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Under oxygen-limited conditions, the adaptability and underlying mechanisms of
bacterial biofilms have become key areas of interest in microbiology and clinical
infection research. Within biofilms—composed of bacterial communities and
extracellular matrix—an oxygen gradient commonly forms, resulting in hypoxic
or even anoxic microenvironments. Such conditions substantially increase
biofilm antibiotic resistance and facilitate the persistence of chronic infections.
This review systematically summarizes the adaptive strategies employed by
biofilms in hypoxic environments, including anaerobic metabolism, phenazine-
mediated electron shuttling, and virulence factor regulation. These adaptive
responses are governed by genes involved in anaerobic metabolism, quorum
sensing systems, and the secondary messenger 3,5-cyclic diguanylic acid (c-di-
GMP), which collectively influence biofilm formation. Key transcriptional
regulators such as Anr and Dnr, the two-component system NarXL, along with
specific functional genes, form an intricate regulatory network. This article aims
to provide a comprehensive overview of the adaptive mechanisms of
Pseudomonas aeruginosa biofilms under oxygen-limited conditions, providing
a theoretical foundation for the development of novel anti-infective therapies,
targeting the biofilm infection microenvironment in cystic fibrosis and
chronic wounds.

KEYWORDS
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1 Introduction

Pseudomonas aeruginosa is a widely distributed Gram-negative bacterium known to
cause nosocomial infections and potentially fatal infections in immunocompromised
patients (Gale et al, 2015; Gomila et al, 2018). It is also a persistent colonizer of the
lungs in cystic fibrosis (CF) patients, where it is notoriously difficult to eradicate (Singh
etal., 2000). During chronic infections, P. aeruginosa predominantly exists in biofilm form.
Bacterial biofilms adhere to biological or abiotic surfaces and consist of bacterial
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communities embedded within an extracellular matrix (ECM),
comprising proteins, polysaccharides, and extracellular DNA
(eDNA), among other components (Vestby et al, 2020). These
molecules provide structural integrity and facilitate intercellular
adhesion (Schilcher and Horswill, 2020; Chiba et al., 2022). Unlike
planktonic bacteria, biofilms exhibit altered growth rates,
metabolism, and gene expression profiles (Donlan, 2002). Bacteria
in the inner layers of biofilms adapt to low metabolic activity and
undergo anaerobic respiration. Due to the protective barrier of the
ECM, biofilm-associated bacteria demonstrate increased antibiotic
resistance by approximately 10- to 1000-fold (Wagner and Iglewski,
2008; Stokes et al., 2019). Consequently, biofilms are inherently
difficult to treat, leading to persistent and chronic infections that
pose significant clinical challenges (Zhao et al., 2023a). It is
estimated that 65% to 80% of human bacterial infections are
associated with biofilms (Zhao et al., 2023a; Romling and
Balsalobre, 2012), underscoring the critical need to eradicate
pathogenic biofilms for effective management of chronic infections.
Biofilm formation is a complex process influenced by various
external factors, including nutrients, osmotic pressure, temperature,
and oxygen availability (Lin et al., 2012). The human body presents
numerous low-oxygen or anaerobic niches. For example, P.
aeruginosa grows as biofilms in the lungs of CF patients, where
chronic infection leads to hypoxic or even anaerobic conditions
(Martin et al.,, 2023; Hall-Stoodley and McCoy, 2022). Similarly,
Salmonella colonizes anaerobic niches within the intestinal tract
(Ehrhardt et al., 2023), and oxygen concentrations in infected or
necrotic tissues and wounds are notably low (Carreau et al., 2011).
In vitro studies have confirmed that oxygen gradients are
commonly present in bacterial biofilms, including those formed
by P. aeruginosa (Papa et al., 2023), Staphylococcus aureus
(Zamudio-Chavez et al., 2023), and Enterococcus faecalis (James
et al,, 2016), particularly in mature biofilms (Borriello et al.,, 2004).
This oxygen limitation enhances pathogen virulence and survival
(Wang et al, 2022). Using oxygen microelectrode technology,
localized hypoxia within P. aeruginosa biofilms has been
confirmed, which restricts protein synthesis in mature biofilm
interiors and contributes to antibiotic resistance (Hoiby et al,
2024). Oxygen deficiency accounts for at least 70% of antibiotic
resistance in mature P. aeruginosa biofilm cells, highlighting oxygen
concentration as a critical factor in biofilm formation and multidrug
resistance stability. Understanding how bacteria rapidly sense and
respond to oxygen-limited environments is essential for improving
infection treatments. This review summarizes the adaptations and
mechanisms of P. aeruginosa biofilms under oxygen-limited
conditions, aiming to provide a novel approach for eradicating
biofilms through modulation of the infection microenvironment.

