
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Miren Altuna,
Fundacion CITA Alzheimer, Spain

REVIEWED BY

Arun Kumar Jaiswal,
Devi Ahilya Vishwavidyalaya, India
Jian Huang,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Dongdong Li

jiangxili1219@163.com

RECEIVED 16 July 2025

REVISED 04 November 2025
ACCEPTED 06 November 2025

PUBLISHED 25 November 2025

CITATION

Wu S, Huang Y, Luo L, Deng J, Wang Y, Ye F
and Li D (2025) Latent class analysis and
machine learning for clinical subtyping
prediction and differentiation in suspected
neurosyphilis patients.
Front. Cell. Infect. Microbiol. 15:1665468.
doi: 10.3389/fcimb.2025.1665468

COPYRIGHT

© 2025 Wu, Huang, Luo, Deng, Wang, Ye and
Li. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 25 November 2025

DOI 10.3389/fcimb.2025.1665468
Latent class analysis and
machine learning for clinical
subtyping prediction and
differentiation in suspected
neurosyphilis patients
Sirui Wu, Yike Huang, Lan Luo, Jielun Deng, Yuanfang Wang,
Fei Ye and Dongdong Li*

Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
Objective: Neurosyphilis presents significant diagnostic and therapeutic

challenges due to its heterogeneous clinical manifestations, absence of a gold-

standard diagnostic criterion, and variable treatment responses. This study aims

to identify clinically homogeneous subtypes of suspected neurosyphilis patients

and develop a machine learning-based subtyping model to support clinical

decision-making.

Methods: Data from 451 suspected neurosyphilis patients were retrospectively

collected from West China Hospital of Sichuan University. Patients were divided

into a model development cohort (n=369) and an external validation cohort

(n=82) by time. Latent class analysis (LCA) was performed to identify subtypes,

with the optimal class number determined by model fit indicators. Key predictive

variables were selected using LASSO regression and Boruta algorithm. Six

machine learning algorithms were employed to build LCA subtype prediction

models. Feature importance was interpreted via SHAP analysis, and model

generalizability was assessed using the external cohort.

Results: LCA classified patients into three homogeneous subtypes: “typical

neurosyphilis” (43.7%; predominantly male, high serum TRUST titer, significant

CSF abnormalities, and robust intrathecal immune activation), “atypical

neurosyphilis” (17.9%; absence of elevated CSF protein, mild intrathecal IgG

synthesis), “non-neurosyphilis” (38.5%; normal CSF parameters). Six variables

(age, serum TRUST titer, CSF protein, CSF nucleated cells, IgG index, CSF TTs)

were used for model construction. The XGBoost model demonstrated optimal

performance, achieving an AUC of 0.966 (accuracy: 87.3%) on the internal test

set and 0.970 (accuracy: 91.5%) on the external validation set. Key predictors

included CSF nucleated cells, CSF TTs, and IgG index.

Conclusion: This study defines three clinically meaningful latent subtypes of

neurosyphilis. The developed XGBoost model effectively discriminates between

these subtypes of neurosyphilis and non-neurosyphilis in clinical settings,

facilitating timely diagnosis and treatment.
KEYWORDS

neurosyphilis, latent class analysis, subtyping, machine learning, cerebrospinal
fluid biomarkers
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1 Introduction

Neurosyphilis, a severe complication arising from syphilis due

to the invasion of the central nervous system (CNS) by Treponema

pallidum, can lead to diverse neuropsychiatric manifestations and

irreversible neurological damage (Ropper, 2019). The World Health

Organization estimates approximately 8 million new adult syphilis

cases globally in 2022 (Rowley et al., 2019), with a notable

resurgence observed post-COVID-19 pandemic (Soriano et al.,

2023). Although systematic surveillance data on neurosyphilis

incidence remain limited, the rising diagnostic rates of syphilis

suggest a parallel increase in neurosyphilis burden, posing

substantial public health challenges (Singh, 2020).

