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Objectives: To construct a differential diagnostic model for Non-Tuberculous
Mycobacterial Lung Disease (NTM-LD) and Pulmonary Tuberculosis Lung
Disease (PTB-LD).

Methods: Retrospective analysis of 300 NTM-LD and 300 PTB-LD patients
(pathogen-confirmed) was performed. Patients were randomly split into
training (2/3) and validation (1/3) sets. CT imaging, clinical data, and symptoms
were analyzed. Logistic regression identified significant discriminative features,
followed by random forest modeling to develop a diagnostic tool with web-
based calculator. Model performance was validated using the independent
validation set.

Results: Univariate and multivariate analyses identified key discriminative factors
(P<0.05): cough with sputum, hemoptysis, thin-walled cavities, centrilobular
nodules, bronchiectasis, diabetes, and autoimmune diseases. The diagnostic
model achieved 82.5% sensitivity and 85.5% specificity (ROC analysis), with
validation showing 78% sensitivity and 85% specificity, confirming strong
discriminative power and calibration.

Conclusions: The model constructed based on patients’ CT imaging, basic
clinical data, and symptomatic signs demonstrates commendable performance
in the differential diagnosis of NTM-LD and PTB-LD, offering a convenient and
practical auxiliary tool for clinical practice.

KEYWORDS

non-tuberculous mycobacterial lung disease (NTM-LD), pulmonary tuberculosis lung
disease (PTB-LD), differential diagnosis, nomogram, web-based scoring calculator
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Introduction

Nontuberculous mycobacteria (NTM) refer to a broad category
of mycobacteria excluding the Mycobacterium tuberculosis complex
and the Mycobacterium leprae complex. To date, approximately 200
species and 13 subspecies have been identified, most of which are
opportunistic pathogens. These bacteria can invade the human
body through the respiratory tract, gastrointestinal tract, skin, and
other pathways, affecting multiple sites such as the lungs, skin and
soft tissues, lymph nodes, and bones. Among these, the lungs are
one of the most common sites of infection, leading to a condition
known as nontuberculous mycobacterial lung disease (NTM-LD)
(Kumar et al,, 2024). In recent years, the incidence and prevalence
of NTM-LD have been steadily increasing worldwide (Johansen
et al, 2020). A 2024 epidemiological study confirmed that NTM
constitute approximately 6.8% of sputum acid-fast bacilli smear-
positive cases misdiagnosed as tuberculosis (Chen et al., 2024),
underscoring significant risks of diagnostic errors and
inappropriate therapeutic interventions. Moreover, the intrinsic
resistance of NTM species to conventional anti-tuberculosis
regimens necessitates protracted, multifaceted treatment
protocols, which frequently entail severe drug-related toxicities
and elevated treatment discontinuation rates. Consequently, NTM
has emerged as a critical global threat to respiratory health. NTM-
LD now represents not only a dominant etiology of chronic
pulmonary infectious pathology but also a pivotal domain
demanding intensified surveillance, advanced diagnostic
methodologies, and targeted research initiatives.

