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1 Introduction

Leishmaniasis is a neglected disease, widespread throughout the world. It represents a
major global health challenge due to its economic and social implications. It is caused by
protozoan parasites of the genus Leishmania (Mann et al., 2021; Mathison and Bradley
Benjamin, 2022). Unlike most eukaryotes, Leishmania has an atypical genome,
characterized by its high plasticity (Thomas et al., 2009; Rogers et al., 2011; Tantorno
et al, 2017; Glans et al, 2021), the absence of introns, polycistronic constitutive
transcription of its genes and lack of gene regulation at the transcriptional level
(Martinez-Calvillo et al,, 2003; Ivens et al., 2005; Peacock et al., 2007; Rogers et al.,
2011). Because of this, the regulation of gene expression in Leishmania and
trypanosomatids in general occurs at the post-transcriptional level. Recent studies have
found that non-coding RNAs (ncRNAs) play an important role in these regulatory
mechanisms in trypanosomatids, however, the precise function and mechanisms
associated with them are poorly understood (Rajan et al., 2020; Fort et al., 2022; Guegan
et al., 2022; Espada et al., 2025; Quilles et al., 2025).

In general, ncRNAs are a class of RNA transcripts that are not translated into proteins
but serve essential regulatory functions in a variety of biological processes. ncRNA are
typically categorized based on length or functions. Based on length, they are classified into
small ncRNAs (<200 nucleotides) and long ncRNAs (>200 nucleotides) (Quinn and Chang,
2016; Zhang et al., 2019; Chen and Kim, 2024; Jouravleva and Zamore, 2025). Based on
function, they are divided into two major categories: 1) housekeeping ncRNAs (ribosomal
RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs) and telomerase RNA (TERC); these ncRNAs are ubiquitously expressed
and participate in fundamental cellular activities and 2) regulatory ncRNAs (microRNAs
(miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), tRNA-
derived fragments (tRFs), and tRNA halves (tiRNAs), enhancer RNAs (eRNAs), long non-
coding RNAs (IncRNAs), and circular RNAs (circRNAs)); these are involved in fine-tuning
gene expression at multiple levels — epigenetic, transcriptional, and post-transcriptional
(Pasquinelli and Ruvkun, 2002; Ambros, 2003; Zhang et al., 2019; Chen and Kim, 2024).
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Similar to other eukaryotes, Leishmania parasites carry same
types of housekeeping ncRNAs. A diverse repertoire of regulatory
ncRNAs has been identified across various Leishmania species
including siRNAs (Atayde et al., 2013; Lambertz et al., 2015;
Brettmann et al, 2016), tRNA- and rRNA-derived small RNAs
(Lambertz et al., 2015; Kusakisako et al., 2023), snoRNAs (Liang
et al., 2007; Saxena et al., 2007; Eliaz et al., 2015; Piel et al.,, 2022;
Rajan et al, 2024), and IncRNAs (Dumas et al., 2006; Emond-
Rheault et al., 2025; Espada et al., 2025). Although many
Leishmania species lost the canonical RNA interference (RNAi)
pathway, however, several species in the Viannia subgenus
(Leishmania braziliensis and Leishmania guyanensis) (Lye et al,
2022) retain a functional RNAi machinery capable of producing
siRNAs (Atayde et al., 2013; Brettmann et al., 2016). Importantly,
while canonical miRNAs have not been identified in Leishmania,
some in silico studies have proposed the existence of miRNA-like
molecules with potential regulatory function (Sahoo et al., 2014;
Nimsarkar et al., 2020; Martinez-Hernandez et al., 2025). However,
these findings remain speculative and require in vitro validation
before any definitive conclusions can be drawn. Complementing
these predictions, various RNA-seq datasets have revealed a wide
range of ncRNAs encoded in the Leishmania genome. In many
cases these transcripts remain functionally uncharacterized; they
have been identified in species such as L. braziliensis (Torres et al.,
2017; Ruy et al.,, 2019; Martinez-Hernandez et al., 2025; Quilles
et al., 2025), L. amazonensis (Aoki et al., 2017; Goes et al., 2023),
L. major (Liang et al., 2007; Eliaz et al., 2015; Freitas Castro et al.,
2017; Rajan et al., 2024; Martinez-Hernandez et al., 2025), L.
donovani (Saxena et al., 2007; Freitas Castro et al., 2017; Piel
et al, 2022; Martinez-Hernandez et al.,, 2025), L. infantum
(Dumas et al,, 2006; Emond-Rheault et al., 2025), L. mexicana
(Kalesh et al., 2022).

