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Introduction: Plasmodium vivax is the most widespread cause of malaria outside
Africa. Developing effective controls is challenging because P. vivax exclusively
invades reticulocytes, immature erythrocytes that are scarce and short-lived. This
limits opportunities to culture the parasite and investigate the receptor-ligand
interactions crucial for host cell invasion.

Methods: The erythroid cell lines JK-1 and BEL-A were evaluated in vitro as
reticulocyte surrogates to assess their susceptibility to P. vivax invasion.
Comparative membrane proteomics of these cell lines, reticulocytes, and
mature erythrocytes were performed using quantitative liquid
chromatography—mass spectrometry (LC-MS). Specific interactions between
the parasite ligand PvRBPla (residues 158-650) and candidate host receptors
were identified by TurbolD proximity labeling and validated through ELISA
binding assays.

Results: We confirmed that the JK-1 cell line supports P. vivax invasion and
demonstrated for the first time that BEL-A cells are similarly susceptible,
establishing both as effective surrogate models. Membrane proteomics
identified several receptor candidates potentially involved in selective host-cell
entry. In addition to known receptors, including transferrin receptor protein 1
(TfR1/CD71), CD98hc, and basigin (BSG), novel receptor candidates such as
prohibitin-2 (PHB2), CAT-1 (SLC7A1), ATB(0) (SLC1A5), CD36, integrin beta-1
(ITGB1), and metal transporter CNNM3 were discovered. Proximity labeling with a
recombinant PvRBP1a (158-650)-TurbolD fusion protein confirmed the known
interactions with TfR1 and BSG, and additionally identified PHB2 as a novel
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interacting partner. Notably, this is the first report implicating PHB2 as a co-
receptor for P. vivax invasion.

Conclusion: Our findings provide novel insights into the molecular mechanisms
underlying reticulocyte restriction in P. vivax. The JK-1 and BEL-A cell lines
represent valuable platforms for dissecting receptor—ligand interactions during
parasite invasion and for advancing the development of targeted therapeutic
antimalarial strategies.

KEYWORDS

Plasmodium vivax, parasite invasion, erythroid cell lines, membrane proteomics,
receptor-ligand interactions, LC-MS proteomics

1 Introduction

Malaria remains a major global health issue, with 263 million
cases reported in 2023. Plasmodium vivax, one of the six human-
infecting Plasmodium species, is noteworthy for its global
distribution. In the Americas, most malaria cases are due to P.
vivax (72.1% in 2023) (World Health Organization, 2024). Its blood
stage form, the merozoites, interact with red blood cell (RBC)
receptors leading to RBC invasion (Gruszczyk et al., 2018a;
Malleret et al., 2021; Molina-Franky et al., 2022). However, P.
vivax exclusively infects reticulocytes (Malleret et al., 2015a),
immature, short-lived precursors of erythrocytes, posing a
significant challenge to research progress. In contrast, P.
falciparum has been extensively researched due to the availability
of a well-established in vitro culture system for over 40 years
(Trager and Jensen, 1976). This critical disparity highlights the
urgent need to develop alternative research models for P. vivax.

The mechanism of P. vivax reticulocyte invasion remains
unclear. It was previously believed that P. vivax exclusively
targeted reticulocytes through the Duffy antigen receptor for
chemokines (DARC) and Dufty binding protein (PvDBP)
interaction (Horuk et al, 1993), as individuals with the Fy(a-b-)
mutation in West Africa were resistant to the infection. However,
DARC is present on both reticulocytes and erythrocytes, and P.
vivax infections have been documented in Duffy-negative
populations (Ryan et al., 2006; Reyes et al., 2022; Picon-Jaimes
et al., 2023).

Together with evidence from Duffy-negative infections,
geographical variation among P. vivax isolates further supports the
idea that invasion is not limited to a single pathway. Transcriptomic
studies show that invasion-related genes such as PvRBPla, PvRBP2a,
and PvRBP2b are more highly expressed in Ethiopian and Cambodian
isolates than in Brazilian isolates, while PvDBPI and PvEBP/DBP2 are
elevated in Cambodian parasites. These patterns suggest that P. vivax
employs multiple, regionally adapted invasion strategies (Kepple et al.,
2023).Among the most prominent candidates are the reticulocyte-
binding protein (RBP) family, which may interact with transferrin
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receptor 1 (TfR1) and CD98 heavy chain (SLC3A2), both of which are
lost during the maturation of reticulocytes to erythrocytes (Galinski
et al,, 1992; Gruszczyk et al., 2018a; Malleret et al., 2021). This implies
that P. vivax (Pv)RBP family proteins specifically target receptors
unique to the reticulocyte membrane. Our previous studies on
PvRBP1 of the P. vivax strain Belem (GenBank AAA29743.3)
identified eleven high-affinity reticulocyte binding peptides (HABPs)
corresponding to residues 158-653 of PvRBP1a in the P. vivax Salvador
I strain (GenBank AAS85749.1). Among these, HABP 3742
(KLLGEEISEVSHLYV) and HABP 3459 (KEILDKMAKKVHYLK)
exhibited dissociation constants (Kd) of 131 nM and 155 nM,
respectively (Urquiza et al, 2002). Additionally, an extracellular
portion of PvRBPla, residues 157-650, binds strongly (~50%) to
reticulocytes and moderately (~20%) to erythrocytes (Ntumngia
et al, 2018). The identity of PvRBP1a;s;_¢50 binding-receptors within
the reticulocyte membrane has been unclear. Therefore, this study
evaluated the erythroleukemic cell line JK-1 (Okuno et al,, n.d) and the
Bristol Erythroid Line Adult (BEL-A) (Trakarnsanga et al, 2017) as
surrogates for reticulocytes, examining their susceptibility to P. vivax
invasion. A comparison of the cell lines’ membrane proteomes revealed
similarities with those of reticulocytes, and dissimilarities with
erythrocyte membrane proteomes, thereby identifying potential P.
vivax receptors. Furthermore, TurboID proximity labelling implied
specific interactions of PvRBPla;sg ¢50 with prohibitin-2 (PHB2),
TfR1, and basigin (BSG). These interactions were confirmed by
ELISA, highlighting key molecular determinants of P. vivax’s
reticulocyte tropism.

