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Carbapenem-resistant Enterobacteriaceae (CRE) present an escalating threat to

global health due to their high transmissibility, limited treatment options, and

high mortality rates. The gastrointestinal tract serves as both a major reservoir

and a transmission hub for CRE, especially under conditions of antibiotic-

induced dysbiosis. This review highlights the growing interest in the gut

microbiome as a potential target for preventing and managing CRE infections.

Building upon the understanding of CRE pathogenesis, we examine how

commensal microbiota contribute to colonization resistance through

mechanisms such as nutrient competition, spatial niche exclusion, immune

modulation, and the production of antimicrobial metabolites. We further

discuss microbiome-based therapeutic strategies, including probiotic

administration, fecal microbiota transplantation (FMT), and supplementation

with short-chain fatty acids (SCFAs), that have shown encouraging results in

reducing intestinal CRE colonization. In addition, we explore emerging

microbiome engineering approaches, particularly CRISPR-Cas9-mediated

systems, which enable the selective elimination of resistant strains while

maintaining microbial homeostasis. Current microbiome-based approaches

have shown promise in the treatment and prevention of CRE infections, but

further research is still needed to clarify their mechanisms, evaluate long-term

safety, and determine their effectiveness in different clinical settings. With

continued studies and thoughtful integration into existing infection control and

antibiotic stewardship practices, these strategies may gradually contribute to a

more practical and sustainable way to manage CRE.
KEYWORDS

carbapenem-resistant Enterobacteriaceae, gut microbiota, colonization resistance,
microbiome-targeted therapy, probiotics, fecal microbiota transplantation, short-
chain fatty acids
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1 Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) have become a

serious global public health concern. The World Health

Organization (WHO) lists carbapenem-resistant Klebsiella

pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) as

critical priority pathogens in its 2024 Bacterial Priority Pathogens

List (BPPL), emphasizing their significance in antimicrobial

resistance (Sati et al., 2025). These bacteria exhibit a high capacity

for acquiring and disseminating resistance genes, making

containment and treatment increasingly difficult. CRE cause

severe infections such as bloodstream infections, pneumonia, and

urinary tract infections. These infections often result in high death

rates, longer hospital stays, and higher healthcare costs (Chen et al.,

2024; Bhat et al., 2025). Although agents such as polymyxins,

tigecycline, and ceftazidime-avibactam are used in the treatment

of CRE infections, their roles vary. Polymyxins and tigecycline are

often reserved for multidrug-resistant K. pneumoniae, whereas

ceftazidime-avibactam is mainly applied to KPC-producing

strains. Their clinical utility, however, is increasingly

compromised by rising resistance rates, rapid dissemination of

resistance genes, and drug-related toxicities (Gao et al., 2025; Hou

et al., 2025).

In addition to overt infections, CRE can persist silently in the

intestinal tract, particularly in hospitalized and immunocompromised

patients (Wu et al., 2023; Xiao et al., 2024; Han et al., 2025). Increasing

evidence shows that antibiotic exposure, underlying diseases, and

immune suppression can disturb the gut microbiota, lowering

colonization resistance and facilitating CRE expansion (Kang et al.,

2022; Wang Z. et al., 2024). A disrupted microbial environment not

only weakens host defense but also promotes overgrowth of resistant

strains. As host immunity declines, CRE may translocate across the

intestinal barrier, leading to severe bloodstream infections and other

life-threatening complications. The gastrointestinal tract is both a key

site of susceptibility and a potential target for new strategies in

prevention and treatment. In this context, targeting the gut

microbiome offers a promising addition to traditional antibiotics.

Methods such as probiotics, fecal microbiota transplantation (FMT),

and microbiota-derived metabolites have shown potential in reducing

CRE colonization and preventing transmission in both animal models

and clinical trials (Gutiérrez-Fernández et al., 2024; Merrick et al.,

2025). Key questions remain regarding their mechanisms, long-term

effects, and practical use in clinical settings.
Abbreviations: CRE, Carbapenem-resistant Enterobacteriaceae; WHO, World

Health Organization; BPPL, Bacterial Priority Pathogens List; PRRs, Pattern

Recognition Receptors; TLRs, Toll-like Receptors; NOD, Nucleotide-binding

Oligomerization Domain; MAMPs, Microbial-associated Molecular Patterns;

