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Xiaohui Miao1,2 and Chao Cui1,2*

1Department of Thoracic Surgery, Haihe Hospital, Tianjin University, Tianjin, China, 2TCM Key
Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese
Medicine, Tianjin, China, 3Department of Obstetrics and Gynecology, Tianjin Medical University
General Hospital, Tianjin, China
Objectives: To construct a differential diagnostic model for Non-Tuberculous

Mycobacterial Lung Disease (NTM-LD) and Pulmonary Tuberculosis Lung

Disease (PTB-LD).

Methods: Retrospective analysis of 300 NTM-LD and 300 PTB-LD patients

(pathogen-confirmed) was performed. Patients were randomly split into

training (2/3) and validation (1/3) sets. CT imaging, clinical data, and symptoms

were analyzed. Logistic regression identified significant discriminative features,

followed by random forest modeling to develop a diagnostic tool with web-

based calculator. Model performance was validated using the independent

validation set.

Results: Univariate and multivariate analyses identified key discriminative factors

(P<0.05): cough with sputum, hemoptysis, thin-walled cavities, centrilobular

nodules, bronchiectasis, diabetes, and autoimmune diseases. The diagnostic

model achieved 82.5% sensitivity and 85.5% specificity (ROC analysis), with

validation showing 78% sensitivity and 85% specificity, confirming strong

discriminative power and calibration.

Conclusions: The model constructed based on patients’ CT imaging, basic

clinical data, and symptomatic signs demonstrates commendable performance

in the differential diagnosis of NTM-LD and PTB-LD, offering a convenient and

practical auxiliary tool for clinical practice.
KEYWORDS

non-tuberculous mycobacterial lung disease (NTM-LD), pulmonary tuberculosis lung
disease (PTB-LD), differential diagnosis, nomogram, web-based scoring calculator
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Introduction

Nontuberculous mycobacteria (NTM) refer to a broad category

of mycobacteria excluding theMycobacterium tuberculosis complex

and theMycobacterium leprae complex. To date, approximately 200

species and 13 subspecies have been identified, most of which are

opportunistic pathogens. These bacteria can invade the human

body through the respiratory tract, gastrointestinal tract, skin, and

other pathways, affecting multiple sites such as the lungs, skin and

soft tissues, lymph nodes, and bones. Among these, the lungs are

one of the most common sites of infection, leading to a condition

known as nontuberculous mycobacterial lung disease (NTM-LD)

(Kumar et al., 2024). In recent years, the incidence and prevalence

of NTM-LD have been steadily increasing worldwide (Johansen

et al., 2020). A 2024 epidemiological study confirmed that NTM

constitute approximately 6.8% of sputum acid-fast bacilli smear-

positive cases misdiagnosed as tuberculosis (Chen et al., 2024),

underscoring significant risks of diagnostic errors and

inappropriate therapeutic interventions. Moreover, the intrinsic

resistance of NTM species to conventional anti-tuberculosis

regimens necessitates protracted, multifaceted treatment

protocols, which frequently entail severe drug-related toxicities

and elevated treatment discontinuation rates. Consequently, NTM

has emerged as a critical global threat to respiratory health. NTM-

LD now represents not only a dominant etiology of chronic

pulmonary infectious pathology but also a pivotal domain

demanding intensified surveillance, advanced diagnostic

methodologies, and targeted research initiatives.

NTM-LD often presents clinically with symptoms such as

coughing with sputum hemoptysis, chest tightness, shortness of

breath, low-grade fever, and night sweats. These symptoms are very

similar to the clinical manifestations of pulmonary tuberculosis

lung disease (PTB-LD) caused by infection with Mycobacterium

tuberculosis. The clinical differentiation between NTM-LD and

PTB-LD remains challenging due to similar manifestations.

