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Objective: Neurosyphilis presents significant diagnostic and therapeutic
challenges due to its heterogeneous clinical manifestations, absence of a gold-
standard diagnostic criterion, and variable treatment responses. This study aims
to identify clinically homogeneous subtypes of suspected neurosyphilis patients
and develop a machine learning-based subtyping model to support clinical
decision-making.

Methods: Data from 451 suspected neurosyphilis patients were retrospectively
collected from West China Hospital of Sichuan University. Patients were divided
into a model development cohort (n=369) and an external validation cohort
(n=82) by time. Latent class analysis (LCA) was performed to identify subtypes,
with the optimal class number determined by model fit indicators. Key predictive
variables were selected using LASSO regression and Boruta algorithm. Six
machine learning algorithms were employed to build LCA subtype prediction
models. Feature importance was interpreted via SHAP analysis, and model
generalizability was assessed using the external cohort.

Results: LCA classified patients into three homogeneous subtypes: “typical
neurosyphilis” (43.7%; predominantly male, high serum TRUST titer, significant
CSF abnormalities, and robust intrathecal immune activation), "atypical
neurosyphilis” (17.9%; absence of elevated CSF protein, mild intrathecal IgG
synthesis), “non-neurosyphilis” (38.5%; normal CSF parameters). Six variables
(age, serum TRUST titer, CSF protein, CSF nucleated cells, IgG index, CSF TTs)
were used for model construction. The XGBoost model demonstrated optimal
performance, achieving an AUC of 0.966 (accuracy: 87.3%) on the internal test
set and 0.970 (accuracy: 91.5%) on the external validation set. Key predictors
included CSF nucleated cells, CSF TTs, and IgG index.

Conclusion: This study defines three clinically meaningful latent subtypes of
neurosyphilis. The developed XGBoost model effectively discriminates between
these subtypes of neurosyphilis and non-neurosyphilis in clinical settings,
facilitating timely diagnosis and treatment.

neurosyphilis, latent class analysis, subtyping, machine learning, cerebrospinal
fluid biomarkers
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1 Introduction

Neurosyphilis, a severe complication arising from syphilis due
to the invasion of the central nervous system (CNS) by Treponema
pallidum, can lead to diverse neuropsychiatric manifestations and
irreversible neurological damage (Ropper, 2019). The World Health
Organization estimates approximately 8 million new adult syphilis
cases globally in 2022 (Rowley et al, 2019), with a notable
resurgence observed post-COVID-19 pandemic (Soriano et al,
2023). Although systematic surveillance data on neurosyphilis
incidence remain limited, the rising diagnostic rates of syphilis
suggest a parallel increase in neurosyphilis burden, posing
substantial public health challenges (Singh, 2020).

Treponema pallidum can invade the CNS in the early stage of
primary infection, progressing to asymptomatic or symptomatic
neurosyphilis, with the latter categorized into syphilitic meningitis,
meningovascular syphilis, general paresis, and tabes dorsalis based
on the neuroanatomical involvement (Ropper, 2019). The diagnosis
of neurosyphilis, however, remains impeded by nonspecific clinical
presentations and the absence of gold-standard diagnostic criteria,
while these conventional classifications exhibit limitations in
informing therapeutic decisions (Chen et al., 2025). Current
diagnostic reliance on serological tests, cerebrospinal fluid (CSF)
analysis, and epidemiological data often fails to capture the disease’s
complex pathophysiology and individualized progression patterns.
While intravenous aqueous penicillin G (18-24 million units daily
for 10-14 days) remains the recommended therapy, treatment
responses show marked heterogeneity (Workowski et al.,, 2021).
Early intervention may mitigate cognitive decline (Davis et al,
2021), yet evidence demonstrates inverse correlations between
baseline CSF protein levels and subsequent cognitive
improvement or CSF-VDRL titer reduction (Roberts and Emsley,
1995). Notably, patients with CSF pleocytosis or parenchymal
forms (general paresis, tabes dorsalis) exhibit poorer cognitive
recovery post-treatment compared to those without, underscoring
the prognostic significance of subtypic variability (Davis et al., 2021;
Chen et al., 2025).