Treponema pallidum can invade the CNS in the early stage of

primary infection, progressing to asymptomatic or symptomatic

neurosyphilis, with the latter categorized into syphilitic meningitis,

meningovascular syphilis, general paresis, and tabes dorsalis based

on the neuroanatomical involvement (Ropper, 2019). The diagnosis

of neurosyphilis, however, remains impeded by nonspecific clinical

presentations and the absence of gold-standard diagnostic criteria,

while these conventional classifications exhibit limitations in

informing therapeutic decisions (Chen et al., 2025). Current

diagnostic reliance on serological tests, cerebrospinal fluid (CSF)

analysis, and epidemiological data often fails to capture the disease’s

complex pathophysiology and individualized progression patterns.

While intravenous aqueous penicillin G (18–24 million units daily

for 10–14 days) remains the recommended therapy, treatment

responses show marked heterogeneity (Workowski et al., 2021).

Early intervention may mitigate cognitive decline (Davis et al.,

2021), yet evidence demonstrates inverse correlations between

baseline CSF protein levels and subsequent cognitive

improvement or CSF-VDRL titer reduction (Roberts and Emsley,

1995). Notably, patients with CSF pleocytosis or parenchymal

forms (general paresis, tabes dorsalis) exhibit poorer cognitive

recovery post-treatment compared to those without, underscoring

the prognostic significance of subtypic variability (Davis et al., 2021;

Chen et al., 2025).

The precision subtyping may help address these diagnostic and

therapeutic challenges. While genotyping of Treponema pallidum has

been established and correlates with neurosyphilis susceptibility,

systematic characterization of clinically meaningful host-derived

subtypes remains lacking (Marra et al., 2010). Latent class analysis

(LCA) offers a robust solution for identifying subgroups with shared

characteristics, which has been widely applied inmental health research

(Kongsted and Nielsen, 2017) and is increasingly employed in

infectious disease studies (Doolan et al., 2021; Veličko et al., 2022).

Concurrently, machine learning (ML) has demonstrated remarkable

utility in data-intensive clinical microbiology applications (Peiffer-

Smadja et al., 2020). Previous studies have developed predictive

models for neurosyphilis diagnosis. Zou et al. collected clinical

characteristics and laboratory data to train an eXtreme Gradient

Boosting (XGBoost) model for predicting the diagnostic outcomes of

neurosyphilis, demonstrating its good and generalizable performance
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(Zou et al., 2023). Li et al. developed a novel Random Forest (RF)-based

classifier utilizing proteomic data to identify potential biomarkers for

classifying neurosyphilis patients (Li et al., 2024). Building upon these

advances, this study seeks to further refine neurosyphilis classification

through a combined LCA and ML approach.

This study aims to: (1) identify clinically distinct neurosyphilis

subtypes through LCA, (2) characterize inter-subtype biomarker

differences, and (3) develop interpretable ML models using these

subtypes as outcome categories to enhance diagnostic precision and

subtypic classification. This subtype-to-diagnostic pipeline holds

the potential to enable precise management of neurosyphilis

grounded in subtype-specific mechanistic insights.
2 Materials and methods

2.1 Participants and study design

This retrospective study enrolled 451 patients with suspected

neurosyphilis at West China Hospital, Sichuan University, from

October 2019 to September 2024. Suspected neurosyphilis was

defined as either: (1) seropositivity for Treponema pallidum

particle agglutination assay (TPPA) with concomitant CNS

symptoms, or (2) serum TPPA positivity with serum toluidine

red unheated serum test (TRUST) titer ≥1:16 without CNS

symptoms. CNS manifestations included hemiplegia, aphasia,

seizures, lower limb weakness, muscle atrophy, papilledema, neck

stiffness, diplopia, ptosis, ataxia, amnesia, impaired judgment/

memory, cognitive dysfunction, mood alterations, and personality

changes. Patients living with HIV were excluded.

The study population was divided into two cohorts by time:

Cohort 1 (n=369, October 2019-December 2023) for LCA model

development and ML training, and Cohort 2 (n=82, January-

September 2024) for LCA model development and ML external

validation. The study protocol received ethical approval from the

Institutional Review Board of West China Hospital.
2.2 Data acquisition and preprocessing

Demographic, clinical, and laboratory data were extracted from

electronic medical records. Variables with ≥40% missing values

were excluded, retaining 18 variables for initial analysis. Highly

correlated variables (correlation coefficient >0.65) were eliminated

through correlation analysis (Supplementary Figure S1).