Current diagnostic workflows prioritize sputum smear

microscopy, specifically Acid - Fast Bacilli (AFB) staining, as an

initial screening tool for mycobacterial infections, but this method

cannot distinguish NTM from Mycobacterium tuberculosis

complex. Definitive diagnosis of NTM requires bacterial culture

followed by species identification—a process that takes

approximately 8 weeks under stringent biosafety protocols

(Haworth et al., 2017). During this prolonged diagnostic period,

patients with AFB-positive results are often empirically prescribed

anti-tuberculosis therapy (ATT) to mitigate potential PTB

transmission risks. However, this approach poses dual challenges:

(1) overtreatment, exposing a subset of patients to unnecessary drug

toxicity without clinical benefit, and (2) delayed targeted therapy, as

most NTM species demonstrate intrinsic resistance to standard

anti-tuberculosis agents, necessitating species-specific multidrug

regimens distinct from PTB protocols (Conyers and Saunders,

2024). Therefore, establishing a stratified management system

based on accurate differentiation between NTM-LD and PTB-LD

holds significant clinical implications for achieving personalized

diagnosis and treatment as well as optimal allocation of medical
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resources. With the advancement of analytical methods, the

application of multifactorial mathematical models in the medical

field has gradually expanded. Currently, numerous studies have

explored the imaging-based differentiation between NTM-LD and

PTB-LD, encompassing multiple modalities such as chest

radiography and computed tomography (CT) (Xing et al., 2020;

Park et al., 2023). However, existing research has predominantly

focused on the discriminative value of individual imaging features,

with limited systematic integration of clinical data (e.g., age,

comorbidity profiles, and clinical symptoms) and quantitative

imaging parameters for multidimensional analysis. Notably, there

remains a paucity of exploration into integrating clinical-imaging

multimodal indicators to construct mathematical prediction

models. This study aims to evaluate the basic clinical data,

symptoms and signs, quantitative CT imaging indicators, and

comorbid conditions of NTM-LD and PTB-LD patients treated at

our hospital since 2016. Through the development and validation of

disease prediction models, we aim to provide predictive tools for

early differential diagnosis of NTM-LD and PTB-LD, thereby

enabling precision risk stratification with differentiated resource

allocation and targeted interventions.
Materials and methods

Study subjects

A retrospective analysis was conducted on the basic clinical

data, symptoms, signs, and imaging findings of patients with Non-

tuberculous Mycobacterial Lung Disease (NTM-LD) and

Pulmonary Tuberculosis Lung Disease (PTB-LD) admitted to the

Department of Tuberculosis and Tuberculosis Surgery at Tianjin

Haihe Hospital. The diagnosis of NTM-LD was based on the

Chinese Guideline for the Diagnosis and Treatment of Non-

tuberculous Mycobacterial Disease (2020 Edition) (C.M.A. Society

of Tuberculosis, 2020), while PTB-LD was diagnosed in accordance

with the Official Clinical Practice Guidelines jointly issued by the

American Thoracic Society (ATS), Infectious Diseases Society of

America (IDSA), and Centers for Disease Control and Prevention

(CDC) (Hauk, 2018).microbiological diagnosis served as the “gold

standard” for confirmation.

Given the low clinical incidence and relative rarity of NTM-LD,

a 1:1 sample size ratio was employed to ensure balanced group sizes

and enhance intergroup comparability—particularly to avoid

insufficient statistical power due to an excessively small NTM-LD

cohort. The NTM-LD group (case group) comprised 300

consecutive inpatients who met all inclusion and exclusion

criteria and were admitted between June 2016 and June 2024. The

PTB-LD group (control group) comprised 300 patients selected

using the random number method from 837 hospitalized patients

with PTB-LD who met both the diagnostic criteria and inclusion

criteria during the same period. Subsequently, the 300 NTM-LD

patients and 300 PTB-LD patients were separately and

independently randomized: both cohorts were allocated to the

training set and internal validation set at a 2:1 ratio using
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computer-generated random number tables (random sequences

generated via SPSS 26.0 software). Specifically, the 300 NTM-LD

patients were randomized into 200 cases in the training set and 100

cases in the internal validation set; similarly, the 300 PTB-LD

patients were randomized into 200 cases in the training set and

100 cases in the internal validation set. The process of patient

grouping and data collection is shown in Figure 1.
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Inclusion criteria:
1. Definitive results of bacterial species identification and drug

susceptibility testing.