The precision subtyping may help address these diagnostic and
therapeutic challenges. While genotyping of Treponema pallidum has
been established and correlates with neurosyphilis susceptibility,
systematic characterization of clinically meaningful host-derived
subtypes remains lacking (Marra et al, 2010). Latent class analysis
(LCA) offers a robust solution for identifying subgroups with shared
characteristics, which has been widely applied in mental health research
(Kongsted and Nielsen, 2017) and is increasingly employed in
infectious disease studies (Doolan et al., 2021; Velicko et al, 2022).
Concurrently, machine learning (ML) has demonstrated remarkable
utility in data-intensive clinical microbiology applications (Peiffer-
Smadja et al, 2020). Previous studies have developed predictive
models for neurosyphilis diagnosis. Zou et al. collected clinical
characteristics and laboratory data to train an eXtreme Gradient
Boosting (XGBoost) model for predicting the diagnostic outcomes of
neurosyphilis, demonstrating its good and generalizable performance
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(Zou et al,, 2023). Li et al. developed a novel Random Forest (RF)-based
classifier utilizing proteomic data to identify potential biomarkers for
classifying neurosyphilis patients (Li et al., 2024). Building upon these
advances, this study seeks to further refine neurosyphilis classification
through a combined LCA and ML approach.

This study aims to: (1) identify clinically distinct neurosyphilis
subtypes through LCA, (2) characterize inter-subtype biomarker
difterences, and (3) develop interpretable ML models using these
subtypes as outcome categories to enhance diagnostic precision and
subtypic classification. This subtype-to-diagnostic pipeline holds
the potential to enable precise management of neurosyphilis
grounded in subtype-specific mechanistic insights.

2 Materials and methods
2.1 Participants and study design

This retrospective study enrolled 451 patients with suspected
neurosyphilis at West China Hospital, Sichuan University, from
October 2019 to September 2024. Suspected neurosyphilis was
defined as either: (1) seropositivity for Treponema pallidum
particle agglutination assay (TPPA) with concomitant CNS
symptoms, or (2) serum TPPA positivity with serum toluidine
red unheated serum test (TRUST) titer >1:16 without CNS
symptoms. CNS manifestations included hemiplegia, aphasia,
seizures, lower limb weakness, muscle atrophy, papilledema, neck
stiffness, diplopia, ptosis, ataxia, amnesia, impaired judgment/
memory, cognitive dysfunction, mood alterations, and personality
changes. Patients living with HIV were excluded.

The study population was divided into two cohorts by time:
Cohort 1 (n=369, October 2019-December 2023) for LCA model
development and ML training, and Cohort 2 (n=82, January-
September 2024) for LCA model development and ML external
validation. The study protocol received ethical approval from the
Institutional Review Board of West China Hospital.

2.2 Data acquisition and preprocessing

Demographic, clinical, and laboratory data were extracted from
electronic medical records. Variables with >40% missing values
were excluded, retaining 18 variables for initial analysis. Highly
correlated variables (correlation coefficient >0.65) were eliminated
through correlation analysis (Supplementary Figure S1).
Continuous variables for LCA were dichotomized using
diagnostic thresholds derived from clinical standards, receiver
operating characteristic (ROC) analysis, or literature evidence (see
Appendix). The variable selection for ML incorporated least
absolute shrinkage and selection operator (LASSO) regression,
Boruta algorithm, statistical significance testing, correlation
analysis, and clinical relevance assessment (Supplementary Figure
S2, Supplementary Figure S3, Supplementary Table S2).
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2.3 Latent class analysis

LCA was performed using the R poLCA package (Drew A. Linzer,
2011) with seven key variables (See supplementary materials for
threshold derivations): sex (male=1), serum TRUST titer (>1:16 = 1),
CSF treponemal tests (TTs) (reactive=1), CSF non-treponemal tests
(NTTs) (reactive=1), CSF protein (=0.5g/L=1), albumin quotient
(20.007138 = 1), and IgG synthesis rate (>5.81 = 1). Models with 2-
5 latent classes were evaluated using Akaike information criterion
(AIC), Bayesian information criterion (BIC), likelihood, entropy, Lo-
Mendell-Rubin (LMR) test, and bootstrap likelihood ratio test (BLRT),
with optimal class number determined by statistical fit and
clinical interpretability.