Continuous variables for LCA were dichotomized using

diagnostic thresholds derived from clinical standards, receiver

operating characteristic (ROC) analysis, or literature evidence (see

Appendix). The variable selection for ML incorporated least

absolute shrinkage and selection operator (LASSO) regression,

Boruta algorithm, statistical significance testing, correlation

analysis, and clinical relevance assessment (Supplementary Figure

S2, Supplementary Figure S3, Supplementary Table S2).
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2.3 Latent class analysis

LCA was performed using the R poLCA package (Drew A. Linzer,

2011) with seven key variables (See supplementary materials for

threshold derivations): sex (male=1), serum TRUST titer (≥1:16 = 1),

CSF treponemal tests (TTs) (reactive=1), CSF non-treponemal tests

(NTTs) (reactive=1), CSF protein (≥0.5g/L=1), albumin quotient

(≥0.007138 = 1), and IgG synthesis rate (≥5.81 = 1). Models with 2–

5 latent classes were evaluated using Akaike information criterion

(AIC), Bayesian information criterion (BIC), likelihood, entropy, Lo-

Mendell-Rubin (LMR) test, and bootstrap likelihood ratio test (BLRT),

with optimal class number determined by statistical fit and

clinical interpretability.
2.4 Machine learning

Six ML algorithms - RF, XGBoost, Gradient Boosting Decision

Tree (GBDT), Support Vector Machines (SVM), Logistic Regression

(LR), and Artificial Neural Network (ANN) - were evaluated for

subtype classification. Cohort 1 was randomly split into a training set

(70%) and a test set (30%). Model development employed 10-fold

cross-validation with grid search hyperparameter tuning. Performance

metrics included area under the ROC curve (AUC), accuracy, kappa,

sensitivity, specificity, positive predictive values (PPV), negative

predictive values (NPV), calibration curves, and decision curve

analysis. The optimal algorithm underwent SHapley Additive

exPlanations (SHAP) analysis for feature importance interpretation

using the R fastshap (Greenwell B, 2024) and shapviz (Mayer M, 2025)

packages, with external validation performed on cohort 2.
2.5 Statistical analysis

Statistical analyses utilized R version 4.4.1 (R Core Team, 2024)

and IBM SPSS Statistics for Windows, version 24.0 (IBMCorp.,

Armonk, N.Y., USA). Normally distributed continuous variables

were reported as mean ± SD, non-normal variables as median

(lower quartile, upper quartile), and categorical variables as

frequencies (proportion%). The t-tests (normal distribution),

Kruskal-Wallis tests (non-normal distribution), or chi-square tests

(categorical variables) for group comparisons were employed; the

Fisher’s exact test for correlation analysis was employed, with

statistical significance set at P < 0.05.
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3 Results

3.1 Latent class analysis of suspected
neurosyphilis patients

Latent class analysis, incorporating seven key variables (sex,

serum TRUST titer, CSF TTs, CSF NTTs, CSF protein, albumin

quotient, and IgG synthesis rate), identified optimal subtypic

clustering among suspected neurosyphilis patients. Comparative

evaluation of models with two–five latent classes (Table 1) excluded

the five-class solution due to one subgroup comprising <10% (8.9%)

of the population. The three-class model demonstrated superior

statistical properties, evidenced by lower AIC and BIC values,

adequate entropy, clinically plausible class distribution, and

strong theoretical interpretability.

The final classification comprised three distinct classes: Class 1

(43.7%) represented typical neurosyphilis characterized by male

predominance, high serum TRUST titers (≥ 1:16), marked CSF

abnormalities, blood-brain barrier (BBB) disruption, and a

significant increase in intrathecal IgG synthesis. Class 2 (17.9%)

comprised atypical neurosyphilis cases showing normal CSF

protein levels but demonstrable mild intrathecal IgG production.