NTM-LD often presents clinically with symptoms such as
coughing with sputum hemoptysis, chest tightness, shortness of
breath, low-grade fever, and night sweats. These symptoms are very
similar to the clinical manifestations of pulmonary tuberculosis
lung disease (PTB-LD) caused by infection with Mycobacterium
tuberculosis. The clinical differentiation between NTM-LD and
PTB-LD remains challenging due to similar manifestations.
Current diagnostic workflows prioritize sputum smear
microscopy, specifically Acid - Fast Bacilli (AFB) staining, as an
initial screening tool for mycobacterial infections, but this method
cannot distinguish NTM from Mycobacterium tuberculosis
complex. Definitive diagnosis of NTM requires bacterial culture
followed by species identification—a process that takes
approximately 8 weeks under stringent biosafety protocols
(Haworth et al., 2017). During this prolonged diagnostic period,
patients with AFB-positive results are often empirically prescribed
anti-tuberculosis therapy (ATT) to mitigate potential PTB
transmission risks. However, this approach poses dual challenges:
(1) overtreatment, exposing a subset of patients to unnecessary drug
toxicity without clinical benefit, and (2) delayed targeted therapy, as
most NTM species demonstrate intrinsic resistance to standard
anti-tuberculosis agents, necessitating species-specific multidrug
regimens distinct from PTB protocols (Conyers and Saunders,
2024). Therefore, establishing a stratified management system
based on accurate differentiation between NTM-LD and PTB-LD
holds significant clinical implications for achieving personalized
diagnosis and treatment as well as optimal allocation of medical
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resources. With the advancement of analytical methods, the
application of multifactorial mathematical models in the medical
field has gradually expanded. Currently, numerous studies have
explored the imaging-based differentiation between NTM-LD and
PTB-LD, encompassing multiple modalities such as chest
radiography and computed tomography (CT) (Xing et al., 2020;
Park et al, 2023). However, existing research has predominantly
focused on the discriminative value of individual imaging features,
with limited systematic integration of clinical data (e.g., age,
comorbidity profiles, and clinical symptoms) and quantitative
imaging parameters for multidimensional analysis. Notably, there
remains a paucity of exploration into integrating clinical-imaging
multimodal indicators to construct mathematical prediction
models. This study aims to evaluate the basic clinical data,
symptoms and signs, quantitative CT imaging indicators, and
comorbid conditions of NTM-LD and PTB-LD patients treated at
our hospital since 2016. Through the development and validation of
disease prediction models, we aim to provide predictive tools for
early differential diagnosis of NTM-LD and PTB-LD, thereby
enabling precision risk stratification with differentiated resource
allocation and targeted interventions.

Materials and methods
Study subjects

A retrospective analysis was conducted on the basic clinical
data, symptoms, signs, and imaging findings of patients with Non-
tuberculous Mycobacterial Lung Disease (NTM-LD) and
Pulmonary Tuberculosis Lung Disease (PTB-LD) admitted to the
Department of Tuberculosis and Tuberculosis Surgery at Tianjin
Haihe Hospital. The diagnosis of NTM-LD was based on the
Chinese Guideline for the Diagnosis and Treatment of Non-
tuberculous Mycobacterial Disease (2020 Edition) (C.M.A. Society
of Tuberculosis, 2020), while PTB-LD was diagnosed in accordance
with the Official Clinical Practice Guidelines jointly issued by the
American Thoracic Society (ATS), Infectious Diseases Society of
America (IDSA), and Centers for Disease Control and Prevention
(CDC) (Hauk, 2018).microbiological diagnosis served as the “gold
standard” for confirmation.

Given the low clinical incidence and relative rarity of NTM-LD,
a 1:1 sample size ratio was employed to ensure balanced group sizes
and enhance intergroup comparability—particularly to avoid
insufficient statistical power due to an excessively small NTM-LD
cohort. The NTM-LD group (case group) comprised 300
consecutive inpatients who met all inclusion and exclusion
criteria and were admitted between June 2016 and June 2024. The
PTB-LD group (control group) comprised 300 patients selected
using the random number method from 837 hospitalized patients
with PTB-LD who met both the diagnostic criteria and inclusion
criteria during the same period. Subsequently, the 300 NTM-LD
patients and 300 PTB-LD patients were separately and
independently randomized: both cohorts were allocated to the
training set and internal validation set at a 2:1 ratio using
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computer-generated random number tables (random sequences
generated via SPSS 26.0 software). Specifically, the 300 NTM-LD
patients were randomized into 200 cases in the training set and 100
cases in the internal validation set; similarly, the 300 PTB-LD
patients were randomized into 200 cases in the training set and
100 cases in the internal validation set. The process of patient
grouping and data collection is shown in Figure 1.

Inclusion criteria:

10.3389/fcimb.2025.1667339

1. Definitive results of bacterial species identification and drug

susceptibility testing.

2. Availability of authentic, complete, and standardized
clinical diagnostic and treatment records.
3. Availability of complete chest CT imaging data.