2.4 Machine learning

Six ML algorithms - RF, XGBoost, Gradient Boosting Decision
Tree (GBDT), Support Vector Machines (SVM), Logistic Regression
(LR), and Artificial Neural Network (ANN) - were evaluated for
subtype classification. Cohort 1 was randomly split into a training set
(70%) and a test set (30%). Model development employed 10-fold
cross-validation with grid search hyperparameter tuning. Performance
metrics included area under the ROC curve (AUC), accuracy, kappa,
sensitivity, specificity, positive predictive values (PPV), negative
predictive values (NPV), calibration curves, and decision curve
analysis. The optimal algorithm underwent SHapley Additive
exPlanations (SHAP) analysis for feature importance interpretation
using the R fastshap (Greenwell B, 2024) and shapviz (Mayer M, 2025)
packages, with external validation performed on cohort 2.

2.5 Statistical analysis

Statistical analyses utilized R version 4.4.1 (R Core Team, 2024)
and IBM SPSS Statistics for Windows, version 24.0 (IBMCorp.,
Armonk, N.Y., USA). Normally distributed continuous variables
were reported as mean = SD, non-normal variables as median
(lower quartile, upper quartile), and categorical variables as
frequencies (proportion%). The t-tests (normal distribution),
Kruskal-Wallis tests (non-normal distribution), or chi-square tests
(categorical variables) for group comparisons were employed; the
Fisher’s exact test for correlation analysis was employed, with
statistical significance set at P < 0.05.

TABLE 1 Model fit statistics for latent class models by class number.

10.3389/fcimb.2025.1665468

3 Results

3.1 Latent class analysis of suspected
neurosyphilis patients

Latent class analysis, incorporating seven key variables (sex,
serum TRUST titer, CSF TTs, CSF NTTs, CSF protein, albumin
quotient, and IgG synthesis rate), identified optimal subtypic
clustering among suspected neurosyphilis patients. Comparative
evaluation of models with two-five latent classes (Table 1) excluded
the five-class solution due to one subgroup comprising <10% (8.9%)
of the population. The three-class model demonstrated superior
statistical properties, evidenced by lower AIC and BIC values,
adequate entropy, clinically plausible class distribution, and
strong theoretical interpretability.

The final classification comprised three distinct classes: Class 1
(43.7%) represented typical neurosyphilis characterized by male
predominance, high serum TRUST titers (> 1:16), marked CSF
abnormalities, blood-brain barrier (BBB) disruption, and a
significant increase in intrathecal IgG synthesis. Class 2 (17.9%)
comprised atypical neurosyphilis cases showing normal CSF
protein levels but demonstrable mild intrathecal IgG production.
Class 3 (38.5%) included non-neurosyphilis patients with negative
CSF treponemal antibodies and normal CSF indicators. Conditional
probability distributions revealed significant differentiation across
all seven input variables, with particularly strong discrimination
observed in CSF protein (Class 1: 94.28% probability of positivity vs
Class 3: 25.57%) and IgG synthesis rate (Class 2: 58.14% vs Class 3:
16.87%) (Figure 1).

3.2 Clinical characteristics classified by
latent class

External validation of the latent class classification was
performed by assessing differences in clinical indicators not
included in the original LCA. As presented in Table 2, no
statistically significant differences were observed in sex
distribution or serum IgG levels across the three classes. However,
indicators directly associated with neurosyphilis diagnosis (serum
TRUST titers and CSF NTTs) and indicators reflecting intrathecal
humoral immune activation and BBB impairment (CSF albumin,
CSF IgG, IgG quotient, albumin quotient, IgG index, and IgG
synthesis rate) exhibited significant interclass variations

Classes Likelihood Entropy LMR test

2 3632.655 3694.327 -1801.328 0.815 <0.001 0.10
3 3547.981 3642.544 -1750.990 0.849 <0.001 0.03
4 3477.519 3604.975 -1707.760 0.829 <0.001 0.62
5 3483.473 3643.820 -1702.736 0.841 0.009 024

AIC, Akaike information criterion; BIC, Bayesian information criterion; LMR, Lo-Mendell-Rubin; BLRT, bootstrapped likelihood ratio test.
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Distribution of potential categories of patients with suspected neurosyphilis. CSF, cerebrospinal fluid; TTs, treponemal tests; NTTs, non-treponemal

tests; TRUST, toluidine red unheated serum test.