2. Availability of authentic, complete, and standardized

clinical diagnostic and treatment records.

3. Availability of complete chest CT imaging data.
FIGURE 1

A flowchart depicting the patient grouping and data acquisition process Computed Tomography Scanning Method.
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Exclusion criteria:
Fron
1. Co-infection with other pulmonary diseases, such as

bacterial or fungal infections.

2. Patients with concurrent NTM-LD and PTB-LD.
Data quality control

To ensure the accuracy of research data, this study implemented

rigorous quality control measures, detailed as follows:

Standardization and Reliability of Data Sources: Clinical data

were uniformly sourced from electronic medical record systems,

encompassing baseline information (age, gender), clinical

symptoms (e.g., cough with sputum, fever), comorbidities (e.g.,

diabetes mellitus, autoimmune diseases), and microbiological test

results. For imaging data, standardized equipment and parameters

were strictly adopted to eliminate biases in imaging features arising

from variations in device models or parameter settings. Blinded

Imaging Assessment: Retrospective evaluations were conducted by

three experienced radiologists, who remained blinded to patients’

microbiological outcomes. In cases of no consensus between two

radiologists, the third radiologist’s assessment was incorporated to

identify and document imaging features, facilitating quantitative

analysis of indicators.

Data Management Rigor: A dedicated data management team

from the Department of Tuberculosis, Tianjin Haihe Hospital,

oversaw verification of data entry accuracy. This included

standardizing terminology (e.g., “hemoptysis” “centrilobular

nodules”) and systematically screening for outliers or

contradictory data. All datasets were anonymized and encrypted

for storage to safeguard patient privacy while ensuring traceability.

Unification and Standardization of Imaging Equipment: Our

equipment was the Canon Aquilion Prime 64-slice spiral CT (Canon

Medical Systems, Otawara, Japan). During the scan, patients were

positioned supine with their hands elevated above their heads, entering

the scanner headfirst, and standard protective measures were observed.

The scanning parameters were set as follows: a tube voltage of 120 kV,

automatic tube current modulation, a rotation time of 0.5 seconds per

rotation, a matrix size of 512×512, and a collimator width of 64×0.5

mm. Image reconstruction was performed using both the FC30 (soft

tissue algorithm) and FC52 (sharp algorithm), with a reconstruction

slice thickness of 1mm and a slice interval of 0.8mm. The images were

reviewed on the Canon workstation using lung window settings (1600

HU, -500 HU) and mediastinal window settings (400 HU, 40 HU).
Data analysis

All data were analyzed using SPSS 26.0 statistical software.

Categorical data were analyzed using the chi-square test, with the

continuity-corrected chi-square test applied when expected

frequencies were small. For variable selection in model

construction, univariate and multivariate logistic regression
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analyses were employed with a stepwise strategy: first, variables

with potential clinical significance (based on prior literature and

expert consensus) and those showing marginal association in

univariate analysis (P<0.10) were included as candidates;

subsequently, multivariate logistic regression with backward

elimination (likelihood ratio test) was performed to screen for

independent predictors, where variables were retained if they met

statistical significance (P<0.05) and contributed to model fitness as

evaluated by Akaike information criterion (AIC). The “rms

package” in R software (version: 4.4.0) was used to build the

nomogram, and the Bootstrap resampling method (1000 samples)

was applied to draw the calibration curve for internal validation.

