brühl et al., 2012).

In DSS-induced colitis models, NET-mediated thrombosis

exhibits paradoxical effects. Neutrophils drive secondary

immunothrombosis through PAD4-regulated NET generation,

with inadequate formation potentially exacerbating rectal

hemorrhage in UC (Leppkes et al., 2022). However, excessive

NET production significantly elevates thrombotic risks (Zhang

et al . , 2023b). Clinical observations identify two key

p ro th rombo t i c marke r s i n UC pa t i en t s : enhanced

phosphatidylserine (PS) expression on platelets and increased

circulating platelet-derived microparticles (He et al., 2016).

Mechanistically, NETs stimulate TLR2/4 on platelets, triggering

PS surface exposure and microparticle release that collectively

promote a hypercoagulable state (Zhang et al., 2023b).

3.2.4 Resistance to biologic treatment
A substantial subset of patients fails to respond to biologic

agents (Ben-Horin et al., 2014). As indicated previously, the chronic

presence of neutrophils in the colonic mucosa serves as an

established indicator of unfavorable therapeutic outcomes to

biologic agents. This resistance may stem from the proteolytic

microenvironment generated by NET components. Crucially, IFX

and adalimumab (ADA), both IgG1 antibodies, contain a

vulnerable threonine-histidine bond in their hinge regions. Given

the elevated NE activity in UC intestinal mucosa, NE cleaves these

therapeutics into Fc monomers and IgG1 fragments. This

degradation impairs TNF-a neutralization capacity, directly

contributing to anti-TNF non-responsiveness (Curciarello et al.,

2020). Notably, cell and organoid studies demonstrate that the NE

inhibitor elafin prevents antibody fragmentation, and restores TNF-

a blockade efficacy (Curciarello et al., 2020).

3.2.5 Inflammation-mediated carcinogenesis
Neutrophils and NETs significantly influence both

inflammatory diseases and cancer. NETs promote tumors by

sustaining inflammation and causing DNA damage (Adrover

et al., 2023). Chronic inflammation increases genetic mutations,

driving abnormal cell growth. Zebrafish studies revealed that
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injury-induced inflammation enhances pre-neoplastic cell

expansion in a neutrophil-dependent manner (Antonio et al.,

2015). Particularly, NETs impair tissue repair and sustain chronic

injury, creating a pro-tumorigenic niche (Wong et al., 2015).

The link between UC and colorectal cancer highlights NETs as a

potential therapeutic target (Itzkowitz and Yio, 2004). UC-driven

chronic inflammation generates oxidative stress, genomic

instability, and cancer risk. Preclinical studies in colitis-associated

cancer models show that PAD4 inhibition (e.g., Cl-amidine) (Wang

et al., 2023b) and DNase I-mediated NET degradation (Zhang et al.,

2023b) not only alleviate UC pathology but also suppress

tumorigenesis. NETs also exacerbate cancer progression and

metastasis. In colorectal cancer, NET components enhance

malignant cell adhesion, motility, and invasiveness (Khan et al.,

2021). Proteolytic enzymes such as NE and MMP9 degrade ECM,

reactivating dormant tumor cells and accelerating metastasis

(Albrengues et al., 2018).
3.3 Summary and perspectives

NETs play a multifaceted and central role in the pathogenesis of

UC. An imbalance between enhanced NET formation and impaired

clearance leads to their pathological accumulation. These excessive

NETs contribute significantly to disease progression through several

key mechanisms: they perpetuate immuno-inflammatory

activation, disrupt the intestinal epithelial barrier, increase

thromboembolic risk, mediate resistance to biologic therapies,

and promote inflammation-associated carcinogenesis.

Focusing on NETs may offer a more refined therapeutic approach

than merely depleting neutrophils in UC treatment. In cases where

NET formation occurs without neutrophil death, neutrophils continue

to function in immune defense even after releasing NETs. Future

research should focus on elucidating the precise molecular triggers and

dynamics of NET formation in UC, understanding the heterogeneity of

neutrophil subsets, and developing targeted delivery systems to avoid

systemic immunosuppression.
4 Interaction of neutrophil
extracellular traps and gut microbiota
in ulcerative colitis

4.1 Gut microbiota in ulcerative colitis

The GM constitutes a complex and dynamic microbial

community within the human gastrointestinal tract, engaging in a

symbiotic relationship with the host. Dysbiosis, an imbalance

between beneficial and pathogenic intestinal bacteria, has been

increasingly implicated in host pathophysiology (Quaglio et al.,

2022). Current research demonstrates that UC is strongly associated

with significant alterations in GM ecology. Large-scale multi-omics

studies have confirmed the loss of microbial diversity and

disruptions in metabolic activity in UC patients (Lloyd-Price

et al., 2019). The pathogenesis of UC-related intestinal
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inflammation involves a dual microbial mechanism: pathogenic

expansion of pro-inflammatory bacterial taxa coupled with

depletion of immunomodulatory species. At the phylum level, a

characteristic shift in GM composition is observed in UC patients

marked by diminished Firmicutes and Bacteroidetes populations

and increased Proteobacteria (Walujkar et al., 2014). This shift is

further evidenced at the genus level by marked decreases in key

butyrate producers, Roseburia hominis and Faecalibacterium

prausnitzii , whose abundance shows significant inverse

correlation with clinical disease activity scores and diminished

fecal short-chain fatty acid (SCFA) concentrations (Bajer et al.,

2017; Machiels et al., 2014). Moreover, the enrichment of

pathogenic strains, including adherent-invasive Escherichia coli

(AIEC) and enterotoxigenic Bacteroides fragilis, exacerbates

mucosal inflammation through the sustained release of pro-

inflammatory mediators and carcinogenic metabolites. This

microbial-driven inflammatory cascade not only perpetuates UC

progression but also heightens the risk of colorectal carcinogenesis,

particularly in the context of chronic inflammation-dysplasia-

malignancy transition (Quaglio et al., 2022). In addition, host

genetic risk variants for UC may partially mediate disease

susceptibility through their effects on the GM, as evidenced by

the associations between NOD2 variants and specific bacterial taxa,

such as Faecalibacterium prausnitzii (Aschard et al., 2019). Another

genetic variant, CARD9, influences GM composition and function,

leading to impaired tryptophan metabolism and reduced aryl

hydrocarbon receptor ligand production, thereby exacerbating

intestinal inflammation in DSS-induced colitis (Lamas et al.,

2016). Collectively, these findings demonstrate that UC-associated

GM dysbiosis fosters a pro-inflammatory microenvironment,

contributing to disease pathogenesis and progress.
4.2 Mechanism of neutrophil extracellular
traps-gut microbiota interaction