(P<0.001). Besides, CSF TTs, CSF chloride, and clinical diagnosis
demonstrated no significant divergence between Class 1 (typical
neurosyphilis) and Class 2 (atypical neurosyphilis); CSF protein
concentrations and nucleated cell counts did not differ significantly
between Class 2 and Class 3 (non-neurosyphilis). These findings
validate the clinical relevance of the LCA-derived subtypes.

To investigate the association between LCA subtypes and
traditional neurosyphilis classification, we conducted a correlation
analysis on 35 neurosyphilis patients with confirmed traditional
classification diagnoses. Among them, 28 typical neurosyphilis
cases included 4 with syphilitic meningitis, 23 with general
paresis, and 1 with tabes dorsalis; The 7 atypical neurosyphilis
cases comprised 6 with general paresis and 1 with tabes dorsalis.
Correlation analysis revealed no significant association between the
two classifications (P > 0.05).

3.3 Construction of ML models

For machine learning model construction, six key predictive
variables were selected: age, serum TRUST titer, CSF protein, CSF
nucleated cells, IgG index, and CSF TTs. Multiple machine learning
algorithms—including RF, XGBoost, GBDT, SVM, LR, and ANN—
were systematically evaluated (Table 3). The XGBoost model
demonstrated superior performance, achieving a high AUC
(0.966), excellent discriminatory power, and substantial accuracy
(0.873), with consistent performance between training and test sets.
In contrast, other models exhibited variable test set performance:

Frontiers in Cellular and Infection Microbiology

while RF attained the highest AUC (0.982), it showed lower
accuracy (0.822); GBDT maintained comparable accuracy to
XGBoost (0.870) but with a marginally lower AUC (0.947);
whereas SVM, LR, and ANN displayed moderate performance
without distinct advantages.

3.4 Evaluation of the XGBoost model

The constructed XGBoost model demonstrated robust
discriminatory capacity across all three subtypes. In the training
set, AUC values for Class 1 (typical neurosyphilis), Class 2 (atypical
neurosyphilis), and Class 3 (non-neurosyphilis) were 0.994, 0.978,
and 0.980, respectively (Figure 2A). In the internal test set, the
model maintained high discriminative performance with AUCs of
0.965 (Class 1), 0.983 (Class 2), and 0.949 (Class 3) (Figure 2B).
Calibration curves derived from the test set indicated excellent
agreement between predicted probabilities and observed outcomes
(Figure 2C). Decision curve analysis further confirmed substantial
net benefit across different threshold probabilities, supporting the
model’s utility for clinical decision-making (Figure 2D).

Further model interrogation was conducted using SHAP
to elucidate the XGBoost decision framework. The feature
importance analysis identified CSF protein as the predominant
predictor, followed by CSF TTs, IgG index, serum TRUST titer,
CSF nucleated cells, and age (Figure 3A). Subtype-specific
contributions revealed that CSF protein substantially influenced
the class 1 and class 2; CSF TTs, IgG index, and serum TRUST titer
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TABLE 2 Demographic, clinical, and laboratory features of subjects stratified by latent classes.