Initial patients

Microbiological
'gold standard' diagnosis

/

NTM-LD (349 cases)

Exclude 11 cases without
chest CT imaging

\v

PTB-LD (1147 cases)

Exclude 132 cases without
chest CT imaging

Remaining 338 cases

Remaining 1015 cases

Exclude 13 with incomplete
medical records or unclear
clinical symptoms

Remaining 325 cases

Exclude 44 with incomplete
records or unclear
symptoms

Exclude 15 with other
fungal or bacterial
infections

Remaining 310 cases

Exclude 10 with NTM-LD
combined with PTB-LD

Remaining 971 cases

Exclude 124 with other
fungal or bacterial
infections

Remaining 847 cases

Exclude 10 with NTM-LD
combined with PTB-LD

Remaining 300 cases (pre-
sampling)

Remaining 837 cases (pre-
sampling)

Number the PTB-LD patients
and randomly select 300

cases using the random
number table

NTM-LD group: 300 cases

PTB-LD group: 300 cases |

S -~

Random grouping in a 2:1

P

J Grouping of NTM-LD patients

Grouping of PTB-LD patients

—

‘ Training group: 200 cases

| Training group: 200 cases

| Validation group: 100 cases

| Validation group: 100 cases

\ - \

Training group: 200 NTM-LD
cases + 200 PTB-LD cases
Used for building the
disease diagnosis model

FIGURE 1

-

Validation group: 100 NTM-
LD cases + 100 PTB-LD cases
Used for validating the
model's efficacy

A flowchart depicting the patient grouping and data acquisition process Computed Tomography Scanning Method.
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Exclusion criteria:

1. Co-infection with other pulmonary diseases, such as
bacterial or fungal infections.
2. Patients with concurrent NTM-LD and PTB-LD.

Data quality control

To ensure the accuracy of research data, this study implemented
rigorous quality control measures, detailed as follows:

Standardization and Reliability of Data Sources: Clinical data
were uniformly sourced from electronic medical record systems,
encompassing baseline information (age, gender), clinical
symptoms (e.g., cough with sputum, fever), comorbidities (e.g.,
diabetes mellitus, autoimmune diseases), and microbiological test
results. For imaging data, standardized equipment and parameters
were strictly adopted to eliminate biases in imaging features arising
from variations in device models or parameter settings. Blinded
Imaging Assessment: Retrospective evaluations were conducted by
three experienced radiologists, who remained blinded to patients’
microbiological outcomes. In cases of no consensus between two
radiologists, the third radiologist’s assessment was incorporated to
identify and document imaging features, facilitating quantitative
analysis of indicators.

Data Management Rigor: A dedicated data management team
from the Department of Tuberculosis, Tianjin Haihe Hospital,
oversaw verification of data entry accuracy. This included

» o«

standardizing terminology (e.g., “hemoptysis” “centrilobular
nodules”) and systematically screening for outliers or
contradictory data. All datasets were anonymized and encrypted
for storage to safeguard patient privacy while ensuring traceability.
Unification and Standardization of Imaging Equipment: Our
equipment was the Canon Aquilion Prime 64-slice spiral CT (Canon
Medical Systems, Otawara, Japan). During the scan, patients were
positioned supine with their hands elevated above their heads, entering
the scanner headfirst, and standard protective measures were observed.
The scanning parameters were set as follows: a tube voltage of 120 kV,
automatic tube current modulation, a rotation time of 0.5 seconds per
rotation, a matrix size of 512x512, and a collimator width of 64x0.5
mm. Image reconstruction was performed using both the FC30 (soft
tissue algorithm) and FC52 (sharp algorithm), with a reconstruction
slice thickness of Imm and a slice interval of 0.8mm. The images were
reviewed on the Canon workstation using lung window settings (1600
HU, -500 HU) and mediastinal window settings (400 HU, 40 HU).

