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Background: Silver nanoparticles (AgNPs) are well-known for their potent
antibacterial properties. However, the rise of antibiotic-resistant bacteria highlights
the need for alternative antimicrobial strategies. Green synthesis using biological
molecules offers an eco-friendly route to nanoparticle production.

Objective: This study aims to synthesise AgNPs using plant growth hormones
(Auxins), specifically indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), and to
evaluate their antibacterial activity against pathogenic bacteria.

Methods: AgNPs were synthesised using IAA and IBA as reducing and stabilising
agents. The synthesised nanoparticles were characterised by UV-Visible
spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Particle Size
Analysis, Dynamic Light Scattering (DLS) for hydrodynamic diameter, Zeta potential
for surface charge, and Field Emission Scanning Electron Microscopy (FE-SEM) for
morphological analysis. Antibacterial assays were performed against Staphylococcus
aureus and Escherichia coli.

Results: The IAA and IBA-mediated AgNPs showed controlled size distribution,
stability, and uniform morphology. Enhanced antibacterial activity was observed,
particularly against S. aureus, compared to E. coli.

Conclusion: IAA and IBA-mediated synthesis provide a green, sustainable method for
producing AgNPs with significant antibacterial potential. These Auxin-based AgNPs
represent promising candidates for combating antibiotic-resistant bacterial strains.

KEYWORDS

nanoparticles, antimicrobial activity, antibiotic, indole-3-acetic acid, indole-3-butyric
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1 Introduction

Nanobiotechnology merges nanoscience with biotechnology,
focusing on biomedical applications. Nanoparticles, with unique
physical and chemical properties, are crucial in drug delivery,
diagnostics, and therapeutic devices (Roco, 2003). They are used in
medical imaging, tissue engineering, and targeted treatments, offering
enhanced precision and biocompatibility (Mansour et al, 2023).
Whether artificially produced, naturally occurring, or accidental,
nanoparticles are driving advancements in medical technologies, with
growing applications in healthcare and pharmaceuticals (Haleem et al,,
2023). Many socioeconomic advancements have resulted from
increased interest in engineered nanoparticles such as silver, copper,
and gold in various scientific fields, including medicinal, materials, and
agricultural technology (Zakaria et al., 2015; Chernousova and Epple,
2013). Similarly, silver has been used as an antibacterial agent in
multiple ways, either by itself or in conjunction with other technologies
(Silva et al, 2017). Silver’s antibacterial property was discovered,
prompting researchers to investigate AgNPs’ antibacterial potential in
nanotechnology (Rizzello and Pompa, 2013). AgNPs fall within the
category of nanomaterials, having a size range between 1 to 100
nanometers. These materials outperform silver in terms of surface
area-to-volume ratio and overall capacity. This material is appropriate
for targeted drug delivery, diagnostics, detection, and imaging because
it has special electrical, optical, and catalytic properties at the nanoscale
(Yaqoob et al., 2020). Due to the excellent antibacterial properties of
AgNPs, they have been given significant attention by both the industry
and academia.

AgNPs possess potent antimicrobial properties toward a broad
spectrum of harmful and infectious pathogens, including multidrug-
resistant bacteria (Siddiqi et al., 2018; Marambio-Jones and Hoek,
2010). As AgNPs exhibit greater antibacterial action at the nanoscale,
they have applications in medical and healthcare fields such as
dressings, surgical instruments and dental products (Kulkarni, 2014;
Ge et al, 2014). AgNPs can target multiple microorganisms at once;
they have the potential to eradicate a broad spectrum of bacteria, which
makes them promising as antibiotics (Cheng et al., 2016; Betts et al,
2018). With antibiotic resistance rising—a global health threat
responsible for an estimated 1.27 million deaths worldwide in 2019
alone developing new antimicrobial strategies is urgent (Salam et al,,
2023). Creating new antibiotics takes a lot of time and resources, and
years of research are needed to guarantee their safety and efficacy.
Meanwhile, diseases caused by microbes resistant to several drugs
continue to be fatal worldwide (Natan and Banin, 2017; Lee et al,
2019). Researchers have investigated employing AgNPs and other
nanomaterials to attack hazardous microorganisms in the post-
antibiotic era without creating resistance (Betts et al., 2018). AgNPs
offer a promising solution for preventing infections, decontaminating
medical supplies, and fighting diseases despite the global problem of
antibiotic-resistant microorganisms (Stefancic et al, 2005; Pop et al,
2011). Recent research has concentrated on creating novel bactericidal
chemicals for decontamination or infection therapies to combat
multidrug-resistant pathogens (Natan and Banin, 2017).