Variables Class 1 Class 2 Class 3 P
N 192 76 183
Age (y) 51.50 (42.00, 58.00) 47.50 (36.25, 54.00) 51.00 (36.00, 41.30) 0.024°
Gender 0.509
Male 131 (68.2%) 49 (64.5%) 131 (71.6%)
Female 61 (31.8%) 27 (35.5%) 52 (28.4%)
Serum TRUST titer <0.001+"¢
>1:16 130 (67.7%) 38 (50.0%) 17 (9.3%)
<1:16 62 (32.3%) 38 (50.0%) 166 (90.7%)
CSF NTTs <0.001+"¢
Reactive 149 (77.6%) 42 (55.3%) 2 (1.1%)
Unreactive 43 (22.4%) 34 (44.7%) 181 (98.9%)
CSF TTs <0.001>¢
Reactive 183 (95.3%) 76 (100.0%) 48 (26.2%)
Unreactive 9 (4.7%) 0 (0.0%) 135 (73.8%)
Serum albumin (g/L) 38.10 (35.80, 40.38) 39.70 (36.30, 43.45) 38.60 (36.00, 41.30) 0.009*
Serum IgG (g/L) 11.25 (9.60, 13.98) 11.20 (9.38, 13.08) 11.20 (10.20, 13.30) 0474
CSF glucose (mmol/L) 3.39 (2.99, 3.83) 3.40 (3.21, 3.88) 3.61 (3.22, 4.01) 0.004"
CSF chlorine (mmol/L) 126.00 (124.00, 128.00) 127.00 (125.00, 129.00) 125.00 (123.00, 127.00) <0.001>¢
CSF protein (g/L) 0.79 (0.63, 1.06) 0.37 (0.32, 0.42) 0.39 (0.30, 0.49) <0.001*"
CSF nucleated cells (x10°°/L) 6.00 (1.00, 26.00) 0.00 (0.00, 1.75) 0.00 (0.00, 1.00) <0.001**
CSF albumin (g/L) 0.35 (0.25, 0.49) 0.19 (0.15, 0.22) 0.21 (0.17, 0.30) <0.001%>¢
CSF IgG (g/L) 0.19 (0.10, 0.36) 0.06 (0.03, 0.10) 0.03 (0.02, 0.05) <0.001*<
‘&"f;g;in quotient 9.21 (665, 12.55) 4,65 (3.73, 5.86) 5.57 (430, 7.70) <0.001%0<
IgG quotient (x107%) 16.71 (10.80, 30.19) 5.38 (3.22, 9.14) 3.01 (2.15, 4.37) <0.001%>¢
IgG index 1.82 (1.01, 2.80) 1.16 (0.68, 1.85) 0.52 (0.46, 0.61) <0.001*<
IgG synthesis rate 62.94 (30.73, 141.54) 13.21 (1.20, 32.28) 0.00 (0.00, 2.20) <0.001*<
Clinical diagnosis <0.001>¢
Neurosyphilis 153 (79.7%) 53 (69.7%) 35 (19.1%)
Non-neurosyphilis 39 (20.3%) 23 (30.3%) 148 (80.9%)

There is a significant difference between each pair (P < 0.05):

“Class 1 vs. Class 2.

"Class 1 vs. Class 3.

“Class 2 vs. Class 3.

Albumin quotient is used to assess BBB permeability, reflecting conditions such as CNS infections; IgG quotient provides a rough indication of intrathecal IgG concentrations; the IgG index
specifically determines the presence of intrathecal IgG synthesis in the CNS after excluding BBB effects; the IgG synthesis rate, based on a complex mathematical formula, precisely estimates the
intrathecal IgG synthesis fraction.

TRUST, toluidine red unheated serum test; CSF, cerebrospinal fluid; TTs, treponemal tests; NTTs, non-treponemal tests; BBB, blood-brain barrier.

contributed significantly to class 2 and class 3. Figure 3B presents  across demographic characteristics, syphilis serological antibodies,
representative force plots visualizing individualized prediction  clinical diagnosis, and LCA classifications, with no statistically
mechanisms across all three subtypes. significant differences observed (P>0.05; Supplementary Table S3).

Cohort 2, utilized for external validation, demonstrated  The XGBoost model achieved robust performance metrics on this
comparable distributions to the model development cohort 1  independent validation set. The AUC, accuracy, sensitivity,
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TABLE 3 Summary of performance metrics for the constructed ML models.

10.3389/fcimb.2025.1665468

Models Cohorts AUC Accuracy Kappa Sensitivity =~ Specificity
Training 0.999 0.981 0.969 0.976 0.991 0.972 0.990
Random forest
Testing 0.966 0.855 0.768 0.845 0.925 0.840 0.930
Training 0.995 0.958 0.933 0.953 0.979 0.949 0.978
XGBoost
Testing 0.966 0.873 0.797 0.862 0.934 0.855 0.935
Training 0.995 0.965 0.945 0.967 0.984 0.951 0.982
GBDT
Testing 0.962 0.882 0.812 0.872 0.941 0.856 0.939
Training 0.993 0.934 0.894 0.900 0.965 0.931 0.970
SVM
Testing 0.950 0.818 0.708 0.779 0.906 0.785 0.908
Training 0.965 0.869 0.795 0.872 0.938 0.842 0.931
Logistic
Testing 0.929 0.827 0.730 0.838 0.915 0.804 0.909
Training 0.985 0923 0.876 0.890 0.959 0.912 0.963
ANN
Testing 0.937 0.827 0.727 0.818 0913 0.799 0.909

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; XGBoost, eXtreme Gradient Boosting; GBDT, gradient boosting decision tree; SVM, support vector

machines; ANN, artificial neural network.

specificity, PPV, and NPV were 0.970, 0.915, 0.933, 0.961, 0.889,
0.951, respectively (Figure 4A). Similarly, in the external validation
set, the model demonstrated good predictive accuracy and clinical
practicality (Figures 4B-D).

