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Introduction: Plasmodium vivax is the most widespread cause of malaria outside

Africa. Developing effective controls is challenging because P. vivax exclusively

invades reticulocytes, immature erythrocytes that are scarce and short-lived. This

limits opportunities to culture the parasite and investigate the receptor-ligand

interactions crucial for host cell invasion.

Methods: The erythroid cell lines JK-1 and BEL-A were evaluated in vitro as

reticulocyte surrogates to assess their susceptibility to P. vivax invasion.

Comparative membrane proteomics of these cell lines, reticulocytes, and

mature erythrocytes were per formed us ing quant i ta t i ve l iqu id

chromatography–mass spectrometry (LC-MS). Specific interactions between

the parasite ligand PvRBP1a (residues 158–650) and candidate host receptors

were identified by TurboID proximity labeling and validated through ELISA

binding assays.

Results: We confirmed that the JK-1 cell line supports P. vivax invasion and

demonstrated for the first time that BEL-A cells are similarly susceptible,

establishing both as effective surrogate models. Membrane proteomics

identified several receptor candidates potentially involved in selective host-cell

entry. In addition to known receptors, including transferrin receptor protein 1

(TfR1/CD71), CD98hc, and basigin (BSG), novel receptor candidates such as

prohibitin-2 (PHB2), CAT-1 (SLC7A1), ATB(0) (SLC1A5), CD36, integrin beta-1

(ITGB1), andmetal transporter CNNM3were discovered. Proximity labeling with a

recombinant PvRBP1a (158–650)-TurboID fusion protein confirmed the known

interactions with TfR1 and BSG, and additionally identified PHB2 as a novel
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interacting partner. Notably, this is the first report implicating PHB2 as a co-

receptor for P. vivax invasion.

Conclusion: Our findings provide novel insights into the molecular mechanisms

underlying reticulocyte restriction in P. vivax. The JK-1 and BEL-A cell lines

represent valuable platforms for dissecting receptor–ligand interactions during

parasite invasion and for advancing the development of targeted therapeutic

antimalarial strategies.
KEYWORDS

Plasmodium vivax, parasite invasion, erythroid cell lines, membrane proteomics,
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1 Introduction

Malaria remains a major global health issue, with 263 million

cases reported in 2023. Plasmodium vivax, one of the six human-

infecting Plasmodium species, is noteworthy for its global

distribution. In the Americas, most malaria cases are due to P.

vivax (72.1% in 2023) (World Health Organization, 2024). Its blood

stage form, the merozoites, interact with red blood cell (RBC)

receptors leading to RBC invasion (Gruszczyk et al., 2018a;

Malleret et al., 2021; Molina-Franky et al., 2022). However, P.

vivax exclusively infects reticulocytes (Malleret et al., 2015a),

immature, short-lived precursors of erythrocytes, posing a

significant challenge to research progress. In contrast, P.

falciparum has been extensively researched due to the availability

of a well-established in vitro culture system for over 40 years

(Trager and Jensen, 1976). This critical disparity highlights the

urgent need to develop alternative research models for P. vivax.

The mechanism of P. vivax reticulocyte invasion remains

unclear. It was previously believed that P. vivax exclusively

targeted reticulocytes through the Duffy antigen receptor for

chemokines (DARC) and Duffy binding protein (PvDBP)

interaction (Horuk et al., 1993), as individuals with the Fy(a-b-)

mutation in West Africa were resistant to the infection. However,

DARC is present on both reticulocytes and erythrocytes, and P.

vivax infections have been documented in Duffy-negative

populations (Ryan et al., 2006; Reyes et al., 2022; Picón-Jaimes

et al., 2023).

Together with evidence from Duffy-negative infections,

geographical variation among P. vivax isolates further supports the

idea that invasion is not limited to a single pathway. Transcriptomic

studies show that invasion-related genes such as PvRBP1a, PvRBP2a,

and PvRBP2b are more highly expressed in Ethiopian and Cambodian

isolates than in Brazilian isolates, while PvDBP1 and PvEBP/DBP2 are

elevated in Cambodian parasites. These patterns suggest that P. vivax

employs multiple, regionally adapted invasion strategies (Kepple et al.,

2023).Among the most prominent candidates are the reticulocyte-

binding protein (RBP) family, which may interact with transferrin
02
receptor 1 (TfR1) and CD98 heavy chain (SLC3A2), both of which are

lost during the maturation of reticulocytes to erythrocytes (Galinski

et al., 1992; Gruszczyk et al., 2018a; Malleret et al., 2021). This implies

that P. vivax (Pv)RBP family proteins specifically target receptors

unique to the reticulocyte membrane. Our previous studies on

PvRBP1 of the P. vivax strain Belem (GenBank AAA29743.3)

identified eleven high-affinity reticulocyte binding peptides (HABPs)

corresponding to residues 158–653 of PvRBP1a in the P. vivax Salvador

I strain (GenBank AAS85749.1). Among these, HABP 3742

(KLLGEEISEVSHLYV) and HABP 3459 (KEILDKMAKKVHYLK)

exhibited dissociation constants (Kd) of 131 nM and 155 nM,

respectively (Urquiza et al., 2002). Additionally, an extracellular

portion of PvRBP1a, residues 157-650, binds strongly (~50%) to

reticulocytes and moderately (~20%) to erythrocytes (Ntumngia

et al., 2018). The identity of PvRBP1a157–650 binding-receptors within

the reticulocyte membrane has been unclear. Therefore, this study

evaluated the erythroleukemic cell line JK-1 (Okuno et al., n.d) and the

Bristol Erythroid Line Adult (BEL-A) (Trakarnsanga et al., 2017) as

surrogates for reticulocytes, examining their susceptibility to P. vivax

invasion. A comparison of the cell lines’membrane proteomes revealed

similarities with those of reticulocytes, and dissimilarities with

erythrocyte membrane proteomes, thereby identifying potential P.