The receiver operating characteristic (ROC) curve was used to

evaluate discriminative ability, the calibration curve to test

calibration, and decision curve analysis (DCA) to assess clinical

benefit. A P-value <0.05 was considered statistically significant.
Result

The demographic characteristics of the
population

This study included a total of 300 NTM-LD patients and 300

PTB-LD patients. They were randomly divided into a training set

(NTM-LD=200, PTB-LD=200) and an internal validation set

(NTM-LD=100, PTB-LD=100) at a 2:1 ratio. There were no

statistically significant differences in age and gender distribution

between the two groups (P > 0.05). The demographic characteristics

of the training set and internal validation set are shown in Table 1.
Evaluation and selection of disease
prediction model metrics in the training set

Variables for univariate analysis were selected based on expert

consensus and clinical relevance. The study adopted a relatively

lenient significance threshold (P<0.1) to allow inclusion of variables

demonstrating “marginally significant” features in the multivariate

analysis. Results revealed statistically significant differences between

the two groups in the following 12 parameters (all P<0.1): age,

cough with sputum production, hemoptysis, thin-walled cavities,

centrilobular nodules, bronchiectasis, multi-lobar and multi-

segmental involvement, exudative lesions, diabetes mellitus,

autoimmune diseases, chronic obstructive pulmonary disease

(COPD), and hematologic diseases. Conversely, no significant

intergroup differences were observed in fever, wheezing, chest

pain, disseminated lesions, fibrotic streaks, mediastinal lymph

node enlargement, malignant tumors, interstitial lung disease,

AIDS, pleural thickening, or hypoalbuminemia (all P > 0.1).

Detailed data are presented in Table 2.

The indicators with statistically significant differences in the

univariate analysis were included as independent variables in the

multivariate logistic regression analysis. The final univariate

analysis revealed that age, cough with sputum, hemoptysis, thin-
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1667339
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Qiao et al. 10.3389/fcimb.2025.1667339
walled cavities, centrilobular nodules, bronchiectasis, multi-lobar

and multi-segmental involvement, exudation, diabetes mellitus,

autoimmune diseases, chronic obstructive pulmonary disease, and

hematological diseases were entered into the multivariate regression
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analysis. The multivariate analysis demonstrated that cough with

sputum, hemoptysis, thin-walled cavities, centrilobular nodules,

bronchiectasis, diabetes mellitus, and autoimmune diseases were

independent risk factors for distinguishing between NTM-LD
TABLE 2 Comparison of indicators between NTM-LD group and PTB-LD group.

Indicators NTM-LD group (n=200) PTB-LD group (n=200) c2/t P-value

Symptoms

Cough with sputum 177(88.5%) 110(55.0%) 55.367 <0.001*

Fever 88(44%) 75(37.5%) 1.750 0.186

Wheezing 79(39.5%) 69(34.5%) 1.073 0.300

Chest pain 24(12%) 15(7.5%) 2.301 0.129

Hemoptysis 81(40.5%) 20(10%) 49.286 <0.001*

Imaging manifestations

Thin-walled cavities 132(66.0%) 78(39.0%) 95.837 <0.001*

Centrilobular nodules 135(67.5%) 38(19.0%) 66.828 <0.001*

Disseminated lesions 80(40%) 74(37%) 0.380 0.538

Bronchiectasis 116(58%) 26(13.0%) 88.438 <0.001*

Multi-lobar and multi-segmental involvement 155(77.5%) 139(69.5%) 3.286 0.070*

Exudative effusion 62(31%) 80(40%) 3.538 0.060*

Fibrous streaks 94 (47%) 84(42%) 1.012 0.314

Mediastinal lymph node enlargement 43(21.5%) 44(22%) 0.015 0.904

Comorbid conditions

Diabetes mellitus 19(9.5%) 73(36.5%) 41.163 <0.001*

Autoimmune diseases 30(15.0%) 6(3.0%) 17.582 <0.001*

Chronic obstructive pulmonary disease 37(18.5%) 24(12%) 3.269 0.071*

Malignant tumors 13(6.5%) 9(4.5%) 0.770 0.380

Interstitial lung disease 37(18.5%) 29(14.5%) 1.161 0.281

AIDS 1(0.5%) 1(0.5%) 0 1

Hematologic diseases 51(25.5%) 67(33.5%) 3.077 0.079*

Pleural thickening 72(36.5%) 81(40.5%) 0.857 0.354

Hypoalbuminemia 65(32.5%) 67(33.5%) 0.045 0.832
“*” indicates P<0.1.
TABLE 1 Demographic characteristics of the training set and internal validation set.