2 Formation of oxygen-limited
microenvironment

The oxygen concentration gradient is an important characteristic
of bacterial biofilms. The oxygen concentration in the environment is
mostly around 19.95%. Generally, an oxygen concentration ranging
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from 11% to 1% is regarded as hypoxic (Carreau et al., 2011), while an
environment with less than 1% oxygen or completely devoid of
oxygen is an anoxic environment (Mashruwala et al., 2017). In CF
lungs, P. aeruginosa forms biofilms where oxygen penetration is
severely restricted. Microelectrode measurements reveal that oxygen
levels decline progressively with depth and penetrate only 50 pum
from the biofilm surface (Werner et al,, 2004), whereas the average
biofilm thickness can reach 210 um (Borriello et al, 2004).
Consequently, cells deep within the biofilm experience hypoxic or
anoxic conditions (Werner et al., 2004; Dietrich et al., 2013). Active
protein synthesis is confined to a zone roughly 30 um above the base
(Xu et al., 1998). This oxygen limitation arises from both physical and
biological factors: the dense biofilm matrix and viscous CF mucus
impede diffusion, while host inflammatory responses recruit
neutrophils whose respiratory burst consumes oxygen (Kolpen
et al,, 2010). Additionally, oxygen is consumed directly by host and
bacteria respiration at the biofilm periphery, maintaining a persistent
hypoxic gradient (Kolpen et al., 2010), as shown in Figure 1. Sputum
from CF patients is predominantly micro-aerobic to anaerobic (Yoon
etal,, 2002; Alvarez-Ortega and Harwood, 2007a; Hassett et al., 2009).
The extent of anoxic regions correlates with bacterial load and mucus
thickness, potentially occupying large portions of mucus volume
(Cowley et al., 2015). Notably, multidrug resistance protein (MexA) is
more abundant in anoxic zones, suggesting enhanced drug tolerance
under hypoxia in P. aeruginosa (Schaible et al., 2012; Martin et al,,
2023; Pulukkody et al., 2021). Despite being a facultative anaerobe, P.
aeruginosa can maintain growth under oxygen-limited conditions
(Jackson et al, 2014), which in turn promotes robust biofilm
formation (Rossi et al., 2021).

3 The effect of oxygen-limited
conditions on P. aeruginosa biofilms

3.1 Anaerobic metabolism

In human host environments, pathogens encounter fluctuating
oxygen levels, with adaptive responses to such fluctuations
primarily occurring at the metabolic level (Ferreira et al, 2013).
Metabolism reprogramming is central to initiating bacterial
tolerance mechanisms and reactivating transitions from a non-
replicating to an actively growing state. P. aeruginosa exhibits
remarkable metabolic versatility, utilizing diverse catabolic and
anabolic pathways encoded in its genome to thrive in harsh
environments (La Rosa et al., 2018; Crabbe et al,, 2019). While
aerobic metabolism dominates under oxygen-replete conditions,
biofilm-embedded bacteria frequently reside in oxygen-limited
niches. Under such constraints, P. aeruginosa shifts to aerobic
metabolism—enabling sustained growth and metabolic activity
without oxygen (Yoon et al., 2002). This adaptation encompasses
anaerobic respiration and fermentation, as illustrated in Figure 2.
Critically, this metabolic switch confers enhanced antibiotic
tolerance and specific molecule resistance (Peng et al., 2017).