vivax receptors. Furthermore, TurboID proximity labelling implied

specific interactions of PvRBP1a158–650 with prohibitin-2 (PHB2),

TfR1, and basigin (BSG). These interactions were confirmed by

ELISA, highlighting key molecular determinants of P. vivax’s

reticulocyte tropism.
2 Materials and methods

2.1 Ethics statement

The study was conducted in accordance with the Declaration of

Helsinki. Use of anonymized discarded blood from therapeutic

phlebotomy was approved by the Institutional Review Board of City

of Hope, Duarte, California, USA, as exempt category 4, under
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45CFR46.104 (d). Blood samples from malaria patients were

obtained under informed consent with the approval of the

Bioethics central committee of the Universidad de Córdoba,

Monteria, Colombia, and imported into the United States under

CDC permit No.: 20210830-3188A0.
2.2 Collection, processing, and enrichment
of P. vivax parasites from blood samples

P. vivax infected blood samples were collected from malaria

patients in Tierralta—Córdoba, Colombia, into 5-mL sodium

citrate tubes. After transportation to Bogotá, RBCs were enriched

by centrifugation, mixed with an equal volume of Glycerolyte 57,

cryopreserved, shipped to the U.S. lab, thawed using the NaCl

method (Blomqvist, 2008), and resuspended in 3 mL of Iscove’s

Modified Dulbecco’s Medium (IMDM). These RBCs were then

enriched from 0.2% to 4.0% parasitemia by concentrating P. vivax-

infected reticulocytes through a KCl-Percoll gradient (Rangel et al.,

2018). Enrichment was evaluated by microscopy with Giemsa

staining (Figure 1A).
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2.3 Identification of the Plasmodium
species

Genomic DNA was extracted from infected cells, and nested

PCR was performed using this DNA to identify the Plasmodium

species. Genus- and species-specific primers targeting the parasite’s

18S ribosomal small subunit RNA were used as previously described

(Snounou et al., 1993) (see Supplementary Data).
2.4 P. vivax entry into BEL-A and JK-1 cells

JK-1 cells were obtained from the Deutsche Sammlung von

Mikroorganismen und Zellkulturen GmbH (DSMZ) in

Braunschweig, Germany, and BEL-A cells were from Prof. Dr. Jan

Frayne of the University of Bristol, under contract by the NHS

Blood and Transplant of the UK, see acknowledgement for details.

The enriched P. vivax mono-infected RBC sample (~40 µL) was

divided into two equal aliquots, one for co-incubation with BEL-A cells

and the other with JK-1 cells. Each cell line (1.5x105 cells) was cultured

in 500 µL of medium, for BEL-A in StemSpan serum-free expansion
FIGURE 1

P. vivax mono-infected reticulocytes. (A) Three representative micrographs of P. vivax-infected enriched reticulocytes (red arrows) from a malaria
patient. Scale bars are 3 µm. (B, C) Species-specific nested PCR for the small subunit 18S ribosomal RNA. Lane M, 100 bp marker; Lane PvSx, sample
used in the infection of erythroid cells; Lanes Pv and Pf belong to the positive controls for each species; lane NCh, negative control using genomic
DNA from a healthy human; lane NC, negative control using water instead of genomic DNA. (B) P. vivax (∼120 bp amplicon). (C) P. falciparum (∼205
bp amplicon). (D) DNA sequence alignment of the positive PvSx amplicon with the corresponding gene segment of the P. vivax Salvador-1 reference
strain (GenBank No. XR_003001206.1) (Carlton et al., 2008), showing 100% identity.
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medium (SFEM, StemCell Technologies), containing 25% human

serum (Type AB, Sigma-Aldrich), 50 ng/mL stem cell factor (SCF), 3

U/mL erythropoietin (EPO), 1 mM dexamethasone, 1 mg/mL

doxycycline, 1 mg/mL chemically defined lipid concentrate (CDLC),

and 100 µM hypoxanthine; and JK-1 in IMDM supplemented with

GlutaMAX, with the same components, except for SCF, EPO,

dexamethasone, and doxycycline. Both cultures were incubated at

37 °C with 5% CO2 and 5% O2. Fresh medium and 2×105 erythroid

cells were added every two days, and cultures were evaluated by

immunofluorescence assay (IFA) every 24 hours for 6 days (see

Supplementary Data).
2.5 Quantitative comparison of membrane
proteomes by (DIA) - LC-MS/MS

Reticulocytes, erythrocytes, JK-1 and BEL-A cells were collected,

cytoplasmic content was removed by osmolytic lysis, and membrane

proteins of the remaining ghosts were extracted. From each sample, 23

mg of proteins were processed for proteomics using S-Trap columns

(ProtiFi) according to the manufacturer instructions (Matulis, 2016;

HaileMariam et al., 2018). The resulting trypsin/LysC-digested peptides

were analyzed by LC-MS/MS in data-independent acquisition (DIA)

mode, as detailed in the Supplementary Data.