Data analysis

All data were analyzed using SPSS 26.0 statistical software.
Categorical data were analyzed using the chi-square test, with the
continuity-corrected chi-square test applied when expected
frequencies were small. For variable selection in model
construction, univariate and multivariate logistic regression
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analyses were employed with a stepwise strategy: first, variables
with potential clinical significance (based on prior literature and
expert consensus) and those showing marginal association in
univariate analysis (P<0.10) were included as candidates;
subsequently, multivariate logistic regression with backward
elimination (likelihood ratio test) was performed to screen for
independent predictors, where variables were retained if they met
statistical significance (P<0.05) and contributed to model fitness as
evaluated by Akaike information criterion (AIC). The “rms
package” in R software (version: 4.4.0) was used to build the
nomogram, and the Bootstrap resampling method (1000 samples)
was applied to draw the calibration curve for internal validation.
The receiver operating characteristic (ROC) curve was used to
evaluate discriminative ability, the calibration curve to test
calibration, and decision curve analysis (DCA) to assess clinical
benefit. A P-value <0.05 was considered statistically significant.

Result

The demographic characteristics of the
population

This study included a total of 300 NTM-LD patients and 300
PTB-LD patients. They were randomly divided into a training set
(NTM-LD=200, PTB-LD=200) and an internal validation set
(NTM-LD=100, PTB-LD=100) at a 2:1 ratio. There were no
statistically significant differences in age and gender distribution
between the two groups (P > 0.05). The demographic characteristics
of the training set and internal validation set are shown in Table 1.

Evaluation and selection of disease
prediction model metrics in the training set

Variables for univariate analysis were selected based on expert
consensus and clinical relevance. The study adopted a relatively
lenient significance threshold (P<0.1) to allow inclusion of variables
demonstrating “marginally significant” features in the multivariate
analysis. Results revealed statistically significant differences between
the two groups in the following 12 parameters (all P<0.1): age,
cough with sputum production, hemoptysis, thin-walled cavities,
centrilobular nodules, bronchiectasis, multi-lobar and multi-
segmental involvement, exudative lesions, diabetes mellitus,
autoimmune diseases, chronic obstructive pulmonary disease
(COPD), and hematologic diseases. Conversely, no significant
intergroup differences were observed in fever, wheezing, chest
pain, disseminated lesions, fibrotic streaks, mediastinal lymph
node enlargement, malignant tumors, interstitial lung disease,
AIDS, pleural thickening, or hypoalbuminemia (all P > 0.1).
Detailed data are presented in Table 2.

The indicators with statistically significant differences in the
univariate analysis were included as independent variables in the
multivariate logistic regression analysis. The final univariate
analysis revealed that age, cough with sputum, hemoptysis, thin-
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TABLE 1 Demographic characteristics of the training set and internal validation set.

10.3389/fcimb.2025.1667339

Training set Internal validation set
Variables
NTM-LD PTB-LD NTM-LD PTB-LD
Age
<45 years 35(17.5%) 50(25%) 0.067 19(19%) 29(29%) 0.098
>45 years 165(82.5%) 150(75%) 81(81%) 71(71%)
Gender
Male 131(65.5%) 139(69.5%) 0.393 55(55%) 65(65%) 0.149
Female 69(34.5%) 61(30.5%) 45(45%) 35(35%)

walled cavities, centrilobular nodules, bronchiectasis, multi-lobar

and multi-segmental involvement, exudation, diabetes mellitus,

autoimmune diseases, chronic obstructive pulmonary disease, and
hematological diseases were entered into the multivariate regression

analysis. The multivariate analysis demonstrated that cough with

sputum, hemoptysis, thin-walled cavities, centrilobular nodules,

bronchiectasis, diabetes mellitus, and autoimmune diseases were
independent risk factors for distinguishing between NTM-LD

TABLE 2 Comparison of indicators between NTM-LD group and PTB-LD group.