For energy generation via respiratory, P. aeruginosa can utilize
oxygen, nitrogen compounds, and potentially other electron
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Model of P. aeruginosa Biofilm Under Oxygen-Limited Conditions. (A) P. aeruginosa biofilm model in cystic fibrosis (CF) mucus under oxygen-
limited conditions. The color bar on the left side of the figure represents the partial pressure of oxygen (pO,). The gradient from deep to light blue
indicates an increasing anaerobic state within the mucus. Goblet cells continuously secrete mucus, and combined with elevated oxygen
consumption by host cells, a steep oxygen gradient forms within the thickened CF mucus (depicted in light green). P. aeruginosa forms biofilms
within the hypoxic regions of the mucus, provoking a chronic inflammatory response in the host. This response leads to neutrophil infiltration and a
respiratory burst, which further depletes oxygen levels within the mucus. (B) Oxygen-Limited Microenvironment within P. aeruginosa Biofilm. The
transition from deep to light blue illustrates the gradual decrease in oxygen concentration observed inside the biofilm. Oxygen depletion occurs
predominantly in the deep regions (white area). This gradient arises because oxygen is directly consumed by host cells and bacterial respiration at
the biofilm surface, leading to a progressive oxygen decline with increasing distance from the surface. Created with BioRender.com.

acceptors such as thiosulfate (Rossi et al., 2021). Under oxygen-
limited conditions, P. aeruginosa performs anaerobic respiration
using nitrate, nitrite, or nitrous oxide as terminal electron acceptors,
facilitating rapid growth and energy production. In the absence of
nitrate and nitrite, P. aeruginosa employs two alternative
fermentation pathways to support slow growth or survival. The
first involves substrate-level phosphorylation through arginine
utilization, resulting in very slow growth. The second
fermentation pathway uses pyruvate as a substrate, converting it
into acetate, lactate, and small amounts of succinate.

3.1.1 Anaerobic respiration

Nitrogen metabolism under anaerobic and biofilm conditions
promotes the virulence and tolerance of pathogens under hypoxic
stress. Denitrification, a continuous four-step, eight-electron reduction
process converting nitrate to nitrogen, is a key pathway enabling P.
aeruginosa to respire anaerobically under oxygen-limited conditions
(Yoon et al.,, 2002; Stoodley et al., 2024). In this process, nitrate (NO5")
or nitrite (NO,") serves as the terminal electron acceptor (TEA),
replacing oxygen generate energy. Denitrification also serves as an
important cellular redox balancing mechanism within biofilms,
provided these electron acceptors are available in sufficient
concentrations (Line et al, 2014; Palmer et al, 2007). Using an
alginate-encapsulated P. aeruginosa chronic infection model, it has
been demonstrated that oxygen depletion limits bacterial growth.
Supplementing nitrate as an alternative electron acceptor sustains the
growth of P. aeruginosa microcolonies under oxygen-limited
conditions, although the overall respiration rate decreases
(Sonderholm et al,, 2017). Consistent with these findings, lower
nitrate and nitrite levels have been observed in infected wounds
compared to non-infected controls, reflecting bacterial consumption
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via denitrification (Debats et al, 2006). Clinically, the ability of P.
aeruginosa to perform anaerobic respiration under hypoxic conditions
contributes to enhanced biofilm formation (Balasubramanian et al,
2017), aligning with model predictions (Aristotelous, 2022).

During hypoxic growth, nitric oxide (NO) can be produced
endogenously as a denitrification intermediate or derived from
exogenous NO donors. NO exhibits potent bactericidal properties
(Fang, 1997). Accumulation of NO under anaerobic conditions acts
as a stress signal, ultimately promoting biofilm formation as a
defense mechanism (Yoon et al., 2011; Cutruzzola and
Frankenberg-Dinkel, 2016). NO detoxification proteins, including
NO reductase (NOR, encoded by norVW) and flavohemoglobin
(Hmp), help mitigate NO toxicity during denitrification (Gardner
et al., 2003). Interestingly, nitrite reductase (NIR) also has NO-
independent functions; NO can indirectly induce NIR expression
and regulate flagella biosynthesis and swimming motility by
forming a ternary complex with the molecular chaperone DnaK
and flagellin FliC in the periplasm, serving as a scaffold (Borrero-de
Acuna et al, 2015).