4 Discussion

The persistent global burden of syphilis infection underscores
the growing importance of accurately identifying the neuroinvasive
risk (Quilter et al., 2021). Current diagnostic approaches relying on
CSF analysis and serological testing demonstrate limited sensitivity
and specificity, particularly for atypical presentations, while
treatment responses show marked heterogeneity across patients
with different CSF characteristics (Shi M. et al., 2025). This study
addresses this gap through the novel integration of LCA and
ML algorithms.

LCA identified three clinically distinct subtypes among
suspected neurosyphilis patients using seven key variables: typical
neurosyphilis (class 1), atypical neurosyphilis (class 2), and non-
neurosyphilis (class 3), which provides a classification basis for
individualized treatment. Atypical neurosyphilis, comprising 17.9%
of cases, is diagnostically challenging due to its nonspecific
presentation of neuropsychiatric symptoms (e.g., mild cognitive
decline, behavioral abnormalities, headaches), which often results in
misdiagnosis as primary psychiatric or age-related conditions.
These patients exhibit normal CSF protein (<0.5 g/L) and
nucleated cell counts (<5x10°/L), with lower serum TRUST titers
(<1:16) and distinct CSF immunological profiles (albumin quotient,

Frontiers in Cellular and Infection Microbiology

IgG synthesis rate, IgG index) compared to typical neurosyphilis
(P < 0.05) yet evidence of intrathecal antibody synthesis, suggests a
distinct host-pathogen interaction. Importantly, persistent CSF
protein elevation post-treatment in some patients suggests that
atypical presentations may represent inherent disease variants
rather than treatment artifacts (Dunaway et al., 2020).

Mechanistically, this atypical subtype may be associated with
the immune privilege of the central nervous system, where
pathogens entering the parenchyma may escape systemic
immunological recognition and fail to effectively trigger a strong
local inflammatory response (Enzmann et al, 2018). Another
interpretation is that this may represent a chronic or late-stage
infection, where the initial inflammation has subsided, but the
persistent presence of antigens continues to drive the production
of antibody and the antibiotics concentration in CSF should be
tracked. Unlike typical cases, who exhibit a compromised BBB and
influx of various peripheral immune cells triggering a more intense
inflammatory response, atypical neurosyphilis maintains a
relatively intact BBB (Prinz and Priller, 2017), with intrathecal
immunoglobulin production driven by B cells recruited through
chemokines (Yu et al., 2017). In addition, studies have shown that
the levels of CSF protein and white blood cell count are positively
correlated with the inflammatory markers CXCL13, IL-6, and IL-
10, which suggests that patients with atypical neurosyphilis may not
have a significant or active inflammatory response (Dersch et al.,
2015; Yan et al.,, 2017).

