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In the post-COVID-19 era, understanding the long-term impact of Long COVID

on the immune system is essential for deciphering its influence on lung cancer

pathogenesis and immunotherapeutic efficacy. This review comprehensively

examines how persistent COVID-19 sequelae-manifested as chronic

inflammation, pulmonary fibrosis, cytokine dysregulation, and T-cell

exhaustion can reshape the lung cancer microenvironment. In addition, the

emerging roles of memory B cells and altered neutrophil function in promoting

tumorigenesis are discussed. Importantly, we analyze recent clinical evidence

suggesting that COVID-19 vaccination may enhance the efficacy of immune

checkpoint inhibitors, potentially by modulating host immunity. By integrating

mechanistic insights with clinical observations, this review aims to illuminate the

challenges and opportunities at the intersection of Long COVID and lung cancer

treatment, thereby fostering the development of personalized therapeutic

strategies in the post-pandemic era.
KEYWORDS

long covid, lung cancer, t-cell exhaustion, immune checkpoint inhibitors, pulmonary
fibrosis, COVID-19 vaccination
1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of

the COVID-19 pandemic emerging in late 2019, is a positive-sense, single-stranded RNA

virus with a genome size of approximately 26–32 kb. Unlike retroviruses, the SARS-CoV-2

genome lacks a reverse transcriptase gene (Lu et al., 2020). Viral entry into host cells is

primarily mediated by the interaction between the receptor-binding domain (RBD) within

the S1 subunit of its spike (S) glycoprotein and the host cell receptor angiotensin-

converting enzyme 2 (ACE2) (Zhang H. et al., 2020). Clinically, SARS-CoV-2 infection
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manifests with a broad spectrum of symptoms, ranging from fever,

cough, and headache to fatigue, anosmia, and diarrhea (Li et al.,

2023). While most individuals recover from the acute phase of

infection, a substantial subset experiences a persistent constellation

of debilitating symptoms collectively termed post-acute sequelae of

SARS-CoV-2 infection (PASC), commonly known as “Long

COVID.” Key features include profound fatigue, persistent

respiratory difficulties, evidence of pulmonary fibrosis, and

diverse neurological dysfunction (Roth et al., 2021). Critically,

emerging evidence indicates that the immune dysregulation and

chronic inflammation associated with Long COVID may exert

downstream effects on tumorigenesis, potentially elevating

cancer risk.

Concurrently, immune checkpoint inhibitors (ICIs) have

revolutionized cancer immunotherapy, demonstrating significant

improvements in survival outcomes for patients with lung

cancer (Guibert and Mazières, 2015). Immune checkpoints are

inhibitory surface receptors expressed on T cells and other

immune cells, functioning as critical negative regulators of

immune activation against various antigens, including tumor-

associated antigens (Hodi et al., 2010). ICIs constitute a class of

therapeutic monoclonal antibodies designed to block these

inhibitory pathways, thereby removing barriers to T cell

activation and harnessing the body’s intrinsic immune response

against malignant cells (Liu and Sun, 2021). Among the most

intensively studied pathways in lung cancer immunotherapy

are the programmed death-1 (PD-1)/programmed death-ligand 1

(PD-L1) axis and the cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) pathway (Cheng et al., 2024). Monoclonal antibodies

targeting PD-1, CTLA-4, or PD-L1 have undergone extensive

evaluation in advanced clinical trials. Substantial evidence

confirms the promising clinical efficacy of ICI monotherapy and

highlights the potential for synergistic effects in combination

strategies for lung cancer treatment (Reckamp et al., 2022).

Recent research has increasingly focused on the profound and

lasting impact of Long COVID on the host immune system. The

immune response is broadly categorized into the innate and

adaptive arms, which function interdependently. An effective

defense against SARS-CoV-2 necessitates coordinated activity

from both systems (Schultze and Aschenbrenner, 2021). The

innate immune system includes granulocytes, monocytes,

macrophages, natural killer (NK) cells, and dendritic cells, while

the adaptive immune system relies on antigen-specific T cells and B

cells (Sette and Crotty, 2021). A growing body of evidence indicates

that Long COVID is characterized by significant immune

alterations, prominently featuring T-cell exhaustion (Lin et al.,

2020) alongside functional impairments in neutrophils (Pisareva
Abbreviations: ICI, immune checkpoint inhibitors; SARS-CoV-2, syndrome

coronavirus 2; ACE2, angiotensin-converting enzyme 2; PACS, post-acute

COVID syndrome; PD-1, programmed death 1; CTLA-4, cytotoxic T

lymphocyte antigen-4; NSCLC, non-small cell lung cancer; Ang-II, Angiotensin

II; GC, germinal center; EF, extrafollicular; NETs, neutrophil extracellular traps;