Neutrophils engage in complex and intricate interactions with the

GM through various pathways. On one hand, they sense microbial-

derived components via TLRs and inflammasome signaling pathways,

or respond to metabolites through histone deacetylases (HDACs) and

G-protein coupled receptors. On the other hand, once recruited to the

inflamed colon, neutrophils defend against pathogens by releasing

NETs. These interactions contribute to the dual role of NETs in UC,

promoting tissue damage while simultaneously limiting microbiota-

induced immune responses.

4.2.1 Neutrophil extracellular traps modulate gut
microbiota

As primary sentinels of microbial invasion, neutrophils execute

essential immunosurveillance functions through sophisticated

phagocytic mechanisms. Contemporary research reveals that

under inflammatory conditions, neutrophils orchestrate

specialized luminal containment structures that selectively

encapsulate commensal microbiota (Molloy et al., 2013). Upon

exposure to certain pathogenic microbes, neutrophils generate
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NETs and anucleated cytoplasts which crawl and engulf bacteria

(Yipp et al., 2012). The unique structure of NETs enables them to

capture, neutralize, eliminate pathogens and prevent their

dissemination (Papayannopoulos, 2018).

CD177+ neutrophils are characterized by high ROS production

and the formation of NETs. An increased expression of CD177+

neutrophils has been observed in the peripheral blood and colon of

UC patients. However, CD177-/- mice exhibited more severe colitis.

Sequencing of CD177+ and CD177- neutrophils from UC patients

revealed that the high expression of CD177+ neutrophils is

associated with genes related to antimicrobial responses and ROS

formation, suggesting that NETs in colitis may limit immune

activation by combating intestinal bacterial translocation (Zhou

et al., 2018).

Another study investigated the role of neutrophils in colonic

inflammation using C57BL/6 and C3H/HeN mice (Sanchez-

Garrido et al., 2024). The Citrobacter rodentium-induced colitis

model shows certain similarities to human UC, particularly in the

C3H/HeN strain. Following Citrobacter rodentium intervention,

normal neutrophil activation and NET formation were observed in

C57BL/6 mice, promoting pathogen clearance. Subsequently,

neutrophils were either phagocytized or underwent reverse

migration, leading to the resolution of inflammation. In contrast,

C3H/HeN mice exhibited defects in neutrophil activation and

migration, with numerous neutrophils being trapped in the

submucosa, where they underwent harmful NETosis without

direct bacterial contact. This resulted in the release of NE and

MPO, leading to tissue damage and more severe colitis, even death.

Additionally, a decrease in the expression of CD11b and CXCR4 on

neutrophils was observed in both UC patients and C3H/HeN colitis

mice, which could impair neutrophi l act ivat ion and

reverse migration.

While the effects of NETs on pathogens may offer some

beneficial roles, in UC, the negative impact of the NETs-GM

imbalance should be acknowledged. In UC, persistent

inflammation and microbial imbalance contribute to the

degradation of the protective mucus layer and compromise the

structural integrity of the gut epithelial barrier. This breakdown

facilitates heightened interactions between GM and epithelial cells,

as well as with neutrophils that migrate to the lamina propria,

exacerbating inflammatory responses and enhancing NET-

microbiota interactions (Danne et al., 2024). Furthermore,

Clostridium difficile is a common concomitant infection during

acute flare-ups of UC that can exacerbate intestinal inflammation

and lead to poor prognosis. A study demonstrated that short-term

colonization of Clostridium difficile in mice with DSS-induced

colitis significantly altered the microbiota profile, mainly

charac t e r i z ed by a reduc t ion in the abundance o f

g_Prevotellaceae_UCG-001 and g_Muribaculaceae (Dong et al.,

2023). This resulted in robust neutrophil infiltration and the

generation of NETs. Subsequent inhibition of CXCR2 activity

markedly suppressed the activation of neutrophils in the gut and

led to an improvement in histological inflammation. Intriguingly,

our previous research has implicated CXCR2 as a UC susceptibility

locus, with mechanistic studies linking its activity to neutrophil
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chemotaxis and PAD4-dependent NETosis (Xv et al., 2024), and

CXCR2 deficiency was demonstrated to induce marked microbial

community shifts (Jee et al., 2017).

These findings col lect ive ly del ineate an intr icate

immunoregulatory axis wherein neutrophils and NETs undergo

transcriptional reprogramming that shapes gut ecology, and engage

in bidirectional crosstalk with commensal species. While

indispensable for mucosal homeostasis, their antimicrobial

effector functions demonstrate context-dependent outcomes,

which is protective during steady-state conditions yet potentially

deleterious when dysregulated in chronic inflammation.