2 Materials and methods
2.1 Ethics statement

The study was conducted in accordance with the Declaration of
Helsinki. Use of anonymized discarded blood from therapeutic

phlebotomy was approved by the Institutional Review Board of City
of Hope, Duarte, California, USA, as exempt category 4, under
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45CFR46.104 (d). Blood samples from malaria patients were
obtained under informed consent with the approval of the
Bioethics central committee of the Universidad de Cordoba,
Monteria, Colombia, and imported into the United States under
CDC permit No.: 20210830-3188A0.

2.2 Collection, processing, and enrichment
of P. vivax parasites from blood samples

P. vivax infected blood samples were collected from malaria
patients in Tierralta—Cordoba, Colombia, into 5-mL sodium
citrate tubes. After transportation to Bogota, RBCs were enriched
by centrifugation, mixed with an equal volume of Glycerolyte 57,
cryopreserved, shipped to the U.S. lab, thawed using the NaCl
method (Blomgqvist, 2008), and resuspended in 3 mL of Iscove’s
Modified Dulbecco’s Medium (IMDM). These RBCs were then
enriched from 0.2% to 4.0% parasitemia by concentrating P. vivax-
infected reticulocytes through a KCl-Percoll gradient (Rangel et al.,
2018). Enrichment was evaluated by microscopy with Giemsa
staining (Figure 1A).
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2.3 ldentification of the Plasmodium
species

Genomic DNA was extracted from infected cells, and nested
PCR was performed using this DNA to identify the Plasmodium
species. Genus- and species-specific primers targeting the parasite’s
18S ribosomal small subunit RNA were used as previously described

(Snounou et al., 1993) (see Supplementary Data).

2.4 P. vivax entry into BEL-A and JK-1 cells

JK-1 cells were obtained from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH (DSMZ) in
Braunschweig, Germany, and BEL-A cells were from Prof. Dr. Jan
Frayne of the University of Bristol, under contract by the NHS
Blood and Transplant of the UK, see acknowledgement for details.

The enriched P. vivax mono-infected RBC sample (~40 pL) was
divided into two equal aliquots, one for co-incubation with BEL-A cells
and the other with JK-1 cells. Each cell line (1.5x105 cells) was cultured
in 500 pL of medium, for BEL-A in StemSpan serum-free expansion
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P. vivax mono-infected reticulocytes. (A) Three representative micrographs of P. vivax-infected enriched reticulocytes (red arrows) from a malaria
patient. Scale bars are 3 um. (B, C) Species-specific nested PCR for the small subunit 18S ribosomal RNA. Lane M, 100 bp marker; Lane PvSx, sample
used in the infection of erythroid cells; Lanes Pv and Pf belong to the positive controls for each species; lane NCh, negative control using genomic
DNA from a healthy human; lane NC, negative control using water instead of genomic DNA. (B) P. vivax (~120 bp amplicon). (C) P. falciparum (~205
bp amplicon). (D) DNA sequence alignment of the positive PvSx amplicon with the corresponding gene segment of the P. vivax Salvador-1 reference
strain (GenBank No. XR_003001206.1) (Carlton et al., 2008), showing 100% identity
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medium (SFEM, StemCell Technologies), containing 25% human
serum (Type AB, Sigma-Aldrich), 50 ng/mL stem cell factor (SCF), 3
U/mL erythropoietin (EPO), 1 uM dexamethasone, 1 pg/mL
doxycycline, 1 ug/mL chemically defined lipid concentrate (CDLC),
and 100 uM hypoxanthine; and JK-1 in IMDM supplemented with
GlutaMAX, with the same components, except for SCF, EPO,
dexamethasone, and doxycycline. Both cultures were incubated at
37 °C with 5% CO2 and 5% O2. Fresh medium and 2x105 erythroid
cells were added every two days, and cultures were evaluated by
immunofluorescence assay (IFA) every 24 hours for 6 days (see
Supplementary Data).