SCFAs, Short-chain Fatty Acids; HDAC, Histone Deacetylase; FMT, Fecal

Microbiota Transplantation; B. longum, Bifidobacterium longum; E. coli,

Escherichia coli; E. cloacae, Enterobacter cloacae; K. pneumoniae, Klebsiella

pneumonia; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus,

Lacticaseibacillus rhamnosus.
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This review provides an overview of the challenges posed by

CRE in terms of resistance, epidemiology, and colonization, while

also evaluating microbiome-based strategies such as probiotics,

FMT, and microbial metabolites. The aim is to identify

interventions that can complement conventional therapies and

inform future clinical management.
2 Resistance mechanisms and clinical
burden of CRE

CRE are members of the Enterobacteriaceae order that exhibit

resistance to at least one carbapenem-class antibiotic, such as

imipenem, meropenem, or ertapenem (Smith et al., 2025). K.

pneumoniae and E. coli are the most clinically important CRE

species. These pathogens are commonly responsible for infections

of the bloodstream, respiratory tract, and urinary tract, especially in

healthcare-associated settings (Li Y. et al., 2024; Zhong et al., 2025).

Carbapenem resistance in Enterobacteriaceae is mainly caused by

the production of carbapenemases. Among them, KPC, NDM, and

OXA-48-like enzymes are the most common. These enzymes are

increasingly detected in clinical isolates (Ma et al., 2023; Alvisi et al.,

2025). In many cases, the resistance genes are located on plasmids,

which promote horizontal gene transfer and often carry virulence

factors as well (Heng et al., 2025; Li et al., 2025). In addition to

enzyme production, membrane-associated mechanisms also play a

critical role. The loss of outer membrane porins, such as OmpK36,

limits antibiotic entry. At the same time, efflux systems like the

tripartite antimicrobial metabolism system actively pump drugs out

of the cell, reducing their effectiveness (Jung et al., 2021; Meekes

et al., 2025). These mechanisms frequently act together, leading to

broad resistance that extends beyond b-lactams, Aminoglycosides,

fluoroquinolones, and even last-line agents like colistin may also be

rendered ineffective (Wu et al., 2024; Song et al., 2025).

The global prevalence of CRE continues to rise. Surveillance

reports show ongoing transmission of dominant clones, such as

ST258 in the Mediterranean and ST11 in Asia, especially within

hospital environments (Wang Q. et al., 2024; Garcıá-González et al.,

2025; Zhang et al., 2025). In intensive care units, colonization rates

exceed 20%. Long-term care facilities often struggle with persistent

environmental contamination (Wu et al., 2023; Elton et al., 2024).

Underdiagnosis is common due to limited surveillance

infrastructure and the shortcomings of current screening

strategies, allowing ongoing silent transmission (Kedisǎletsě et al.,

2023; Pople et al., 2023). The organism can survive on surfaces and

equipment, making infection control difficult. In overcrowded

healthcare settings, this persistence helps resistant strains spread

more easily (Salomão et al., 2023; Elton et al., 2024). Clinical

outcomes of CRE infections remain poor. Mortality often exceeds

40% in bloodstream infections and ventilator-associated

pneumonia, especially when appropriate therapy is delayed (Chen

et al., 2024; Ruvinsky et al., 2024; Kim et al., 2025). Treatment

options are limited and frequently complicated by toxicity.

Polymyxins and tigecycline serve as last-resort agents but carry

risks of nephrotoxicity and rising resistance, including plasmid-
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mediated mechanisms (Wu et al., 2024; Xie et al., 2024; Jiang et al.,

2025). Newer drugs such as ceftazidime-avibactam and cefiderocol

offer broader coverage. Still, treatment failures are common due to

rapid emergence of resistance caused by porin mutations and novel

carbapenemase variants (Li JW. et al., 2024; Tang et al., 2024; Faxén

et al., 2025). The rise of hypervirulent carbapenem-resistant strains

further worsens outcomes and limits therapeutic success (Lei et al.,

2024; Wang et al., 2025).

Recent efforts in drug discovery have turned to repurposing

established antibiotics and testing combination regimens.

