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Background: Full-length 16S rRNA gene sequencing using nanopore technology

has become increasingly relevant for profiling complex microbial communities,

including the human oral microbiome. Primer selection plays a critical role in

amplification bias and taxonomic resolution, yet remains insufficiently

investigated for oropharyngeal samples.

Methods:We conducted a comparative analysis of two primer sets with differing

degrees of degeneracy – Oxford Nanopores (ONT) standard 27F primer (27F-I)

and a more degenerate variant (27F-II) – for full-length 16S rRNA gene

sequencing of 80 human oropharyngeal swab samples using ONTs MinION

Mk1C. Alpha diversity and taxonomic profiles were statistically compared

between primer sets and benchmarked against a large-scale salivary

microbiome dataset (n=1,989) from healthy individuals.

Results: Primer choice significantly impacted microbial community composition

and diversity. The more degenerate primer set 27F-II yielded significantly higher

alpha diversity (Shannon index: 2.684 vs. 1.850; p < 0.001) and detected a broader

range of taxa across all phyla. The taxonomic profiles generated with 27F-II

strongly correlated with the reference dataset (Pearson’s r = 0.86, p < 0.0001),

whereas profiles generated with 27F-I showed weak correlation (r = 0.49, p =

0.06). 27F-I overrepresented Proteobacteria and underrepresented key genera

such as Prevotella, Faecalibacterium, and Porphyromonas.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1658615/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1658615&domain=pdf&date_stamp=2025-11-17
mailto:christian.waechter@staff.uni-marburg.de
mailto:ruppert@med.uni-marburg.de
https://doi.org/10.3389/fcimb.2025.1658615
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1658615
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Waechter et al. 10.3389/fcimb.2025.1658615

Frontiers in Cellular and Infection Microbiology
Conclusion: Our findings demonstrate that primer degeneracy has a substantial

effect on taxonomic resolution and biodiversity estimates in oropharyngeal 16S

rRNA gene sequencing. The more degenerate 27F-II primer set seams to more

faithfully captures the complexity of the human oropharyngeal microbiome and

aligns more closely with population-level reference data. These results

underscore the importance of careful primer selection and support the

adoption of degenerate primers as a methodological standard in nanopore-

based oral microbiome research.
KEYWORDS

16S rRNA, oral microbiome, human oropharyngeal microbiome, next-generation
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Introduction

The human microbiome, comprising diverse and complex

microbial communities, plays a crucial role in health and disease

(Aggarwal et al., 2023). Among these, the oral and oropharyngeal

microbiome have garnered significant interest due to the growing

evidence of its role beyond general oral health, such as the

involvement in respiratory infections and even systemic diseases

(Bao et al., 2020; Lee et al., 2021; Peng et al., 2022). The oropharynx

therefore serves as a critical interface between the upper

aerodigestive tract and the external environment, making it a

relevant diagnostic and research target. Compared to the gut

microbiome, the oral microbiome is relatively underexplored,

particularly in large-scale sequencing studies. It also differs in

composition, pH, host immune interaction, and exposure to

environmental factors (Huttenhower et al., 2012; Ding and

Schloss, 2014). Moreover, age plays an important role: several

studies have shown that the oral microbiome evolves significantly

from infancy to adulthood, both in terms of taxonomic composition

and stability (Sampaio-Maia and Monteiro-Silva, 2014; Burcham

et al., 2020; Kageyama and Takeshita, 2024). These differences are

particularly relevant when interpreting population-level data sets or

making comparative references. Careful differentiation between

pediatric, adolescent, and adult populations is therefore necessary.

Moreover, the specific niche within the upper aerodigestive tract

plays a decisive role in microbiome composition and taxonomic

representation, and different anatomical sites show relevant

biological differences. The oropharynx and nasopharynx, while

spatially adjacent, differ substantially in epithelial lining, microbial

density, immune surveillance, and exposure to environmental

factors such as food, saliva, and inhaled particles (Piters et al.,

2020). The oropharynx harbors a more diverse and metabolically

active microbiota, with higher bacterial biomass and greater

ecological connectivity to both the oral and gastrointestinal

compartments (Lemon et al., 2010; Charlson et al., 2011;

Huttenhower et al., 2012). Beyond these biological aspects, there
02
are also practical advantages to studying the oropharyngeal

microbiome: sampling is less invasive and more acceptable in

both clinical and non-clinical settings, which facilitates routine

implementation. The higher bacterial biomass further enhances

the robustness and consistency of 16S rRNA gene amplification.