In the present study, we synthesised silver nanoparticles by using
biomolecules, Auxins, including indole-3-acetic acid (IAA) and indole-
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3-butyric acid (IBA) as reducing cum capping agents. This simple
process needs a few simple steps and equipment and is quick and
affordable. Silver nanoparticles with different sizes and distributions can
be synthesised. The ideal method for creating stable AgNPs with the
required optical properties was tried using a variety of synthesis
variables. UV-Vis Spectroscopy has studied the synthesised AgNPs,
Fourier transform infrared spectroscopy (FTIR), Field Emission
Electron Microscopy (FE-SEM) and additionally, the antibacterial
effects of synthesised nanoparticles (AgNPs) on Staphylococcus
aureus (S. aureus) and Escherichia coli (E. coli) were analysed. The
results demonstrated the strong antibacterial effect of AgNPs on these
two bacteria.

2 Materials and methodology
2.1 Material required

Using TAA and IBA as reducing agents, precursor silver
(AgNO3) was reduced to Ag0, while KOH served as an alkaline
medium. All the chemicals were procured from Sigma-Aldrich Co.,
Ltd. in the United States, and the solvent was Milli-Q water with a
conductivity of 18.2 MQ.

2.2 Preparation of silver nanoparticles

A solution containing 50 mL of AgNPs was made. It comprised 5
mL of 10 mM TAA or IBA, 1 mL of 1 mM AgNO3, 860 pl of 10 mM
potassium hydroxide (KOH), and Milli-Q water comprised the
remaining volume. Using a magnetic stirrer set at 60°C, 860 ul of a
10 mM potassium hydroxide solution (KOH) was added drop by
drop to a flask containing 43 ml of deionised water for the synthesis
process. IAA and IBA solutions were added separately and served as
the reaction’s starting point to stop aggregation. AgNO3 solution was
then added gradually, drop by drop. The colour shift from translucent
to yellow, which was thought to be the reaction’s end point, indicates
the formation of colloidal nanoparticles stabilised by IAA and IBA.
Additionally, the mixture was incubated for three hours at 60°C on a
magnetic stirrer to ensure the nanoparticles were dispersed correctly.

2.3 Characterisation of IAA- and IBA-
stabilised AgNPs

Understanding the physicochemical characteristics of
nanoparticles, including their size, shape, size distribution, dispersion,
surface charge, and interaction mechanisms, requires thorough
characterisation and analysis.

A UV-Vis Spectrometer (Thermo Scientific Multiskan GO) was
used to record the UV-Vis spectra of AgNPs stabilised with TAA and
IBA. In contrast, pure IAA and IBA solutions were used as controls.
AgNPs practical synthesis was validated by a pronounced surface
plasmon resonance (SPR) band feature. The solutions were
centrifuged at 10, 976 x g for 10 minutes at 15 °C to remove surplus

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1678489
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

et al.

stabilising agents to ensure that only the stabilised nanoparticles
contributed to the characterisation results. The size distribution and
optical characteristics of the particles were revealed by the SPR study,
which is essential for assessing their colloidal behaviour. The
hydrodynamic diameter of the AgNPs was ascertained using
Dynamic Light Scattering (Litesizer 500 Anton Par, Austria), using a
backscatter detector with an angle of 15°, 90°, and 175° at 25 °C. The
hydrodynamic size differences between IAA-and IBA-stabilised AgNPs
were demonstrated by the DLS data, with IAA formulations showing
somewhat broader size distributions than the more homogeneous sizes
seen with IBA. Zeta potential tests, which were also carried out with the
DLS system, revealed information about the stability and surface charge
of the nanoparticles. Zeta potential values above +25 mV were shown
by both formulations, suggesting superior colloidal stability and long-
term aggregation resistance.