Class 3 (38.5%) included non-neurosyphilis patients with negative

CSF treponemal antibodies and normal CSF indicators. Conditional

probability distributions revealed significant differentiation across

all seven input variables, with particularly strong discrimination

observed in CSF protein (Class 1: 94.28% probability of positivity vs

Class 3: 25.57%) and IgG synthesis rate (Class 2: 58.14% vs Class 3:

16.87%) (Figure 1).
3.2 Clinical characteristics classified by
latent class

External validation of the latent class classification was

performed by assessing differences in clinical indicators not

included in the original LCA. As presented in Table 2, no

statistically significant differences were observed in sex

distribution or serum IgG levels across the three classes. However,

indicators directly associated with neurosyphilis diagnosis (serum

TRUST titers and CSF NTTs) and indicators reflecting intrathecal

humoral immune activation and BBB impairment (CSF albumin,

CSF IgG, IgG quotient, albumin quotient, IgG index, and IgG

synthesis rate) exhibited significant interclass variations
TABLE 1 Model fit statistics for latent class models by class number.

Classes AIC BIC Likelihood Entropy LMR test BLRT

2 3632.655 3694.327 -1801.328 0.815 <0.001 0.10

3 3547.981 3642.544 -1750.990 0.849 <0.001 0.03

4 3477.519 3604.975 -1707.760 0.829 <0.001 0.62

5 3483.473 3643.820 -1702.736 0.841 0.009 0.24
AIC, Akaike information criterion; BIC, Bayesian information criterion; LMR, Lo-Mendell-Rubin; BLRT, bootstrapped likelihood ratio test.
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(P<0.001). Besides, CSF TTs, CSF chloride, and clinical diagnosis

demonstrated no significant divergence between Class 1 (typical

neurosyphilis) and Class 2 (atypical neurosyphilis); CSF protein

concentrations and nucleated cell counts did not differ significantly

between Class 2 and Class 3 (non-neurosyphilis). These findings

validate the clinical relevance of the LCA-derived subtypes.

To investigate the association between LCA subtypes and

traditional neurosyphilis classification, we conducted a correlation

analysis on 35 neurosyphilis patients with confirmed traditional

classification diagnoses. Among them, 28 typical neurosyphilis

cases included 4 with syphilitic meningitis, 23 with general

paresis, and 1 with tabes dorsalis; The 7 atypical neurosyphilis

cases comprised 6 with general paresis and 1 with tabes dorsalis.

Correlation analysis revealed no significant association between the

two classifications (P > 0.05).
3.3 Construction of ML models

For machine learning model construction, six key predictive

variables were selected: age, serum TRUST titer, CSF protein, CSF

nucleated cells, IgG index, and CSF TTs. Multiple machine learning

algorithms—including RF, XGBoost, GBDT, SVM, LR, and ANN—

were systematically evaluated (Table 3). The XGBoost model

demonstrated superior performance, achieving a high AUC

(0.966), excellent discriminatory power, and substantial accuracy

(0.873), with consistent performance between training and test sets.

In contrast, other models exhibited variable test set performance:
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while RF attained the highest AUC (0.982), it showed lower

accuracy (0.822); GBDT maintained comparable accuracy to

XGBoost (0.870) but with a marginally lower AUC (0.947);

whereas SVM, LR, and ANN displayed moderate performance

without distinct advantages.
3.4 Evaluation of the XGBoost model

The constructed XGBoost model demonstrated robust

discriminatory capacity across all three subtypes. In the training

set, AUC values for Class 1 (typical neurosyphilis), Class 2 (atypical

neurosyphilis), and Class 3 (non-neurosyphilis) were 0.994, 0.978,

and 0.980, respectively (Figure 2A). In the internal test set, the

model maintained high discriminative performance with AUCs of

0.965 (Class 1), 0.983 (Class 2), and 0.949 (Class 3) (Figure 2B).

Calibration curves derived from the test set indicated excellent

agreement between predicted probabilities and observed outcomes

(Figure 2C). Decision curve analysis further confirmed substantial

net benefit across different threshold probabilities, supporting the

model’s utility for clinical decision-making (Figure 2D).