The rapid expansion of microbiome research has been largely

driven by next-generation sequencing (NGS) technologies, which

enable comprehensive, high-throughput analysis of complex

microbial communities at increasingly affordable cost and

turnaround times (Malla et al., 2019). Depending on read length

and chemistry, sequencing platforms can broadly be categorized

into short-read and long-read technologies. Short-read sequencing,

most notably Illumina’s MiSeq® platform (2 × 250–300 base pair),

has become the most widely used approach in large-scale

microbiome studies due to its high basecalling accuracy and

established pipelines (Huttenhower et al., 2012; McDonalda et al.,

2018; Ravi et al., 2018). However, its limited read length typically

restricts analyses to partial hypervariable regions of the 16S rRNA

gene—most commonly the V3–V4 or V4 region—constraining

taxonomic classification primarily to the genus level and

complicating comparisons across studies that target different

regions (Klindworth et al., 2013; Kim et al., 2024). Moreover,

species-level resolution is rarely achieved without additional

genomic or functional information. Third-generation sequencing

technologies such as Oxford Nanopore Technologies (ONT)

overcome this limitation by generating substantially longer reads

- up to 15 kilobases - enabling full-length 16S rRNA gene

sequencing and improving phylogenetic resolution (Deissová

et al., 2023). This is particularly advantageous for profiling

complex microbial ecosystems and distinguishing closely related

species. Although ONT sequencing was initially hindered by high

error rates of approximately 6%, continuous improvements in flow

cell design (e. g., R10.4.1), sequencing chemistry (e. g., Q20+ kits),

and basecalling algorithms have markedly improved accuracy, now

achieving modal read accuracies below 1% error (Kim et al., 2024).

In clinical and diagnostic microbiology, ONT platforms offer
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additional benefits: they are compact, scalable, and enable real-time

sequencing and analysis. This makes them attractive for point-of-

care applications, outbreak investigations, and settings with limited

laboratory infrastructure. However, challenges remain in

standardization, bioinformatics pipelines, and benchmarking

against short-read or whole-genome sequencing (WGS)

approaches, which are still considered the gold standard for

strain-level characterization and resistance profiling.

A critical source of variability in 16S rRNA gene-based

microbiome profiling is the selection of primer pairs used for PCR

amplification. Even minor mismatches between primer sequences

and target regions - particularly in evolutionarily conserved but

polymorphic regions - can introduce substantial amplification bias,

leading to the preferential enrichment of certain taxa while

underrepresenting others (Klindworth et al., 2013). This bias not

only affects measures of alpha and beta diversity, but can also distort

downstream taxonomic assignments, especially when comparing

data across studies using different primer sets or targeting different

regions of the gene (Deissová et al., 2023).

To address this issue, degenerate primers have been developed

that incorporate nucleotide ambiguity codes at variable positions,

thereby increasing coverage across a broader range of bacterial taxa.

While this strategy can improve amplification inclusivity and

reduce taxonomic dropout, it may also introduce challenges such

as reduced amplification efficiency, increased non-specific binding,

and the need for optimized PCR conditions (Frank et al., 2008).

In our previous study on human fecal samples, we

systematically compared ONT’s standard 27F primer with a more

degenerate variant and demonstrated that the latter resulted in

significantly higher alpha diversity and a more balanced phylum-

level distribution, with reduced overrepresentation of Firmicutes

and Proteobacteria (Waechter et al., 2023).However, the extent to

which these findings apply to other anatomical sites remains

uncertain, as microbial composition, DNA extraction yield, and

sequence conservation can vary widely between niches such as the

gut, skin, and oral cavity (Huttenhower et al., 2012). The present

study therefore extends our previous work to the oropharyngeal

microbiome, a distinct and clinically relevant niche characterized by

high microbial diversity and diagnostic potential. By systematically

comparing primer sets in this anatomical context, our study

contributes to the growing body of evidence on the influence of

primer design in microbiome profiling and offer practical guidance

for future studies of the oral and respiratory tract using long-read

sequencing technologies.
Materials and methods

Sample collection and DNA extraction

Oropharyngeal swabs were collected from German donors with

no history of acute systemic or oral inflammation. To ensure

systematic sampling, the swabs were first applied to the teeth,

tongue, and buccal mucosa before being inserted into the

pharynx. Sterile swabs were used for collection and immediately
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transferred into tubes containing DNA/RNA shielding buffer