To enrich the plasma membrane proteins from the data set,

proteins were filtered based on at least one of the following

annotations from the UniProt subcellular localization database: “Cell

membrane”, “Apical cell membrane”, “Basolateral cell membrane”,

“Peripheral membrane protein” and “Plasma membrane”, and the

Gene Ontology (GO) annotation term: “plasma membrane”. The

topology of the membrane proteins abundant in reticulocytes

compared to erythrocytes was evaluated using several predictors.

Protein sequences were analyzed with Protter for overall visualization

of proteoforms (Omasits et al., 2014), TMHMM 2.0 for

transmembrane region prediction (Hallgren et al., 2022), SignalP 6.0

for signal peptide identification (Teufel et al., 2022), and PredGPI for

GPI anchor site prediction (Pierleoni et al., 2008).
2.6 PvRBP1A158–650 proximity labeling for
the identification of likely receptor
candidates

2.6.1 Cloning, expression, purification, and
activity of TurboID fusion proteins

The DNA sequence encoding PvRBP1a158-650 (GenBank

AAS85749.1) was derived from the P. vivax Salvador I reference

strain (txid126793). This sequence was fused to an acidic linker (L),

GDEVDEDEG, to improve solubility, and the TurboID protein (TID)

(Branon et al., 2018), followed by a C-terminal 6xHis tag for

purification, resulting in the PvRBP1a158-650LTID fusion protein. An

equivalent gene encoding L with TurboID alone (LTID) was designed

as a negative control. Both gene constructs were obtained as

customized synthetic genes, optimized for expression in E. coli, and

cloned into a pET-28a(+) expression vector between its NcoI and XhoI
Frontiers in Cellular and Infection Microbiology 04
sites. The constructs were expressed in soluble form in E. coli BL21 cells

and purified by affinity chromatography, as detailed in the

Supplementary Data. Protein purity and expression were verified by

polyacrylamide gel electrophoresis. The biotinylation activity of both

recombinant TurboID fusion proteins was confirmed by evaluating

their autobiotinylation activity through incubation in the presence or

absence of biotinylation reaction buffer Brxn (20 mM Tris-HCl, 500

µM biotin, 2.5 mM ATP, pH 7.5) at 37 °C for 15 minutes, quenching

on ice and Western blot analysis with streptavidin-IRDye 800CW

conjugate (1:1,000) and an Odyssey DLx imaging system (LICORbio).
2.6.2 PvRBP1a158-650LTID proximity labeling
To evaluate PvRBP1a158-650LTID’s interaction with JK-1, BEL-

A, reticulocytes, and erythrocytes, proximity labeling assays were

performed in duplicate, and repeated up to three times. Cells were

washed twice with PBS supplemented with 2% human serum (HS

2%) and incubated with either PvRBP1a158-650LTID or LTID

(negative control) for 3 hours at room temperature with constant

mild agitation at 10 rpm. Following incubation, cells were washed

three times with HS 2% to remove unbound proteins, then

incubated with Brxn for 15 minutes at 37°C. The reaction was

stopped by cooling on ice for 5 minutes, and the samples were

washed with cold HS 2% before labeling with Alexa Fluor 488-

conjugated streptavidin (10 µg/mL, Invitrogen) for 1 hour at room

temperature. Biotinylation was quantified by cytometry, acquiring

100,000 events per sample on a FACSAria Fusion (BD). Data were

analyzed with FlowJo v10.8.1 (Ashland et al., 2023), calculating the

percentage of biotinylated cells relative to total cells. LTID-treated

and unlabeled cells served as negative controls.

2.6.3 The biochemical nature of PvRBP1a158–650
receptors

JK-1 and BEL-A cells were treated with trypsin (1 mg/mL,

Sigma-Aldrich), chymotrypsin (1 mg/mL, Sigma-Aldrich), or

neuraminidase (50 mU, Roche) for 1 hour. After enzymatic

treatment, proteolytic enzymes were inactivated with soy trypsin

inhibitor (0.5 mg/mL, Sigma-Gibco) (Deans et al., 2007). Proximity

labeling assays were then performed as described above, using

PvRBP1a158-650LTID or LTID (3 µM).
2.6.4 Affinity enrichment and LC-MS
identification of PvRBP1a158–650 proximity-
labeled receptor candidates

JK-1 cells were incubated with either PvRBP1a158-650LTID or LTID

(negative control), each at 3 µM for 3 hours. After incubation, cells

were washed three times with HS 2%, then incubated with 100 µL of

Brxn for 15 minutes at 37°C. The reaction was stopped as described

above, and cells were resuspended in 500 µL of IP-MS lysis buffer (MS-

compatible Magnetic IP kit, streptavidin, Pierce, Thermo Scientific),

incubated on ice for 30 minutes with intermittent vortexing every 5

minutes. After centrifugation, the lysate’s supernatant was collected

and combined with Streptavidin magnetic beads (50 µL, Thermo

Scientific), incubated for 1 hour at 21°C, and then overnight at 4°C,

to enrich biotinylatedmembrane proteins. The beads were washed, and
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biotinylated proteins were eluted sequentially with 100 µL of 50 mM

biotin, 100 µL of elution buffer, and 100 µL of 5% SDS at 95°C.