2.4 Antibacterial testing of AgNPs

2.4.1 Morphological and structural characterization
of IAA- and IBA-Stabilized silver nanoparticles via
FE-SEM and FTIR spectroscopy

The AgNPs shape and structural characteristics were examined
using Field Emission Scanning Electron Microscopy (FE-SEM). To
avoid sample overloading, the IAA and IBA-stabilised AgNP solutions
were diluted with Milli-Q water at a 1:20 ratio. On a sanitised, glass-
covered slide, a 2 UL drop of the diluted solution was placed and left to
air dry at room temperature. A thin layer of silver was applied to the
dried samples using a sputter coater to improve conductivity. A FE-
SEM (TESCAN MIRA, Brno, Czech Republic) with a secondary
electron detector running at a 25 keV accelerating voltage was used
to analyse the materials.

Fourier-transform infrared (FT-IR) spectroscopy (ABB MB
3000) was used to examine the molecular interactions between
the AgNPs and the stabilising agents (IAA and IBA). For FT-IR
measurement, the stabilised AgNPs were centrifuged for 10 minutes
at 14, 000 RPM to extract the nanoparticles, which were then
ground into a fine powder using potassium bromide (KBr). Pure
TAA and IBA were used as control samples, and the spectra were
captured in the 400-4000 cm™" range. IAA and IBA play crucial
roles in the synthesis and stabilisation of nanoparticles, as
demonstrated by the FTIR analysis’s identification of functional
groups, including hydroxyl, carboxyl, and indole groups engaged in
the reduction and stabilisation processes.

2.4.2 Minimum inhibition concentration assay

The Well diffusion method determined the antibacterial activity
against S. aureus and E. coli. Before microbiological studies, all culture
medium, glassware, containers, and microtips were autoclaved at
121°C for 15 minutes. S. aureus and E. coli were cultured in LB
broth at 37°C until the optical density at 600 nm was observed to be 0.6.
Wells were created by puncturing solidified agar plates. 100 uL of
culture was spread on the plates using an L-shaped spreader. Samples
included AgNP (5ppm) and Ampicillin (1 mg/ml) as positive control,
IAA (5ppm), IBA (5ppm) and water as negative control, and TAA-
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AgNPs (5ppm), IBA-AgNPs (5ppm) as test samples. 20 pL of control
and 20, 50, and 100 pL of test sample were placed in their respective
wells to observe concentration-dependent antibacterial action. Plates
were incubated for 16 hrs at 37°C. The reaction was performed in
triplicate to maintain the reproducibility and reliability of the results.

2.4.3 Time-dependent antibacterial assay

The concentration range was selected from the preliminary
MIC test. 200 UL of 0.5 OD E. coli were added to each well of the 96-
well plates. 20 uL samples were added to the well containing E. coli.
Autoclaved Mili-Q was added to E. coli as a positive control.
Ampicillin was added as a negative control. AgNP served as a
reference while Ag-IAA and Ag-IBA were the test samples. A time-
dependent assay with a total time of 8 hrs was performed. Hourly
reading was taken at 600 nm through Thermo Scientific Multiskan
GO. A reading of 0 hrs was subtracted from all the subsequent
readings associated with it to obtain the growth of bacterial cells. A
similar experiment was repeated with S. aureus to confirm growth
inhibition in gram-positive bacteria.

2.4.4 Statistical analysis

All the experiments were carried out using two-way ANOVA was
performed to analyse the effects of IAA and IBA stabilised AgNPs to
determine the significance of antimicrobial activity, while other methods
assess parameters like MIC (Minimum Inhibitory Concentration) and
MBC (Minimum Bactericidal Concentration). Statistical analysis helps
researchers understand the relationship between nanoparticle properties
(size, shape, concentration, etc.) and their antimicrobial effects, leading
to more efficient and targeted applications.

The analysis was performed using Graphpad Prism included
two independent variables: treatment time (a row factor) and
experimental condition (a column factor), and their interaction. A
percentage contribution of each factor as a source of variation was
calculated, and a significance level of p < 0.0001 was established.

3 Results and discussion

As the reaction proceeded, the colour changed to a deeper yellowish
brown, indicating the reduction of silver ions and the formation of
nanoparticles, thus, the conversion of Ag+ to Ag0 (Figure 1). This
colour change is characteristic of the surface plasmon resonance (SPR)
effect associated with silver nanoparticles. The impact of this synthesis of
AgNPS was monitored in a Vis spectrophotometer.