Indicators NTM-LD group (n=200) PTB-LD group (n=200) ¥/t
Symptoms
Cough with sputum = 177(88.5%) 110(55.0%) 55.367 <0.001*
Fever = 88(44%) 75(37.5%) 1.750 0.186
Wheezing | 79(39.5%) 69(34.5%) 1.073 0.300
Chest pain = 24(12%) 15(7.5%) 2.301 0.129
Hemoptysis = 81(40.5%) 20(10%) 49.286 <0.001*
Imaging manifestations
Thin-walled cavities = 132(66.0%) 78(39.0%) 95.837 <0.001*
Centrilobular nodules = 135(67.5%) 38(19.0%) 66.828 <0.001*
Disseminated lesions = 80(40%) 74(37%) 0.380 0.538
Bronchiectasis = 116(58%) 26(13.0%) 88.438 <0.001*
Multi-lobar and multi-segmental involvement = 155(77.5%) 139(69.5%) 3.286 0.070*
Exudative effusion = 62(31%) 80(40%) 3.538 0.060*
Fibrous streaks = 94 (47%) 84(42%) 1.012 0314
Mediastinal lymph node enlargement = 43(21.5%) 44(22%) 0.015 0.904
Comorbid conditions
Diabetes mellitus =~ 19(9.5%) 73(36.5%) 41.163 <0.001*
Autoimmune diseases =~ 30(15.0%) 6(3.0%) 17.582 <0.001*
Chronic obstructive pulmonary disease = 37(18.5%) 24(12%) 3.269 0.071*
Malignant tumors ~ 13(6.5%) 9(4.5%) 0.770 0.380
Interstitial lung disease = 37(18.5%) 29(14.5%) 1.161 0.281
AIDS  1(0.5%) 1(0.5%) 0 1
Hematologic diseases = 51(25.5%) 67(33.5%) 3.077 0.079*
Pleural thickening = 72(36.5%) 81(40.5%) 0.857 0.354
Hypoalbuminemia = 65(32.5%) 67(33.5%) 0.045 0.832

w»

indicates P<0.1.
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(nontuberculous mycobacterial lung disease) and PTB-LD
(pulmonary tuberculosis lung disease), and these variables were
ultimately incorporated into the model (Table 3, Figure 2). The
nomogram model was constructed based on the following equation:
Y =-3.650 + (1.822 x cough with sputum) + (1.902 x hemoptysis) +
(0.939 x thin-walled cavities) + (2.409 x centrilobular nodules) +
(1.819x bronchiectasis) + (-1.170 x diabetes mellitus) + (1.985 x
autoimmune diseases). The probability P was calculated as: P=1/(1
+exp(-Y)).

Development and validation of a clinical
prediction model for differentiating NTM-
LD and PTB-LD

The constructed equation was visualized using the ‘rms
package’ in R software to generate a nomogram prediction model
for differentiating NTM-LD and PTB-LD (Figure 3). Based on the
patient’s clinical manifestations, including cough with sputum,
hemoptysis, thin-walled cavities, centrilobular nodules,
bronchiectasis, Diabetes mellitus, and autoimmune diseases,
values are assigned to each variable. By creating vertical lines on
the nomogram, corresponding scores can be identified on the
scoring axis for each parameter. These scores are summed to
calculate the total score. Finally, the total score is projected onto
the risk axis to estimate the probability of NTM-LD occurrence for
that patient. For example, a patient presenting with cough and
sputum receives a score of 75, while the absence of this symptom
yields 0 points. Patients with hemoptysis are assigned 80 points,
whereas those without receive 0. The presence of thin-walled
cavities adds 40 points, and their absence contributes 0.
Centrilobular nodules are scored 100 if present and 0 if absent.
Bronchiectasis corresponds to 75 points when present and 0 when

10.3389/fcimb.2025.1667339

absent. Notably, patients without diabetes are assigned 50 points,
while those with diabetes receive 0. Conversely, patients with
autoimmune diseases are scored 80 points, and those without are
assigned 0. These individual scores are summed to calculate the
total score. The total score is then projected onto the risk axis of
the nomogram to determine the patient’s probability of developing
NTM-LD. To facilitate clinical use, we further developed a
web-based score calculator based on this nomogram prediction
model (accessible at https://dynamic-diagram.shinyapps.io/
DynNomapp/), Figure 4.