Fosfomycin has demonstrated synergistic activity with agents

such as meropenem, polymyxin B, and colistin, and both

experimental and clinical evidence suggest improved outcomes

compared with monotherapy (Ribeiro et al., 2023; Katip et al.,

2024). Novel therapeutic strategies are also being explored for

hypervirulent carbapenem-resistant K. pneumoniae. Some isolates

carrying both multidrug resistance and hypervirulent traits show

unexpectedly attenuated pathogenicity, reflecting the complex

relationship between resistance and virulence that may guide

future drug development (Ni et al., 2022; Kochan et al., 2023).
3 Role of the gut microbiota in CRE
colonization

3.1 Antibiotic-induced dysbiosis and CRE
colonization

Antibiotic exposure is a major risk factor for CRE colonization in

the gastrointestinal tract. Short-term, targeted oral antibiotics such as

rifampicin can help rapidly decolonize CRE in acute clinical settings,

while promoting the enrichment of antagonistic commensals and

supporting immune recovery (Ni et al., 2024). However, prolonged or

inappropriate use of antibiotics can cause lasting alterations to the gut

microbiota, reducing diversity and depleting beneficial bacteria,

judicious use of certain agents may help restore a healthier

microbial community. Broad-spectrum antibiotics, especially those

targeting anaerobic bacteria, disrupt the gut microbiota, reducing

commensals and microbial diversity, which weakens colonization

resistance (Macareño-Castro et al., 2022). This allows CRE to occupy

vacant ecological niches and proliferate. Clinical studies have shown

that patients treated with carbapenem, cephalosporin, or

fluoroquinolone antibiotics experience significantly higher CRE

colonization rates (Sindi et al., 2022; Yuan et al., 2022). Antibiotics

also create an environment favorable for CRE growth by depleting

microbial metabolites that inhibit its proliferation, while enriching

nutrients that CRE can use (Yip et al., 2023). Moreover, dysbiosis

promotes the horizontal transfer of resistance genes, turning the gut

into a reservoir of multidrug resistance (Rooney et al., 2019; He et al.,

2025). The biofilm environment in the gut promotes resistance gene

transfer, accelerating the rapid spread of resistance among members

of the Enterobacteriaceae family, including gene transfer from E. coli

to Klebsiella and from commensals to pathogens (Kent et al., 2020;

Michaelis and Grohmann, 2023).
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Gastrointestinal colonization plays a central role in the

persistence and dissemination of CRE. Long-term shedding of

CRE is common in asymptomatic carriers, facilitating its ongoing

transmission within hospital wards and intensive care units (Sindi

et al., 2022; Baek et al., 2023). The carrier state can persist for up to

one year, with approximately 33% of CRE carriers remaining

positive after one year (Ciobotaro et al., 2016). Surfaces, devices,

and healthcare worker hands often become secondary reservoirs

(Deng et al., 2022; Han et al., 2025). Colonization risk is heightened

in patients with antibiotic-induced dysbiosis, immunosuppression,

or frequent invasive procedures (Khachab et al., 2024; Lee et al.,

2024). Repeated antimicrobial exposure further complicates

eradication. Standard decolonization approaches are often

ineffective, and recolonization occurs frequently. These factors

facilitate silent persistence and recurrent infections, even after

apparent clearance. Among patients with CRE colonization,

approximately 21% developed secondary infections within 180

days of initial colonization, with most occurring within 30 days

(Tubb et al., 2025). Consequently, the gut remains a stable reservoir

for both endogenous infection and nosocomial transmission (Liu

et al., 2022; Sim et al., 2022).
3.2 Gut microbiota defense mechanisms
against CRE colonization

Healthy gut microbiota confer resistance to colonization by

CRE by occupying both nutritional and spatial niches, limiting the

resources and ecological space required for pathogen expansion.

Commensal bacteria, including species such as Bacteroides,

Clostridia and Lactobacillus, engage in exploitative competition

by rapidly consuming available monosaccharides, amino acids,

and micronutrients, restricting the supply of metabolic substrates

necessary for CRE proliferation (Djukovic et al., 2022; Isaac et al.,

2022). Meanwhile, mucosa-associated microbial communities form

structured biofilms within the inner mucus layer and intestinal

crypts, where densely packed bacterial cells and extracellular matrix

components create a physical barrier that effectively blocks

pathogen access to epithelial adhesion sites (Zhao and Maynard,

2022). These spatially organized structures are stabilized through

dynamic interactions between commensal microbes and host-

derived mucus, contributing to immune tolerance and sustained

exclusion of pathogenic bacteria.