Variables
Training set

P-value
Internal validation set

P-value
NTM-LD PTB-LD NTM-LD PTB-LD

Age

<45 years 35(17.5%) 50(25%) 0.067 19(19%) 29(29%) 0.098

≥45 years 165(82.5%) 150(75%) 81(81%) 71(71%)

Gender

Male 131(65.5%) 139(69.5%) 0.393 55(55%) 65(65%) 0.149

Female 69(34.5%) 61(30.5%) 45(45%) 35(35%)
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(nontuberculous mycobacterial lung disease) and PTB-LD

(pulmonary tuberculosis lung disease), and these variables were

ultimately incorporated into the model (Table 3, Figure 2). The

nomogram model was constructed based on the following equation:

Y = -3.650 + (1.822 × cough with sputum) + (1.902 × hemoptysis) +

(0.939 × thin-walled cavities) + (2.409 × centrilobular nodules) +

(1.819× bronchiectasis) + (-1.170 × diabetes mellitus) + (1.985 ×

autoimmune diseases). The probability P was calculated as: P=1/(1

+exp(-Y)).
Development and validation of a clinical
prediction model for differentiating NTM-
LD and PTB-LD

The constructed equation was visualized using the ‘rms

package’ in R software to generate a nomogram prediction model

for differentiating NTM-LD and PTB-LD (Figure 3). Based on the

patient’s clinical manifestations, including cough with sputum,

hemoptysis, thin-walled cavities, centrilobular nodules,

bronchiectasis, Diabetes mellitus, and autoimmune diseases,

values are assigned to each variable. By creating vertical lines on

the nomogram, corresponding scores can be identified on the

scoring axis for each parameter. These scores are summed to

calculate the total score. Finally, the total score is projected onto

the risk axis to estimate the probability of NTM-LD occurrence for

that patient. For example, a patient presenting with cough and

sputum receives a score of 75, while the absence of this symptom

yields 0 points. Patients with hemoptysis are assigned 80 points,

whereas those without receive 0. The presence of thin-walled

cavities adds 40 points, and their absence contributes 0.

Centrilobular nodules are scored 100 if present and 0 if absent.

Bronchiectasis corresponds to 75 points when present and 0 when
Frontiers in Cellular and Infection Microbiology 06
absent. Notably, patients without diabetes are assigned 50 points,

while those with diabetes receive 0. Conversely, patients with

autoimmune diseases are scored 80 points, and those without are

assigned 0. These individual scores are summed to calculate the

total score. The total score is then projected onto the risk axis of

the nomogram to determine the patient’s probability of developing

NTM-LD. To facilitate clinical use, we further developed a

web-based score calculator based on this nomogram prediction

model (accessible at https://dynamic-diagram.shinyapps.io/

DynNomapp/), Figure 4.

The validation results demonstrated consistent diagnostic

performance of the nomogram across both the training and

internal validation cohorts. In the training cohort, the model

achieved an area under the receiver operating characteristic

(ROC) curve (AUC) of 0.923 (95% confidence interval [CI]:

0.898-0.948), with a specificity of 85.5% and sensitivity of 82.5%

(Figure 5A), indicating superior differentiation capability between

NTM-LD and PTB-LD. Furthermore, calibration curve analysis

revealed close agreement between predicted probabilities and

observed outcomes confirming excellent calibration accuracy

(Figure 5C). To further evaluate the model’s generalizability, an

internal validation cohort comprising 100 NTM-LD patients and

100 PTB-LD patients was included. The model demonstrated

correct diagnosis rates of 88.0% (88/100) for NTM-LD and 75.0%

(75/100) for PTB-LD, achieving an overall diagnostic accuracy of

81.5% (163/200). In the validation cohort, the AUC reached 0.892

(95% CI: 0.792-0.900) with specificity of 78% and sensitivity of 85%

(Figure 5B), indicating clinically generalizable discriminative

performance. The Hosmer-Leme show test revealed no significant

deviation between predicted and observed values (c²=6.32,
P=0.176), while the calibration curve exhibited 94.7%

concordance with the ideal curve (Figure 5D), further validating

calibration robustness. To quantify clinical utility, decision curve
TABLE 3 Multivariate logistic regression analysis of factors influencing the classification between NTM-LD and PTB-LD.