NE, neutrophil elastase; MPO, myeloperoxidase; ICs, Immune checkpoints; OS,

overall survival,
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et al., 2023) and B cells (Thieme et al., 2021). Notably, in severe

acute COVID-19, dysregulated immune activation can culminate in

a life-threatening “cytokine storm” (Passaro et al., 2021). In the

post-COVID-19 era, understanding the specific and long-term

consequences of Long COVID on the host’s immune system is

paramount, particularly for lung cancer patients receiving ICIs,

whose treatment efficacy hinges on a functional immune system.

This review explores the emerging intersection between Long

COVID and lung cancer, framing a novel perspective on how the

persistent immune dysregulation following SARS-CoV-2 infection

could contribute to long-term oncogenesis. Specifically, we examine

how immunological changes such as T cell exhaustion, cytokine

dysregulation, and pulmonary fibrosis in Long COVID may affect

the tumor microenvironment and immunotherapeutic efficacy in

lung cancer. By synthesizing existing mechanistic studies and

experimental data, this report elucidates the potential

mechanisms of interaction between the altered immune system in

Long COVID and lung cancer immunotherapy, providing a basis

for future clinical and research strategies.
2 The association between long
COVID and the incidence of lung
cancer

Accumulating epidemiological evidence points to a significant

association between SARS-CoV-2 infection and an elevated risk of

lung cancer development, particularly among individuals

experiencing persistent symptoms following prolonged COVID-19

infection. This potential link has garnered increasing attention within

the medical research community (Huang et al., 2021). Notably,

cancer patients themselves exhibit heightened susceptibility to

SARS-CoV-2 infection and experience poorer clinical outcomes.

This susceptibility and prognostic significance are primarily

reflected in increased mortality risk (Oldani et al., 2022), more

severe clinical manifestations (Dai et al., 2020), and a higher

likelihood of infection (Wang et al., 2021). This section delineates

the postulated mechanisms underpinning the potential association

between Long COVID and lung carcinogenesis.
2.1 Post-infection pulmonary
complications and fibrosis

Substantial evidence indicates that SARS-CoV-2 infection can

lead to long-term pulmonary complications (Das et al., 2017).

Longitudinal studies tracking recovered patients for up to 15

years reveal chronic lung involvement characterized by persistent

interstitial abnormalities detectable years post-infection (Zhang P.

et al., 2020). Imaging analyses further demonstrate that a significant

proportion (approximately one-third) of recovered patients exhibit

radiological signs suggestive of pulmonary fibrosis (Das et al., 2017).

Recently, several researchers proposed that pulmonary fibrosis may

be a potential long-term complication associated with COVID-19

(Spagnolo et al., 2020). Critically, a well-established body of
frontiersin.org
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research directly links pulmonary fibrosis with an increased risk of

lung cancer, with reported prevalence rates ranging from 2.7% to

48% among patients with idiopathic pulmonary fibrosis (Ballester

et al., 2019). The fibrotic microenvironment induced by Long

COVID may thus provide a fertile ground for lung cancer

initiation and progression (Figure 1).
2.2 Chronic inflammation and cytokine
dysregulation

Chronic inflammation is a widely recognized critical driver of

carcinogenesis across multiple cancer types (Grivennikov et al.,

2010; O’Callaghan et al., 2010), significantly contributing to tumor

initiation, promotion, and progression (Atsumi et al., 2014; Munn,

2017). In the context of Long COVID, the pulmonary milieu is

often characterized by a sustained inflammatory state. This

persistent inflammatory microenvironment may foster conditions

conducive to lung carcinogenesis. Key inflammatory pathways

implicated include the IL-6 amplifier mechanism, involving

STAT3 activation by IL-6 and NF-kB activation by IL-17 or

TNF-a (Hirano, 2021). These cytokines are known to play

significant roles in tumor promotion and cellular transformation

within lung cancer pathogenesis (Block et al., 2012; Kiuchi et al.,

1999). SARS-CoV-2 infection can trigger a profound release of pro-

inflammatory cytokines, often termed a “cytokine storm,” with IL-6

frequently identified as a central mediator (Coomes and
Frontiers in Cellular and Infection Microbiology 03
Haghbayan, 2020; Lokau et al., 2024; Yang et al., 2021).