Further model interrogation was conducted using SHAP

to elucidate the XGBoost decision framework. The feature

importance analysis identified CSF protein as the predominant

predictor, followed by CSF TTs, IgG index, serum TRUST titer,

CSF nucleated cells, and age (Figure 3A). Subtype-specific

contributions revealed that CSF protein substantially influenced

the class 1 and class 2; CSF TTs, IgG index, and serum TRUST titer
FIGURE 1

Distribution of potential categories of patients with suspected neurosyphilis. CSF, cerebrospinal fluid; TTs, treponemal tests; NTTs, non-treponemal
tests; TRUST, toluidine red unheated serum test.
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contributed significantly to class 2 and class 3. Figure 3B presents

representative force plots visualizing individualized prediction

mechanisms across all three subtypes.

Cohort 2, utilized for external validation, demonstrated

comparable distributions to the model development cohort 1
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across demographic characteristics, syphilis serological antibodies,

clinical diagnosis, and LCA classifications, with no statistically

significant differences observed (P>0.05; Supplementary Table S3).

The XGBoost model achieved robust performance metrics on this

independent validation set. The AUC, accuracy, sensitivity,
ABLE 2 Demographic, clinical, and laboratory features of subjects stratified by latent classes.

Variables Class 1 Class 2 Class 3 P

N 192 76 183

Age (y) 51.50 (42.00, 58.00) 47.50 (36.25, 54.00) 51.00 (36.00, 41.30) 0.024a

Gender 0.509

Male 131 (68.2%) 49 (64.5%) 131 (71.6%)

Female 61 (31.8%) 27 (35.5%) 52 (28.4%)

Serum TRUST titer <0.001a,b,c

≥1:16 130 (67.7%) 38 (50.0%) 17 (9.3%)

<1:16 62 (32.3%) 38 (50.0%) 166 (90.7%)

CSF NTTs <0.001a,b,c

Reactive 149 (77.6%) 42 (55.3%) 2 (1.1%)

Unreactive 43 (22.4%) 34 (44.7%) 181 (98.9%)

CSF TTs <0.001b,c

Reactive 183 (95.3%) 76 (100.0%) 48 (26.2%)

Unreactive 9 (4.7%) 0 (0.0%) 135 (73.8%)

Serum albumin (g/L) 38.10 (35.80, 40.38) 39.70 (36.30, 43.45) 38.60 (36.00, 41.30) 0.009a

Serum IgG (g/L) 11.25 (9.60, 13.98) 11.20 (9.38, 13.08) 11.20 (10.20, 13.30) 0.474

CSF glucose (mmol/L) 3.39 (2.99, 3.83) 3.40 (3.21, 3.88) 3.61 (3.22, 4.01) 0.004b

CSF chlorine (mmol/L) 126.00 (124.00, 128.00) 127.00 (125.00, 129.00) 125.00 (123.00, 127.00) <0.001b,c

CSF protein (g/L) 0.79 (0.63, 1.06) 0.37 (0.32, 0.42) 0.39 (0.30, 0.49) <0.001a,b

CSF nucleated cells (×10-6/L) 6.00 (1.00, 26.00) 0.00 (0.00, 1.75) 0.00 (0.00, 1.00) <0.001a,b

CSF albumin (g/L) 0.35 (0.25, 0.49) 0.19 (0.15, 0.22) 0.21 (0.17, 0.30) <0.001a,b,c

CSF IgG (g/L) 0.19 (0.10, 0.36) 0.06 (0.03, 0.10) 0.03 (0.02, 0.05) <0.001a,b,c

Albumin quotient
(×10-3)

9.21 (6.65, 12.55) 4.65 (3.73, 5.86) 5.57 (4.30, 7.70) <0.001a,b,c

IgG quotient (×10-3) 16.71 (10.80, 30.19) 5.38 (3.22, 9.14) 3.01 (2.15, 4.37) <0.001a,b,c

IgG index 1.82 (1.01, 2.80) 1.16 (0.68, 1.85) 0.52 (0.46, 0.61) <0.001a,b,c

IgG synthesis rate 62.94 (30.73, 141.54) 13.21 (1.20, 32.28) 0.00 (0.00, 2.20) <0.001a,b,c

Clinical diagnosis <0.001b,c

Neurosyphilis 153 (79.7%) 53 (69.7%) 35 (19.1%)

Non-neurosyphilis 39 (20.3%) 23 (30.3%) 148 (80.9%)
here is a significant difference between each pair (P < 0.05):
lass 1 vs. Class 2.