2.5 Quantitative comparison of membrane
proteomes by (DIA) - LC-MS/MS

Reticulocytes, erythrocytes, JK-1 and BEL-A cells were collected,
cytoplasmic content was removed by osmolytic lysis, and membrane
proteins of the remaining ghosts were extracted. From each sample, 23
Hg of proteins were processed for proteomics using S-Trap columns
(ProtiFi) according to the manufacturer instructions (Matulis, 2016;
HaileMariam et al., 2018). The resulting trypsin/LysC-digested peptides
were analyzed by LC-MS/MS in data-independent acquisition (DIA)
mode, as detailed in the Supplementary Data.

To enrich the plasma membrane proteins from the data set,
proteins were filtered based on at least one of the following
annotations from the UniProt subcellular localization database: “Cell

» o«

membrane”,

» <

Apical cell membrane”, “Basolateral cell membrane”,
“Peripheral membrane protein” and “Plasma membrane”, and the
Gene Ontology (GO) annotation term: “plasma membrane”. The
topology of the membrane proteins abundant in reticulocytes
compared to erythrocytes was evaluated using several predictors.
Protein sequences were analyzed with Protter for overall visualization
of proteoforms (Omasits et al., 2014), TMHMM 2.0 for
transmembrane region prediction (Hallgren et al., 2022), SignalP 6.0
for signal peptide identification (Teufel et al., 2022), and PredGP1I for
GPI anchor site prediction (Pierleoni et al., 2008).

2.6 PVRBP1A55_g50 proximity labeling for
the identification of likely receptor
candidates

2.6.1 Cloning, expression, purification, and
activity of TurbolD fusion proteins

The DNA sequence encoding PvRBPla;sg 459 (GenBank
AAS85749.1) was derived from the P. vivax Salvador I reference
strain (txid126793). This sequence was fused to an acidic linker (L),
GDEVDEDEG, to improve solubility, and the TurboID protein (TID)
(Branon et al,, 2018), followed by a C-terminal 6xHis tag for
purification, resulting in the PvRBP1a;sg 450LTID fusion protein. An
equivalent gene encoding L with TurboID alone (LTID) was designed
as a negative control. Both gene constructs were obtained as
customized synthetic genes, optimized for expression in E. coli, and
cloned into a pET-28a(+) expression vector between its Ncol and Xhol
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sites. The constructs were expressed in soluble form in E. coli BL21 cells
and purified by affinity chromatography, as detailed in the
Supplementary Data. Protein purity and expression were verified by
polyacrylamide gel electrophoresis. The biotinylation activity of both
recombinant TurboID fusion proteins was confirmed by evaluating
their autobiotinylation activity through incubation in the presence or
absence of biotinylation reaction buffer Brxn (20 mM Tris-HCI, 500
uM biotin, 2.5 mM ATP, pH 7.5) at 37 °C for 15 minutes, quenching
on ice and Western blot analysis with streptavidin-IRDye 800CW
conjugate (1:1,000) and an Odyssey DLx imaging system (LICORbio).

2.6.2 PvRBPla;55.650LTID proximity labeling

To evaluate PvRBP1a,55.650LTID’s interaction with JK-1, BEL-
A, reticulocytes, and erythrocytes, proximity labeling assays were
performed in duplicate, and repeated up to three times. Cells were
washed twice with PBS supplemented with 2% human serum (HS
2%) and incubated with either PvRBPla;sg.650LTID or LTID
(negative control) for 3 hours at room temperature with constant
mild agitation at 10 rpm. Following incubation, cells were washed
three times with HS 2% to remove unbound proteins, then
incubated with Brxn for 15 minutes at 37°C. The reaction was
stopped by cooling on ice for 5 minutes, and the samples were
washed with cold HS 2% before labeling with Alexa Fluor 488-
conjugated streptavidin (10 pg/mL, Invitrogen) for 1 hour at room
temperature. Biotinylation was quantified by cytometry, acquiring
100,000 events per sample on a FACSAria Fusion (BD). Data were
analyzed with Flow]Jo v10.8.1 (Ashland et al., 2023), calculating the
percentage of biotinylated cells relative to total cells. LTID-treated
and unlabeled cells served as negative controls.

2.6.3 The biochemical nature of PvRBPlais5_¢50
receptors

JK-1 and BEL-A cells were treated with trypsin (I mg/mL,
Sigma-Aldrich), chymotrypsin (1 mg/mL, Sigma-Aldrich), or
neuraminidase (50 mU, Roche) for 1 hour. After enzymatic
treatment, proteolytic enzymes were inactivated with soy trypsin
inhibitor (0.5 mg/mL, Sigma-Gibco) (Deans et al., 2007). Proximity
labeling assays were then performed as described above, using
PVRBPla, 55 450l TID or LTID (3 uM).