Beyond anaerobic respiration, P. aeruginosa in the mucus layer
of CF lungs can perform microaerobic respiration. This process
rapidly consumes oxygen, creating an oxygen gradient (Alvarez-
Ortega and Harwood, 2007b). In the CF lung microenvironment,
microaerobic respiration can occur simultaneously with nitrate
respiration when both oxygen and nitrate are present (Chen et al.,
2006). Three high-affinity terminal oxidases—the cbbs-1, cbbs-2,
and cyanide-insensitive oxidases—enable growth at low oxygen
concentrations and facilitate microaerobic growth. Notably, the
genes encoding cbb;_2 oxidase and the cyanide-insensitive oxidase
(cioAB) are highly expressed under oxygen-limited conditions
(Alvarez-Ortega and Harwood, 2007b). The cyanide-insensitive
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Anaerobic metabolism of P. aeruginosa biofilms under oxygen-limited conditions. Two primary anaerobic metabolic pathways are shown: anaerobic
respiration and fermentation. Anaerobic respiration mainly involves denitrification pathways utilizing nitrate and phenazine to maintain cellular redox
balance. Fermentation includes the arginine and pyruvate fermentation pathways, which generate ATP to sustain bacterial survival. (A) Reduction of
nitrate, nitrite, nitric oxide, and nitrous oxide by nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively.
(B) Electron transfer cycle of phenazine within biofilm. Cells are represented as rods, phenazine as blue hexagons, electrons as white circles, and
oxygen concentration is depicted by the blue background. (C) Arginine deiminase (ADI) pathway. Key enzymes include arginine deiminase (ADI),
ornithine carbamoyltransferase (OTC), and carbamate kinase (CK). (D) Pyruvate fermentation pathway. Key enzymes include lactate dehydrogenase
(Ldh), alcohol dehydrogenase (Adh), phosphate acetyltransferase (Pta), and acetate kinase (AckA). Created with BioRender.com.

oxidases not only increase under microaerobic conditions but may
also protect cells against hydrogen cyanide toxicity during growth.
The cbb;_1 oxidase is consistently expressed across various oxygen
levels, suggesting P. aeruginosa maintains preparedness for sudden
oxygen depletion without needing to trigger a transcriptionally
regulated hypoxic response (Alvarez-Ortega and Harwood, 2007b).

3.1.2 Fermentation

Under oxygen-limited and nitrate-depleted conditions, P.
aeruginosa biofilms sustain other energy supply through
fermentation, primarily by activating the arginine fermentation
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pathway (Scribani Rossi et al, 2022) and pyruvate fermentation
(Eschbach et al., 2004), which moderately support anaerobic growth
and survival. L-arginine serves as a substrate for ATP production,
enabling bacterial persistence under these conditions (Scribani Rossi
et al, 2022). Specifically, P. aeruginosa utilizes the arginine deiminase
(ADI) pathway to generate energy under oxygen-limited conditions,
producing 1 mole of ATP per mole of L-arginine consumed. When
arginine concentrations are sufficiently high, substrate-level
phosphorylation can yield enough ATP to maintain bacterial growth.
Thus, denitrification and arginine fermentation represent core
metabolic processes in P. aeruginosa under oxygen-limited conditions.
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Additionally, under anaerobic conditions, P. aeruginosa
ferments pyruvate into lactate, acetate, and succinate. Although
pyruvate fermentation does not support substantial anaerobic
growth, it promotes long-term bacterial viability without
contributing directly to proliferation (Eschbach et al, 2004).
Proteomic analyses of hypoxic biofilm regions further suggest that
cells produce fermentation by-products such as acetate (Pulukkody
et al, 2021). Notably, nitrate respiration inhibits pyruvate
fermentation, whereas arginine fermentation proceeds
independently of pyruvate metabolism (Eschbach et al., 2004).