(#R1160, Zymo Research, Irvine, CA, USA). After collection,

samples were stored at room temperature and processed within

three days to preserve nucleic acid integrity. Nucleic acid extraction

was carried out following established protocols, ensuring purity and

concentration assessment (Waechter et al., 2023). Specifically, the

Quick-DNA© HMW MagBead kit (#D6060, Zymo Research) was

used for DNA extraction, adhering to the manufacturer’s

guidelines. DNA purity and concentration were measured using a

NanoDrop© spectrophotometer (ThermoFisher Scientific,

Waltham, MA, USA) and a Quantus© Fluorometer (Promega,

Madison, WI, USA). The extracted DNA was subsequently stored

at -20°C for future use.
PCR amplification and nanopore 16S rRNA
gene sequencing

As previously described, two sequencing libraries were prepared

from the extracted DNA, each utilizing a different primer set

(Waechter et al., 2023): For the first library (referred to as the

27F-I library), 50 ng of whole genomic DNA was amplified using

the 16S barcoding kit, which includes the 16S rDNA primers 27F

(5’- AGAGTTTGATCMTGGCTCAG -3’) and 1492R (5’-

CGGTTACCTTGTTACGACTT -3’), based on Escherichia coli

rRNA number ing (SQK-RAB204 , Oxford Nanopore

Technologies, Oxford, UK). The amplification process followed

the manufacturer’s protocol.

The second library (27F-II library) was generated using an

alternative primer set with a higher degree of degeneracy. The first

PCR amplification was performed on 50 ng of genomic DNA using

the 16S rDNA primers S-D-Bact-0008-c-S-20 and S-D-Bact-1492-

a-A-22 ( (Sampaio-Maia and Monteiro-Silva, 2014; Deissová et al.,

2023)). These primers contained anchor sequences: 5′-
T T T C TGTTGGTGCTGATATTGCAGRGTTYGAT

YMTGGCTCAG - 3 ′ ( f o r w a r d ) a n d 5 ′ - ACTTGCC

TGTCGCTCTATCTTCCGGYTACCTTGTTACGACTT-3′
(reverse), followed by barcode addition through a second PCR step.

The procedure followed the ONT protocol for “Ligation sequencing

amplicons - PCR barcoding (SQK-LSK110 with EXP-PBC096)”

(protocol available at https://nanoporetech.com/document/pcr-

barcoding-96-amplicons-sqk-lsk110). The PCR protocols are

published elsewhere (Waechter et al., 2023). In brief:
1. Preparation 16s-PCR: 50 ng DNA in 11.5 µl nuclease-free

water, 0.5 µl Primer 27F-II, 0.5 µl Primer1492R-II, 12.5 µl

LongAMP® Taq 2x Master Mix (New England Biolabs,

Ipswich, MA, USA). Cycle program: 1 min 95°C; 25 cycles

20 sec 95°C, 30 sec 51°C, 2 min 65°C and a 5 min final

elongation at 65°C.

2. Preparation barcoding-PCR: 100 fmol 16S-PCR amplicons in

12.0 µl nuclease-free water, 0.5 µl barcode primer, 12.5 µl

LongAMP® Taq 2x Master Mix. Cycle program: 1 min 95°C;

15 cycles 20 sec 95°C, 30 sec 62°C, 2 min 65°C and a 5 min

final elongation at 65°C.
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Following barcoding-PCR, the DNA content of each amplicon

was determined using Quantus™ Fluorometer and adjusted to an

equal amount. The amplicons were pooled, and 1000 ng were used

for library preparation. The library preparation was performed

according to the protocol “Ligation sequencing amplicons - PCR

barcoding (SQK-LSK110 with EXP-PBC096)” by ONT.