UV-visible spectroscopy further confirmed this phenomenon,
which showed clear absorption peaks for AgIAA and AgIBA at
about 420 nm (Figure 2). The effective reduction of Ag+ to AgNPs
by IAA and IBA was confirmed by this SPR band, which is indicative of
spherical or nearly spherical nanoparticles. A range of particle sizes
influenced by the concentration of the respective plant hormones was
suggested by the absorption maxima (A,,.,) seen beyond 300 nm in
both IAA- and IBA-stabilised colloids. Higher concentrations
facilitated the creation of larger nanoparticles, whereas lower
concentrations encouraged the formation of smaller ones, with IAA
and IBA acting as stabilising and reducing agents.
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FIGURE 1
Image of silver nanoparticles (a) IAA-AgNPs (b) IBA-AgNPs.
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FIGURE 2
UV -Visible spectra of (a) Ag -1AA, (b) IAA, (c) Ag -IBA, and (d) IBA. Distinct SPR peaks around 400 -450 nm in Ag -IAA and Ag -IBA confirm silver

nanoparticle formation.
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FTIR spectra of (a) IBA and AgNOs -IBA, and (b) IAA and AgNOs -1AA, showing characteristic functional groups involved in silver nanoparticle

synthesis and stabilization.

Dynamic light scattering (DLS) analysis provided insights into
the size distribution of nanoparticles. As revealed in Figure 3, IBA-
AgNPs ranged between 10 and 100 nm, with an average diameter of
364 nm. IAA-AgNPs had a size range of 10-1000 nm, with an
average diameter of 188.03 nm. The DLS histograms emphasised
TAA-AgNPs polydispersity from aggregation, while IBA-AgNPs
had a more uniform size, indicating more stability.

These results were corroborated by zeta potential measurements,
which showed that the mean zeta potential for IAA-AgNPs was -28.2
mV and for IBA-AgNPs, it was -28.9 mV. Strong electrostatic repulsion
was demonstrated by these values, guaranteeing colloidal stability. The
structural characteristics of IBA most likely contributed to the
increased stability of IBA-AgNPs (Figure 3).

Figures 4a, b show Fourier-transform infrared (FTIR) spectroscopy,
confirming the conjugation of the plant hormones to the nanoparticles.

The IBA-AgNPs spectrum shows characteristic peaks near 1710 cm™
and 1600 cm™', corresponding to the carbonyl (C=0) stretching
vibrations of IBA. Similarly, the IAA-AgNPs spectrum displays peaks
around 1700 cm™ and 1600 cm™ attributed to the carbonyl groups of
TAA. Both spectra feature broad absorption bands between 3200 and
3500 cm™, which are assigned to the ~OH stretching vibrations from
residual water or the hydroxyl groups of the plant hormones. These
distinctive spectral features strongly support the effective binding and
stabilization of AgNPs by IBA and TAA molecules.

In Figures 5a, b, uniformly distributed spherical nanoparticles
were visible in the Fe-SEM pictures. IBA-AgNPs showed a smaller
size range (6-70 nm), but IAA-AgNPs showed a wider size range
(20-150 nm). This discrepancy explains how IAA and IBA interact
molecularly with the nanoparticle’s surface. While IBA-AgNPs
smaller size range showed steric and electronic impacts of IBA
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SEM images of (a) IAA -AgNPs and (b) IBA -AgNPs showing uniformly dispersed nanoparticles.
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FIGURE 5
Zeta potential and particle size distribution of synthesized silver nanoparticles. (a, c) IAA -AgNPs and (b, d) IBA -AgNPs showing stable zeta potential
and uniform particle size distribution in the nanometer range.

FIGURE 6
Antibacterial activity of silver nanoparticle of E. coli (a) Control -Ampicillin and Distilled water, (b) IAA, (c) IBA-AgNPs, (d) IBA, (e) Ag, (f) IAA-AgNPs.
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FIGURE 7

Antibacterial activity against S. aureus: (a) control, (b) IAA, (c) Ag, (d) Ag -IAA, and (e) Ag -IBA showing enhanced inhibition with Ag -IAA and Ag -IBA.

molecular structure, IAA-AgNPs wider size distribution suggested
varying nucleation and growth settings. It was also observed that
dilution plays a unique role in producing high-
resolution photographs.