3.2 Phenazines as an electron shuttle

P. aeruginosa is well known for producing colored, redox-active
metabolites called phenazines (Glasser et al., 2017). These
phenazine compounds produced vary in structure and chemical
properties (Mavrodi et al,, 2010), functioning as electron-cycling
molecules. The redox cycling of phenazine involves alternating
reduction and oxidation reactions, which reoxidize accumulated
NADH, thereby facilitating the transfer of electrons from reducing
agents such as NAD(P)H to oxidizing agents like oxygen. This
process promotes adenosine triphosphate (ATP) production and
the generation of proton-motive force, allowing cells to survive in
hypoxic regions and supporting colony growth (Dietrich et al.,
2013; Ciemniecki and Newman, 2020). The redox potential of
phenazines enables their reduction by bacterial cells and
subsequent reaction with higher-potential oxidizing agents
outside the cells, such as ferric iron and oxygen (Glasser et al,
2014). Acting as electron shuttles between bacteria and external
substrates (Wang and Newman, 2008), phenazines alleviate
limitations posed by scarce electron acceptors (Dietrich et al.,
2013). Effectively, within the deep layers of the biofilm
community, electrons accumulated for ATP synthesis can be
accepted by oxidized phenazines and transferred to extracellular
oxidants like oxygen. The cbbs-type terminal oxidases Ccol and
Cco2 of P. aeruginosa, key components of the respiratory chain,
participate in phenazine reduction (Jo et al., 2017).

Phenazines and the cellular redox state directly influence
biofilm morphogenesis via the regulatory protein RmcA, which
modulates matrix components responsible for wrinkle formation
(Dietrich et al., 2008; Okegbe et al.,, 2017). Phenazine-producing
colonies tend to grow smoothly, whereas phenazine-deficient
strains exhibit rougher, highly wrinkled biofilms that maximize
oxygen contact (Kempes et al., 2014). Wrinkling serves as an
adaptive mechanism to optimize oxygen accessibility and
maintain metabolic homeostasis. Beyond their redox roles,
phenazines act as signaling molecules that promote biofilm
formation. P. aeruginosa synthesizes phenazine pigments such as
pyocyanin, which intercalate into DNA base-pair regions,
enhancing electron transfer, causing structural perturbations, and
increasing DNA viscosity. The interaction is crucial for biofilm
development (Das et al,, 2015). Disrupting the pyocyanin—DNA
interaction—via antioxidants or other inhibitors—can impede
biofilm formation and associated infections (Das et al., 2015). The
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redox cycling of pyocyanin also generates reactive oxygen species
(ROS), which damage host cells and pathogen cells, releasing eDNA
(Das and Manefield, 2012; Rada et al., 2013). Phenazine compounds
also mediate efficient extracellular electron transfer (EET) by
interacting with eDNA in P. aeruginosa biofilms (Saunders et al.,
2020). Together with the anaerobic stress responses, phenazines
promote antibiotic tolerance and contribute to disease progression
(Schiessl et al., 2019; Jimeénez Otero et al,, 2023). Notably,
phenazines enhance biofilm tolerance to antibiotics such as
ciprofloxacin (Schiessl et al., 2019).

Phenazines also stimulate pyruvate fermentation under anoxic
conditions by mediating expression of the ackA and pta genes
required for this pathway (Glasser et al., 2014). Through their redox
cycling, phenazines enable P. aeruginosa to oxidize pyruvate to acetate
and couple acetate metabolism with ATP synthesis via acetate kinase,
thereby enhancing survival. In pyruvate fermentation, ATP generation
is tightly linked to redox balance, a contrast to the arginine
fermentation pathway where this connection is absent (Glasser
et al, 2014).