2.6.4 Affinity enrichment and LC-MS
identification of PvRBPlaisg_gs50 proximity-
labeled receptor candidates

JK-1 cells were incubated with either PvRBP1a; 55650l TID or LTID
(negative control), each at 3 uM for 3 hours. After incubation, cells
were washed three times with HS 2%, then incubated with 100 uL of
Brxn for 15 minutes at 37°C. The reaction was stopped as described
above, and cells were resuspended in 500 pL of IP-MS lysis buffer (MS-
compatible Magnetic IP kit, streptavidin, Pierce, Thermo Scientific),
incubated on ice for 30 minutes with intermittent vortexing every 5
minutes. After centrifugation, the lysate’s supernatant was collected
and combined with Streptavidin magnetic beads (50 pL, Thermo
Scientific), incubated for 1 hour at 21°C, and then overnight at 4°C,
to enrich biotinylated membrane proteins. The beads were washed, and
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biotinylated proteins were eluted sequentially with 100 uL of 50 mM
biotin, 100 pL of elution buffer, and 100 pL of 5% SDS at 95°C.

The eluted proteins were reduced, alkylated, and processed for
proteomics using S-Trap spin columns (ProtiFi) according to the
manufacturer’s instructions (Matulis, 2016; HaileMariam et al,
2018). The resulting trypsin/LysC digested peptides were analyzed
by LC-MS in data-dependent acquisition mode. Data analysis was
performed using FragPipe v22.0 (Yu et al, 2021). Candidate
receptor proteins for PvRBPla;sg_¢50 were selected based on the
presence of extracellular regions that are favorable for ligand
interaction, evaluated using UniProt GO annotations and the
TMHMM 2.0 predictor (Hallgren et al., 2022). Receptor
candidates in the PvRBPla;sg 650LTID sample that were detected
in both duplicates and of significantly higher abundance (> 2 fold)
compared to the negative control (LTID) were also considered.
Subsequently, a parallel reaction monitoring (PRM) method was
applied to validate and quantify the peptides of interest (as detailed
in the Supplementary Data).

2.6.5 Binding affinities of PvRBPla;55_g50 to
select receptor candidates by ELISA

The recombinant extracellular protein domains of receptor
candidates TfR1 (Cys89-Phe760, SinoBiological), BSG (Metl-
His205, SinoBiological), and full-length PHB2 (Origene) were
used to evaluate the interaction between the PvRBP1a;sg_¢50 and
its binding membrane proteins (Supplementary Figure SI).
Maxisorp plates were coated in triplicates with 5 pg/mL of each
protein for 2 hours at room temperature and blocked with
SuperBlock Buffer (Thermo Scientific). Serial dilutions of
PvRBPla;s5.650LTID and LTID were prepared in blocking
solution, ranging from 48,000 pM to 187.5 pM (1:2 dilution) and
4,000 pM to 1.28 pM (1:5 dilution), and incubated for 16 hours at
4°C. Bound PvRBP1a,s55.650LTID and LTID were detected with a
TurboID-specific polyclonal rabbit antibody (anti-BirA mutated/
TurbolD, Agrisera, 1:10,000). After five washes with PBST, 100 pL
of 3,3,5,5’,-Tetramethylbenzidine (TMB) substrate was added, and
the reaction was stopped with 50 pL of 1 M phosphoric acid.
Absorbance was measured at 450 nm. Dissociation constants (Kd)
were determined using GraphPad Prism v10.3.1 with non-linear
regression and a one-site binding saturation model.

3 Results

3.1 P. vivax can invade the erythroid cell
lines BEL-A and JK-1

Cultured BEL-A and JK-1 cells were successfully invaded by P.
vivax from a validated mono-infected malaria patient’s blood
sample. The experiment required forgoing enrichment of the
RBCs to 4.0% parasitemia (Figures 1A-D). Parasite invasion was
confirmed by immunofluorescence microscopy, detecting the
intracellular presence of P. vivax lactate dehydrogenase (PvLDH),
which all blood stages of the parasite are known to express (Cao
et al,, 2024). PvLDH was detected in the positive control of infected
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reticulocytes, and in BEL-A and JK-1 cells, incubated with infected
reticulocytes (Figure 2, FITC). The PvLDH signal was absent from
non-infected control cells. Moreover, the presence of hemozoin
(Hz) pigment, characteristic for hemoglobin consumption by
Plasmodia within infected RBCs (Pandey and Tekwani, 1996),
was observed (Figure 2, bright field, and merge). The dark Hz
pigment was visible inside the parasite-infected nucleated erythroid
cells as well as in infected reticulocytes that originated from the
donor. Hz is an insoluble, crystallized digestion product of heme
derived from the digestion of hemoglobin by malaria parasites,
containing heme-derived B-hematin, which neutralizes the toxicity
of free heme released after parasite invasion through a digestive
process that involves the digestive vacuole structure (Coronado
et al, 2014). On days 3 to 6 post-infection, no parasite-infected
erythroid cells were observed, and cell mortality had substantially
increased. Therefore, the experiment was stopped on day 6.