The degenerate bases in the primer sequences (indicated in

bold) follow the International Union of Biochemistry (IUB)

nomenclature. The 27F-I primer set resulted in three sequence

variants, while the 27F-II set generated 18 variants (16 forward, 2

reverse). A complete list of sequence variants is provided in

Supplementary Table 1.

The barcoded libraries (27F-I and 27F-II) were loaded onto

separate flow cells (FLO-MIN106D, R9.4.1, ONT) and sequenced

independently using the MinION Mk1C device (ONT). Data

acquisition was performed using MinKNOW (version 22.03.4,

ONT) and Guppy 6.0.7. Both libraries were generated from DNA

extracted using the same method.
Bioinformatics processing and analysis

Raw sequencing data generated from full-length 16S rRNA gene

amplicon sequencing using the two different primer sets on the

ONT MinION platform were processed using EPI2ME (Oxford

Nanopore Technologies) for taxonomic classification. The

following workflow was applied to ensure high-quality data

processing and accurate taxonomic assignment. Raw sequencing

data were basecalled and demultiplexed using Guppy (version 6.5.7,

Oxford Nanopore Technologies) in high-accuracy mode. Barcode

demultiplexing was performed within Guppy using default settings.

Reads with a quality score below 9 or truncated reads were excluded

during this step. The resulting high-quality reads were subsequently

processed using the Epi2me-Labs workflow (wf-16S) for taxonomic

classification (GitHub wf-16s). This workflow includes primer and

adapter trimming, length filtering, clustering of full-length 16S

rRNA reads, and alignment against curated reference databases to

enable taxonomic classification at the genus or species level. To

validate and refine taxonomic assignments, the filtered reads were

additionally aligned and oriented using Minimap2 (version 2.28),

and full-length 16S sequences were extracted. Final classification

was performed using the NCBI 16S rRNA reference database

(ncbi_16s_18sRNA, January 2024 release). The classified reads

were used to generate microbial community profiles, and relative

abundances of bacterial taxa were calculated. To account for

differences in sequencing depth across samples, normalization

was applied using relative abundance measures. Further alpha

diversity metrics and beta diversity analyses were computed to

evaluate intra- and inter-sample diversity.
Downstream statistical analysis

All statistical analyses and visualizations were conducted using

the statistical programming language R, incorporating the microeco
Frontiers in Cellular and Infection Microbiology 04
package (Liu et al., 2020). To compare the taxonomic composition

at the genus level between datasets generated with the two primer

sets (27F-I and 27F-II), Pearson’s correlation test was applied to

relative abundance data. Further statistical comparisons, including

relative abundance across all taxonomic levels and alpha diversity

assessments via the Shannon Index, were performed using

Wilcoxon signed-rank tests. Resulting p-values were adjusted

using the Benjamini-Hochberg method to account for multiple

comparisons. All tests considered the paired nature of the data, with

a two-tailed p-value <0.05 deemed statistically significant.
Results

Utilizing full-length 16S rRNA gene amplicon sequencing on the

nanopore platform, we evaluated the efficiency of two primer sets: the

standard 27F primer (designated as 27F-I) from ONT’s 16S

Barcoding Kit (SQK-16S024) and a more degenerate variant

(designated as 27F-II), designed to account for polymorphisms in

conserved regions of the 16S rRNA gene. This comparison was

conducted in the context of highly diverse bacterial communities

from 80 human oropharyngeal swab samples. Demographic and

baseline characteristics of the study cohort are summarized in

Supplementary Table S2. The comparative primer strategy

employed follows the four-primer PCR method outlined by Matsuo

et al (Matsuo et al., 2021). This approach involves an initial PCR step

utilizing a more degenerate 27F and 1492R primer pair [S-D-Bact-

0008-c-S-20 and S-D-Bact-1492-a-A-22 (Klindworth et al., 2013)],

followed by a barcoding PCR. Reads were aligned directly to the

NCBI 16S database for taxonomic classification.