Indicators b SE Waldc2 P OR
95%CI

Low High

Age -0.797 0.434 3.372 0.066 0.451 0.193 1.055

Cough with sputum 1.822 0.371 24.177 <0.001** 6.185 2.992 12.787

Hemoptysis 1.902 0.388 24.054 <0.001** 6.702 3.134 14.334

Thin-walled cavities 0.939 0.307 9.323 0.002** 2.556 1.400 4.670

Centrilobular nodules 2.409 0.329 53.660 <0.001** 11.122 5.838 21.198

Bronchiectasis 1.819 0.340 28.604 <0.001** 6.165 3.165 12.005

Multi-lobar and multi-segmental involvement 0.080 0.371 0.047 0.829 1.084 0.524 2.242

Exudative effusion 0.110 0.332 0.109 0.741 1.116 0.582 2.141

Diabetes mellitus -1.170 0.384 9.287 0.002** 0.310 0.146 0.659

Autoimmune diseases 1.985 0.623 10.149 0.001** 7.280 2.146 24.694

Chronic obstructive pulmonary disease 0.084 0.410 0.042 0.837 1.088 0.487 2.431

Hematologic diseases -0.436 0.345 1.600 0.206 0.646 0.329 1.271
“**” indicates P < 0.05.
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FIGURE 2

Forest Plot of Logistic Regression Analysis.
FIGURE 3

Nomogram prediction model for differentiating NTM-LD from PTB-LD.
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analysis (DCA) was employed to assess model net benefit. Across

both training and validation sets, the model demonstrated

significant clinical net benefit compared to “all- NTM-LD” or

“all-PTB-LD” strategies when threshold probabilities across a

wide range (Figures 5E, F), suggesting its applicability across

diverse clinical decision-making scenarios.
Discussion

Differentiating NTM-LD from PTB-LD remains a significant

diagnostic challenge in respiratory medicine. This study developed

a high-performance predict ive model by integrat ing

multidimensional indicators, including clinical characteristics,

radiological patterns, and comorbidities. Furthermore, we

designed an interactive web-based calculator to visualize the

model’s outputs, providing a novel tool for early clinical

discrimination between these two entities.

This study revealed distinct clinical profiles between NTM-LD

and PTB-LD. Specifically, patients with NTM-LD demonstrated a

significantly higher prevalence of chronic cough with sputum

production (OR=6.185, P<0.001) and hemoptysis (OR=6.702,

P<0.001), which aligns with the airway injury patterns in NTM-LD

reported by Youssefnia A.et al (Youssefnia et al., 2022). The virulence

of NTM is relatively lower compared toMycobacterium tuberculosis,

yet their enhanced adhesive capacity enables persistent colonization

of airway mucosa. Characterized by unique lipid-rich cell wall

components that resist phagocytic clearance and impede their

elimination, NTM induce chronic airway inflammation through

sustained antigenic stimulation. This pathological process promotes
Frontiers in Cellular and Infection Microbiology 08
excessive mucus secretion and consequently exacerbates clinical

manifestations of cough with sputum production (Schiff et al.,

2019). Furthermore, NTM-triggered inflammatory responses

disrupt vascular integrity in bronchial walls, resulting in enhanced

vascular permeability. Concurrently, airway smooth muscle

hyperreactivity and bronchoconstriction elevate intraluminal

pressure, which synergistically exacerbates microvascular damage

and significantly increases the risk of hemoptysis (Zhang et al.,

2019). Moreover, our study identified several distinct imaging

biomarkers-bronchiectasis, centrilobular nodules, and thin-walled

cavities-that collectively reflect the unique pathophysiological

features of nontuberculous mycobacterial lung disease (NTM-LD).