3.3 Virulence expression

Mathematical modeling studies have demonstrated that bacterial
biofilms growing anaerobically in anoxic environments secrete elevated
levels of toxins. These toxins diffuse through the environment and lyse
neutrophils, helping the biofilm resist neutrophil-mediated attacks.
Consequently, bacterial adaptability and biofilm formation are
enhanced under these conditions (Aristotelous, 2022). P. aeruginosa
biofilms express a highly regulated protein secretion apparatus known
as the type III secretion system (T3SS), which planktonic cells cannot
deploy (Milkelsen et al., 2009). The T3SS directly translocates a specific
subset of exotoxin effector proteins-including ExoS, ExoU, ExoT, and
ExoY-into host cells, driving P. aeruginosa pathogenicity (Cowell et al,,
2005; Taylor and Winter, 2020). Multiple studies indicate that bacteria
mount adaptive responses to diverse environments by modulating gene
expression and protein production, thereby regulating the expression of
virulence factors (Cullen and McClean, 2015; Teng et al., 2018) and
inducing virulence protein synthesis (Fang et al., 2016). Oxygen
limitation is a critical regulator of T3SS expression, a major virulence
determinant in P. aeruginosa. Exposure to hypoxic conditions activates
the T3SS (O’Callaghan et al., 2011; Chung et al., 2013). This activation
strongly depends on the glyoxylate shunt enzyme isocitrate lyase (ICL,
encoded by aceA), which is highly expressed in cystic fibrosis isolates
specifically under oxygen-limited conditions (Chung et al., 2013). ICL-
dependent regulation influences the expression of the T3 structural
proteins, effectors, and regulatory proteins (ExsC, ExsD, and ExsE).
Additionally, aceA modulates biofilm formation by affecting the
expression of pslA, a gene involved in the biosynthesis of an
extracellular polysaccharide (Chung et al., 2013). Notably, aceA
mutants display enhanced biofilm formation during anaerobic growth.

The RetS/LadS signaling pathway reciprocally regulates T3SS
expression and biofilm formation through a complex mechanism
involving the GacS/GacA two-component system, the small
regulatory RNAs RsmZ and RsmY, and the translational
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repressor RsmA (Goodman et al., 2004; Goodman et al., 2009; Kay
et al.,, 2006; Ventre et al., 2006; O’Callaghan et al., 2011). Activation
of LadS—or downregulation of RetS—promotes GacS homodimer
formation, resulting in GacA phosphorylation and activation,
accompanied by increased production of rsmZ and rsmY. These
small RNAs sequester RsmA, relieving its repression and thereby
activating biofilm formation (Kay et al., 2006; Brencic et al., 2009).
Conversely, RetS activation induces heterodimer formation with
GacS$, inhibiting the GacS/GacA pathway. Free RsmA then binds
specific mRNA targets, modulating their stability and indirectly
activating exsA-dependent T3SS expression (Brencic et al., 2009).
The regulation of AceA may be mediated by the RetS/LadS
signaling pathway (Chung et al., 2013).

Moreover, the anaerobic regulator Anr senses oxygen limitation
and induces expression of narL within the NarL/NarX two-
component system. NarL represses the RsmA-antagonistic RNAs
rsmZ and rsmY, resulting in increased levels of free RsmA, which
stimulates T3SS expression. Free RsmA positively regulates T3SS
and possibly other virulence determinants under its control, serving
as a convergence point for P. aeruginosa’s response to various
environmental cues (O’Callaghan et al., 2011).

Finally, P. aeruginosa OprG, an outer membrane protein
belonging to the OmpW family of eight B-barrel porins, is
broadly distributed. In iron-rich anaerobic environments, ANR
significantly upregulates oprG transcription. Purified OprG forms
cation-selective channels and substantially enhances cytotoxicity
(McPhee et al., 2009).

4 Regulatory mechanisms under
oxygen-limited conditions

P. aeruginosa biofilms adapt to oxygen-limited conditions
through coordinated regulatory mechanisms. Anaerobic
metabolism, including denitrification, arginine fermentation, and
pyruvate fermentation, is activated under oxygen-limited
conditions. Additionally, quorum sensing systems and the
secondary messenger cyclic di-GMP (c-di-GMP) play crucial roles
in modulating biofilm formation in response. Transcriptional
regulatory networks involving the transcription factors ANR and
DNR, and the NarXL two-component system, orchestrate the
biofilm’s adaptive responses under oxygen-limited environments.
Moreover, recent studies have also identified specific genes that
further support biofilms growth and development under
such conditions.