To globally compare the taxonomic profiles of the human

oropharyngeal microbiota obtained with the two primer sets, the

Pearson correlation coefficient (r) was calculated based on the

average relative abundances of bacterial genera across all samples

for each primer approach. The analysis showed only a moderate but

statistically significant correlation (r = 0.67, p = 0.005) between the

genera identified by the respective primer sets. To assess which

primer more accurately represents the oropharyngeal microbiome,

the taxonomic data generated using the 27F-I and 27F-II primers

were compared to a reference dataset assembled by Ruan et al.,

which includes saliva samples from 1,989 healthy subjects (Ruan

et al., 2022). The analysis revealed a strong and statistically

significant correlation between the taxonomic profile of oral

samples obtained with the 27F-II primer and the cited reference

dataset (r = 0.86, p < 0.0001). In contrast, the correlation between

the taxonomic profiles generated using the 27F-I primer and the

reference dataset was weak and not statistically significant (r = 0.49,

p = 0.06). Figure 1 presents a heatmap comparing the relative

abundance of the 12 most prevalent genera identified by the two

primer sets.

A noticeable discrepancy in relative abundance is evident even

at the phyla level. Across all analyzed samples, the 27F-I primer

yielded a significantly higher proportion of Proteobacteria (49.2%

vs. 29.2%, p < 0.001) and lower abundances of Bacteroidota (5.1%

vs. 19.2%, p < 0.001), Actinobacteria (0.1% vs. 1.3%, p < 0.001), and
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Verrucomicrobia (0.001% vs. 0.08%, p < 0.001) compared to the

27F-II primer. Figure 2 presents an overview of the relative

abundance of different phyla, both as an average across all

samples and at the individual sample level. Detailed quantitative

data for all bacterial phyla are available in Supplementary Table 3.

At the genus level, substantial differences in relative abundance

were observed for 125 genera. Focusing on the 10 genera with the

most significant differences, the 27F-I primer led to a higher relative

abundance of Haemophilus (33.6% vs. 12.1%, p < 0.001) and

Campylobacter (3.8% vs. 1.4%, p < 0.001). In contrast, the 27F-II

primer detected significantly higher levels of Prevotella (3.1% vs.

12.4%, p < 0.001), Porphyromonas (0.5% vs. 1.7%, p < 0.001),

Faecalibacterium (0.4% vs. 1.5%, p < 0.001), Blautia (0.076% vs.

1.07%, p < 0.001), Bacteroides (0.009% vs. 0.1%, p < 0.001),

Citrobacter (0.00003% vs. 0.07%, p < 0.001), Rothia (0.004% vs.

0.064%, p < 0.001) and Phascolarctobacterium (0.005% vs. 0.0058%,

p < 0.001) compared to 27F-I (Figure 3). Comprehensive quantitative

data for all genera are provided in Supplementary Table 4. Since the

16S Barcoding Kit (SQK-16S024) containing 27F-I is validated only

for genus-level resolution, species-level classification was

not conducted.
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Beyond these taxonomic differences in the oropharyngeal

microbiome, the choice of primer set also significantly influenced

taxonomic diversity. The 27F-I primer detected fewer distinct

amplicon sequence variants (ASV) in oropharyngeal swabs than

the 27F-II primer, as reflected by a significantly lower Shannon

index (1.850 vs. 2.684, p < 0.001), indicating reduced alpha

diversity (Figure 4).
Discussion

The advent of next-generation sequencing has transformed

microbiology research, significantly enhancing our understanding

of complex human gut bacterial communities. Among these

technologies, nanopore sequencing has gained prominence due to

its unique combination of cost efficiency, ease of use, high

throughput, and superior taxonomic resolution, enabled by its

ability to sequence long amplicons. Recent breakthroughs in

sequencing accuracy have largely addressed one of the

technology’s key limitations, marking a major milestone in the

rapid evolution of the nanopore platform. These improvements
FIGURE 1

Comparison of the mean values of the relative genus abundance for the 12 most common taxa in the samples between the two primer sets using a
heat map and the Pearson correlation (r). # Reference dataset from Ruan et al. with saliva samples from 1,989 healthy volunteers (Ruan et al., 2022).
* - p-value <0.05, ** <p-value <0.01.
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have allowed nanopore sequencing to rival and, in some cases,

surpass the capabilities of traditional short-read sequencing

approaches. Additionally, the widely adopted 16S Barcoding Kit

(SQK-16S024) from Oxford Nanopore Technologies (ONT) has

further streamlined 16S rRNA gene sequencing, making it an

accessible, fast, and cost-effective solution for microbiome

research (Santos et al., 2020).