Across a wide range of organisms, ncRNAs have been
implicated in mRNA processing, mRNA stability and emerge as
key players in a variety of regulatory processes, such as DNA
replication, chromosome maintenance, transcriptional regulation,
translation, protein stability, the translocation of regulatory proteins
and host-parasite interactions (Freitas Castro et al., 2017).
Understanding the role and mechanisms of ncRNAs actions in
Leishmania and host may lead to new avenues in the search for
strategies to control leishmaniasis.

2 Post-transcriptional regulation and
translational control

Leishmania parasites are characterized by the absence of classic
genetic control at the transcriptional level, therefore, one of the main
roles of ncRNAs could be at the post-transcriptional level (Figure 1A),
through regulation of mRNA stability, processing, transport, and
degradation; these processes at the post-transcriptional level have
been seen in other protozoa (Li et al, 2020; Simantov et al,, 2022).
Recent evidence suggests a significant presence of regulatory ncRNAs
derived from untranslated regions (UTRs) of mRNAs (Freitas Castro
et al, 2017). RNA-Binding Proteins (RBPs) are central to post-
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transcriptional regulation (Glisovic et al., 2008). Over 2,400 RBPs,
including non-poly(A)-binding proteins, form complexes with
ncRNAs, suggesting roles in RNA transport and stability in L.
mexicana (Kalesh et al., 2022).

In the absence of transcriptional regulation translational control
plays a crucial role in Leishmania gene expression supporting
survival and adaptation to dramatically different environments
during change of host (Jaramillo et al., 2011; Cloutier et al., 2012;
Karamysheva et al.,, 2020; Gutierrez Guarnizo et al., 2023;
Rodriguez-Almonacid et al., 2023). In eukaryotes ncRNAs play
direct roles in modulating protein synthesis, either by interacting
with ribosomes, regulating the availability of mRNAs for translation
or governing modifications of ribosomal proteins (Godet et al,
2024). rRNAs facilitate the peptidyl transfer reaction during protein
synthesis (Moore and Steitz, 2011). Recent studies support
importance of rRNA modifications by snoRNAs in L. major
(Eliaz et al,, 2015). snoRNAs are organized in gene clusters
containing both C/D and H/ACA types, guiding rRNA
modifications like 2’-O-methylation (Nm) and pseudouridylation
(Eliaz et al., 2015; Rajan et al., 2024). These modifications occur in
conserved rRNA domains and are critical for rRNA maturation,
stability and mRNA translation.

In L. infantum, a class of IncRNAs (300-600 nucleotides) was
mainly identified in amastigotes, showing a preferential association
with the small ribosomal subunit (40S) (Dumas et al., 2006). These
findings indicate a possible role in regulation at the translation level,
although a direct effect on translational initiation has not been
demonstrated. In L. braziliensis, the IncRNA45 was functionally
characterized, demonstrating possible roles in RNA processing and
modulation of translation rates, either enhancing or impairing protein
synthesis (Espada et al, 2025). Additionally, a small ncRNA called
ncRNA97, was found to be preferentially expressed in the amastigote
form of L. braziliensis (Quilles et al., 2025). This ncRNA modulates
gene expression through the control of the stability of the mRNAs that
are involved in metacyclogenesis and responses to nutritional stress,
indicating a role in developmental adaptation.

These examples underscore the intricate and multifaceted roles
of ncRNAs in regulating gene expression in Leishmania parasites.
However, the number of examples is limited, so the specific
functions and mechanisms are still areas to be explored.

3 Modulation of host ncRNAs by
Leishmania parasites

Leishmania, being an intracellular pathogen, has machinery that
allows it to adapt and survive the hostile environment within the hosts.
One of the main mechanisms of Leishmania to alter the host’s
responses favoring parasite survival involves host transcriptome
remodeling that includes modulating the expression of both coding
RNAs and ncRNAs such as miRNAs (Lemaire et al., 2013; Pandey
et al,, 2016; Singh et al,, 2016; Muxel et al., 2017; Kumar et al., 2018;
Muxel et al., 2018; Kumar et al., 2020; Acufia et al,, 2022; Lago et al,
2023; Fernandes et al.,, 2024; Hadifar et al., 2024; Tabrez et al., 2024;
Akand et al., 2025; Atri et al., 2025; Masoudsinaki et al., 2025; Roy et al,,
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2025), IncRNAs (Misra et al., 2005; Maruyama et al., 2022; Fernandes
et al., 2023; Li et al., 2023; Hadifar et al., 2024; Sirekbasan and Gurkok-
Tan, 2025) and circRNAs levels (Li et al., 2022; Alizadeh et al., 2025),
(Figure 1B). Interestingly, 30% of differentially expressed transcripts in
infected macrophages correspond to IncRNAs supporting their
importance to control macrophage function during infection
(Fernandes et al., 2023).