4.2.2 Gut microbiota regulate neutrophil
extracellular trap formation

Emerging evidence demonstrates that the GM serves as a

pivotal regulator of neutrophil biology, governing their

production, activation, and functional maturation through

intricate mechanisms. The GM regulates neutrophil production

through both direct and indirect pathways. Indirect modulation

occurs via interactions between intestinal microbes and epithelial

cells, innate lymphoid cell, or stromal cells. Alternatively, direct

control is mediated through the gut-bone marrow signaling axis

(Danne et al., 2024). Notably, GM induces a hyperactivated

neutrophil subset characterized by upregulated aMb2 integrin

expression, enhanced adhesion molecule activation, and increased

NET formation capacity, which polarizes neutrophils toward a pro-

inflammatory phenotype in pathological conditions (Zhang et al.,

2015). The GM suppresses neutrophil hyperreactivity and NETosis

in mesenteric ischemia-reperfusion injury via TLR4/TRIF signaling,

while promoting immunovigilance through enhanced neutrophil

recruitment, as evidenced by gnotobiotic mouse models showing

elevated NET formation, which was reversed by LPS desensitization

or TRIF deficiency (Ascher et al., 2020). Notably, the microbiota

exerts context-dependent control over NETosis. LPS from

Pseudomonas aeruginosa and certain E. coli species trigger

“suicidal” NETosis dependent on autophagy/ROS in isolated

neutrophils, while promoting “vital” NETosis mediated by TLR4/

CD62P in whole blood, demonstrating how diverse microbial-

origin of LPS collectively regulate NET formation (Pieterse et al.,

2016). GM dysregulation disrupts neutrophil homeostasis, as

evidenced by antibiotic-induced dysbiosis synergizing with AIEC

infection to exacerbate NETosis and oxidative damage (Vong et al.,

2016). Meanwhile, NET release is correlated with their age in

circulation, and neutrophil ageing is driven by the microbiota via

TLRs and myeloid differentiation factor 88-mediated signalling

pathways (Zhang et al., 2015).

Emerging evidence highlights the pivotal role of the microbial

metabolites in both preserving intestinal equilibrium, orchestrating

immune system regulation, and contributing to UC development.

SCFAs, organic compounds containing fewer than six carbon

atoms, are generated through bacterial breakdown of non-

digestible carbohydrates in the gut. Butyrate is capable of

attenuating intestinal inflammation in experimental models by

modulating neutrophil-mediated immune pathways, including

suppression of inflammatory cytokine production and NET
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release (Li et al., 2021b). Butyrate modulates neutrophil activity in

IBD through multiple mechanisms. Experimental studies

demonstrate that dietary supplementation of butyrate attenuates

DSS-induced colonic inflammation, primarily through HDAC-

mediated suppression of NET formation (Li et al., 2021b).

Clinical investigations further reveal that butyrate treatment

significantly reduces ROS generation and subsequent NET release

in neutrophils isolated from IBD patients (Li et al., 2021b).

Interestingly, another study showed that physiological

concentrations of GM-derived SCFAs, particularly butyrate,

acetate, and propionate, induce NET formation through FFA2R/

Gaq11/NADPH oxidase signaling (I ́ñiguez-Gutiérrez et al., 2020).
4.3 Summary and perspectives

The interplay between NETs and GM in UC is not

unidirectional but constitutes a dynamic feedback loop that

amplifies and perpetuates intestinal inflammation (Figure 3). On

one hand, dysbiotic microbiota and their metabolites modulate

neutrophil recruitment, activation, and NETosis via pattern

recognition receptors and metabolite-sensing pathways. On the
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other hand, NETs directly shape microbial community structure

through antimicrobial components and physical trapping, further

influencing epithelial barrier integrity and mucosal immune

responses. This reciprocal interaction creates a self-sustaining

inflammatory cycle: dysbiosis promotes aberrant NET formation,

which in turn exacerbates microbial imbalance, barrier disruption,

and chronic inflammation. Elucidating this feedback loop is critical

for understanding UC pathogenesis and designing interventions.

Considering the pivotal role of neutrophils in innate immunity,

indiscriminate depletion of neutrophils may not be beneficial for

colonic inflammation. The "double-edged sword" effect of NETs

necessitates more precise regulation. Targeting neutrophils through

the GM offers a potential strategy to regulate the balance between

NETs' pro-inflammatory effects and their antimicrobial protection.
5 Traditional Chinese medicine
targeting the neutrophil extracellular
traps-gut microbiota axis

Therapeutically, targeting neutrophils is a double-edged sword.

Inhibiting or depleting these cells carries risks including increased
FIGURE 3

Reciprocal interplay between GM and neutrophil activation. GM and its metabolites stimulate the activation of diverse neutrophil subsets, enhancing
their production of ROS and NETs, which promotes inflammation. In turn, the released NETs modulate the composition and function of the GM,
thereby creating a vicious cycle that exacerbates disease progression. GM, gut microbiota; NET, neutrophil extracellular traps; LPS,
lipopolysaccharide; SCFA, short-chain fatty acid; TLR, toll-like receptor; HDAC, histone deacetylase; GPCR, G protein-coupled receptor; FFAR, free
fatty acid receptor; CXCR, C-X-C motif chemokine receptor; ROS, reactive oxygen species.
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susceptibility to severe infections due to neutropenia. Current

neutrophil-targeted therapies have largely been disappointing in

clinical settings (Danne et al., 2024). Instead of inhibiting or

depleting these cells, functional modulation may offer a more

effective approach to disease management. Due to the

microbiome-host interaction, modulating the intestinal

microbiota to influence neutrophil activity, particularly in the

context of UC, might be a promising strategy.