The eluted proteins were reduced, alkylated, and processed for

proteomics using S-Trap spin columns (ProtiFi) according to the

manufacturer’s instructions (Matulis, 2016; HaileMariam et al.,

2018). The resulting trypsin/LysC digested peptides were analyzed

by LC-MS in data-dependent acquisition mode. Data analysis was

performed using FragPipe v22.0 (Yu et al., 2021). Candidate

receptor proteins for PvRBP1a158–650 were selected based on the

presence of extracellular regions that are favorable for ligand

interaction, evaluated using UniProt GO annotations and the

TMHMM 2.0 predictor (Hallgren et al., 2022). Receptor

candidates in the PvRBP1a158-650LTID sample that were detected

in both duplicates and of significantly higher abundance (≥ 2 fold)

compared to the negative control (LTID) were also considered.

Subsequently, a parallel reaction monitoring (PRM) method was

applied to validate and quantify the peptides of interest (as detailed

in the Supplementary Data).

2.6.5 Binding affinities of PvRBP1a158–650 to
select receptor candidates by ELISA

The recombinant extracellular protein domains of receptor

candidates TfR1 (Cys89-Phe760, SinoBiological), BSG (Met1-

His205, SinoBiological), and full-length PHB2 (Origene) were

used to evaluate the interaction between the PvRBP1a158–650 and

its binding membrane proteins (Supplementary Figure S1).

Maxisorp plates were coated in triplicates with 5 mg/mL of each

protein for 2 hours at room temperature and blocked with

SuperBlock Buffer (Thermo Scientific). Serial dilutions of

PvRBP1a158-650LTID and LTID were prepared in blocking

solution, ranging from 48,000 pM to 187.5 pM (1:2 dilution) and

4,000 pM to 1.28 pM (1:5 dilution), and incubated for 16 hours at

4°C. Bound PvRBP1a158-650LTID and LTID were detected with a

TurboID-specific polyclonal rabbit antibody (anti-BirA mutated/

TurboID, Agrisera, 1:10,000). After five washes with PBST, 100 µL

of 3,3’,5,5’,-Tetramethylbenzidine (TMB) substrate was added, and

the reaction was stopped with 50 µL of 1 M phosphoric acid.

Absorbance was measured at 450 nm. Dissociation constants (Kd)

were determined using GraphPad Prism v10.3.1 with non-linear

regression and a one-site binding saturation model.
3 Results

3.1 P. vivax can invade the erythroid cell
lines BEL-A and JK-1

Cultured BEL-A and JK-1 cells were successfully invaded by P.

vivax from a validated mono-infected malaria patient’s blood

sample. The experiment required forgoing enrichment of the

RBCs to 4.0% parasitemia (Figures 1A–D). Parasite invasion was

confirmed by immunofluorescence microscopy, detecting the

intracellular presence of P. vivax lactate dehydrogenase (PvLDH),

which all blood stages of the parasite are known to express (Cao

et al., 2024). PvLDH was detected in the positive control of infected
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reticulocytes, and in BEL-A and JK-1 cells, incubated with infected

reticulocytes (Figure 2, FITC). The PvLDH signal was absent from

non-infected control cells. Moreover, the presence of hemozoin

(Hz) pigment, characteristic for hemoglobin consumption by

Plasmodia within infected RBCs (Pandey and Tekwani, 1996),

was observed (Figure 2, bright field, and merge). The dark Hz

pigment was visible inside the parasite-infected nucleated erythroid

cells as well as in infected reticulocytes that originated from the

donor. Hz is an insoluble, crystallized digestion product of heme

derived from the digestion of hemoglobin by malaria parasites,

containing heme-derived b-hematin, which neutralizes the toxicity

of free heme released after parasite invasion through a digestive

process that involves the digestive vacuole structure (Coronado

et al., 2014). On days 3 to 6 post-infection, no parasite-infected

erythroid cells were observed, and cell mortality had substantially

increased. Therefore, the experiment was stopped on day 6.
3.2 Overlapping membrane proteomes
reveal potential P. vivax invasion receptors

Because P. vivax was able to invade the erythroid BEL-A and

JK-1 cells, their membranes must contain the same essential

receptor molecules as reticulocytes that enable parasite invasion.

Furthermore, the membranes of mature erythrocytes are expected

to lack these receptors or to express them only at insufficient

abundances. Consequently, a quantitative comparison of the

membrane proteome of these cells with those of human

reticulocytes and erythrocytes identified potential receptors for P.

vivax merozoite ligands that are most likely responsible for its

reticulocyte-restricted invasion.