Leishmania modulates host immune responses via alteration of
host ncRNA expression profiles, affecting processes such as
apoptosis, phagocytosis, and immune signaling (Fernandes et al.,
2023; Scaramele et al., 2024; Tabrez et al., 2024; Akand et al., 2025).
L. donovani infection in CD4+ T cells upregulates certain miRNAs
(miR-6994-5p, miR-5128, miR-7093-3p, miR-574-5p and
miR-7235) which interferes with the expression of the pro-
inflammatory cytokine IFN-y (Kumar et al., 2020). Moreover, the
downregulation of miR-340-5p, miR-93-3p, let 7j, 486a-3p and
miR-3473f promotes the differentiation of macrophages towards a
Th2 phenotype, favoring the survival of the parasite. In
L. braziliensis the upregulation of miR-2940-3p and miR-5100
caused suppression of TNF and NF-xB pathways, reducing
inflammatory responses (Lago et al, 2023). L. amazonensis
parasites are able to change the TLR signaling pathways by
modulating the expression level of miRNA-let-7e (Muxel et al,
2018). The upregulation of this miRNA decreases the inflammatory
response of host cells. Also, L. amazonensis induces an upregulation
of miR-294 and miR-721 in macrophages (Muxel et al., 2017). This
upregulation causes a repression of inducible nitric oxide synthase
(NOS2) leading to reduced production of nitric oxide and
subsequent decrease in the capability of the macrophage to kill
the parasites. L donovani and L. major causes an upregulation of
miR-210 in macrophages under hypoxic conditions, leading to
downregulation of pro-inflammatory cytokines and enhancing
parasite survival (Lemaire et al., 2013; Kumar et al., 2018).

L. infantum infection has been shown to alter the expression of
numerous IncRNAs in human neutrophils, leading to the
impairment of key antimicrobial responses such as phagocytosis
and nitric oxide production (Scaramele et al., 2024). This contributes
to immune evasion and the survival of the parasite. In THP-1
macrophages, the infection with L. amazonensis, L. braziliensis,
and L. infantum led to a differential expression of different host
IncRNAs upon infection suggesting a mechanism by which
Leishmania can control macrophages and evade the immune
response (Fernandes et al., 2023). A test performed on peripheral
blood from patients infected with visceral leishmaniasis cured
patients; asymptomatic infected individuals and healthy controls
showed that L. infantum alters the expression of host IncRNAs
(Maruyama et al., 2022). These IncRNAs are co-expressed with
immune-related protein-coding genes and may regulate immune
pathways, potentially influencing the host’s ability to respond to
infection. Leishmania infection of macrophages leads to
downregulation of host IncRNA 7SL RNA, an essential component
of the signal recognition particle (SRP), which is responsible for
targeting newly synthesized proteins to the endoplasmic reticulum
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(ER). This generates a downregulation of protein targeting and
secretion altering trafficking of immune effectors and antigen
presentation, favoring parasite persistence (Misra et al., 2005).

Leishmania influences host cellular metabolism to create a more
favorable environment for its survival. miR-210 has been linked to
altered L-arginine metabolism, leading to a reduction in nitric acid
production. Certain miRNAs (miR-372/373/520d family) are
upregulated in human macrophages during infection with
L. amazonensis, leading to changes in arginine metabolism and
increased polyamine production, which supports parasite survival
(Fernandes et al,, 2024). Inhibiting these miRNAs reduces parasite
survival. During infection of bone marrow-derived macrophages with
L. amazonensis the miRNAs miR-294 and miR-410 were upregulated;
these miRNAs can interfere with the production of L-arginine and the
immune response in the macrophages (Acufa et al., 2022). L. donovani
also modulates host miRNAs that regulate cholesterol and sphingolipid
biosynthesis which are crucial for the parasite’s survival (Tabrez et al,,
2024; Akand et al., 2025). While the functional impact of InRNAs and
miRNAs is only beginning to be uncovered, host circRNAs have
emerged as another relevant class of ncRNAs in leishmaniasis. A
recent study found a large number of circRNAs differentially expressed
in the serum of patients with leishmaniasis compared with healthy
controls (Li et al., 2022) while in THP-1 cells infected with L. tropica
and L. infantum distinct circRNAs profiles were found depending on
the parasite strain (Alizadeh et al,, 2025).