3.1 Antibacterial testing of silver
nanoparticles

Figures 6, 7 AgNPs synthesised with TAA and IBA exhibit
antibacterial properties. At 10 ppm IAA and IBA AgNPs did not
show an inhibition zone in the case of E. coli and S. Aureus.
However, 50, 100 and 150 ppm IAA and IBA AgNPs showed
clear inhibition zones in E. coli and S. aureus in a concentration-
dependent manner. Neither TAA nor IBA showed any inhibition
zone in E. Coli and S. aureus, implying that growth hormone does
not possess antibacterial properties.

With the disc diffusion method, a time concentration
dependent assay was conducted to demonstrate the antimicrobial
activity of IAA and IBA AgNPs. In E. coli (Figure 8), both 100 ppm
and 50 ppm of IAA/IBA AgNP exposure resulted in a significant
decrease in the cell population with the OD values decreasing over
time and nearly 60-70% compared to the control. At the 10 ppm

Frontiers in Cellular and Infection Microbiology

and 1 ppm concentrations there was no effect on the growth of E.
coli with the growth curves overlapped with untreated control. For
S. aureus (Figure 9), both 100 ppm and 50 ppm of AgNPs permitted
some limited growth during the first hours whereas the subsequent
period decreased in cell population with a relative ~50-65%
reduction of microbial cells from the control. As for E. coli, the
10 ppm and 1 ppm concentrations did not have an effect on the
growth of S. aureus.

4 Discussion

AgNPs are synthesised by utilising IAA and IBA as reducing
agents to transform silver ions into nanoparticles, because these
AgNPs break down cell walls and produce reactive oxygen species.
They have significant antibacterial effects on various pathogens,
including Gram-positive bacteria like S. aureus and Gram-negative
bacteria like E. coli. (Ahmad et al., 2003). Their potential for
combination therapy is clear and presents a chance to improve on
existing treatments. Still, an extensive approach is required to
guarantee their safety and effectiveness, considering their
cytotoxicity and hemocompatibility. To further enhance their
effectiveness and to overcome resistance, combined therapy with
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Time and concentration depend on studies of antimicrobial activity of IAA/IBA-AgNPs on E. coli (a)100 ppm, (b) 50 ppm, (c) 10 ppm, (d) 1 ppm.

traditional antibiotics should be explored. However, to guarantee
safety and biocompatibility, it is essential to evaluate these
nanoparticles’ genotoxicity, cytotoxicity, and hemocompatibility
(Ackerley et al., 2004).

AgNPs made by IAA and IBA exhibit strong inhibitory effects
against S. aureus and E. coli regarding their antibacterial activity. Our
results show that IAA- and IBA-stabilized AgNPs exhibit enhanced
antibacterial activity, particularly against E. coli. The previous studies
suggest that AgNPs may exert their antibacterial effects through
mechanisms like ROS generation, membrane damage, and protein
denaturation (Singh and Mijakovic, 2022). While not within the scope
of this study, the potential cytotoxicity and biocompatibility of AgNPs
are important considerations for their therapeutic applications. Future
research should address these concerns, including studies on
genotoxicity and hemocompatibility, as well as exploring the potential
for combination therapy with traditional antibiotics to enhance efficacy
and reduce resistance. These nanoparticles’ size, concentration, and
stability affect their effectiveness; smaller nanoparticles typically exhibit

Frontiers in Cellular and Infection Microbiology

more activity. To fully utilise AgNPs in the therapeutic and commercial
domains, future studies should concentrate on refining synthesis
parameters, understanding intricate antibacterial mechanisms,
assessing clinical applications, and resolving environmental and
regulatory issues (Sastry et al, 1997). Thus, the synthesis of AgNPs
using TAA and IBA demonstrates a new and environmentally friendly
method and highlights the potential of these nanoparticles as potent
antibacterial agents. Further studies may concentrate on refining the
conditions of synthesis to enhance the characteristics of nanoparticles
and exploring their potential uses in diverse domains like healthcare,
farming, and environmental restoration.

5 Conclusion

This study establishes a green synthesis route for stable, well-
characterised AgNPs using IAA and IBA as reducing and stabilising
agents. The synthesised AgNPs exhibited significant antibacterial
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activity, with E. coli showing higher susceptibility than S. aureus,
due to differences in cell wall structure and silver ion uptake. These
findings demonstrate the strong antimicrobial potential of IAA/
IBA-mediated AgNPs, supporting their future application in
sustainable and effective antibacterial therapies.
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