Stringent isolation procedures were necessary to obtain

membrane proteins of pure reticulocytes. The isolated

reticulocytes (CD71+, CD45-) used in this proteomic comparison

had a purity of 98.4% (Supplementary Figure S2). Expression of

CD71 is diminished during maturation into fully functional

erythrocytes (Malleret et al., 2015b). Simultaneous determination

of CD45 negativity was necessary, as CD45+ leukocytes also express

CD71, to ensure purity of the isolated reticulocytes.

The BEL-A and JK-1 cells used in the membrane proteomic

comparisons were harvested from in vitro cultures and exhibited

distinct nucleated erythroid maturation stages, including

proerythroblasts, basophilic erythroblasts, polychromatic

erythroblasts, and orthochromatic erythroblasts (Supplementary

Figure S3), with slight dominance of the basophilic and

polychromatic stages.

In total, 2,100 proteins were identified in BEL-A cells and 2,178

in JK-1 cells. The number of proteins was lower in reticulocytes

(1,234) and in erythrocytes (1,347). After filtering this data for

membrane proteins (see Supplementary Data, Supplementary

Figure S4), 1,530 and 1,595 such proteins were obtained from

BEL-A and JK-1 cell ghosts, respectively, while 846 and 974

proteins were identified for reticulocyte and erythrocyte ghosts.

Changes in membrane protein abundance were assessed by

comparing erythroid cell lines and reticulocytes to mature
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erythrocytes. The protein abundancies of reticulocytes clustered

better with those of BEL-A and JK-1 cells than with those of

erythrocytes (Figure 3A). It was found that compared to

erythrocytes 256 proteins were more abundant in reticulocytes,

1,179 in JK-1, and 1,554 in BEL-A. Of these, 144 identical proteins
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were increased in reticulocytes, JK-1, and BEL-A. However,

reticulocytes and JK-1 cells share 18 proteins that are less

abundant in erythrocytes, while BEL-A and reticulocytes have 40

proteins in common, that are less abundant in erythrocytes. Only 54

membrane proteins with higher abundance than in erythrocytes
FIGURE 2

P. vivax invades BEL-A and JK-1 cells. The micrographs show P. vivax-infected reticulocytes as the positive Control (+); infected BEL-A and JK-1
cells at 24 and 48 h, and their non-infected negative Control (-); P. vivax lactate dehydrogenase (FITC green); DNA (DAPI blue); hemozoin crystals
(black dots marked with red arrows); BF (bright field); Scale bars are 5 µm.
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were identified exclusively in reticulocytes, 237 in JK-1, and 590 in

BEL-A cells (Figure 3B).

When comparing the membrane protein abundance in

reticulocytes, cell lines, and erythrocytes, known P. vivax receptors

such as TfR1 (CD71), CD98hc, ACKR1/DARC, BSG, CR1, and band 3

(SLC4A1) were identified. TfR1 and CD98hc, which are lost during

reticulocyte maturation to erythrocytes, were significantly more

abundant in reticulocytes and cell lines. In contrast, the other

receptors showed higher levels in erythrocytes (Figures 3C–E).

In silico topological analysis of membrane proteins enriched in

reticulocytes and erythroid cell lines identified several candidates—

CD98lc (SLC7A5), high-affinity cationic amino acid transporter 1

(CAT-1, SLC7A1), neutral amino acid transporter B0 (ATB(0),

SLC1A5), CD36, Integrin b-1 (ITGB1), prohibitin-2 (PHB2), and

the metal transporter CNNM3— as possessing sizable extracellular

regions that are potentially accessible for interaction with P. vivax

merozoite ligands (Supplementary Table S1, Supplementary

Figure S5).
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The significantly higher abundance of these proteins in

reticulocytes, BEL-A, and JK-1 cells compared to erythrocytes

(Figures 3C–E; Supplementary Table S1) highlights them as

potential candidates for P. vivax merozoite protein receptors, which

may explain the parasite’s exclusivity for reticulocyte invasion.
3.3 Receptors for PvRBP1a158-650LTID
identified via proximity labeling

To identify potential receptors of the PvRBP1a158-650LTID

protein, the TurboID proximity labeling technique was used. This

technique enables the biotinylation of proteins that come into close

contact with the fused protein (within 10 nm), facilitating the

identification of their interactions (Branon et al., 2018; Cho et al.,

2020). Therefore, the fusion protein PvRBP1a158-650LTID and the

LTID control were obtained in soluble form, with PvRBP1a158-

650LTID having a molecular weight of ~94 kDa and LTID ~36 kDa
FIGURE 3

Plasma membrane proteomes of reticulocytes resemble those of erythroid cell lines. (A) Clustering of plasma membrane proteins in JK-1, BEL-A,
reticulocytes, and erythrocytes, measured in triplicate. Log2 intensities. (B) Abundance of intersecting membrane proteins in reticulocytes, JK-1, and
BEL-A cells compared to erythrocytes, represented in an UpSet plot (Lex et al., 2014). 144 proteins share higher abundance among cell lines and
reticulocytes but are reduced in erythrocytes (mauve bar). (C-E) Putative receptors (blue) and characterized receptors (orange) for P. vivax merozoite
invasion. Gene names are displayed instead of protein names for simplicity. The x-axis represents the log2 fold change, and the y-axis shows the P-
value, indicating statistical significance.
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(Figure 4A). Both proteins exhibited enzymatic activity and self-

biotinylation at 1, 2, and 3 µM (Figures 4B, C).
3.4 PvRBP1a158-650LTID exhibits
comparable binding to reticulocytes and
erythroid cell lines via a proteinaceous
receptor

Proximity biotinylation mediated by TurboID facilitated

binding evaluation through the biotin-streptavidin interaction.