In addition to directly modulating host ncRNAs, Leishmania also
influences the host environment through the secretion of extracellular
vesicles, particularly exosomes (Figure 1B). During infection, those
exosomes can modulate the host immune response (Silverman and
Reiner, 2011; Peng et al., 2022; Sharma and Singh, 2025). tRFs and
other small RNAs have been detected in exosomes secreted by
Leishmania, suggesting a role in intercellular communication and
possibly in the modulation of host translation (Lambertz et al., 2015;
Kusakisako et al., 2023). These vesicles can modulate immune
responses in different ways. It has been found that the parasite is
able to release exosomes in sand flies and host cells, which can
stimulate an inflammatory response leading to exacerbated cutaneous
leishmaniasis (da Silva Lira Filho et al., 2022). In vivo studies have
demonstrated that treatment of mice with L. donovani exosomes
prior to challenge with the parasite exacerbates infection, promotes
IL-10 and inhibits TNF-o. production (Silverman et al., 2010). These
findings indicate that Leishmania exosomes, with their ncRNA cargo,
are predominantly immunosuppressive and play a significant role in
shaping the host immune response to favor parasite survival.

Together, the modulation of host miRNAs, IncRNAs and
circRNAs as well as the production of exosomes in the parasite
uncovers the strategy by which Leishmania manipulates host
immune responses and cellular functions for its own benefit.
While progress has been made in studying how the parasite alters
host ncRNAs, the possible functions of Leishmania’s own ncRNAs
(beyond those secreted into exosomes) remain largely unexplored.
Understanding these mechanisms of host-parasite interactions
would allow to identify new therapeutic targets.
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The role of ncRNAs in Leishmania parasites and host cells. (A). Modulation of ncRNAs in Leishmania parasites during development: we show the role
of ncRNAs in different steps of gene expression in Leishmania promastigotes and amastigotes. At the post-transcriptional level, expression level is
regulated through mRNA stability, translation, transport and degradation, as well as the possible presence of microRNA-like elements. Ribosome
RNA (rRNA) modifications such as 2'-O-methylation (Nm) (Purple circle) and pseudouridylation (¥) (Yellow circle) by snoRNAs modulate mRNA
translation. These modifications are essential for the parasite, as they allow it to adapt and survive in different environments through modifications of
ribosomal RNA (rRNA), influencing ribosome biogenesis and gene expression regulation at multiple levels. (B) This figure shows schematic changes
in a macrophage during the phagocytosis of Leishmania and is not to the scale. Modulation of host ncRNAs during Leishmania infection. Leishmania
can mainly modulate micro RNAs (miRNAs), long non-coding RNAs (IncRNAs) and circular RNAs (circRNAs) in the host. These changes lead to the
alterations in the host transcriptome, immune response evasion and increased parasite survival. Host transcripts are shown in green and Leishmania
parasite transcripts in red. The ncRNAs in black correspond to those validated with RT-qPCR, while in purple correspond to those that have not yet
been validated. In the description of ncRNAs, “hsa” refers to ncRNAs from humans (Homo sapiens) while "“mmu” refers to ncRNAs from mice

(Mus musculus).Biorender software was used to create this figure under an academic license.

4 Discussion

Although recent studies have expanded our understanding of the
roles of ncRNAs in Leishmania, their precise functions and
mechanisms remain unclear, largely because most findings are
based on transcriptomic descriptions rather than functional
validation. Current solid evidence indicates that host miRNA
modulation plays a major role in the survival of the parasite,
mainly through the modulation of effective host immune response.
However, growing evidence shows that other host ncRNAs, including
IncRNAs and most recently circRNAs are also altered during
infection and may contribute to parasite survival (Figure 1B).

It is clear that parasite is able to modulate host ncRNAs, however,
the role of the parasite’s own ncRNAs in this modulation is poorly
understood. This represents a significant gap and an opportunity for
future research. To move beyond simple characterization, we must fully
understand the mechanism of their action and what they target in the
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host and parasite. Advanced tools such as single-cell transcriptomics,
polysome profiling and CRISPR-based gene editing could help to
validate their role and functions in both the host and parasites.

This research can open new avenues for combating leishmaniasis.
ncRNAs could serve as therapeutic targets, be used as biomarkers for
diagnosis and prognosis, or even be developed as a tool to restore or
enhance the host’s immune response. The growing body of evidence
highlights the essential roles of ncRNAs in parasite biology and host-
pathogen interactions. As the field advances, ncRNAs may deepen
our understanding of Leishmania pathogenesis.
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