The validation results demonstrated consistent diagnostic
performance of the nomogram across both the training and
internal validation cohorts. In the training cohort, the model
achieved an area under the receiver operating characteristic
(ROC) curve (AUC) of 0.923 (95% confidence interval [CI]:
0.898-0.948), with a specificity of 85.5% and sensitivity of 82.5%
(Figure 5A), indicating superior differentiation capability between
NTM-LD and PTB-LD. Furthermore, calibration curve analysis
revealed close agreement between predicted probabilities and
observed outcomes confirming excellent calibration accuracy
(Figure 5C). To further evaluate the model’s generalizability, an
internal validation cohort comprising 100 NTM-LD patients and
100 PTB-LD patients was included. The model demonstrated
correct diagnosis rates of 88.0% (88/100) for NTM-LD and 75.0%
(75/100) for PTB-LD, achieving an overall diagnostic accuracy of
81.5% (163/200). In the validation cohort, the AUC reached 0.892
(95% CI: 0.792-0.900) with specificity of 78% and sensitivity of 85%
(Figure 5B), indicating clinically generalizable discriminative
performance. The Hosmer-Leme show test revealed no significant
deviation between predicted and observed values (}’=6.32,
P=0.176), while the calibration curve exhibited 94.7%
concordance with the ideal curve (Figure 5D), further validating
calibration robustness. To quantify clinical utility, decision curve

TABLE 3 Multivariate logistic regression analysis of factors influencing the classification between NTM-LD and PTB-LD.

95%Cl
Indicators
Low High

Age -0.797 0.434 3.372 0.066 0.451 0.193 1.055
Cough with sputum 1.822 0.371 24.177 <0.001** 6.185 2.992 12.787
Hemoptysis 1.902 0.388 24.054 <0.001** 6.702 3.134 14.334
Thin-walled cavities 0.939 0.307 9.323 0.002** 2.556 1.400 4.670
Centrilobular nodules 2.409 0.329 53.660 <0.001** 11.122 5.838 21.198
Bronchiectasis 1.819 0.340 28.604 <0.001** 6.165 3.165 12.005
Multi-lobar and multi-segmental involvement 0.080 0.371 0.047 0.829 1.084 0.524 2.242
Exudative effusion 0.110 0.332 0.109 0.741 1.116 0.582 2.141
Diabetes mellitus -1.170 0.384 9.287 0.002** 0.310 0.146 0.659
Autoimmune diseases 1.985 0.623 10.149 0.001** 7.280 2.146 24.694
Chronic obstructive pulmonary disease 0.084 0.410 0.042 0.837 1.088 0.487 2.431
Hematologic diseases -0.436 0.345 1.600 0.206 0.646 0.329 1.271

“*” indicates P < 0.05.
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Forest Plot of Logistic Regression Analysis.
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FIGURE 3
Nomogram prediction model for differentiating NTM-LD from PTB-LD.
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Differential Diagnosis Model for NTM-LD vs. PTB-LD
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FIGURE 4

Web-based calculator for the differential model of NTM-LD and PTB-LD.
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Probability

analysis (DCA) was employed to assess model net benefit. Across
both training and validation sets, the model demonstrated
significant clinical net benefit compared to “all- NTM-LD” or
“all-PTB-LD” strategies when threshold probabilities across a
wide range (Figures 5E, F), suggesting its applicability across
diverse clinical decision-making scenarios.

Discussion

Differentiating NTM-LD from PTB-LD remains a significant
diagnostic challenge in respiratory medicine. This study developed
a high-performance predictive model by integrating
multidimensional indicators, including clinical characteristics,
radiological patterns, and comorbidities. Furthermore, we
designed an interactive web-based calculator to visualize the
model’s outputs, providing a novel tool for early clinical
discrimination between these two entities.