The strong association between bronchiectasis and NTM-LD

(OR=28.604, P<0.001) further supports the predominantly airway-

centered, chronic inflammatory nature of this condition.

Bronchiectasis is both a predisposing factor and a consequence of

NTM infection (Retuerto-Guerrero et al., 2024). Structural airway

damage facilitates persistent bacterial colonization, while chronic

inflammation from NTM infection exacerbates mucociliary

dysfunction and smooth muscle hyperreactivity, leading to

progressive airway dilation—a self-perpetuating cycle known as the

“vicious cycle hypothesis” in chronic respiratory diseases (Dartois

and Dick, 2024). Notably, our findings align with those of Chu et al

(Chu et al., 2015), highlighting its utility as a distinguishing imaging

feature.We also observed a significantly higher prevalence of

centrilobular nodules in NTM-LD (OR=11.122, P<0.001),

consistent with findings by Iakobachvili et al (Iakobachvili et al.,

2022). These nodules arise from bronchial spread of infection along

the airway tree and represent early inflammatory foci within terminal

bronchioles, typically appearing as “tree-in-bud” opacities on high-
FIGURE 4

Web-based calculator for the differential model of NTM-LD and PTB-LD.
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resolution computed tomography (HRCT). This pattern is widely

recognized as a hallmark of NTM-LD, reflecting pathogen

colonization of the airway epithelium and localized granulomatous

inflammation without extensive tissue necrosis. Another key imaging

feature in NTM-LD was the presence of thin-walled cavities

(OR=2.556, P=0.002), which are believed to develop secondarily to
Frontiers in Cellular and Infection Microbiology 09
long-standing bronchiectasis and parenchymal remodeling. These

cavities are typically small, multiple, and predominantly located in

the upper lobes, especially in the subclavicular and middle lobe

regions. This observation is strongly supported by prior HRCT

studies demonstrating that thin—walled or even “bubbly”—

appearing cavities are more common in NTM-LD than in PTB-LD
FIGURE 5

Performance validation of the differential diagnostic model for NTM-LD and PTB-LD. (A, B) Training/validation cohort ROC curves; (C, D) Training/
validation cohort calibration curves; (E, F) Training/validation cohort decision curve analyses.
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(Evans et al., 1996). Comparative analysis of underlying

comorbidities revealed distinct pathophysiological predispositions:

the NTM-LD cohort exhibited heightened susceptibility to

autoimmune disorders (OR=7.280, P=0.001), whereas diabetes

mellitus predominated in PTB-LD patients (OR=0.310, P=0.002), a

dichotomy reflecting pathogen-specific modulation of immune

microenvironmental susceptibility. The indolent and chronic

progression of NTM infection drives sustained low-grade activation

of the host immune system, disrupting the homeostatic immune

regulatory network. This persistent immunostimulation

compromises immune cell-mediated recognition and tolerance

mechanisms toward self-antigens, thereby triggering aberrant

autoimmune responses against host tissues and elevating

susceptibility to autoimmune disorders (Liu et al., 2023). The

elevated prevalence of diabetes mellitus in PTB-LD patients is

mechanistically attributed to the hyperglycemic microenvironment

serving as a nutritional reservoir that facilitates Mycobacterium

tuberculosis proliferation, survival, and dissemination. Moreover,

hyperglycemia affects cell metabolism, inhibits the functions of

immune cells such as macrophages, reduces the body’s phagocytic

and killing ability against Mycobacterium tuberculosis, and increases

the risk of infection (Kamei et al., 2023).