Research highlights the therapeutic promise of TCM in

managing UC. In randomized controlled trials (RCTs), medicine

like indigo naturalis (Naganuma et al., 2018), Fufangkushen colon-

coated capsule (Gong et al., 2012), Qing-Chang-Hua-Shi granules

(Shen et al., 2021), and modified Wumei pills (Li et al., 2025a)

exhibit superior efficacy in UC compared with placebo or western

medicine alone. Studies demonstrate that various herbal

compounds effectively treat UC through modulating multiple

cellular signaling pathways (Zhang et al., 2022a). Evidence further

suggests specific TCM-derived therapies can influence NETs and

GM composition, mitigating colonic inflammation and associated

risks like thrombosis and malignancy. This multi-targeted approach

underscores significant potential for clinical application.
5.1 Single herbal extracts targeting
neutrophil extracellular traps

Several natural compounds have been demonstrated to directly

inhibit NET formation in the models of UC, and the main targets

highly concentrated on PAD4, NE, MPO, and related signaling

pathways. Berberine effectively improved the clinical efficacy,

reduced inflammation, and alleviated symptoms in UC patients

(Li et al., 2025a) and DSS-induced models (Deng et al., 2020), while

reducing NET formation, a key mechanism underlying its anti-

inflammatory and anti-thrombotic effects in UC. It achieves this by

suppressing nuclear translocation of NE, mediated through

disrupting the interaction between exosome-transferred lncRNA

LINC00668 and NE (Zhang et al., 2023b). Berbamine reduces

PAD4 expression and NET markers (cit-H3, NE, MPO) in

neutrophils and colonic tissues of DSS-mice (Tang et al., 2024).

Ferulic acid suppresses neutrophil migration and NET generation

within the colons of mice with UC. Crucially, its anti-inflammatory

effect was absent in mice lacking neutrophils, demonstrating that

neutrophil activity is essential for ferulic acid's mitigation of colitis

(Han et al., 2023). Forsythiaside A treatment improved DSS-

induced colitis, reduced PAD4-associated NET formation in

colon tissue. Similar results were achieved in cultured neutrophils,

where forsythiaside A pretreatment also suppressed PAD4

expression and NETosis induced by PMA (Wang et al., 2025).

Arbutin significantly lessens inflammatory factors, neutrophil

infiltration, and NET formation in UC models by inhibiting the

Erk pathway in neutrophils (Qin et al., 2024). Dihydromyricetin

also alleviates colon inflammation, reduces proinflammatory

cytokines, improves intestinal epithelium integrity, and inhibits

NETs (Ma et al., 2024). In vitro studies suggest it repairs the

mucosal barrier by targeting NETs, primarily via inhibiting the
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HIF-1a/VEGFA signaling pathway, which is a key regulator of

hypoxia-driven neutrophil recruitment and activation in inflamed

intestinal tissue.

In addition, several compounds effective in UC may have the

anti-NET effects not limited to the UC model. These effects have

also been confirmed in models of sepsis, arthritis, viral infections,

chemical injury, or cancer metastasis. This cross-model NET

inhibitory activity provides clues for further investigations into

the anti-colitis mechanisms.

Glycosides, including ginsenosides and forsynthiaside B, are

demonstrated to alleviate DSS-induced colitis (Hwang et al., 2017;

Cheng et al., 2022). Forsynthiaside B downregulates PAD4

expression and NET formation in a sepsis model (He et al.,

2022). Ginsenoside Rg1 suppresses NET generation in pulmonary

tissues and counteracts their tumor-promoting effects (Lu et al.,

2024), while Rg5 alleviated experimental deep vein thrombosis by

inhibiting NETosis and neutrophil-driven inflammation through

P2RY12 signaling (Chen et al., 2022).

Flavonoids that have efficacy in UC include baicalin and

luteolin. Baicalin reduced the level of MDA, IL-1b, TNF-a and

MPO in the colon of UC model (Shen et al., 2019) and inhibited

NET formation and neutrophil chemotaxis in viral infection models

(Li et al., 2023). Luteolin alleviates UC symptoms and inflammatory

responses in animal models (Liu et al., 2020). Further mechanistic

studies revealed its suppression of ROS production and NET

formation in human neutrophils, mediated through the Raf1-

MEK1-ERK signaling cascade (Yang et al., 2018).

In terms of phenolic compounds, curcumin ameliorates

symptoms in mild-to-moderate UC patients (Sadeghi et al., 2020;

Lang et al., 2015), induces responses and remission (Ben-Horin

et al., 2024), and reduces recurrence (Hanai et al., 2006), with

parallel experimental evidence demonstrating its suppression of

polymorphonuclear neutrophil chemotaxis (Larmonier et al., 2011)

and MPO activity (Liu et al., 2013) in IBD models. Further

mechanistic research revealed that curcumin attenuates

polybrominated diphenyl ether-induced neutrophil ROS

generation and NET release by activating the Nrf2 pathway (Ye

et al., 2021).Total phenolic acid extract and tanshinone extract from

Salvia miltiorrhiza effectively ameliorate DSS-induced colitis (Peng

et al., 2021). Among them, tanshinone IIA suppressed neutrophil

infiltration and NET formation in rheumatoid arthritis models

(Zhang et al., 2017). Dihydrotanshinone I reversed PMA-

triggered NET formation in 4T1 breast cancer cells by scavenging

ROS, and reducing Ly6G+MPO+ neutrophil accumulation and

citH3 expression in lung tissue, thereby inhibiting NET-driven

metastatic dissemination (Zhao et al., 2022). Paeonol has been

demonstrated to mitigate TNBS-induced colitis (Zong et al.,

2017). APPA (containing paeonol), reduced neutrophil

degranulation, ROS, and NETs without compromising host

defense (Cross et al., 2020).

As for terpenoids and polyssacharides, andrographolide

derivatives mitigate DSS-induced UC by suppressing NF-kB and

MAPK signaling cascades (Gao et al., 2018), concurrently

attenuating polymorphonuclear leukocyte infiltration and NET

formation in arthritis models (Li et al., 2019). Similarly, carnosic
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acid alleviates acute DSS-triggered colonic inflammation through

reduced MPO activity (Yang et al., 2017), while directly restraining

neutrophil activation via diminished superoxide anion/ROS

biosynthesis, elastase secretion, and cellular adhesion.

Mechanistically, it blocks NETosis by inhibiting Erk/JNK

phosphorylation (Tsai et al., 2023). Ganoderma atrum-derived

water-soluble PSG-1 restores intestinal physical and immune

barriers in murine colitis (Zheng et al., 2020), whereas

Ganoderma lucidum peptide-polysaccharide GL-PPSQ2 counters

intestinal ischemia-reperfusion injury by preserving mucosal

integrity, enhancing tight junctions, reducing inflammation, and

suppressing MPO/citH3 expression linked to NET-associated

pathology (Lin et al., 2023).