This study provides a systematic comparison of two primer sets

with different levels of degeneracy for full-length 16S rRNA gene

amplification from human oropharyngeal swab samples using

nanopore sequencing. By adapting the approach of our previously

published fecal microbiome study (Waechter et al., 2023) to the oral

cavity, we extend the evidence that primer selection is a crucial
Frontiers in Cellular and Infection Microbiology 06
determinant of sequencing outcome and diversity metrics in

complex microbial environments.

The results demonstrate that the more degenerate primer set (27F-

II) outperforms the standard ONT kit primer (27F-I) in capturing

microbial diversity and in achieving a taxonomic composition more

consistent with a reference dataset from nearly 2,000 healthy

individuals’ salivary microbiota (Ruan et al., 2022). This is in line

with previous findings from fecal samples, where the degenerate primer

set led to higher biodiversity and a more balanced representation of key

phyla, including Bacteroidota and Actinobacteria (Waechter et al.,

2023). Our current data confirm this pattern in the oropharyngeal

microbiome, suggesting that primer-induced amplification bias is not

limited to gut environments but similarly affects oral microbial profiling.
FIGURE 2

Overview of the relative abundance of the different phyla averaged over all samples (A) and at the individual sample level (B).
FIGURE 3

Comparison of genera with the most significant differences in abundance between the two primer approaches. ***–p-value < 0.001.
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The discrepancies observed between the two primer sets are

particularly pronounced at both the phylum and genus levels. The

27F-I primer set yielded a microbial profile dominated by

Proteobacteria and Haemophilus, reflecting overamplification of

specific taxa. In contrast, the degenerate primer set enabled a more

diverse detection spectrum, revealing increased levels of clinically

relevant genera such as Prevotella, Porphyromonas, and

Faecalibacterium, which are often underrepresented in datasets

generated with less degenerate primers. These findings highlight

the risk of skewed taxonomic inference when using primers with

limited degeneracy, especially in environments with high microbial

variability such as the oropharyngeal cavity.

Importantly, the more degenerate primer set also led to

significantly higher alpha diversity, as indicated by the Shannon

index. This reinforces the notion that primer degeneracy enhances

the detection of low-abundance taxa, contributing to a more

comprehensive and ecologically valid microbiome profile. The

correlation with the large-scale salivary microbiome dataset by

Ruan et al. further strengthens the validity of the degenerate

primer set for oral microbial community profiling and supports

its use as a methodological standard in future studies (Klindworth

et al., 2013).

Our findings also have important implications beyond primer

performance. While full-length 16S rRNA gene sequencing using

long-read platforms such as ONT allows comprehensive coverage

across all nine hypervariable regions (V1–V9), this does not

inherently guarantee higher taxonomic resolution for all bacterial

clades. Several studies have demonstrated that targeted short-read

sequencing, particularly of the V1 - V4 or V3 - V4 regions using

Illumina technology, can outperform full-length approaches in
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certain contexts. This is especially true for taxa whose

discriminative nucleotide signatures are concentrated in specific

regions of the gene, such as Bifidobacterium, Lactobacillus, or

Enterobacteriacea members, where short-read methods have

shown better genus- or even species-level concordance with

whole-genome data (Janssen et al., 2018; Macip et al., 2025).

Moreover, the error profile of long-read sequencing, although

significantly improved in recent ONT chemistry (e.g., Q20+ kits),

may still impair taxonomic resolution at lower ranks when not

properly corrected (Liu-Wei et al., 2024). This is particularly

relevant in clinical diagnostics, where misclassification of near-

neighbor taxa may lead to false-positive or false-negative results (Gu

et al., 2018). As such, the decision between short- and long-read

platforms should be guided by the biological context, the expected

diversity and complexity of the sample type, and the resolution

required for the intended application. For instance, high-

throughput surveillance studies may prioritize cost-effective short-

read platforms with robust pipelines, whereas exploratory profiling

of under-characterized niches may benefit from the broader

coverage of full-length sequencing (Wenger et al., 2019). Clinical

applications may require additional benchmarking or validation

with mock communities to ensure sufficient taxonomic precision

and reproducibility.
Limitations

This study has several limitations that merit discussion. The

most important constraint is the absence of an internal

benchmarking strategy for evaluating the taxonomic fidelity of the
FIGURE 4

Alpha diversity represented as Shannon index (A) for the two primer approaches and a Venn diagram (B) showing the common and
specifictaxonomic units at the genus level between the two primer sets used. ***– p-value < 0.001.
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two primer sets. Unlike previous studies that incorporated mock