The gut microbiota also plays a crucial role in modulating host

immune responses to combat CRE infection. Pattern recognition

receptors (PRRs), including NOD1, NOD2, and Toll-like receptors

(TLRs), recognize microbial-associated molecular patterns

(MAMPs) derived from commensal bacteria, activating

downstream signaling pathways that promote the production of

antimicrobial peptides (Zhao et al., 2018; Martin-Gallausiaux et al.,

2022). In addition, the microbiota regulates cytokine responses by

promoting the expression of cytokines such as IL-1b and IL-22,

thereby enhancing epithelial barrier function and modulating

inflammatory responses (Wu et al., 2022; Zhao et al., 2025).
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The metabolic activity of the gut microbiota profoundly shapes

the chemical environment of the intestinal lumen, creating

conditions that are unfavorable for CRE survival and

colonization. Short-chain fatty acids (SCFAs), including acetate,

propionate, and butyrate, lower luminal pH and enhance epithelial

oxygen consumption, thereby eliminating oxygen-rich niches that

favor CRE colonization (Sorbara et al., 2019; Yip et al., 2023).

Moreover, butyrate and propionate function as histone deacetylase

(HDAC) inhibitors, inducing epigenetic modifications that regulate

host gene expression (Korsten et al., 2022). These changes

upregulate genes involved in antimicrobial defense, mucin

production, and barrier integrity (Pace et al., 2021; Korsten et al.,

2023), collectively reducing CRE adhesion to and invasion of

intestinal epithelial cells. Studies have shown that certain

commensal strains produce narrow-spectrum bacteriocins,

particularly microcins, which penetrate the outer membrane of

Gram-negative Enterobacteriaceae via receptor-mediated uptake,
Frontiers in Cellular and Infection Microbiology 04
exerting targeted antimicrobial activity and interfering with

essential cellular processes such as peptidoglycan synthesis and

nucleic acid metabolism (Telhig et al., 2020; Telhig et al.,

2022) (Figure 1).
4 Therapeutic strategies targeting the
microbiome against CRE

4.1 Probiotic therapy

Probiotic therapy represents a promising microbiome-based

strategy against CRE. The antimicrobial effects of probiotics are

primarily mediated through the production of acidic metabolites

and reprogramming of the gut microbial community. The anti-CRE

effect of probiotics was related to the pH-dependent mechanism,

and the antibacterial effect was eliminated at pH 7.0 in the upper
FIGURE 1

Gut Microbiota Defense Mechanisms Against CRE Colonization The healthy gut microbiota protects against colonization by CRE through three
major mechanisms: microbial competition and spatial exclusion (left panel), microbiota-mediated immune responses (middle panel), and metabolic
modulation (right panel). left panel: Healthy gut commensals, including Lachnospiraceae, Ruminococcaceae, and non-canonical GC-associated
taxa, establish dense, biofilm-like communities along the intestinal epithelium. These bacteria occupy specific ecological niches and utilize dietary
amino acids, complex glycans, and essential micronutrients, thereby reducing the resources available for CRE to proliferate. Spatial organization of
microbial aggregates, along with mucin layers secreted by goblet cells, creates physical barriers that limit CRE adherence to epithelial surfaces and
hinder their colonization. middle panel: MAMPs, such as lipopolysaccharides, peptidoglycans, and flagellin, are sensed by host PRRs, including TLRs
on epithelial and immune cells. This recognition stimulates Paneth cells to secrete AMPs, including defensins and regenerating islet-derived proteins,
which directly inhibit CRE growth. Commensal bacteria further modulate innate and adaptive immunity by activating DCs, macrophages, B cells, and
type ILC3s, promoting the release of cytokines such as IL-22 and IL-17. These cytokines enhance mucosal barrier integrity, stimulate epithelial
proliferation, and recruit neutrophils to sites of potential CRE invasion. right panel: Gut microbiota produce metabolites, such as SCFAs, which lower
luminal pH, enhance epithelial oxygen consumption, and create metabolically unfavorable conditions for CRE survival. Additionally, microbiota-
derived bacteriocins, including microcins, can penetrate CRE membranes and inhibit key cellular processes, such as DNA gyrase, RNA polymerase
activity, and cell wall biosynthesis, leading to targeted suppression.
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layer of the cell membrane, but the antibacterial effect remained

unchanged after heat treatment (Tang et al., 2023). Lactic acid

bacteria produce lactate, organic acids, CO2, exopolysaccharides,

bacteriocins, and enzymes, which lower the intestinal pH and exert

direct antimicrobial effects (Tang et al., 2023; Hatem et al., 2024).