Furthermore, the clinical relevance of this axis is underscored by

studies demonstrating reduced mortality in critically ill COVID-19

patients treated with IL-6 receptor antagonists, highlighting the

pivotal role of cytokine dysregulation in disease severity and

potentially long-term sequelae (Fuller and Chagla, 2023; Masiá

et al., 2022; Zhou and Price, 2020) (Figure 1).
2.3 Dysregulation of the renin-angiotensin-
aldosterone system

The renin-angiotensin-aldosterone system (RAAS) is crucial for

chronic blood pressure and vascular resistance regulation.

Components of this system, particularly angiotensin-converting

enzyme 2 (ACE2), angiotensin (1-7) [Ang (1-7)], and angiotensin

II (Ang-II), have been increasingly implicated in the progression of

various malignancies, including from early stages (Fountain et al.,

2025). Ang-II, a key effector peptide, has been associated with

carcinogenesis, metastasis, and recurrence, potentially through

mechanisms involving cancer stem cell formation (Deshayes and

Nahmias, 2005). In non-small cell lung cancer (NSCLC), Ang-II

modulates cancer cell invasiveness and cancer stem cell populations

(Tawinwung et al., 2015). Furthermore, high ACE2 expression has

been proven to be correlated with malignancy and poor prognosis

in certain cancers (Xu et al., 2017). SARS-CoV-2 utilizes ACE2 as its

primary cellular receptor for entry. Infection leads to ACE2
FIGURE 1

Proposed Mechanisms Linking Long COVID to Lung Carcinogenesis. Long COVID promotes lung tumorigenesis through three interconnected
pathways: 1. Pulmonary Fibrosis: Persistent interstitial abnormalities and fibrotic scar formation post-SARS-CoV-2 infection create a pro-tumorigenic
microenvironment, mirroring idiopathic pulmonary fibrosis-associated lung cancer risk. 2. Chronic Inflammation & Cytokine Dysregulation: Sustained
elevation of pro-inflammatory cytokines (e.g., IL-6, TNF-a) via IL-6 amplifier and NF-kB pathways drives cellular transformation and tumor
promotion. 3. RAAS Dysregulation: SARS-CoV-2-mediated ACE2 downregulation disrupts angiotensin balance, favoring the pro-fibrotic/pro-
inflammatory Ang-II/AT1R axis over the protective Ang-(1-7)/MasR axis, further supporting tumor growth.
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downregulation, disrupting the balance between the pro-

inflammatory/pro-fibrotic Ang-II/AT1R axis and the counter-

regulatory Ang (1-7)/MasR axis. This RAAS dysregulation, a

hallmark of both severe COVID-19 and Long COVID, may

represent another pathway linking persistent infection to an

altered lung microenvironment favoring tumorigenesis (Feng

et al., 2010; Sommerstein et al., 2020) (Figure 1).
3 Shared mechanistic pathways linking
long COVID and lung cancer

3.1 Chronic inflammation and cytokine
storm

Persistent inflammation, characterized by elevated levels of pro-

inflammatory cytokines (IL-6, TNF-a, IL-1b), is a hallmark of Long

COVID (Coomes and Haghbayan, 2020; Lokau et al., 2024).

Similarly, chronic inflammation is a well-established driver of lung

cancer development and progression (Coussens and Werb, 2002). In

Long COVID, sustained cytokine production can lead to immune cell

dysfunction, tissue damage, and altered cellular signaling, potentially

creating a permissive environment for malignant transformation or

promoting the growth of pre-existing cancerous cells. Quantitatively,

studies have shown that patients with severe Long COVID exhibit a

2–3 fold increase in IL-6 levels compared to recovered individuals

without persistent symptoms (Lokau et al., 2024).
3.2 Immune dysregulation and T cell
exhaustion

Both Long COVID and cancer are associated with profound

alterations in immune cell function, including T cell exhaustion,

increased expression of immune checkpoint molecules (PD-1,

CTLA-4), and impaired antigen presentation (Barber et al., 2006;

Rha and Shin, 2021). In Long COVID, chronic antigen stimulation

and inflammation can drive T cell exhaustion, reducing their ability

to effectively eliminate infected or transformed cells. This immune

dysfunction can also impair the efficacy of cancer immunotherapies.