The assays showed that PvRBP1a158-650LTID binding is

concentration-dependent (Figure 4D). Since the highest

percentage of biotin labeling on the cell surface was obtained at 3

µM, this concentration was selected to analyze PvRBP1a158-650LTID

binding to enriched reticulocytes (87.5% purity) (Supplementary

Figure S6), erythrocytes, and cell lines. The results showed that

PvRBP1a158–650 had 80% biotinylation on the surface of

reticulocytes, 4.7% on erythrocytes, and 79.85% and 83.2% on the

surface of JK-1 and BEL-A cells, respectively. A statistically

significant difference was found between the cell lines and

reticulocytes compared to erythrocytes (P ≤ 0.0001). However, no

significant difference was observed between the cell lines and

reticulocytes (Figures 4E, F). These data suggest that erythroid

cell lines exhibit PvRBP1a158–650 binding activity comparable to

reticulocytes, indicating that they may express the receptor for this

specific P. vivax ligand on their surface. Additionally, no labelling

was detected with LTID, confirming the specificity of the

PvRBP1a158–650 receptor interaction.

Cell surface labelling with PvRBP1a158-650LTID was sensitive to

trypsin and chymotrypsin treatment but resistant to neuraminidase,

which removes sialic acid from glycans that modify proteins in

vertebrates (Figure 4G). Therefore, the cell surface receptor

function for PvRBP1a158–650 is proteinaceous and not dependent

on sialic acid-terminated glycans.
3.5 Enrichment of PvRBP1a158-650LTID
biotinylated cell surface proteins, identifies
TfR1 and prohibitin-2 as the likely
reticulocyte-restricting receptors

PvRBP1a158-650LTID biotinylated membrane proteins from

erythroid cells were captured via streptavidin-affinity and subjected

to proteomics analysis, revealing a total of 278 proteins, of which 12

were localized to the plasma membrane. However, the LTID control

contained five of these proteins, leaving seven unique to enrichment

after biotinylation with PvRBP1a158-650LTID. Four of these membrane

proteins do not possess extracellular regions, while TfR1, prohibitin-2,

and BSG do. Such extracellular regions should be required to facilitate

an interaction with P. vivaxmerozoite ligands (Figure 5A). Interaction

of PvRBP1a158–650 was successfully validated by targeted PRM LC-MS

analysis for TfR1, BSG, and prohibitin-2 (Figure 5B). It clearly

demonstrated that only PvRBP1a158-650LTID biotinylated these three

proteins, while LTID did not.
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BSG is more abundant in erythrocytes than in reticulocytes and

in the erythroid cell lines. In contrast, TfR1 and prohibitin-2 were

significantly less abundant in erythrocytes (Figures 3C–E). In fact,

TfR1 and prohibitin-2 were among the most abundant membrane

proteins in reticulocytes and in the erythroid cell lines JK-1 and

BEL-A. These findings suggest that PvRBP1a158–650 likely facilitate

the recognition and invasion of reticulocytes through interaction

with TfR1 and prohibitin-2.
3.6 PvRBP1a158-650LTID interacts with high-
affinity binding to TfR1, BSG, and
prohibitin-2

The titration curves fit well to a single-site binding saturation

model. In contrast, the negative control LTID displayed a

nonspecific binding pattern “unstable”, corroborating the

specificity of the interactions (Figure 6A). The Kd obtained from

the ELISA titration indicated that PvRBP1a158-650LTID had high

affinity for TfR1 (Kd: 1.15 nM), followed by BSG (Kd: 2.16 nM) and

prohibitin-2 (Kd: 2.77 nM) (Figure 6B).
4 Discussion

This study demonstrates the utility of erythroid cell lines JK-1

and BEL-A as suitable surrogates for reticulocytes for studying the

invasion process of the P. vivax malaria parasite. While these cell

lines and their culture conditions did not support a continuous P.

vivax culture in vitro, the formation of the Hz pigment and immuno

detection of PvLDH strongly supported parasite invasion. In

contrast to human reticulocytes, both erythroid cell lines are

nucleated, which might permit them to initiate a cell-death

program upon parasite invasion. Consistently, JK-1 cells were

previously reported to support cell entry by both P. vivax and P.

falciparum (Kanjee et al., 2017; Gruszczyk et al., 2018b), while BEL-

A cells have so far only been studied with P. falciparum (Satchwell

et al., 2019). This study is the first to report P. vivax invasion of

BEL-A cells, confirming their susceptibility alongside JK-1 cells.