Multiple probiotics have been shown to modulate the gut

microbiota by exhibiting strong bile salt hydrolase deconjugation

and 7a-dehydroxylation activity, leading to increased levels of

deoxycholic acid and lithocholic acid, while simultaneously

reducing the production of isobutyric acid, isovaleric acid,

hydrogen sulfide, and ammonia (Foley et al., 2021; Liu et al., 2024).

Probiotics also enhance host defenses by strengthening the

intestinal barrier and modulating mucosal immunity. They

promote the gene and protein expression of tight junction

proteins Occludin, Claudin, and ZO-1 and stimulate mucin

secretion, thereby reinforcing epithelial barrier integrity and

reducing pathogen adhesion and invasion (di Vito et al., 2022; Bu

et al., 2023). At the same time, probiotics activate the gut mucosal

immune system, markedly increasing the levels of secretory IgA,

IgA, and IgG in the intestine, while enhancing the functions of

CD11c positive dendritic cells and CD4 positive T cells (Lin et al.,

2021; Bu et al., 2023). These effects help maintain gut microbial

homeostasis and reduce the risk of pathogen translocation and

systemic inflammation.

In one screening study of 57 strains, five candidates (LUC0180,

LUC0219, LYC0289, LYC0413, and LYC1031) produced inhibition

zones larger than 15 mm and sustained suppression of carbapenem-

resistant E. coli (CRE316) and K. pneumoniae (CRE632) (Chen

et al., 2019). In addition to these strains, other species including

Bifidobacterium longum (B. longum), Lactiplantibacillus plantarum

(L. plantarum), and Lacticaseibacillus rhamnosus (L. rhamnosus)

have also demonstrated notable antimicrobial activity against CRE,

with inhibition zones exceeding 20 mm in representative isolates

(Chornchoem et al., 2025). Clinically, a retrospective analysis of

ICU patients showed that among 474 individuals receiving

probiotics, the incidence of new CRE colonization was

significantly reduced, with only 13 patients developing new CRE

colonization, compared to a markedly higher rate in the control

group (Lee et al., 2023).
4.2 FMT

FMT restores colonization resistance against CRE by

reestablishing a diverse and balanced gut microbiome following

disruption by antibiotics. Antibiotic exposure depletes commensals

such as Bifidobacteriaceae and Bacteroidales, exhausts inhibitory

metabolites, and enriches the intestinal environment with

fermentable nutrients that CRE can exploit for growth (Yip et al.,

2023). FMT introduces a complex microbial consortium from

healthy donors to restore ecological competition, metabolic

inhibition, and spatial exclusion (Millan et al. , 2016).

Transkingdom interactions between the virome and bacteriome

induced by FMT may play a critical role in CRE clearance. Studies

have observed a striking increase in E. coli phages in carriers of CRE
Frontiers in Cellular and Infection Microbiology 05
E. coli following FMT, as well as concurrent CRE elimination and

similar evolutionary patterns of Klebsiella phages in mouse models

(Liu et al., 2022).

In a study of 10 carriers with prolonged CP-CRE carriage, FMT

achieved decolonization rates of 40.0%, 50.0%, and 90.0% within 1,

3, and 5 months after the initial treatment, respectively, especially in

patients whose gut microbiota rapidly shift toward the donor

composition and have lower baseline Klebsiella abundance (Lee

et al., 2021). Consistently, another cohort study of 35 patients

reported that 68.6% were decolonized within one year after FMT

(Shin et al., 2022). Microbiota analyses revealed significant increases

in a- and b-diversity metrics in patients with successful CRE

decolonization, whereas no such changes were observed in non-

responders (Bar-Yoseph et al., 2021). FMT also shows a favorable

safety profile. Among the 209 patients reviewed, including

immunocompromised individuals, no serious adverse events were

attributed to FMT (Macareño-Castro et al., 2022).
4.3 Metabolite supplementation therapy