NETs appear to be a key "bridge" connecting inflammation,

tissue damage, thrombosis, and other complications, making itself a

significant target of UC treatment. Most effective compounds

exhibit pleiotropic effects, including NET inhibition, anti-

inflammation, antioxidation, and barrier repair.
5.2 Single herbal extracts targeting gut
microbiota

Many core compounds mentioned above possess dual

capabilities of regulating GM and inhibiting neutrophil

activation/NET formation (See Table 1). On one hand, they

regulate the GM to reduce pro-inflammatory signals and antigen

stimulation, indirectly inhibiting excessive immune responses; on

the other hand, they directly inhibit key pathogenic effects of NETs.

This intervention targeting the "microbiome-immune" axis in a

coordinated manner could be the key to their superior efficacy

compared to single-target interventions.

Some compounds provide the strong causal evidence with

microbiome and treatment. Through antibiotic-induced

microbiome depletion or fecal microbiota transplantation (FMT)

experiments, it has been demonstrated that their anti-UC efficacy

completely relies on the presence and regulation of the GM.

Berberine increases the relative abundance of beneficial bacteria

compared to the model group, including up-regulating

Lactobacillus/Lactococcus. On the other hand, harmful bacteria

such as Bacteroides, segmented filamentous bacteria, and

Enterobacteriaceae were reduced. Additionally, depletion of

microbiota through antibiotic treatment significantly reversed

berberine's therapeutic effects, suggesting that its anti-colitis

act ion is microbiota-dependent (Dong et a l . , 2022) .

Dihydromyricetin has also shown the effect of alleviating gut

dysbiosis in colitis mice. Antibiotic-mediated microflora depletion

and FMT established that its therapeutic efficacy depends on GM. It

restored microbial bile acid metabolism during colitis development,

and significantly enriched beneficial Lactobacillus and Akkermansia

genera (Dong et al., 2021). Paeonol improved intestinal

microecological imbalance, and promoted the production of

SCFAs. In particular, C. butyricum was identified as a key

bacterium responsible for the intestinal barrier repair effect of

paeonol in UC mice (Zhao et al., 2023).
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Several other compounds have also shown the ability to

significantly modulate the microbiota diversity and composition

in UC. Arbutin decreased the abundance of potentially harmful

bacteria such as Shigella Induced by DSS at the genus level. At the

species level, arbutin reversed the increased abundance of

pathogenic species, including Mucispirillum schaedleri and

Clostridium perfringens, alongside the decrease in beneficial anti-

inflammatory probiotics and butyrate-producing bacteria exhibited

in DSS-treated mice (Qin et al., 2024). Forsythiaside A treatment

not only increased the expression of the tight junction protein and

decreased inflammatory cytokines in the colon, but also alleviate gut

dysbiosis in colitis mice (Wang et al., 2025). Luteolin treatment

modulated GM structure in UC rats, elevating beneficial genera

(Lactobacillus, Bacteroides, Roseburia, Butyricicoccus) and

suppressing DSS-induced increases in Prevotella_9 and

Lactobacillus proportions (Li et al., 2021a). Curcumin has been

demonstrated to be beneficial for modulating abundance of some

specific bacteria in DSS-induced mice, including Akkermansia and

Roseburia, as well as families such as F16 and Aerococcaceae (Guo

et al., 2022). Ginsenoside Rg1 improved the composition of GM in

obese mice with colitis, with increases in alpha diversity indexes, a

significant down-regulation of Romboutsia, and up-regulation of

Enterorhabdus, Desulfovibrio, and Alistipes (Zhong et al., 2023).

Studies on some compounds have revealed broader connections

that they can simultaneously inhibit neutrophil recruitment/

activation and regulate GM balance. The early prevention effect of

ursolic acid could effectively alleviated UC inflammation, reduce

neutrophils infiltration, and reverse the reduction of the richness of

intestinal flora, meanwhile regulating inflammatory and fatty acid

metabolism signaling pathways (Sheng et al., 2021). The

nanocrystals of indigo and indirubin exhibited improved

therapeutic efficacy in DSS-induced mice via downregulating the

expression of macrophages, neutrophils, and dendritic cells and

maintaining intestinal flora homeostasis (Xie et al., 2023).

Astragalin treatment reduced the expression of pro-inflammatory

cytokines, inhibited colonic infiltration by neutrophils, ameliorated

metabolic endotoxemia, and partially reversed the alterations in the

GM in colitis mice, mainly by increasing the abundance of

potentially beneficial bacteria (such as Ruminococcaceae) and

decreasing the abundance of potentially harmful bacteria (such as

Escherichia-Shigella) (Peng et al., 2020).

Meanwhile, many other TCM compounds exhibit potent GM-

modulating properties, for which evidence of neutrophil/NETs

involvement is still sparse. Nevertheless, their established role in

gut health suggests a potential, yet unexplored, impact on

neutrophilic inflammation, meriting further investigation.

Plantamajoside administration reshaped the GM by elevating the

abundance of Bacteroidota and Verrucomicrobiota while reducing

Firmicutes and Proteobacteria. At the genus level, it suppressed

pathogenic bacteria such as Turicibacter and promoted beneficial

taxa like [Eubacterium]_xylanophilum_group (Jia et al., 2025). Morin

also modulated the GM composition in DSS-induced models by

promoting beneficial bacteria such as Muribaculaceae and

Erysipelotrichaceae, while simultaneously decreasing the abundance

of detrimental bacterial groups (Qiu et al., 2024). Pimpinellin
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TABLE 1 Single herb extracts and compounds targeting NETs and GM in UC.