The quantitative membrane proteome comparison of

reticulocytes and erythroid cell lines with erythrocytes revealed

Prohibitin-2 (PHB2), TfR1 (CD71), the CD98 heavy chain (4F2hc,

gene SLC3A2), the CD98 light chain (LAT-1, gene SLC7A5), ATB

(0) (gene SLC1A5), CAT-1 (SLC7A1), CD36, Integrin b-1 (gene

ITGB1), and Metal transporter CNNM3 to be of significantly

increased abundance in those cell lines and reticulocytes. Whereas

they are strongly decreased (practically absent) in fully matured

erythrocytes. The increased abundance of TfR1 and CD98 in

reticulocytes over erythrocytes is consistent with previous studies

(Malleret et al., 2015b, 2021). However, genetic manipulation

(Gruszczyk et al., 2018a) or antibody blockade (Malleret et al.,

2021) of these proteins only partially reduced P. vivax invasion,

suggesting the involvement of additional receptors. The heavy chain

of CD98 (SLC3A2) was reported to be bound by P. vivax in

immature RBCs via PvRBP2a (Malleret et al., 2021). Therefore,
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FIGURE 4

Proximity labeling with PvRBP1a158-650LTID in JK-1, BEL-A, reticulocytes, and erythrocytes. Recombinantly expressed soluble PvRBP1a158-650LTID and
LTID by (A) SDS PAGE (B, C) auto-biotinylation assay with increasing concentrations of each protein at 1, 2, and 3 µM, detected with IRDye 800
Streptavidin (green bands), LICORbio molecular weight markers (MW, red bands); (D) biotin labeling of JK-1 (orange) and BEL-A (fuchsia) cells, in
presence of PvRBP1a158-650LTID or LTID (negative control, JK-1 - black, and BEL-A - gray) at 1, 2, and 3 µM. (E-G) Flow cytometry (E) histograms of
erythroid cells and human RBCs in presence of PvRBP1a158-650LTID (blue) or LTID (grey), both at 3 µM, demonstrating (F) significant degrees of cell
surface labeling by PvRBP1a158-650LTID in erythroid cells and reticulocytes compared to erythrocytes (****p ≤ 0.0001). (G) Receptors to PvRBP1a158–
650 are sensitive to cell surface treatment with trypsin and chymotrypsin but resistant to neuraminidase (labeling % as normalized to untreated cells).
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other potential P. vivax receptor candidates with extracellular

regions, namely Prohibitin-2, the CD98 light chain (LAT-1), ATB

(0), CAT-1, CD36, Integrin b-1, and CNNM3 should be considered.

These membrane proteins participate in various protein-protein

interactions that facilitate the entry of microorganisms into host

cells (Albritton et al., 1993; Yoshimoto et al., 1993; Smith et al.,

1998; Tailor et al., 1999; Graham et al., 2003; Weigel-Kelley et al.,

2003; Maginnis et al., 2006; Xiao et al., 2008; Feire et al., 2010;

Nägele et al., 2011; Wintachai et al., 2012; Su et al., 2020; Olaya-

Galán et al., 2021). Interestingly, LAT-1, that together with its heavy

chain 4F2hc forms the heteromeric CD98 (Lee et al., 2019; Yan

et al., 2019), plays a role in hepatitis C virus entry (Nguyen et al.,

2018), raising the question of whether P. vivax may also interact

with LAT-1.

Proximity labeling of erythroid cells with PvRBP1a158-650LTID was

largely consistent with previous observations, in which ~50% of
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reticulocytes binding and ~20% of erythrocytes bound to

PvRBP1a157-650 (Ntumngia et al., 2018). Furthermore, 20 of

reticulocytes and only 1% of erythrocytes bound to PvRBP1a351-599

(Han et al., 2016), while 31.5% of reticulocytes were reported to bind to

PvRBP1a30-778 (Gupta et al., 2017). Additionally, the trypsin and

chymotrypsin sensitivity of these recombinant protein (Han et al.,

2016; Gupta et al., 2017; Ntumngia et al., 2018), as well as the

PvRBP1a157–653 HAPBs (Urquiza et al., 2002) align with our results.

PvRBP1a158–650 was found to interact with Prohibitin-2, TfR1, and

BSG. Prohibitin-2 and TfR1 are more abundant in reticulocyte

membranes and cell lines compared to erythrocytes, while BSG is

more abundant in erythrocytes. These findings suggest that

PvRBP1a158–650 may facilitate reticulocyte recognition and invasion

through interaction with Prohibitin-2 and TfR1. Additionally,

interaction with BSG may contribute to binding activity to

erythrocytes, but not their restricted invasion, consistent with
FIGURE 5

Proximity biotin-labeled TfR1 (CD71), Basigin, and Prohibitin-2, are identified as P. vivax receptor candidates after interaction of JK-1 cells with
PvRBP1a158-650LTID and validated by targeted LC-MS. (A) Heatmap of labeled plasma membrane protein intensities in the PvRBP1a158-650LITD
(fuchsia) and LTID (yellow) control samples, analyzed in duplicate by DDA LC-MS proteomics. Intensities are represented on a Z-score scale, where
each value was transformed by the number of standard deviations (SD) from the mean. Topology categorizes proteins by their cellular localization:
intracellular (Inside, dark gray) and those with extracellular domains (Outside, cyan). They include Shroom3, GPR132 – probable G-protein coupled
receptor 132, EEF1A1 – Elongation factor 1-alpha 1, protein S100-A8, protein S100-A6, TfR1, PHB2 – prohibitin-2, BSG, protein S100-A9, JUP –

junction plakoglobin, DSC3 – Desmocollin-3, and VIM – vimentin. (B) Validated interactions of transferrin receptor 1, basigin, and prohibitin-2 with
PvRBP1a158-650LITD, but not with LITD, during the TurboID procedure, followed by PRM LC-MS. (1) (2) – duplicates. Stacked bars are the sum of the
LC-MS ion chromatographic peak areas of the trypsin digested peptides (colored boxes) of each protein, indicating the contribution of each peptide
to the individual protein abundance.
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previous studies on PvRBP1a binding (Urquiza et al., 2002; Han et al.,

2016; Gupta et al., 2017; Ntumngia et al., 2018).