For example, PD-1 expression on CD8+ T cells is significantly

higher in Long COVID patients compared to healthy controls

(p<0.05) (Silva et al., 2023).
3.3 Tissue remodeling and fibrosis

Pulmonary fibrosis is a significant concern in Long COVID

patients, with some studies reporting fibrosis in up to 38% of severe

cases (Babar et al., 2024). Fibrosis alters the lung architecture,

disrupts immune cell trafficking, and promotes the release of pro-

tumorigenic factors, such as TGF-b (Wynn et al., 2008). The altered

extracellular matrix can also hinder drug delivery and reduce the

effectiveness of immunotherapies.
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4 Immunopathology of long COVID:
reshaping the lung cancer
microenvironment

Long COVID is associated with profound and persistent

alterations in immune cell composition and function. Studies

report significant increases in neutrophils, monocytes, NK cells,

and CD4+ T cells in Long COVID patients, alongside decreases in

total lymphocytes and CD8+ T cells. Cytokine profiling reveals

significantly elevated levels of IL-6, TNF-a, IFN-g, IL-2, IL-4, and
IL-10 in hospitalized patients, suggesting potential skewing of CD4+

T cell differentiation (Lin et al., 2020). This section explores how key

immunological features of Long COVID-T cell exhaustion,

persistent memory B cell responses, and neutrophil extracellular

trap (NET) formation – may impact the lung cancer immune

microenvironment (summarized in Figure 2 and Table 1).
4.1 T cell exhaustion and dysfunction

T cells are central orchestrators of adaptive immunity, critical

for maintaining health and combating disease. T cell development

occurs in the thymus. Following antigen encounter in acute settings,

naïve T cells differentiate into effector and memory subsets, which

mediate direct killing, diversified immune regulatory functions and

long-term protection. However, chronic antigen exposure, as seen

in persistent viral infections and cancer, can drive T cells towards

a state of functional exhaustion, characterized by progressive loss

of effector function and sustained expression of inhibitory receptors

like PD-1 and CTLA-4 (Sun et al., 2023). This shared pathway of

exhaustion underpins the conceptual overlap between

immunotherapy strategies for chronic infections and cancer.

While much research focused on the acute phase of COVID-19,

understanding the longitudinal immune trajectory in Long COVID

is paramount. T cells are pivotal mediators of the host response to

SARS-CoV-2. Longitudinal studies examined patients recovering

from mild, moderate, and severe COVID-19 at two time points (3-

and 6-months post-infection), focusing on the dynamic changes in

T cell profiles post-infection. Overall, a trend towards exhaustion is

observed, particularly in CD8+ T cells. Dysregulated immunity in

CD4+, CD8+, and Treg subsets often persists for the first 3 months,

with a partial functional shift becoming apparent between 3–6

months, the extent of which varies with initial infection severity.

This manifests itself as long-lasting attenuated T cell activation,

reduced proliferative capacity, and a shift towards an exhausted/

senescent phenotype, particularly within the CD8+ compartment.

Together with prolonged unresolved inflammation, this T cell

dysfunctions likely contributes to compromised anti-tumor

immunity (Wiech et al., 2022).

Paradoxically, some studies report that PD-1-expressing SARS-

CoV-2-specific CD8+ T cells retain functionality rather than being

fully exhausted (Rha et al., 2021). This complexity suggests that

severe outcomes in COVID-19, including Long COVID

complications and potentially increased cancer susceptibility, may
frontiersin.org
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stem from a combination of SARS-CoV-2 infection, potential co-

pathogens, and the resultant induction of immune cell dysfunction,

prominently featuring T cell exhaustion (Roe, 2021).
4.2 Persistence of SARS-CoV-2-specific
memory B cells