Class 1 vs. Class 3.
lass 2 vs. Class 3.
lbumin quotient is used to assess BBB permeability, reflecting conditions such as CNS infections; IgG quotient provides a rough indication of intrathecal IgG concentrations; the IgG index
ecifically determines the presence of intrathecal IgG synthesis in the CNS after excluding BBB effects; the IgG synthesis rate, based on a complex mathematical formula, precisely estimates the
trathecal IgG synthesis fraction.
RUST, toluidine red unheated serum test; CSF, cerebrospinal fluid; TTs, treponemal tests; NTTs, non-treponemal tests; BBB, blood-brain barrier.
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specificity, PPV, and NPV were 0.970, 0.915, 0.933, 0.961, 0.889,

0.951, respectively (Figure 4A). Similarly, in the external validation

set, the model demonstrated good predictive accuracy and clinical

practicality (Figures 4B-D).
4 Discussion

The persistent global burden of syphilis infection underscores

the growing importance of accurately identifying the neuroinvasive

risk (Quilter et al., 2021). Current diagnostic approaches relying on

CSF analysis and serological testing demonstrate limited sensitivity

and specificity, particularly for atypical presentations, while

treatment responses show marked heterogeneity across patients

with different CSF characteristics (Shi M. et al., 2025). This study

addresses this gap through the novel integration of LCA and

ML algorithms.

LCA identified three clinically distinct subtypes among

suspected neurosyphilis patients using seven key variables: typical

neurosyphilis (class 1), atypical neurosyphilis (class 2), and non-

neurosyphilis (class 3), which provides a classification basis for

individualized treatment. Atypical neurosyphilis, comprising 17.9%

of cases, is diagnostically challenging due to its nonspecific

presentation of neuropsychiatric symptoms (e.g., mild cognitive

decline, behavioral abnormalities, headaches), which often results in

misdiagnosis as primary psychiatric or age-related conditions.

These patients exhibit normal CSF protein (<0.5 g/L) and

nucleated cell counts (<5×106/L), with lower serum TRUST titers

(<1:16) and distinct CSF immunological profiles (albumin quotient,
Frontiers in Cellular and Infection Microbiology 06
IgG synthesis rate, IgG index) compared to typical neurosyphilis

(P < 0.05) yet evidence of intrathecal antibody synthesis, suggests a

distinct host-pathogen interaction. Importantly, persistent CSF

protein elevation post-treatment in some patients suggests that

atypical presentations may represent inherent disease variants

rather than treatment artifacts (Dunaway et al., 2020).

Mechanistically, this atypical subtype may be associated with

the immune privilege of the central nervous system, where

pathogens entering the parenchyma may escape systemic

immunological recognition and fail to effectively trigger a strong

local inflammatory response (Enzmann et al., 2018). Another

interpretation is that this may represent a chronic or late-stage

infection, where the initial inflammation has subsided, but the

persistent presence of antigens continues to drive the production

of antibody and the antibiotics concentration in CSF should be

tracked. Unlike typical cases, who exhibit a compromised BBB and

influx of various peripheral immune cells triggering a more intense

inflammatory response, atypical neurosyphilis maintains a

relatively intact BBB (Prinz and Priller, 2017), with intrathecal

immunoglobulin production driven by B cells recruited through

chemokines (Yu et al., 2017). In addition, studies have shown that

the levels of CSF protein and white blood cell count are positively

correlated with the inflammatory markers CXCL13, IL-6, and IL-

10, which suggests that patients with atypical neurosyphilis may not

have a significant or active inflammatory response (Dersch et al.,

2015; Yan et al., 2017).