communities, well-characterized reference strains or internal

benchmark analyses with short-read sequencing platforms to

assess sequencing accuracy and amplification bias (Hugerth and

Andersson, 2017), our analysis relied on an indirect benchmarking

approach: we compared our sequencing results with a large-scale

reference dataset from healthy individuals’ saliva microbiota

published by Ruan et al (Ruan et al., 2022). While this

comparison provides a useful external anchor point, it entails

several methodological caveats First, the reference data were

generated using short-read sequencing targeting the V3 - V4 or

V4 hypervariable regions of the 16S rRNA gene, which contrasts

with our approach of full-length 16S rRNA gene sequencing on the

ONT platform, along with all the implications discussed earlier.

Second, the two studies used different taxonomic classification

frameworks: the Ruan dataset was annotated using the SILVA

database, whereas our analysis was based on the NCBI 16S rRNA

reference database due to its native integration into the Epi2me

workflow. These differences in region selection, sequencing

platform, and taxonomic backbone likely contribute to

discrepancies in observed microbial profiles and complicate direct

comparison. They also highlight the broader challenge of

standardization in microbiome research, particularly when studies

aim to benchmark across heterogeneous analytical pipelines.

Third, the DNA extraction methods used in the reference study

may differ from our protocol. DNA isolation procedures have a well-

documented impact onmicrobial community composition, especially

when comparing mechanical lysis (e.g., bead-beating) with enzymatic

or chemical methods (Yuan et al., 2012; Costea et al., 2017).

Fourth, the human donors in the reference study are likely to

differ from our cohort in lifestyle, diet, geography, and even oral

hygiene practices - all of which are known to significantly influence

the oral microbiome (Ding and Schloss, 2014). Although we

controlled for acute inflammatory conditions and standardized

sample collection, we cannot rule out the influence of cohort-

specific variables that might confound direct comparisons.

Despite these limitations, we argue that the comparison with the

large-scale reference dataset provides a reasonable orientation for

assessing the relative performance of the two primer sets. In the

absence of a universally accepted gold standard for oral 16S rRNA

sequencing, particularly one using full-length amplicons, such

external benchmarks remain a pragmatic alternative. Moreover,

the broader question remains whether a “true” benchmark for

microbiome profiling can exist at all, given the multiplicity of

sequencing platforms, primer sets, and bioinformatic pipelines in

current use. Therefore, our findings should be interpreted as

contextually robust rather than absolutely definitive.
Conclusion and future directions

Recent improvements in ONT sequencing chemistry and

basecalling have substantially increased the accuracy of full-length

16S rRNA gene sequencing, thereby enhancing its potential to resolve
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complex microbial communities with higher taxonomic resolution

than conventional short-read approaches. Given its cost-efficiency,

scalability, and ability to sequence full-length amplicons in real time,

the ONT platform is poised to gain increasing importance in oral and

oropharyngeal microbiome research.

Our study presents a comparative analysis of two primer sets

with different levels of degeneracy for nanopore-based 16S rRNA

gene sequencing of human oropharyngeal swabs. We demonstrate

that the widely used standard 27F primer (27F-I) introduces

measurable amplification bias, whereas a more degenerate variant

(27F-II) yields richer and more representative taxonomic profiles.

These findings underscore the critical role of primer selection in

shaping microbiome readouts and support the broader use of

degenerate primers for accurate and unbiased profiling in

complex oral environments.

Looking ahead, future studies should aim for greater

methodological harmonization, particularly in the design and

selection of primer sets. The current lack of interoperability among

primer strategies remains a major obstacle to reproducibility and

cross-study comparability. Establishing community-wide standards

for primer choice, as well as unified guidelines for the selection of

taxonomic reference databases across anatomical niches and

sequencing platforms, will be essential for advancing microbiome

research toward clinical and translational applications.
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