This study revealed distinct clinical profiles between NTM-LD
and PTB-LD. Specifically, patients with NTM-LD demonstrated a
significantly higher prevalence of chronic cough with sputum
production (OR=6.185, P<0.001) and hemoptysis (OR=6.702,
P<0.001), which aligns with the airway injury patterns in NTM-LD
reported by Youssefnia A.et al (Youssefnia et al., 2022). The virulence
of NTM is relatively lower compared to Mycobacterium tuberculosis,
yet their enhanced adhesive capacity enables persistent colonization
of airway mucosa. Characterized by unique lipid-rich cell wall
components that resist phagocytic clearance and impede their
elimination, NTM induce chronic airway inflammation through
sustained antigenic stimulation. This pathological process promotes
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excessive mucus secretion and consequently exacerbates clinical
manifestations of cough with sputum production (Schiff et al,
2019). Furthermore, NTM-triggered inflammatory responses
disrupt vascular integrity in bronchial walls, resulting in enhanced
vascular permeability. Concurrently, airway smooth muscle
hyperreactivity and bronchoconstriction elevate intraluminal
pressure, which synergistically exacerbates microvascular damage
and significantly increases the risk of hemoptysis (Zhang et al,
2019). Moreover, our study identified several distinct imaging
biomarkers-bronchiectasis, centrilobular nodules, and thin-walled
cavities-that collectively reflect the unique pathophysiological
features of nontuberculous mycobacterial lung disease (NTM-LD).
The strong association between bronchiectasis and NTM-LD
(OR=28.604, P<0.001) further supports the predominantly airway-
centered, chronic inflammatory nature of this condition.
Bronchiectasis is both a predisposing factor and a consequence of
NTM infection (Retuerto-Guerrero et al., 2024). Structural airway
damage facilitates persistent bacterial colonization, while chronic
inflammation from NTM infection exacerbates mucociliary
dysfunction and smooth muscle hyperreactivity, leading to
progressive airway dilation—a self-perpetuating cycle known as the
“vicious cycle hypothesis” in chronic respiratory diseases (Dartois
and Dick, 2024). Notably, our findings align with those of Chu et al
(Chu et al,, 2015), highlighting its utility as a distinguishing imaging
feature.We also observed a significantly higher prevalence of
centrilobular nodules in NTM-LD (OR=11.122, P<0.001),
consistent with findings by Iakobachvili et al (lakobachvili et al.,
2022). These nodules arise from bronchial spread of infection along
the airway tree and represent early inflammatory foci within terminal
bronchioles, typically appearing as “tree-in-bud” opacities on high-
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Performance validation of the differential diagnostic model for NTM-LD and PTB-LD. (A, B) Training/validation cohort ROC curves; (C, D) Training/
validation cohort calibration curves; (E, F) Training/validation cohort decision curve analyses.

resolution computed tomography (HRCT). This pattern is widely
recognized as a hallmark of NTM-LD, reflecting pathogen
colonization of the airway epithelium and localized granulomatous
inflammation without extensive tissue necrosis. Another key imaging
feature in NTM-LD was the presence of thin-walled cavities
(OR=2.556, P=0.002), which are believed to develop secondarily to
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long-standing bronchiectasis and parenchymal remodeling. These
cavities are typically small, multiple, and predominantly located in
the upper lobes, especially in the subclavicular and middle lobe
regions. This observation is strongly supported by prior HRCT
studies demonstrating that thin—walled or even “bubbly”—
appearing cavities are more common in NTM-LD than in PTB-LD
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(Evans et al., 1996). Comparative analysis of underlying
comorbidities revealed distinct pathophysiological predispositions:
the NTM-LD cohort exhibited heightened susceptibility to
autoimmune disorders (OR=7.280, P=0.001), whereas diabetes
mellitus predominated in PTB-LD patients (OR=0.310, P=0.002), a
dichotomy reflecting pathogen-specific modulation of immune
microenvironmental susceptibility. The indolent and chronic
progression of NTM infection drives sustained low-grade activation
of the host immune system, disrupting the homeostatic immune
regulatory network. This persistent immunostimulation
compromises immune cell-mediated recognition and tolerance
mechanisms toward self-antigens, thereby triggering aberrant
autoimmune responses against host tissues and elevating
susceptibility to autoimmune disorders (Liu et al., 2023). The
elevated prevalence of diabetes mellitus in PTB-LD patients is
mechanistically attributed to the hyperglycemic microenvironment
serving as a nutritional reservoir that facilitates Mycobacterium
tuberculosis proliferation, survival, and dissemination. Moreover,
hyperglycemia affects cell metabolism, inhibits the functions of
immune cells such as macrophages, reduces the body’s phagocytic
and killing ability against Mycobacterium tuberculosis, and increases
the risk of infection (Kamei et al., 2023).