3.2 Overlapping membrane proteomes
reveal potential P. vivax invasion receptors

Because P. vivax was able to invade the erythroid BEL-A and
JK-1 cells, their membranes must contain the same essential
receptor molecules as reticulocytes that enable parasite invasion.
Furthermore, the membranes of mature erythrocytes are expected
to lack these receptors or to express them only at insufficient
abundances. Consequently, a quantitative comparison of the
membrane proteome of these cells with those of human
reticulocytes and erythrocytes identified potential receptors for P.
vivax merozoite ligands that are most likely responsible for its
reticulocyte-restricted invasion.

Stringent isolation procedures were necessary to obtain
membrane proteins of pure reticulocytes. The isolated
reticulocytes (CD71%, CD45") used in this proteomic comparison
had a purity of 98.4% (Supplementary Figure S2). Expression of
CD71 is diminished during maturation into fully functional
erythrocytes (Malleret et al., 2015b). Simultaneous determination
of CD45 negativity was necessary, as CD45" leukocytes also express
CD71, to ensure purity of the isolated reticulocytes.

The BEL-A and JK-1 cells used in the membrane proteomic
comparisons were harvested from in vitro cultures and exhibited
distinct nucleated erythroid maturation stages, including
proerythroblasts, basophilic erythroblasts, polychromatic
erythroblasts, and orthochromatic erythroblasts (Supplementary
Figure S3), with slight dominance of the basophilic and
polychromatic stages.

In total, 2,100 proteins were identified in BEL-A cells and 2,178
in JK-1 cells. The number of proteins was lower in reticulocytes
(1,234) and in erythrocytes (1,347). After filtering this data for
membrane proteins (see Supplementary Data, Supplementary
Figure S4), 1,530 and 1,595 such proteins were obtained from
BEL-A and JK-1 cell ghosts, respectively, while 846 and 974
proteins were identified for reticulocyte and erythrocyte ghosts.

Changes in membrane protein abundance were assessed by
comparing erythroid cell lines and reticulocytes to mature
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P. vivax invades BEL-A and JK-1 cells. The micrographs show P. vivax-infected reticulocytes as the positive Control (+); infected BEL-A and JK-1
cells at 24 and 48 h, and their non-infected negative Control (-); P. vivax lactate dehydrogenase (FITC green); DNA (DAPI blue); hemozoin crystals

(black dots marked with red arrows); BF (bright field); Scale bars are 5 ym

erythrocytes. The protein abundancies of reticulocytes clustered
better with those of BEL-A and JK-1 cells than with those of
erythrocytes (Figure 3A). It was found that compared to
erythrocytes 256 proteins were more abundant in reticulocytes,
1,179 in JK-1, and 1,554 in BEL-A. Of these, 144 identical proteins
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were increased in reticulocytes, JK-1, and BEL-A. However,
reticulocytes and JK-1 cells share 18 proteins that are less
abundant in erythrocytes, while BEL-A and reticulocytes have 40
proteins in common, that are less abundant in erythrocytes. Only 54
membrane proteins with higher abundance than in erythrocytes
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value, indicating statistical significance.

were identified exclusively in reticulocytes, 237 in JK-1, and 590 in
BEL-A cells (Figure 3B).

When comparing the membrane protein abundance in
reticulocytes, cell lines, and erythrocytes, known P. vivax receptors
such as TfR1 (CD71), CD98hc, ACKR1/DARC, BSG, CR1, and band 3
(SLC4A1) were identified. TfR1 and CD98hc, which are lost during
reticulocyte maturation to erythrocytes, were significantly more
abundant in reticulocytes and cell lines. In contrast, the other
receptors showed higher levels in erythrocytes (Figures 3C-E).

In silico topological analysis of membrane proteins enriched in
reticulocytes and erythroid cell lines identified several candidates —
CD98lc (SLC7A5), high-affinity cationic amino acid transporter 1
(CAT-1, SLC7A1), neutral amino acid transporter BO (ATB(0),
SLC1AS5), CD36, Integrin B-1 (ITGB1), prohibitin-2 (PHB2), and
the metal transporter CNNM3 — as possessing sizable extracellular
regions that are potentially accessible for interaction with P. vivax
merozoite ligands (Supplementary Table SI,
Figure S5).

Supplementary

Frontiers in Cellular and Infection Microbiology

The significantly higher abundance of these proteins in
reticulocytes, BEL-A, and JK-1 cells compared to erythrocytes
(Figures 3C-E; Supplementary Table S1) highlights them as
potential candidates for P. vivax merozoite protein receptors, which
may explain the parasite’s exclusivity for reticulocyte invasion.

3.3 Receptors for PvRBPlajisg_g50LTID
identified via proximity labeling

To identify potential receptors of the PvRBPla;sg 5oL TID
protein, the TurboID proximity labeling technique was used. This
technique enables the biotinylation of proteins that come into close
contact with the fused protein (within 10 nm), facilitating the
identification of their interactions (Branon et al., 2018; Cho et al,,
2020). Therefore, the fusion protein PvRBP1a;sg 650LTID and the
LTID control were obtained in soluble form, with PvRBPla;sg.
650LTID having a molecular weight of ~94 kDa and LTID ~36 kDa
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(Figure 4A). Both proteins exhibited enzymatic activity and self-
biotinylation at 1, 2, and 3 uM (Figures 4B, C).