B cells, originating from bone marrow hematopoietic stem cells,

undergo maturation and selection before populating peripheral

lymphoid organs (Nemazee, 2017). Antigen-driven B cell responses

involve classical germinal center (GC) reactions, leading to affinity

maturation and long-lived plasma/memory cells, and extrafollicular

(EF) responses (Victora and Nussenzweig, 2022). While some

infections/vaccines confer long-lasting, sometimes lifelong robust

immunity, immunity against respiratory viruses like coronaviruses

tend to be less durable (Morens et al., 2023). In the “suppressed”

immune microenvironment of chronic conditions, including Long

COVID and cancer, activating B cells presents a potential therapeutic

avenue. Analogous to chronic infections, tumor-infiltrating B

lymphocytes (TIL-Bs) can exert anti-tumor effects via antibody

production, T cell modulation, and direct cytotoxicity (Wang et al.,

2019). It remains to be determined whether the specific memory B

cells generated by the host in response to SARS-CoV-2 infection
Frontiers in Cellular and Infection Microbiology 05
influence lung cancer progression or response to therapy, or whether

strategies modulating these cells impact immunotherapy efficacy.

Evidence from HPV-associated head and neck cancer suggests

antigen-specific B cells may represent a novel approach for tumor

immunotherapy (Wieland et al., 2021). Adaptive immunity to SARS-

CoV-2, comprising antibodies, memory B cells, and T cells, protects

against reinfection (Sariol and Perlman, 2020). Serum antibody levels

typically peak around 2–3 weeks post-infection and may wane over

time (Dan et al., 2021; Marot et al., 2021).

Among the majority of people, anti-SARS-CoV-2 serum

antibodies persist for more than six months after the initial

infection, but some patients lose their specific antibodies rapidly

(Seow et al., 2020; Zheng et al., 2021). Spike-specific IgG titers often

persist for months, stabilizing at a protective plateau around 6

months and remaining detectable for at least 9 months in many

convalescents (Achiron et al., 2021). Crucially, memory B cells exhibit

remarkable longevity. They can persist for years, poised to rapidly

differentiate into antibody-secreting plasma cells upon re-exposure

(Stamper et al., 2020). Numerous studies confirm the persistence of

SARS-CoV-2-specific memory B cells long after acute infection,

making them a reliable correlate of durable humoral immunity

(Cohen et al., 2021; Pusňik et al., 2021; Winklmeier et al., 2022).

Consequently, quantifying these cells provides a robust indicator of

long-term immune memory in Long COVID (Thieme et al., 2021).
FIGURE 2

Immunopathological Features of Long COVID Reshaping the Lung Cancer Microenvironment. Key immune alterations in Long COVID remodel the
lung tumor immune landscape: 1. T Cell Exhaustion and Senescence: Chronic antigen exposure drives CD8+ T cell dysfunction, characterized by
upregulated inhibitory receptors (PD-1, CTLA-4), reduced proliferative capacity, and impaired effector function, dampening anti-tumor immunity.
2. Persistence of SARS-CoV-2-Specific Memory B Cells: Long-lived Memory B cells generated post-infection may influence tumor progression
through antibody-dependent mechanisms or modulation of T cell responses, though their exact role in lung cancer immunotherapy remains
unclear. 3. Neutrophil Extracellular Traps (NETs) and Dysregulated Activity: Enhanced NETosis (releasing DNA/MPO/NE complexes) and elevated
neutrophilic chemokines (e.g., CXCL8) sustain chronic inflammation and tissue damage, polarizing neutrophils toward pro-tumorigenic (N2)
phenotypes in the tumor microenvironment.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1657691
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lv et al. 10.3389/fcimb.2025.1657691
4.3 Neutrophil extracellular traps and
dysregulated neutrophil activity

Neutrophils, a subset of myeloid white blood cells, serve as

primary responders to acute inflammatory and infection. In

humans, neutrophils constitute 50-70% of the circulating leukocyte

population (Doeing et al., 2003; Mestas and Hughes, 2004). As first

responders, they combat pathogens via phagocytosis, degranulation,

cytokine production, and the formation of neutrophil extracellular

traps (NETs) – webs of DNA decorated with antimicrobial proteins

(Mantovani et al., 2011; Papayannopoulos, 2018). During the initial

phase of COVID-19 infection, neutrophils are recruited to the lungs

where they eliminate the invading SARS-CoV-2 via multiple

mechanisms. While essential for host defense, aberrant neutrophil

activation is a hallmark of severe COVID-19, contributing to cytokine

storms and exaggerated host immune responses in COVID-19
Frontiers in Cellular and Infection Microbiology 06
patients (Barnes et al., 2020). Persistent neutrophil infiltration

signifies chronic inflammation and can drive tissue damage.