Active
compound

Chemical structure
Anti-NET
mechanisms

Gut microbiota effects
Key benefits in
UC

References

Arbutin

Inhibits Erk pathway;
Suppresses neutrophil
infiltration and NET
formation

↓ Mucispirillum
Schaedleri, Clostridium perfringens;
↑ Bacteroides acidifaciens,
Parabacteroides
Disasonis, Clostridium cocleatum,
Oscillospira, Lachnospiraceae

Reduction of
inflammation and
neutrophil infiltration

(Qin et al., 2024)

Berberine

Inhibits NE nuclear
translocation; disrupts
interaction of
LINC00668/NE

↑ Lactobacillus/Lactococcus; ↓
Bacteroides, segmented filamentous
bacteria, Enterobacteriaceae

Anti-inflammation,
anti-thrombosis, barrier
repair, immune
homeostasis regulation

(Zhang et al.,
2023b; Dong et al.,
2022)

Curcumin

Activates Nrf2; Inhibits
polymorphonuclear
neutrophil chemokinesis,
MPO activity, ROS,
NETs

↑ Akkermansia, Roseburia, F16,
Coprococcus;
↓ Enterococcaceae, Aerococcaceae,
Turicibacter

Anti-inflammation,
antioxidation

(Larmonier et al.,
2011; Liu et al.,
2013; Ye et al.,
2021; Guo et al.,
2022)

Dihydromyricetin
Inhibits HIF-1a/VEGFA
pathway and neutrophil
recruitment

↑ Lactobacillus, Akkermansia
Barrier repair, anti-
inflammation, bile acid
metabolism restoration

(Ma et al., 2024;
Dong et al., 2021)

Forsythiaside A
Suppresses PAD4/
NETosis

↑ Simpson Index;
↓Oscillospiraceae, Bacteroides,
Colidextribacter;
↑ acetic acid, valeric acid,
isovaleric acid, propanoic acid

Anti-inflammation,
tight junction increase

(Wang et al.,
2025)

Ginsenoside Rg1
Suppresses NETs in
tumors

↑ Sobs, Ace, Chao indexes;
↓ Romboutsia;
↑ Rikenellaceae_RC9_gut_group,
Lachnospiraceae_NK4A136_group,
Enterorhabdus, Desulfovibrio,
Alistipes

Anti-inflammation,
lipid metabolism
regulation, Th1/Th2/
Th17 cell differentiation
regulation

(Lu et al., 2024;
Zhong et al., 2023)

(Continued)
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increased beneficial gut probiotics (S24-7) while reducing harmful

bacteria (Enterobacteriaceae) (Lv et al., 2025). Purslane treatment

enhanced the diversity of the GM, elevating the abundance of

Butyricoccus and Bifidobacterium, while reducing the levels of

Bacteroides and Parabacteroides. Serum metabolomics further

revealed that the dysregulation of 39 metabolites was substantially

ameliorated following purslane administration (Li et al., 2025b). C.

pilosula polysaccharide, composed of rhamnose, arabinose, galactose,

glucose, and galacturonic acid, notably elevated the Firmicutes/

Bacteroidetes ratio and enhanced the proliferation of beneficial

bacterial genera, including g:Ligilactobacillus, and g_Akkermansia.

This shift in microbial community further stimulated the production

of acetic acid and butyric acid. The rise in SCFAs subsequently

mitigated inflammatory responses via the GPR/NLRP3 signaling

pathways (Zhou et al., 2025). Ganoderic acid promoted tryptophan

metabolism, subsequently activated the aryl hydrocarbon receptor,

and triggered the production of IL-22, which was mediated by GM

(Kou et al., 2024). Puerarin counteracted the increased abundance of

Akkermansia muciniphila in DSS mice, and effectively inhibited the

activation of M1-like macrophage triggered by the baterial secreted

protein Amuc_2172 (Li et al., 2025b). Formononetin also alleviated

UC through restoring the balance of M1/M2 macrophage

polarization, which was GM-dependent (Xiao et al., 2024).

The regulation of these compounds is bidirectional, which

promotes beneficial bacteria, especially SCFA-producing and barrier-

related bacteria, and inhibiting pathogenic bacteria, restoring both

composition and function of microbiome. Many compounds show the

ability to simultaneously regulate GM and neutrophils, suggesting their

integrated effect on the "microbiome-immune-barrier" axis.
5.3 Formulas targeting the neutrophil
extracellular traps-gut microbiota crosstalk

A defining characteristic of TCM in treating complex diseases like

UC lies in its holistic approach, typically realized through a multi-

component, multi-target, and multi-pathway therapeutic strategy.

Significantly, as highlighted in the preceding sections, numerous

bioactive TCM-derived components exhibit dual or even multiple
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therapeutic properties. Specific compounds discussed earlier

demonstrate a remarkable capacity to simultaneously modulate

NETs and intervene in GM dysbiosis. Building upon this foundation

of multi-targeting constituents, this section focuses on the synergistic

mechanisms of several representative TCM formulas specifically

employed for UC management (See Table 2).

Baitouweng decoction has been demonstrated in RCTs that they

can improve the symptoms of colitis and inhibit inflammation (Xie

et al., 2024). The extract from Baitouweng decoction showed

therapeutic potential in a murine model of UC by reducing

chemokine levels (CXCL1 and CXCL2) and inhibiting neutrophil

infiltration in the colon. It also downregulated the expression of key

proteins associated with NET formation (PAD4, NE, MPO, citH3,

MMP) (Wang et al., 2024). The decoction also enhanced GM

diversity and the relative abundance of Firmicutes, Proteobacteria,

Actinobacteria, among others, while restoring Bacteroidetes levels.

Furthermore, it increased farnesoid X receptor and Takeda G

protein-coupled receptor 5 expression in the liver, alleviating

DSS-induced symptoms through the modulation of bile acids and

GM (Hua et al., 2021).