The analysis indicated that LCA-derived subtypes were not
correlated with traditional classifications. Traditional classifications
require integration of clinical manifestations, imaging
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examinations, and laboratory tests, and display the affected sites,
whereas LCA-derived subtypes are based on simple laboratory
indicators required for routine diagnosis, which are more
accessible and affordable, and can be explained by biological-level
mechanisms. Actually, no evidence supports subtype-specific
treatments (Ropper, 2019; Chen et al, 2025). However, patients
with the typical subtype exhibit more pronounced inflammation,
potentially necessitating future validation of combining antibiotics
with anti-inflammatory therapies (such as corticosteroids).
Emerging evidence suggests variations in neuroinvasiveness
among Treponema pallidum genotypes both in rabbit models and
humans (Tantalo et al., 2005; Marra et al., 2010). Future
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investigations should explore correlations between LCA subtypes
and strain genotypes to elucidate the clinical significance of LCA
subtypes and molecular mechanisms underlying neuroinvasion.
For ML model construction, six easily obtainable and
objective laboratory variables (age, serum TRUST titer, CSF
protein, CSF nucleated cells, IgG index, CSF TTs) were selected
to .capture nonlinear biological relationships (Stahlschmidt et al,
2022). Among them, serum TRUST titer, CSF TTs, and CSF protein
simultaneously serve as variables for determining LCA classification;
additionally, CSF protein and nucleated cells - also identified as key
predictors in Zou et al’s diagnostic model (the minimum value of
AUC: 0.84) - demonstrated particular importance in our XGBoost
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algorithm (Zou et al., 2023). Studies indicate that TPPA and FTA-
ABS exhibit comparable diagnostic sensitivity for neurosyphilis,
allowing institutions to select appropriate CSF TTs based on their
specific circumstances (Marra et al., 2017; Park et al.,, 2020). Older
age was the independent risk factor for HIV-negative neurosyphilis
patients, though it remains uncertain whether this association stems
from age-related immune system changes or disease courses (Shi
et al., 2016). Furthermore, intrathecal B-cell enrichment and
immunoglobulin production have been observed in neurosyphilis
patients, establishing the IgG index as both a novel diagnostic and
disease progression indicator (Yu et al.,, 2017). The IgG index is a
computational indicator with low cost, requiring only respective
measurements of albumin and IgG levels in serum and CSF.

As an optimized algorithm based on GBDT, XGBoost serially
trains multiple weak learners, where each tree attempts to correct the
prediction errors of the preceding one, thereby progressively
optimizing the model, and has exhibited excellent predictive
performance in medical applications (Shi J. et al., 2025). Through
evaluation using ROC analysis, calibration curves, and decision
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curves, it was found that the XGBoost model demonstrated
favorable discriminative and calibration capabilities in predicting
neurosyphilis (AUC of 0.966 on the internal test set and 0.970 on
the external validation set). According to the validation set data, the
XGBoost model showed relatively low prediction accuracy and
clinical decision-making benefit for non-neurosyphilis cases, and it
was prone to misclassifying atypical neurosyphilis patients as non-
neurosyphilis patients (attributable to overlapping CSF protein/
nucleated cell count profiles with non-neurosyphilis). However, all
3 misclassified cases had positive CSF TTs despite negative CSF
NTTs, underscoring the critical need to confirm with CSF TTs when
CSF NTTs are negative, given the latter’s known lower sensitivity
(Satyaputra et al., 2021). In clinical practice, the usefulness of
predictive models depends not only on their accuracy but also on
their interpretability (Lancashire et al., 2025). SHAP analysis revealed
CSF protein and CSF TTs as top predictors consistent with findings
from relevant studies. Proteomics research supports the presence of
characteristic inflammatory protein markers in the CSF or brain
tissue of patients with neurosyphilis (Li et al., 2024; Zhang et al,
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2025). Meanwhile, elevated CSF protein levels may indicate disease
progression, the severity of neurosyphilis, and poor prognosis (Chen
et al,, 2025). While CSF TTs exhibit limited specificity due to blood-
CSF barrier permeability, high titers (CSF TPPA>1:320 or >1:640)
remain diagnostically valuable (Marra et al., 2017; Park et al., 20205
Shi M. et al., 2025).

This study has certain limitations. Firstly, as follow-up information
and other relevant data were not included in this study, it is challenging
to establish a clear association between the LCA subtypes and their
long-term clinical prognostic significance. In the future, it is necessary
to track the treatment status, treatment efficacy, and recurrence rate of
patients with different subtypes by prospective studies with long-term
follow-up. Secondly, these models were trained and evaluated based on
data from a single center. It should be noted that our center is a large
tertiary hospital that mainly treats complex and comorbid cases, which
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may introduce population bias. Therefore, population differences
should be carefully considered in future research, and multicenter
validation is needed to enhance generalizability. Thirdly, the external
validation cohort (cohort 2) consisted of patients from the same center
but at different time points, which may further limit the generalizability
of the findings.

In summary, this study establishes a clinically actionable
framework for neurosyphilis diagnosis through the innovative
LCA of routine clinical indicators. Our approach successfully
differentiates neurosyphilis from non-neurosyphilis cases while
further classifying neurosyphilis into two clinically distinct
subtypes - typical and atypical forms. The developed XGBoost-
based clinical decision support system demonstrates robust
performance in subtype identification, enabling precise
management of this diagnostically challenging condition.
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