Within the tumor microenvironment (TME), neutrophils

exhibit functional plasticity. They are often categorized as anti-

tumor (N1 neutrophils) or pro-tumor (N2 neutrophils) phenotypes

(Fridlender et al., 2009). Tumor-derived factors, particularly the

immunosuppressive cytokine TGF-b, promote polarization towards

the pro-tumorigenic N2 state (Pylaeva et al., 2016). Neutrophil

depletion studies in mice show modest anti-tumor effects, while

TGF-b blockade via the TGF-b receptor inhibitor SM16 promotes

accumulation of anti-tumor N1 neutrophils; subsequent neutrophil

depletion under these conditions then accelerates tumor growth,

highlighting their context-dependent role (Patel et al., 2018).

Additionally, type I interferons appear involved in inducing N1

polarization post-TGF-b inhibition (Andzinski et al., 2016). In

chronic inflammation, distinct neutrophil subsets recruit different

immune infiltrates, exerting divergent effects on tumors. This

evidence suggests that targeting neutrophils polarization or

NETosis thus represents a promising therapeutic strategy for both

COVID-19 sequelae and lung cancer.

Substantial evidence indicates dysregulated neutrophil activity in

Long COVID. Circulating neutrophils from Long COVID patients

demonstrate heightened NET formation (George et al., 2022; Krinsky

et al., 2023; Woodruff et al., 2023). Longitudinal monitoring of NET

markers (serum neutrophil elastase (NE), myeloperoxidase (MPO), cell-

free DNA) in previously hospitalized patients shows levels remain

significantly elevated for at least 6 months post-infection compared to

controls, albeit lower than during acute infection (Pisareva et al., 2023).

In the context of Long COVID, compared to age and gender-matched

healthy controls, survivors also exhibit significantly higher levels of

detectable antinuclear antibodies at both 3- and 12-months post-

infection (Son et al., 2023). Patients with persistent post-COVID

interstitial lung abnormalities show elevated neutrophil counts and

serum MPO, correlating with radiological disease extent. Proteomic

analysis identifies the neutrophil chemotactic factor IL-17 and neutrophil

chemokines (CXCL1, CXCL8) as significantly associated with persistent

lung disease and functional impairment (George et al., 2022).

Furthermore, single-cell transcriptomic analysis of airways in Long

COVID patients (>10 months post-acute infection) reveals increased

neutrophil abundance and upregulated neutrophil activation signatures

alongside inflammatory chemokines across multiple cell clusters,

pointing to sustained neutrophilic inflammation (Gerayeli et al., 2024).
5 Lung cancer immunotherapy in the
context of COVID-19 vaccination

Immune checkpoints (ICs) like PD-1, CTLA-4, and TIM-3,

expressed on various immune cells (T cells, NK cells, DCs), deliver

inhibitory signals that suppress immune activation. In chronic

conditions like cancer and persistent infections, sustained IC/ligand

expression drives T cell exhaustion, enabling antigen-mediated

immune escape. ICIs, which block these pathways, have

demonstrated significant efficacy in treating various cancers (Dyck
TABLE 1 Immunological alterations in long COVID relevant to lung
cancer microenvironment.

Immune alteration
Key findings in
long COVID

References

T cell Dysfunction

Significant reduction in
adaptive immune cells (T
cells, particularly RTEs,
and B cells) at 10 months
post-infection.

(Kratzer et al.,
2024)

Diminished CD8+ T cell
response relative to CD4+

T cells at 6 months post-
infection.

(Kumar et al.,
2021)

PD-1+ SARS-CoV-2-
specific CD8+ T cells may
retain functionality.

(Rha et al.,
2021)

Memory B Cell Persistence

Persistent Spike IgG titers,
stabilizing around 6
months post-infection.

(Achiron et al.,
2021)

Long-term persistence of
SARS-CoV-2-specific
memory B cells.

(Cohen et al.,
2021)

Neutrophil Dysregulation &
NETs

Persistently elevated
serum NET markers (NE,
MPO, cfDNA) for ≥6
months post-infection.

(Pisareva et al.,
2023)

Upregulation of
neutrophil activation
signatures and
inflammatory chemokines
in airways >10 months
post-infection.