The predictive model constructed based on the aforementioned

key differences demonstrated favorable diagnostic performance,

with a training cohort AUC of 0.923 (95% CI: 0.898-0.948),

validation cohort AUC of 0.892 (95% CI: 0.849-0.936), and

overall accuracy of 81.5%. It significantly outperforms existing

models: Liu et al’s (Liu et al., 2023). chest X-ray DenseNet model

(internal/external AUC: 0.86 ± 0.006/0.64 ± 0.017), Hu et al.’s (Hu

et al., 2025) radiomics model (AUC 90.2%), and CT-only models—

all limited by single-modality reliance, neglect of clinical context

(e.g., symptoms like cough with sputum/hemoptysis and

comorbidities), inability to capture clinical heterogeneity, and

smaller sample sizes. By integrating clinical variables with

imaging features, this model overcomes single-modality

limitations, achieving superior discriminative power (higher AUC

than comparative models), robust calibration (94.7% alignment of

calibration curve with ideal reference; Hosmer-Lemeshow test,

P=0.176), and confirming clinical net benefit via decision curve

analysis-outperforming “treat-alls” or “no-intervention” strategies

across threshold probabilities. It provides a reliable tool for precise

differentiation between NTM-LD and PTB-LD, aiding in reducing

misdiagnoses and optimizing patient management.

Furthermore, the transparent logistic regression-based algorithm

employed in our model offers better interpretability for clinical

practitioners compared to complex deep learning architectures,

facilitating its potential integration into routine clinical decision-

making processes. The innovatively developed web-based calculator

(accessible at https://dynamic-diagram.shinyapps.io/DynNomapp/)

facilitates clinical translation of our model by enabling physicians

to obtain real-time personalized risk assessments through the input

of eight binary variables. This tool supports clinical decision-

making by stratifying patients according to their probability of

NTM-LD. Individuals predicted as high-risk should avoid

unnecessary anti-tuberculosis therapy (ATT) and instead undergo
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timely NTM-specific diagnostic testing—such as sputum culture for

nontuberculous mycobacteria, species identification, NTM specific

PCR, or metagenomic next-generation sequencing (mNGS)—to

confirm the diagnosis and guide appropriate management. In

contrast, patients classified as low-risk may be considered for

early initiation of ATT if clinical and radiological features suggest

pulmonary tuberculosis, provided that microbiological workup is

concurrently pursued to confirm or exclude PTB-LD. The current

version of the application represents a proof-of-concept

implementation, designed to demonstrate the feasibility of

translating our predictive model into a practical clinical decision-

support tool. However, we acknowledge that formal usability testing

and integration into routine clinical workflows have not yet been

conducted. Future studies should evaluate the tool’s acceptability,

efficiency, and impact on clinical decision-making through

structured user experience assessments—such as System Usability

Scale (SUS) surveys or cognitive task analyses—among frontline

healthcare providers. Furthermore, pilot implementation in

outpatient respiratory or infectious disease clinics could provide

valuable insights into its compatibility with existing electronic

health record (EHR) systems and standard diagnostic pathways.

This study has several limitations. First, the single-center,

retrospective design may introduce selection bias and limit the

generalizability of the findings to broader populations. Second, the

relatively modest sample size (n=600) constrains statistical power

for comprehensive subgroup analyses, particularly for rare clinical

phenotypes. Furthermore, although multiple statistical and

validation techniques were employed to minimize overfitting—

such as internal bootstrapping and stepwise variable selection—

some degree of model overfitting may still persist. To address these

limitations, we plan to conduct a prospective, multi-center cohort

study to externally validate the model’s performance across diverse

healthcare settings and patient populations. Independent validation

in larger, geographically representative cohorts will be critical to

confirm its robustness, transportability, and clinical utility.
Conclusion

The developed NTM-LD/PTB-LD differentiation model

demonstrates significant clinical utility for optimizing diagnostic

workflows. The implementation of its web-based tool (accessible at

https://dynamic-diagram.shinyapps.io/DynNomapp/) could

transform current diagnostic paradigms by reducing reliance on

invasive procedures, while providing real-time decision-making

support for precision antimicrobial therapy. Future efforts will

focus on clinical validation and global dissemination of this tool

to enhance tuberculosis management in resource-variable settings.
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