3.4 PvRBPlais5.650LTID exhibits
comparable binding to reticulocytes and
erythroid cell lines via a proteinaceous
receptor

Proximity biotinylation mediated by TurboID facilitated
binding evaluation through the biotin-streptavidin interaction.
The assays showed that PvRBPlajsg ¢50LTID binding is
concentration-dependent (Figure 4D). Since the highest
percentage of biotin labeling on the cell surface was obtained at 3
uM, this concentration was selected to analyze PvRBP1a;sg 450LTID
binding to enriched reticulocytes (87.5% purity) (Supplementary
Figure S6), erythrocytes, and cell lines. The results showed that
PvRBPla;ss 650 had 80% biotinylation on the surface of
reticulocytes, 4.7% on erythrocytes, and 79.85% and 83.2% on the
surface of JK-1 and BEL-A cells, respectively. A statistically
significant difference was found between the cell lines and
reticulocytes compared to erythrocytes (P < 0.0001). However, no
significant difference was observed between the cell lines and
reticulocytes (Figures 4E, F). These data suggest that erythroid
cell lines exhibit PvRBP1la;sg 450 binding activity comparable to
reticulocytes, indicating that they may express the receptor for this
specific P. vivax ligand on their surface. Additionally, no labelling
was detected with LTID, confirming the specificity of the
PvRBP1a,;sg ¢50 receptor interaction.

Cell surface labelling with PvRBP1a; 55 650LTID was sensitive to
trypsin and chymotrypsin treatment but resistant to neuraminidase,
which removes sialic acid from glycans that modify proteins in
vertebrates (Figure 4G). Therefore, the cell surface receptor
function for PvRBPla;sg 50 is proteinaceous and not dependent
on sialic acid-terminated glycans.

3.5 Enrichment of PvRBPla;55.650LTID
biotinylated cell surface proteins, identifies
TfR1 and prohibitin-2 as the likely
reticulocyte-restricting receptors

PvRBPla;sg ¢50LTID biotinylated membrane proteins from
erythroid cells were captured via streptavidin-affinity and subjected
to proteomics analysis, revealing a total of 278 proteins, of which 12
were localized to the plasma membrane. However, the LTID control
contained five of these proteins, leaving seven unique to enrichment
after biotinylation with PvRBP1a; 55 5oL TID. Four of these membrane
proteins do not possess extracellular regions, while TfR1, prohibitin-2,
and BSG do. Such extracellular regions should be required to facilitate
an interaction with P. vivax merozoite ligands (Figure 5A). Interaction
of PvRBP1a,sg 650 was successfully validated by targeted PRM LC-MS
analysis for TfR1, BSG, and prohibitin-2 (Figure 5B). It clearly
demonstrated that only PvRBPla;sg ¢50LTID biotinylated these three
proteins, while LTID did not.
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BSG is more abundant in erythrocytes than in reticulocytes and
in the erythroid cell lines. In contrast, TfR1 and prohibitin-2 were
significantly less abundant in erythrocytes (Figures 3C-E). In fact,
TfR1 and prohibitin-2 were among the most abundant membrane
proteins in reticulocytes and in the erythroid cell lines JK-1 and
BEL-A. These findings suggest that PvRBP1a,sg 5 likely facilitate
the recognition and invasion of reticulocytes through interaction
with TfR1 and prohibitin-2.

3.6 PvRBPla;s5.650LTID interacts with high-
affinity binding to TfR1, BSG, and
prohibitin-2

The titration curves fit well to a single-site binding saturation
model. In contrast, the negative control LTID displayed a
nonspecific binding pattern “unstable”, corroborating the
specificity of the interactions (Figure 6A). The Kd obtained from
the ELISA titration indicated that PvRBP1a;sg ¢50LTID had high
affinity for TfR1 (Kd: 1.15 nM), followed by BSG (Kd: 2.16 nM) and
prohibitin-2 (Kd: 2.77 nM) (Figure 6B).

4 Discussion

This study demonstrates the utility of erythroid cell lines JK-1
and BEL-A as suitable surrogates for reticulocytes for studying the
invasion process of the P. vivax malaria parasite. While these cell
lines and their culture conditions did not support a continuous P.
vivax culture in vitro, the formation of the Hz pigment and immuno
detection of PVLDH strongly supported parasite invasion. In
contrast to human reticulocytes, both erythroid cell lines are
nucleated, which might permit them to initiate a cell-death
program upon parasite invasion. Consistently, JK-1 cells were
previously reported to support cell entry by both P. vivax and P.
falciparum (Kanjee et al., 2017; Gruszczyk et al., 2018b), while BEL-
A cells have so far only been studied with P. falciparum (Satchwell
et al,, 2019). This study is the first to report P. vivax invasion of
BEL-A cells, confirming their susceptibility alongside JK-1 cells.