Microbial metabolites, particularly SCFAs, play a key role in the

prevention and treatment of CRE. Studies have found that the levels

of isobutyric acid and valeric acid are significantly reduced in CRE

carriers (Baek et al., 2023). Propionate shows dose-dependent

growth inhibition against various multidrug-resistant bacteria,

including E. coli, with minimum inhibitory concentrations

ranging from 10 to 25 mM (Ormsby et al., 2020). Butyrate

enhances macrophage antimicrobial activity through HDAC3

inhibition, increasing antimicrobial peptide expression and

resistance to enteropathogens (Schulthess et al., 2019). SCFAs also

suppress plasmid-mediated resistance gene transfer, with

conjugation fully suppressed at concentrations of 0.1–1 M and

significant reductions observed even at 0.01 M (Ott and Mellata,

2024). Combining SCFAs with antibiotics yields synergistic effects.

SCFAs restore the susceptibility of resistant Enterobacteriaceae to b-
lactam/b-lactamase inhibitor combinations and downregulate

virulence genes including fliC, ipaH, fimH, and bssS (Kadry

et al., 2023).
4.4 Emerging microbiome engineering
technologies

Synthetic biology offers new tools for precisely engineering the

gut microbiota to prevent CRE. CRISPR/Cas9 gene editing

technology has shown great potential in the prevention and

treatment of CRE by targeting carbapenemase genes to reverse

resistance. The CRISPR-Cas9-mediated plasmid clearing system

has been developed to effectively eliminate carbapenemase genes

such as blaKPC, blaNDM, and blaOXA-48, with an efficiency

exceeding 94% (Hao et al., 2020). This system has demonstrated

exce l l en t resu l t s across var ious c l in ica l i so la te s o f

Enterobacteriaceae, including K. pneumoniae, E. coli, and

Enterobacter cloacae (E. cloacae) (Hao et al., 2020; Tao et al.,
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2022). This strategy can be used for in situ microbiome

modification to eradicate targeted resistant and/or pathogenic

bacteria without affecting other non-targeted bacterial species. In

addition, the delivery of CRISPR-Cas9 by engineered probiotics has

achieved over 99.9% elimination of targeted antibiotic-resistant E.

coli in the mouse gut microbiota with a single dose (Neil et al.,

2021). CRISPR-armed phages, which integrate the CRISPR-Cas

system, enable precise targeting and killing of E. coli, targeting
Frontiers in Cellular and Infection Microbiology 06
bacteria in biofilms and reducing the emergence of antibiotic-

resistant strains (Gencay et al., 2024) (Table 1).
5 Conclusion

The global rise of CRE presents a critical challenge to infection

control, driven by complex resistance mechanisms, asymptomatic
TABLE 1 Therapeutic Strategies Targeting the Microbiome Against CRE.

Therapeutic
strategy

Specific therapy Mechanism Clinical effect or research progress

Probiotic Therapy

Lactobacilli (LUC0180, LUC0219,
LYC0289, LYC0413, and LYC1031)

The production of organic acids by
probiotic organisms and the resulting
decrease in culture pH

Lactobacillus strains at a concentration of 108 CFU/ml
totally inhibited the growth of CRE316 and CRE632
after a 24-h incubation.

B. longum, L. plantarum, and L.
rhamnosus

Reduce the secretion of pro-inflammatory
cytokines while enhancing the production
of anti-inflammatory cytokines

Exhibited strong antimicrobial activity, with inhibition
zones greater than 20 mm against antibiotic-resistant
strains, including CRE

Saccharomyces boulardii and
Lactobacillus rhamnosus

Produce antimicrobial compounds,
occupy epithelial niches, and limit
pathogen colonization

Among 474 patients receiving probiotics, only 13
developed new CRE colonization, significantly fewer
than in the control group.

FMT

Administration via a colonoscopy or
esophagogastroduodenoscopy

FMT altered microbiota composition,
increasing Bacteroidetes and reducing
CRE-related genera

90% of CRE carriers achieved decolonization within 5
months of FMT, with 40% clearing CRE within the
first month

Administration via a gastro-endoscope
or colonoscopy

FMT promotes CRE decolonization by
restoring gut microbiota balance and
reversing dysbiosis

In a cohort of 35 patients, 68.6% achieved
decolonization within one year, with FMT and
multidrug-resistant organisms type identified as key
factors influencing decolonization time.