Research on UC-associated colorectal cancer demonstrated

that Huangqin decoction delayed carcinogenesis initiation. Beyond

this protective effect, it also mitigated inflammation and boosted

CD8+ T cell immunosurveillance. Mechanistically, these benefits

stemmed from NETs downregulation, and linked to PAD4

deactivation (Pan et al., 2022). Moreover, the decoction

modulated the DSS-induced gut dysbiosis (Li et al., 2022a).

Si-Jun-Zi decoction significantly alleviated colonic tissue

damage, enhanced intestinal barrier integrity, and markedly

suppressed the abundance of the phylum Proteobacteria and the

genus Escherichia-Shigella. The regulation of GM leads to

modulation of bile acid biosynthesis. The decoction was further

proved to exert anti-inflammatory activities in a GM-dependent

manner (Wu et al., 2023). Additional experiments showed that the

decoction can reduce the co-localization of TNF-a/NE and IL-1b/
NE in PMA-stimulated neutrophils, which exhibits the potential of

NET regulation (Zhang et al., 2023a).

Da-Yuan-Yin Decoction protected the intestinal barrier by

restoring levels of tight junction proteins. Furthermore, it
TABLE 1 Continued

Active
compound

Chemical structure
Anti-NET
mechanisms

Gut microbiota effects
Key benefits in
UC

References

Luteolin
Inhibits Raf1-MEK1-
ERK, superoxide anion
generation, ROS, NETs

↓ Lactobacillus, Prevotella_9
Cytokine reduction,
anti-oxidation, barrier
Repair

(Yang et al., 2018;
Li et al., 2021a)

Paeonol
Reduces neutrophil
degranulation, ROS, and
NETs

↑ SCFAs; ↑ C. butyricum
Anti-inflammation,
barrier restoration

(Cross et al., 2020;
Zhao et al., 2023)
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suppressed the expression of NET-related genes (PADI4, MPO,

NE) and TLR4. Correlation analysis indicated that claudin-1 levels

inversely correlated with both MPO and PADI4, while TLR4 levels

showed a positive correlation with NE (Yang et al., 2024). Another

study corroborated these findings that the decoction downregulated

cit-H3, PADI4, and MPO expressions in the lung, stomach, and

colon in UC mice. Moreover, the intervention restored GM

diversity and abundance, while ameliorating metabolic

dysregulation by increasing total SCFA content (Yang et al., 2025).

Gegen Qinlian Decoction significantly ameliorated colitis and

concurrent pulmonary inflammation, as evidenced by the down-

regulated expressions of inflammatory cytokines and the

suppressed recruitment of neutrophils. Meanwhile, the decoction

greatly improved intestinal microbiota imbalance in the feces of

colitis mice (Li et al., 2022b).

Kui-jie-ling capsule, specifically designed and applied in the

treatment of UC in China, alleviated UC through multi-pathway

mechanisms. One study demonstrated that, when combined with

ADA, it inhibits NET-related markers (cit-H3, MPO) and restores

intestinal homeostasis, which is superior to ADA alone (Li et al., 2024).

The intervention restored the content of acetic acid, propionic acid, and

butyric acid in the colon of the DSS mice, while decreasing isobutyric
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acid, valerate acid, and isovalerate acid. FMT further verified the

protective effect of Kui-jie-ling capsule is dependent on microbiota.

The therapeutic superiority of these TCM formulas lies in their

ability to concurrently disrupt the vicious cycle between NET

formation and GM dysbiosis by simultaneously targeting NET-

related inflammatory pathways and restoring microbial balance.

This dual perturbation of interconnected pathological axes enables

a comprehensive dampening of UC progression and underscores

the holistic mechanism through which multi-target TCM achieves

synergistic therapeutic outcomes.
5.4 Research gaps and future directions

Despite the promising evidence supporting the role of TCM in

modulating the NETs-GM axis in UC, several research gaps remain

to be addressed. Most existing studies are preclinical, relying heavily

on animal models and in vitro systems. Clinical validation in well-

designed human trials is scarce, limiting the translation of these

findings into evidence-based therapies. The precise mechanisms

through which TCM components simultaneously regulate NET

formation and microbial communities are still not fully elucidated.
TABLE 2 Traditional Chinese medicine formulas treating UC via NETs and microbiota.

TCM
formula

Key herbs
NETs
inhibition

Gut microbiota
modulation

Synergistic
mechanisms &
benefits

References

Baitouweng
Decoction

Radix pulsatillae, Cortex phellodendri,
Rhizoma coptidis, Cortex fraxini

↓ CXCL1/CXCL2,
neutrophil
infiltration;
↓ PAD4, NE, MPO,
citH3, MMP

↑ Firmicutes, Proteobacteria,
Actinobacteria, Tenericutes,
TM7;
↓ Bacteroidetes

Anti-inflammation; bile
acid modulation

(Wang et al.,
2024; Hua et al.,
2021)

Da-Yuan-
Yin
Decoction

Semen Areca, Magnolia officinalis, Fructus
tsaoko, Rhizoma Anemarrhee, Paeonia
obovata, Radix Scutellariae, Radix
Glycyrrhizae

↓ PADI4, MPO,
NE, cit-H3, TLR4

↑ Simpson index;
↑ Akkermansia, Firmicutes/
Bacteroidetes;
↓ Klebsiella, Parabacteroides,
Escherichia-Shigella,
Colidextribacter, Clostridioides,
Parasutterella;
↑ SCFAs

Restores tight junctions;
anti-inflammation

(Yang et al.,
2024, Yang
et al., 2025)

Gegen
Qinlian
Decoction

Radix Puerariae, Scutellaria hypericifolia,
Rhizoma Coptidis, Radix Glycyrrhizae

↓ Neutrophil
recruitment
(implied NET
suppression)

↑ Ruminococcaceae_UCG-013;
↓ Parabacteroides, [Eubacterium]
_fissicatena_group, Akkermansia

Anti-inflammation
(Li et al.,
2022b)

Huangqin
Decoction

Radix Scutellaria, Radix Paeoniae Alba,
Radix Glycyrrhizae, Fructus Zizyphi Jujubae