The predictive model constructed based on the aforementioned
key differences demonstrated favorable diagnostic performance,
with a training cohort AUC of 0.923 (95% CI: 0.898-0.948),
validation cohort AUC of 0.892 (95% CI: 0.849-0.936), and
overall accuracy of 81.5%. It significantly outperforms existing
models: Liu et al’s (Liu et al., 2023). chest X-ray DenseNet model
(internal/external AUC: 0.86 + 0.006/0.64 + 0.017), Hu et al.’s (Hu
et al,, 2025) radiomics model (AUC 90.2%), and CT-only models—
all limited by single-modality reliance, neglect of clinical context
(e.g., symptoms like cough with sputum/hemoptysis and
comorbidities), inability to capture clinical heterogeneity, and
smaller sample sizes. By integrating clinical variables with
imaging features, this model overcomes single-modality
limitations, achieving superior discriminative power (higher AUC
than comparative models), robust calibration (94.7% alignment of
calibration curve with ideal reference; Hosmer-Lemeshow test,
P=0.176), and confirming clinical net benefit via decision curve
analysis-outperforming “treat-alls” or “no-intervention” strategies
across threshold probabilities. It provides a reliable tool for precise
differentiation between NTM-LD and PTB-LD, aiding in reducing
misdiagnoses and optimizing patient management.

Furthermore, the transparent logistic regression-based algorithm
employed in our model offers better interpretability for clinical
practitioners compared to complex deep learning architectures,
facilitating its potential integration into routine clinical decision-
making processes. The innovatively developed web-based calculator
(accessible at https://dynamic-diagram.shinyapps.io/DynNomapp/)
facilitates clinical translation of our model by enabling physicians
to obtain real-time personalized risk assessments through the input
of eight binary variables. This tool supports clinical decision-
making by stratifying patients according to their probability of
NTM-LD. Individuals predicted as high-risk should avoid
unnecessary anti-tuberculosis therapy (ATT) and instead undergo
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timely NTM-specific diagnostic testing—such as sputum culture for
nontuberculous mycobacteria, species identification, NTM specific
PCR, or metagenomic next-generation sequencing (mNGS)—to
confirm the diagnosis and guide appropriate management. In
contrast, patients classified as low-risk may be considered for
early initiation of ATT if clinical and radiological features suggest
pulmonary tuberculosis, provided that microbiological workup is
concurrently pursued to confirm or exclude PTB-LD. The current
version of the application represents a proof-of-concept
implementation, designed to demonstrate the feasibility of
translating our predictive model into a practical clinical decision-
support tool. However, we acknowledge that formal usability testing
and integration into routine clinical workflows have not yet been
conducted. Future studies should evaluate the tool’s acceptability,
efficiency, and impact on clinical decision-making through
structured user experience assessments—such as System Usability
Scale (SUS) surveys or cognitive task analyses—among frontline
healthcare providers. Furthermore, pilot implementation in
outpatient respiratory or infectious disease clinics could provide
valuable insights into its compatibility with existing electronic
health record (EHR) systems and standard diagnostic pathways.
This study has several limitations. First, the single-center,
retrospective design may introduce selection bias and limit the
generalizability of the findings to broader populations. Second, the
relatively modest sample size (n=600) constrains statistical power
for comprehensive subgroup analyses, particularly for rare clinical
phenotypes. Furthermore, although multiple statistical and
validation techniques were employed to minimize overfitting—
such as internal bootstrapping and stepwise variable selection—
some degree of model overfitting may still persist. To address these
limitations, we plan to conduct a prospective, multi-center cohort
study to externally validate the model’s performance across diverse
healthcare settings and patient populations. Independent validation
in larger, geographically representative cohorts will be critical to
confirm its robustness, transportability, and clinical utility.

Conclusion

The developed NTM-LD/PTB-LD differentiation model
demonstrates significant clinical utility for optimizing diagnostic
workflows. The implementation of its web-based tool (accessible at
https://dynamic-diagram.shinyapps.io/DynNomapp/) could
transform current diagnostic paradigms by reducing reliance on
invasive procedures, while providing real-time decision-making
support for precision antimicrobial therapy. Future efforts will
focus on clinical validation and global dissemination of this tool
to enhance tuberculosis management in resource-variable settings.
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