The analysis indicated that LCA-derived subtypes were not

correlated with traditional classifications. Traditional classifications

require integration of clinical manifestations, imaging
TABLE 3 Summary of performance metrics for the constructed ML models.

Models Cohorts AUC Accuracy Kappa Sensitivity Specificity PPV NPV

Random forest
Training 0.999 0.981 0.969 0.976 0.991 0.972 0.990

Testing 0.966 0.855 0.768 0.845 0.925 0.840 0.930

XGBoost
Training 0.995 0.958 0.933 0.953 0.979 0.949 0.978

Testing 0.966 0.873 0.797 0.862 0.934 0.855 0.935

GBDT
Training 0.995 0.965 0.945 0.967 0.984 0.951 0.982

Testing 0.962 0.882 0.812 0.872 0.941 0.856 0.939

SVM
Training 0.993 0.934 0.894 0.900 0.965 0.931 0.970

Testing 0.950 0.818 0.708 0.779 0.906 0.785 0.908

Logistic
Training 0.965 0.869 0.795 0.872 0.938 0.842 0.931

Testing 0.929 0.827 0.730 0.838 0.915 0.804 0.909

ANN
Training 0.985 0.923 0.876 0.890 0.959 0.912 0.963

Testing 0.937 0.827 0.727 0.818 0.913 0.799 0.909
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; XGBoost, eXtreme Gradient Boosting; GBDT, gradient boosting decision tree; SVM, support vector
machines; ANN, artificial neural network.
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examinations, and laboratory tests, and display the affected sites,

whereas LCA-derived subtypes are based on simple laboratory

indicators required for routine diagnosis, which are more

accessible and affordable, and can be explained by biological-level

mechanisms. Actually, no evidence supports subtype-specific

treatments (Ropper, 2019; Chen et al., 2025). However, patients

with the typical subtype exhibit more pronounced inflammation,

potentially necessitating future validation of combining antibiotics

with anti-inflammatory therapies (such as corticosteroids).

Emerging evidence suggests variations in neuroinvasiveness

among Treponema pallidum genotypes both in rabbit models and

humans (Tantalo et al., 2005; Marra et al., 2010). Future
Frontiers in Cellular and Infection Microbiology 07
investigations should explore correlations between LCA subtypes

and strain genotypes to elucidate the clinical significance of LCA

subtypes and molecular mechanisms underlying neuroinvasion.

For ML model construction, six easily obtainable and

objective laboratory variables (age, serum TRUST titer, CSF

protein, CSF nucleated cells, IgG index, CSF TTs) were selected

to .capture nonlinear biological relationships (Stahlschmidt et al.,

2022). Among them, serum TRUST titer, CSF TTs, and CSF protein

simultaneously serve as variables for determining LCA classification;

additionally, CSF protein and nucleated cells - also identified as key

predictors in Zou et al.’s diagnostic model (the minimum value of

AUC: 0.84) - demonstrated particular importance in our XGBoost
FIGURE 2

Performance of the XGBoost model. (A) ROC curve (training set); (B) ROC curve (test set); (C) Calibration curve (test set); (D) Decision curve (test
set). The “All” curve represents the diagnostic benefit rate of blindly conducting examinations without classification. The “None” curve represents the
diagnostic benefit rate of foregoing all examinations. ROC, receiver operating characteristic; AUC, area under the curve.
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algorithm (Zou et al., 2023). Studies indicate that TPPA and FTA-

ABS exhibit comparable diagnostic sensitivity for neurosyphilis,

allowing institutions to select appropriate CSF TTs based on their

specific circumstances (Marra et al., 2017; Park et al., 2020). Older

age was the independent risk factor for HIV-negative neurosyphilis

patients, though it remains uncertain whether this association stems

from age-related immune system changes or disease courses (Shi

et al., 2016). Furthermore, intrathecal B-cell enrichment and

immunoglobulin production have been observed in neurosyphilis

patients, establishing the IgG index as both a novel diagnostic and

disease progression indicator (Yu et al., 2017). The IgG index is a

computational indicator with low cost, requiring only respective

measurements of albumin and IgG levels in serum and CSF.