(Gerayeli et al.,
2024)

Elevated neutrophilic
chemokines (CXCL8),
inflammasome pathway
components (NLRP3, IL-
18/IL-18R1) correlating
with persistent ILD.

(George et al.,
2022)
RTE, (Recent Thymic Emigrant); NETs, (Neutrophil Extracellular Traps); NE, (Neutrophil
Elastase); MPO, (Myeloperoxidase); cfDNA, (Cell-free DNA); ILD, (Interstitial Lung Disease).
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andMills, 2017; Wykes and Lewin, 2018). Although many studies have

revealed that ICI immunotherapy holds promising clinical prospects in

patients with infectious diseases (Achiron et al., 2021), key questions

arise regarding their interaction with SARS-CoV-2 infection and

vaccination in lung cancer patients: Does ICI reduce SARS-CoV-2

viral load? Should ICI regimens be adjusted upon SARS-CoV-2

infection? This section focuses on the potential interactions between

ICI therapy for lung cancer and COVID-19 vaccination.
5.1 Safety of ICI during the COVID-19
pandemic: a nuanced picture

The association between ICI treatment for lung cancer and

COVID-19 severity remain debated. Some studies suggest older age

and ICI treatment correlate with worse COVID-19 outcomes (Robilotti

et al., 2020; Zhou et al., 2020). Conversely, other studies including larger

cohorts, report no significant association between ICI monotherapy

and increased COVID-19 severity or mortality (Grivas et al., 2021;

Rogiers et al., 2021). Most evidence indicates that ICI immunotherapy

alone is not strongly associated with heightened COVID-19 severity. A

clinical study of 69 lung cancer patients with COVID-19 (41 previously

treated with PD-1 blockade, 28 untreated) found no difference in

COVID-19 severity between groups (Luo et al., 2020). Furthermore, a

large multicenter observational study (TERAVOLT) indicated that

various systemic anti-cancer therapies (including pembrolizumab,

nivolumab, ipilimumab, ICI-chemotherapy combinations, TKIs,

chemotherapy alone) did not significantly affect the survival rate in

lung cancer patients with COVID-19 (Garassino et al., 2020).

However, an important caveat emerges regarding combination

ICI therapy. Lung cancer patients treated with dual immunotherapy

(e.g., nivolumab + ipilimumab) may face a higher risk of severe

complications or death if infected with SARS-CoV-2. A 70-year-old

patient diagnosed with COVID-19 and lung adenocarcinoma

received the dual immunotherapy (nivolumab and ipilimumab)

but died from cytokine release syndrome (Murata et al., 2022).

Additionally, clinical cases report fatalities due to cytokine release

syndrome (CRS) in such patients, and registry data indicate

significantly higher mortality rates associated with combination

ICI compared to monotherapy (Owonikoko et al., 2021).

Intriguingly, emerging data suggest potential immunostimulatory

effects. Compared to the general population, NSCLC patients

receiving pembrolizumab combined with chemotherapy exhibited

stronger humoral immune responses to SARS-CoV-2 infection

(higher SARS-CoV-2 reactive IgG, neutralizing antibodies) and

enhanced cellular immunity (sustained increases in follicular helper

T cells, activated CD4+ and CD8+ T cells) (Mellinghoff et al., 2021).

This hints at a potential “mutually beneficial” interaction between

certain anti-cancer immunotherapies and anti-viral immunity.
5.2 Exploring a “mutually beneficial”
interaction

Clinical observations suggest that cancer patients receiving ICI

may have a lower risk of SARS-CoV-2 infection or experience
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milder COVID-19 symptoms (Moritz et al., 2021). The mechanistic

basis for this phenomenon likely relates to the restoration of T cell

function by ICI. Preclinical evidence indicates that anti-PD-1

therapy can reinvigorate exhausted antiviral T cell responses,

reducing viral load (Barber et al., 2006). Supporting this, clinical

cases describe lung cancer patients receiving ICI who contracted

COVID-19 did not exhibit obvious signs of pulmonary involvement

(Yang and Xu, 2023).