↓ PAD4/NETs
↑ ACE, Chao1 indexes;
↑ Firmicutes;
↓ Bacteroidetes

Boosts CD8+ T cell
immunosurveillance;
reduces UC-associated
cancer risk

(Pan et al.,
2022; Li et al.,
2022a)

Kui-jie-ling
Capsule

Radix Astragali, Radix et Rhizoma Rhei,
Retinervus Luffae Fructus, Margarita

↓ cit-H3, MPO

↓ Bacteroides, Escherichia–
Shigella;
↑ Muribaculaceae;
↑ acetic acid, propionic acid,
butyric acid, acetic acid

Restores intestinal
homeostasis

(Li et al., 2024)

Si-Jun-Zi
Decoction

Radix Codonopsis pilosulae, Rhizoma
Atractylodis macrocephalae, Poriae Alba,
Radix Glycyrrhizae

↓ TNF-a/NE and
IL-1b/NE co-
localization in
neutrophils

↓ Proteobacteria, Escherichia-
Shigella;
↑ bile acid biosynthesis

Microbiota-dependent
anti-inflammation;
enhances barrier integrity

(Wu et al.,
2023; Zhang
et al., 2023a)
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A key question is how the multi-target nature of TCM

comprehensively disrupts the vicious cycle of inflammation, NET

release, dysbiosis, and barrier damage. This includes clarifying how

TCM restores immune-microbiome crosstalk not by isolated

inhibition, but through system-level reprogramming that resolves

neutrophilic inflammation while reestablishing microbial

homeostasis and mucosal integrity. Further research should

prioritize conducting rigorous RCTss to evaluate the efficacy and

safety of TCM compounds and formulas in UC patients, especially

in comparison with conventional therapeutics. Researchers should

consider utilizing multi-omics approaches to unravel the complex

interactions between specific TCM compounds, NETs, and GM,

and to identify key microbial taxa and immune pathways involved.

Addressing these gaps will not only enhance our understanding of

TCM’s holistic regulatory capacity but also facilitate the

development of novel integrative treatment strategies for UC and

other immune-mediated diseases.

Moreover, further technical precision is needed in research on the

mechanisms by which TCM inhibits NETs and microbiota in UC.

(1) The characterization of NET formation would benefit from the

use of multiple methods, such as multiplex immunohistochemical

techniques for co-localization analysis of DNA-MPO/citH3/NE

complexes and live-cell imaging of neutrophils using electron

microscopy (Boeltz et al., 2019). This is crucial because single

markers such as MPO, NE, or cfDNA may not clearly indicate

NET formation. (2) Current research in this area occasionally lacks

methodological rigor, making it difficult to conclusively establish the

targeting effects of TCM on NETs. Future investigations should

employ a combination of gene knockout models and in vitro

cellular systems, applying diverse modeling strategies to elucidate

the specific therapeutic mechanisms of TCM across multiple

biological levels. (3) In terms of stimulus selection, it would be

more clinically relevant to use stimulants associated with UC

pathology, such as patient-derived serum or cytokine mixtures

representative of UC, with PMA serving as a positive control

(Boeltz et al., 2019). (4) Causal relationships between microbiota

and NETs remain unclear in many studies, with some only

demonstrating correlations. Antibiotic-induced microbiota

depletion or FMT is strongly recommended in these studies. The

precise mechanisms underlying the interaction between NETs

and microbiota have yet to be fully elucidated. Future research

should aim to conduct more in-depth and clear experiments in this

area. (6) The bioavailability of phytochemicals derived from TCM is

often constrained by their limited chemical stability and aqueous

solubility. This challenge can be addressed through the design of

novel delivery platforms (nanocarriers, lipid-based vesicles,

polymeric gels, etc.), which significantly improve their absorption

and bioavailability.
6 Discussion

UC prominently features neutrophil-driven inflammation. While

initial therapeutic advances focus on restraining this immune cell
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activity, indiscriminate neutrophil depletion is counterproductive.

These cells serve as vital defenders, safeguarding intestinal balance,

combating pathogens, and facilitating wound repair and homeostatic

maintenance. Studies on NETs offer a more targeted strategy.

Removing NETs disrupts pathological processes without terminating

core neutrophil functions. Crucially, NET formation inhibition breaks

the self-perpetuating inflammatory cycle while preserving essential

antimicrobial defenses. Moreover, microbiota is considered both as a

causal factor and a consequence of the disease process, thereby forming

a central link within the pathogenic cycle. Critically, the dynamic

and reciprocal interactions between the GM and the host immune

defense are now understood to be key interconnected drivers that

perpetuate intestinal inflammation and contribute significantly to

tissue damage in UC.

Our review highlights the efficacy of TCM in suppressing NET

formation andmodulating GM during UC. Several herbs and formulas

demonstrably lower levels of key NET constituents, including

NE, MPO, and citH3. These interventions concurrently reduce ROS

generation and inhibit PAD4 activity, effectively antagonizing NETosis.

Further research demonstrates that TCM therapies modulate critical

inflammatory signaling cascades (e.g., MAPK, NF-kB) and oxidative

stress pathways (e.g., Nrf2, HIF-1a). Additionally, TCM agents disrupt

exosome-facilitated communication between neutrophils and epithelial

cells, collectively resulting in diminished neutrophil activation.

Moreover, a significant body of research has linked NET modulation

with the microbiota. The anti-inflammatory effects of certain herbs and

formulas are microbiota-dependent. TCM derivatives regulate not only

the diversity and composition but also the function of gut flora,

typically exerting a bidirectional effect that restores beneficial

probiotics while reducing pathogenic microbes disrupted in UC.

These studies underscore how TCM’s holistic approach achieves

comprehensive efficacy by targeting the complex UC network, rather

than focusing on isolated targets, offering a unique advantage of TCM

in addressing the multifaceted nature of UC.
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