The quantitative membrane proteome comparison of
reticulocytes and erythroid cell lines with erythrocytes revealed
Prohibitin-2 (PHB2), TfR1 (CD71), the CD98 heavy chain (4F2hc,
gene SLC3A2), the CD98 light chain (LAT-1, gene SLC7A5), ATB
(0) (gene SLC1A5), CAT-1 (SLC7A1), CD36, Integrin B-1 (gene
ITGB1), and Metal transporter CNNM3 to be of significantly
increased abundance in those cell lines and reticulocytes. Whereas
they are strongly decreased (practically absent) in fully matured
erythrocytes. The increased abundance of TfR1 and CD98 in
reticulocytes over erythrocytes is consistent with previous studies
(Malleret et al,, 2015b, 2021). However, genetic manipulation
(Gruszezyk et al., 2018a) or antibody blockade (Malleret et al,
2021) of these proteins only partially reduced P. vivax invasion,
suggesting the involvement of additional receptors. The heavy chain
of CD98 (SLC3A2) was reported to be bound by P. vivax in
immature RBCs via PvRBP2a (Malleret et al., 2021). Therefore,
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FIGURE 4

Proximity labeling with PvRBP1a;s5.650LTID in JK-1, BEL-A, reticulocytes, and erythrocytes. Recombinantly expressed soluble PvRBPla;sg-650LTID and
LTID by (A) SDS PAGE (B, C) auto-biotinylation assay with increasing concentrations of each protein at 1, 2, and 3 uM, detected with IRDye 800
Streptavidin (green bands), LICORbio molecular weight markers (MW, red bands); (D) biotin labeling of JK-1 (orange) and BEL-A (fuchsia) cells, in

presence of PvRBP1a

158-650LTID or LTID (negative control, JK-1 - black, and BEL-A - gray) at 1, 2, and 3 pM. (E-G) Flow cytometry (E) histograms of

erythroid cells and human RBCs in presence of PvRBPla;sg_650LTID (blue) or LTID (grey), both at 3 uM, demonstrating (F) significant degrees of cell
surface labeling by PvRBPlajsg_650LTID in erythroid cells and reticulocytes compared to erythrocytes (****p < 0.0001). (G) Receptors to PvRBPlajsg_
650 are sensitive to cell surface treatment with trypsin and chymotrypsin but resistant to neuraminidase (labeling % as normalized to untreated cells).
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FIGURE 5

Proximity biotin-labeled TfR1 (CD71), Basigin, and Prohibitin-2, are identified as P. vivax receptor candidates after interaction of JK-1 cells with
PvRBPla;sg-650LTID and validated by targeted LC-MS. (A) Heatmap of labeled plasma membrane protein intensities in the PvRBPlajsg_g50LITD
(fuchsia) and LTID (yellow) control samples, analyzed in duplicate by DDA LC-MS proteomics. Intensities are represented on a Z-score scale, where
each value was transformed by the number of standard deviations (SD) from the mean. Topology categorizes proteins by their cellular localization:
intracellular (Inside, dark gray) and those with extracellular domains (Outside, cyan). They include Shroom3, GPR132 — probable G-protein coupled
receptor 132, EEF1A1 — Elongation factor 1-alpha 1, protein S100-A8, protein S100-A6, TfR1, PHB2 — prohibitin-2, BSG, protein S100-A9, JUP —
junction plakoglobin, DSC3 — Desmocollin-3, and VIM — vimentin. (B) Validated interactions of transferrin receptor 1, basigin, and prohibitin-2 with
PvRBP1aisg-¢50LITD, but not with LITD, during the TurbolD procedure, followed by PRM LC-MS. (1) (2) — duplicates. Stacked bars are the sum of the
LC-MS ion chromatographic peak areas of the trypsin digested peptides (colored boxes) of each protein, indicating the contribution of each peptide

to the individual protein abundance.

other potential P. vivax receptor candidates with extracellular
regions, namely Prohibitin-2, the CD98 light chain (LAT-1), ATB
(0), CAT-1, CD36, Integrin -1, and CNNM3 should be considered.
These membrane proteins participate in various protein-protein
interactions that facilitate the entry of microorganisms into host
cells (Albritton et al., 1993; Yoshimoto et al., 1993; Smith et al.,
1998; Tailor et al.,, 1999; Graham et al., 2003; Weigel-Kelley et al.,
2003; Maginnis et al., 2006; Xiao et al., 2008; Feire et al., 2010;
Nagele et al., 2011; Wintachai et al., 2012; Su et al., 2020; Olaya-
Galan et al., 2021). Interestingly, LAT-1, that together with its heavy
chain 4F2hc forms the heteromeric CD98 (Lee et al, 2019; Yan
et al.,, 2019), plays a role in hepatitis C virus entry (Nguyen et al.,
2018), raising the question of whether P. vivax may also interact
with LAT-1.

Proximity labeling of erythroid cells with PvRBP1a; 55 ¢50LTID was
largely consistent with previous observations, in which ~50% of
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reticulocytes binding and ~20% of erythrocytes bound to
PvRBPla;s; 650 (Ntumngia et al., 2018). Furthermore, 20 of
reticulocytes and only 1% of erythrocytes bound to PvRBP1a351-599
(Han et al,, 2016), while 31.5% of reticulocytes were reported to bind to
PvRBP1a30-778 (Gupta et al, 2017). Additionally, the trypsin and
chymotrypsin sensitivity of these recombinant protein (Han et al,
2016; Gupta et al, 2017; Ntumngia et al, 2018), as well as the
PvRBP1al57-653 HAPBs (Urquiza et al., 2002) align with our results.