Conversely, COVID-19 vaccination may enhance the efficacy

of ICI in cancer treatment. Global vaccination efforts have

deployed various platforms, including mRNA-based vaccines and

adenovirus vector vaccines expressing the SARS-CoV-2 spike

protein (CoV-2-S). Specifically, nucleoside-modified mRNA

encoding antigens encapsulated in LNP (mRNA-LNP) have

shown great promise and been widely accepted, demonstrating an

efficacy of approximately 95% in healthy subjects (Baden et al.,

2021; Polack et al., 2020). Recent research explores vaccines

designed to elicit robust CD8+ cytotoxic T lymphocyte (CTL)

responses against SARS-CoV-2, particularly relevant for high-risk

groups like cancer patients. Preclinical studies demonstrate that

vaccines inducing lung-homing T cells or dual-antigen vaccines

targeting both tumor-associated antigens (TAAs) and SARS-CoV-2

can generate potent anti-tumor effects alongside virus-specific CTLs

(Shimizu et al., 2022).

Critically, clinical retrospective evidence supports this synergy.

A retrospective study analyzed the survival data of 104 stage III-IV

NSCLC patients treated with ICI. Compared with the unvaccinated

group, the Overall Response Rate (ORR: 28.0% vs. 11.39%, p = 0.05)

was significantly improved in the COVID-19 vaccinated group.

Regarding long-term survival benefits, the COVID-19 vaccine had a

profound impact on the progression free survival (PFS: HR = 0.16, p

= 0.021) and overall survival (OS: HR = 0.168, p = 0.019) of NSCLC

patients treated with ICI. Compared with the unvaccinated group,

Both PFS (p < 0.001) and OS (p < 0.001) were significantly

prolonged in the vaccinated group. Furthermore, vaccinated

patients exhibited higher circulating CD4+ T cell levels (p =

0.047). This study strongly suggests that COVID-19 vaccination

enhances the efficacy of anti-PD-1 immunotherapy in advanced

NSCLC, potentially offering additional survival benefits for these

NSCLC patients (Qian et al., 2023).
6 Discussion and conclusion

This review underscores the critical need to understand the impact

of Long COVID on the host immune system, particularly concerning

lung cancer pathogenesis and immunotherapy efficacy. Long COVID,

characterized by persistent symptoms and profound immune

alterations-including T cell exhaustion, dysregulated neutrophil

activity, and persistent but altered B cell memory-can significantly

reshape the tumor immune microenvironment. These changes hold

substantial implications for the effectiveness of immunotherapies like

ICI, which are crucial for lung cancer treatment.

We have outlined the potential mechanisms by which Long

COVID may contribute to lung cancer development, encompassing
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post-infection pulmonary fibrosis, chronic inflammation, cytokine

imbalance, and dysregulation of the RAAS. Furthermore, we

explored how Long COVID-associated immunopathology,

notably involving dysfunctional T cells, persistent memory B cells,

and neutrophil extracellular traps, may remodel the lung cancer

microenvironment. The evolving landscape also reveals complex

interactions between lung cancer immunotherapy and COVID-19

vaccination. While the safety of ICI monotherapy during the

pandemic appears generally acceptable, caution is warranted with

combination ICI regimens. Importantly, emerging clinical evidence

points towards a potential “mutually beneficial” relationship, where

ICI might modulate anti-viral responses and COVID-19

vaccination could enhance ICI efficacy in lung cancer patients,

significantly improving survival outcomes.

In conclusion, the immunologic perturbations and tissue

remodeling associated with Long COVID present distinct

challenges for lung cancer patients undergoing immunotherapy.

Moving forward, research efforts should prioritize:

Investigating the Molecular Mechanisms: Elucidating the

specific molecular mechanisms by which Long COVID-related

immune dysregulation (e.g., persistent cytokine signaling, altered

T cell receptor repertoire) promotes lung cancer development and

progression. This includes identifying novel therapeutic targets to

interrupt these pathways.

Conducting Longitudinal Studies: Implementing large-scale

longitudinal studies to assess the long-term cancer risk in Long

COVID patients, with comprehensive immune profiling and

clinical follow-up.

Developing Targeted Therapeutic Strategies: Designing and

testing targeted therapeutic strategies to mitigate the pro-

tumorigenic effects of Long COVID, such as combining anti-

inflammatory agents with immunotherapies or developing novel

interventions to restore T cell function and reverse fibrosis.

Applying Multi-omics Approaches: Utilizing multi-omics

approaches (genomics, proteomics, metabolomics) to identify

predictive biomarkers for cancer risk and immunotherapy

response in Long COVID patients.
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