As an optimized algorithm based on GBDT, XGBoost serially

trains multiple weak learners, where each tree attempts to correct the

prediction errors of the preceding one, thereby progressively

optimizing the model, and has exhibited excellent predictive

performance in medical applications (Shi J. et al., 2025). Through

evaluation using ROC analysis, calibration curves, and decision
Frontiers in Cellular and Infection Microbiology 08
curves, it was found that the XGBoost model demonstrated

favorable discriminative and calibration capabilities in predicting

neurosyphilis (AUC of 0.966 on the internal test set and 0.970 on

the external validation set). According to the validation set data, the

XGBoost model showed relatively low prediction accuracy and

clinical decision-making benefit for non-neurosyphilis cases, and it

was prone to misclassifying atypical neurosyphilis patients as non-

neurosyphilis patients (attributable to overlapping CSF protein/

nucleated cell count profiles with non-neurosyphilis). However, all

3 misclassified cases had positive CSF TTs despite negative CSF

NTTs, underscoring the critical need to confirm with CSF TTs when

CSF NTTs are negative, given the latter’s known lower sensitivity

(Satyaputra et al., 2021). In clinical practice, the usefulness of

predictive models depends not only on their accuracy but also on

their interpretability (Lancashire et al., 2025). SHAP analysis revealed

CSF protein and CSF TTs as top predictors consistent with findings

from relevant studies. Proteomics research supports the presence of

characteristic inflammatory protein markers in the CSF or brain

tissue of patients with neurosyphilis (Li et al., 2024; Zhang et al.,
FIGURE 3

SHAP interpretation of the XGBoost model. (A) Sankey diagram of feature importance. The numerical values in parentheses represent SHAP values,
and the thickness of the lines indicates the magnitude of each feature’s contribution to the target variable; (B) Force plots of representative sample
features for class 1, class 2, and class 3. Yellow arrows denote support for the diagnosis of the corresponding class, while purple arrows indicate
opposition to the diagnosis of the corresponding class, with the length of the arrows reflecting the magnitude of their contribution to the diagnosis.
CSF, cerebrospinal fluid; TTs, treponemal tests; TRUST, toluidine red unheated serum test.
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2025). Meanwhile, elevated CSF protein levels may indicate disease

progression, the severity of neurosyphilis, and poor prognosis (Chen

et al., 2025). While CSF TTs exhibit limited specificity due to blood-

CSF barrier permeability, high titers (CSF TPPA≥1:320 or ≥1:640)

remain diagnostically valuable (Marra et al., 2017; Park et al., 2020;

Shi M. et al., 2025).

This study has certain limitations. Firstly, as follow-up information

and other relevant data were not included in this study, it is challenging

to establish a clear association between the LCA subtypes and their

long-term clinical prognostic significance. In the future, it is necessary

to track the treatment status, treatment efficacy, and recurrence rate of

patients with different subtypes by prospective studies with long-term

follow-up. Secondly, these models were trained and evaluated based on

data from a single center. It should be noted that our center is a large

tertiary hospital that mainly treats complex and comorbid cases, which
Frontiers in Cellular and Infection Microbiology 09
may introduce population bias. Therefore, population differences

should be carefully considered in future research, and multicenter

validation is needed to enhance generalizability. Thirdly, the external

validation cohort (cohort 2) consisted of patients from the same center

but at different time points, which may further limit the generalizability

of the findings.

In summary, this study establishes a clinically actionable

framework for neurosyphilis diagnosis through the innovative

LCA of routine clinical indicators. Our approach successfully

differentiates neurosyphilis from non-neurosyphilis cases while

further classifying neurosyphilis into two clinically distinct

subtypes - typical and atypical forms. The developed XGBoost-

based clinical decision support system demonstrates robust

performance in subtype identification, enabling precise

management of this diagnostically challenging condition.
FIGURE 4

External dataset validation of the XGBoost model. (A) ROC curve (external validation set); (B) Confusion matrix (external validation set); (C)
Calibration curve (external validation set); (D) Decision curve (external validation set).
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