PvRBP1a,55_g50 was found to interact with Prohibitin-2, TfR1, and
BSG. Prohibitin-2 and TfR1 are more abundant in reticulocyte
membranes and cell lines compared to erythrocytes, while BSG is
more abundant in erythrocytes. These findings suggest that
PvRBPla,s55 650 may facilitate reticulocyte recognition and invasion
through interaction with Prohibitin-2 and TfR1. Additionally,
interaction with BSG may contribute to binding activity to
erythrocytes, but not their restricted invasion, consistent with
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FIGURE 6

PVRBPlajsg_gs0 binds to TfR1, BSG, and PHB2 at nanomolar affinities. (A) Titration ELISAs of protein-protein interactions between soluble ligand
PvRBPla;sg-¢50L TID, control LTID, and the immobilized receptor candidates TfR1, BSG, and PHB2. OD450 absorbance values represent the binding
of a TurbolD-specific HRP-labeled antibody for the biotin-free quantification of ligand and control in triplicate, fitted by a single-site binding model;
(B) average dissociation constants (kd) summarized as determined from the fitted titration curves above.

previous studies on PvRBP1a binding (Urquiza et al., 2002; Han et al,,
2016; Gupta et al., 2017; Ntumngia et al., 2018).

This study demonstrated strong binding of PvRBPla;sg 50
with the 89-760 domain of TfRI, contrasting with prior work
that did not detect this interaction, possibly due to the crucial role of
TfRI’s 89-120 region, not included in the previous protein
construct (Gruszezyk et al., 2018b). TfR1 is a known receptor for
PvRBP2b (Gruszczyk et al, 2018a), as well as for various New
World arenaviruses (Radoshitzky et al., 2007, 2008).

Prohibitin-2 has been implicated in facilitating the entry of
diverse viruses, including enteroviruses, coronaviruses, HIV-1, and
flaviviruses such as dengue (Cornillez-Ty et al., 2009; Emerson et al.,
2010; Kuadkitkan et al., 2010; Su et al., 2020). Although traditionally
characterized as a protein of the inner mitochondrial membrane
and nucleus, subsequent studies have demonstrated its presence at
the plasma membrane, notably in CHME-5 microglial cells and
RMS cells (Wintachai et al., 2012; Fu et al., 2013). Its established
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function as a receptor or co-receptor for several pathogens further
supports the notion that prohibitin-2 can localize to the cell surface,
where it may contribute to pathogen attachment and entry.

BSG, a known receptor for P. falciparum RH5 (Crosnier et al.,
2011; Chen et al., 2014), a member of the PfRH family homologous
to the PVRBP proteins of P. vivax (Rayner et al., 2000; Triglia et al.,
2001), also serves as a receptor for P. vivax TRAg38 (Rathore et al.,
2017). In addition, PvRBP1 is the orthologue of P. falciparum
normocyte binding protein 1 (PfNBP1) (Rayner et al., 2001), and
PvRBPla (N352-K598) shares sequence homology with PfRH4
(N328-D588) (Gaur et al,, 2007), although these proteins engage
different host receptors. Interestingly, PvRBP2a, which binds TfR1
in P. vivax, displays a structural scaffold similar to PfRH5 of P.
falciparum (Gruszczyk et al., 2016), highlighting that orthologous
and homologous relationships can provide an evolutionary
framework to interpret invasion mechanisms even when receptor
usage differs. Such cross-species comparisons are a common
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approach in malaria research (Tebben et al., 2022) and
contextualize our findings on PvRBP1a interactions.

This research demonstrated the binding versatile of PvRBPla;sg-
6500 which interacts with three different membrane proteins. In
biological systems, ligands often bind multiple receptors, as seen with
Plasmodium interactions; PVIRAg38 binds both BSG and band 3
(Alam et al,, 2016, p. 3; Rathore et al., 2017), and PfEMP1binds to
several receptors (Yipp et al, 2000; Vogt et al, 2003; Vigan-Womas
et al., 2012; Esser et al.,, 2014; Kessler et al., 2017).

This study demonstrates that the BEL-A and JK-1 cells are suitable
models for studying P. vivax receptor-ligand interactions, providing
viable alternatives to reticulocytes. The similarity in the abundance of
potential receptor candidates between cell lines and reticulocytes, and
their dissimilarity with erythrocytes, validates the use of JK-1 and BEL-
A cell lines as surrogate models for the study of P. vivax merozoite
ligand-receptor interactions, and suggests the existence of other
potential P. vivax receptors. prohibitin-2 and TfR1 may contribute to
a redundant reticulocyte-restricted invasion pathway because they
exhibit high binding affinities to PvRBPla,sg ¢50. These findings lay
the foundation for the comprehensive study of all P. vivax invasion
mechanisms and for the development of targeted therapies
against malaria.
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