Oral capsulized FMT
Restore the gut microbiome and compete
with residual resistant strains

Participants who achieved CRE eradication, reaching
66.7% at 6 months, exhibited significant shifts in both
a- and b-diversity metrics, changes not observed in
non-responders.

Metabolite
Therapy

Butyrate
Exerted HDAC3 inhibition to alter
metabolism and induce antimicrobial
peptide production

Exhibit strong antimicrobial activity, thereby reducing
the spread of pathogenic bacteria.

SCFAs Inhibit bacterial plasmid transfer

Reductions in transconjugant populations were
observed in all three SCFA groups, effectively
eliminating antimicrobial resistance with minimal
impact on bacteria.

SCFAs and b-lactam/b-lactamase
inhibitor combination synergy

Restore susceptibility to b-lactam/b-
lactamase inhibitor and suppress
virulence genes

The addition of SCFAs increased the susceptibility of
the 18 tested isolates, achieving rates of 94.4%, 83.3%,
and 66.7% for ceftazidime/avibactam, cefoperazone/
sulbactam, and cefepime/enmetazobactam,
respectively.

Synthetic Biology

CRISPR-Cas9-mediated plasmid-curing
system

Eliminate carbapenemase genes and
plasmids in clinical Enterobacteriaceae
isolates

Effectively cured clinical isolates from various
Enterobacteriaceae species with a clearing efficiency of
over 94%, resensitizing CRE to carbapenem antibiotics.

Engineered probiotics with antibacterial
CRISPR-Cas

Eliminate a target strain from a mixed
population and protect the microbiota
from specific strain colonization

The conjugative delivery system eliminates over 99.9%
antibiotic-resistant E. coli in the mouse gut with a
single dose.

Engineered phage with antibacterial
CRISPR-Cas

Precisely lyse target bacteria and disrupt
resistance genes to enhance strain-specific
clearance

Enable precise targeting and killing of E. coli,
including bacteria in biofilms, while reducing
antibiotic resistance emergence.
CRE, Carbapenem-Resistant Enterobacteriaceae; FMT, Fecal Microbiota Transplantation; SCFA, Short-Chain Fatty Acid; HDAC3, Histone Deacetylase 3; CRISPR, Clustered Regularly
Interspaced Short Palindromic Repeats; Cas, CRISPR-associated; B. longum, Bifidobacterium longum; E. coli, Escherichia coli; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus,
Lacticaseibacillus rhamnosus.
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gastrointestinal colonization, and limited treatment options. The gut

serves as both a reservoir and a transmission hub for CRE, particularly

under conditions of antibiotic-induced dysbiosis that impair

colonization resistance and facilitate horizontal gene transfer. In this

context, the gut microbiota has emerged as a promising

therapeutic target.

Microbiome-based interventions such as probiotics, FMT, and

SCFA supplementation have shown potential to restore microbial

balance and suppress CRE colonization. Most current evidence,

however, is derived from in vitro experiments and animal models,

with only limited support from small-scale or retrospective clinical

studies. These findings suggest potential preventive and therapeutic

value, but their clinical efficacy and safety remain to be rigorously

validated in large, well-designed randomized controlled trials. While

traditional approaches may provide broad-spectrum benefits, precision

tools such as CRISPR/Cas9 gene editing and engineered probiotics

represent a highly innovative frontier. These technologies hold the

promise of selectively removing resistance genes while minimizing

collateral disruption to commensal microbes. Yet, their translation into

clinical practice is still at the proof-of-concept stage, with substantial

barriers including the development of reliable delivery systems,

managing potential off-target effects, and navigating complex

regulatory pathways for live biotherapeutics.

Moreover, inter-individual variability in baseline microbiota

may influence treatment outcomes, underscoring the importance

of personalized approaches. For these advanced strategies to

succeed, they must ultimately be integrated into established

infection control frameworks, including patient screening, contact

precautions, environmental hygiene, and antimicrobial

stewardship. A coordinated and evidence-based strategy that

bridges microbiome-targeted therapies with existing infection

control practices will be essential to move from reactive treatment

toward proactive and sustainable CRE containment.
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