This study demonstrated strong binding of PvRBP1a158–650
with the 89–760 domain of TfR1, contrasting with prior work

that did not detect this interaction, possibly due to the crucial role of

TfR1’s 89–120 region, not included in the previous protein

construct (Gruszczyk et al., 2018b). TfR1 is a known receptor for

PvRBP2b (Gruszczyk et al., 2018a), as well as for various New

World arenaviruses (Radoshitzky et al., 2007, 2008).

Prohibitin-2 has been implicated in facilitating the entry of

diverse viruses, including enteroviruses, coronaviruses, HIV-1, and

flaviviruses such as dengue (Cornillez-Ty et al., 2009; Emerson et al.,

2010; Kuadkitkan et al., 2010; Su et al., 2020). Although traditionally

characterized as a protein of the inner mitochondrial membrane

and nucleus, subsequent studies have demonstrated its presence at

the plasma membrane, notably in CHME-5 microglial cells and

RMS cells (Wintachai et al., 2012; Fu et al., 2013). Its established
Frontiers in Cellular and Infection Microbiology 11
function as a receptor or co-receptor for several pathogens further

supports the notion that prohibitin-2 can localize to the cell surface,

where it may contribute to pathogen attachment and entry.

BSG, a known receptor for P. falciparum RH5 (Crosnier et al.,

2011; Chen et al., 2014), a member of the PfRH family homologous

to the PvRBP proteins of P. vivax (Rayner et al., 2000; Triglia et al.,

2001), also serves as a receptor for P. vivax TRAg38 (Rathore et al.,

2017). In addition, PvRBP1 is the orthologue of P. falciparum

normocyte binding protein 1 (PfNBP1) (Rayner et al., 2001), and

PvRBP1a (N352–K598) shares sequence homology with PfRH4

(N328–D588) (Gaur et al., 2007), although these proteins engage

different host receptors. Interestingly, PvRBP2a, which binds TfR1

in P. vivax, displays a structural scaffold similar to PfRH5 of P.

falciparum (Gruszczyk et al., 2016), highlighting that orthologous

and homologous relationships can provide an evolutionary

framework to interpret invasion mechanisms even when receptor

usage differs. Such cross-species comparisons are a common
FIGURE 6

PvRBP1a158–650 binds to TfR1, BSG, and PHB2 at nanomolar affinities. (A) Titration ELISAs of protein-protein interactions between soluble ligand
PvRBP1a158-650LTID, control LTID, and the immobilized receptor candidates TfR1, BSG, and PHB2. OD450 absorbance values represent the binding
of a TurboID-specific HRP-labeled antibody for the biotin-free quantification of ligand and control in triplicate, fitted by a single-site binding model;
(B) average dissociation constants (kd) summarized as determined from the fitted titration curves above.
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approach in malaria research (Tebben et al., 2022) and

contextualize our findings on PvRBP1a interactions.

This research demonstrated the binding versatile of PvRBP1a158-

650, which interacts with three different membrane proteins. In

biological systems, ligands often bind multiple receptors, as seen with

Plasmodium interactions; PvTRAg38 binds both BSG and band 3

(Alam et al., 2016, p. 3; Rathore et al., 2017), and PfEMP1binds to

several receptors (Yipp et al., 2000; Vogt et al., 2003; Vigan-Womas

et al., 2012; Esser et al., 2014; Kessler et al., 2017).

This study demonstrates that the BEL-A and JK-1 cells are suitable

models for studying P. vivax receptor-ligand interactions, providing

viable alternatives to reticulocytes. The similarity in the abundance of

potential receptor candidates between cell lines and reticulocytes, and

their dissimilarity with erythrocytes, validates the use of JK-1 and BEL-

A cell lines as surrogate models for the study of P. vivax merozoite

ligand-receptor interactions, and suggests the existence of other

potential P. vivax receptors. prohibitin-2 and TfR1 may contribute to

a redundant reticulocyte-restricted invasion pathway because they

exhibit high binding affinities to PvRBP1a158-650. These findings lay

the foundation for the comprehensive study of all P. vivax invasion

mechanisms and for the development of targeted therapies

against malaria.
Data availability statement

LC-MS DIA data was deposited to the MassIVE repository at

the Center for Computational Mass Spectrometry, University of

California, San Diego under Dataset Identifier: MSV000093438

(https://doi.org/doi:10.25345/C5W669K65). The DDA and PRM

LC-MS data sets are available under MSV000096045 (https://

doi.org/doi:10.25345/C5Q52FR0R).
Ethics statement

The studies involving humans were approved by Bioethics

central committee of the Universidad de Córdoba, Monteria,
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