4.1 Anaerobic metabolism-related genes

4.1.1 Denitrification regulatory genes

The expression of narl and nirS genes in P. aeruginosa is
upregulated under anaerobic conditions, playing key roles in
anaerobic respiration (Martin et al., 2023). Notably, P. aeruginosa
may induce denitrification genes in response to low oxygen levels
regardless of nitrate availability. During anaerobic growth, two
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nitrate reductase gene clusters are expressed, one encoding a
membrane-bound enzyme complex (narGHJI) associated with the
cytoplasmic membrane, and another encoding a periplasmic
enzyme complex (napAB) (Palmer et al., 2007). The membrane-
bound nitrate reductase is essential for anaerobic growth, as P.
aeruginosa depends on it for energy generation when nitrate is
present (Palmer et al., 2007). Enzymes involved in nitrate
respiration, including nitrate reductases NapA and NarG,
accumulate in biofilms (Palmer et al., 2007). Furthermore,
antibodies against NapA and NarG have been detected in the
serum of CF patients, confirming in vivo production of these
respiratory enzymes by (Palmer et al., 2007). The periplasmic
nitrate reductase is not essential for anaerobic energy generation.
However, it may balance intracellular redox states under low
oxygen, a role reported in other microorganisms (Richardson
et al, 2001). It is plausible that P. aeruginosa utilizes the
periplasmic nitrate reductase similarly. The Nar complex, located
in the cytoplasmic membrane, drives proton-motive force
generation and ATP synthesis, whereas the periplasmic Nap
complex mainly balances intracellular redox states without
contributing directly to the transmembrane electrochemical
gradient (Richardson et al.,, 2001; Williams et al., 2007; Borrero-
de Acufa et al, 2016). This view contrasts with earlier findings
where the periplasmic nitrate reductase and nitrate transport genes
(e.g., narK2) were downregulated during anaerobic nitrate growth,
with no observed differential regulation of the membrane-bound
reductase (Filiatrault et al., 2005; Sharma et al., 2006). The
discrepancy may stem from methodological differences, as the
prior study lacked saturating mutagenesis and thus might have
missed mutants in the nar operon. The narG gene is critical for
anaerobic growth across varying nitrate concentrations. The narG
operon also includes two homologs of the nitrate/nitrite antiporter
gene narK, as well as PA3871 (nifM) and moaAl, which encode
molybdopterin cofactor synthesis enzymes, and narHJI, encoding
additional subunits of the membrane-bound nitrate reductase
(Palmer et al., 2007).

4.1.2 Arginine fermentation regulatory genes

The arc operon encodes three key enzymes in the ADI pathway,
arcA (arginine deiminase), arcB (catabolic ornithine
carbamoyltransferase), and arcC (carbamate kinase), which is
induced under oxygen-limited conditions (Vander Wauven et al.,
1984). Subsequent studies revealed that the arc operon also includes
the arcD, encoding a hydrophobic membrane-associated protein
involved in the ADI process (Liithi et al., 1990). Proteomic analyses
of hypoxic P. aeruginosa biofilm regions reveal increased proteins
linked to L-arginine and polyamine metabolism, with elevated ArcA
and ArcB indicating active arginine-based energy production.
Concurrently, the abundance of the cytosolic aminopeptidase
PepA is approximately threefold higher in hypoxic compared to
aerobic regions. PepA likely contributes to cellular protein
degradation, recycling amino acids for stress responses such as
pH homeostasis and energy generation (Pulukkody et al,, 2021).
Furthermore, the DNA-binding protein HupB is eight times more
abundant in hypoxic zones relative to aerobic zones (Pulukkody
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etal, 2021). HupB, a small histone-like protein also known as heat-
unstable (HU) protein, protects DNA from oxidative damage and
facilitates adaptation to stress (Stojkova et al., 2019). In mammalian
hosts, chronic P. aeruginosa infections are modulated by L-arginine
metabolism and its derivative NO, with enhanced arginine
catabolism observed at chronic wound sites (Debats et al., 2006).
Microaerobic environments typical of chronic infection sites favor
L-arginine fermentation, leading to NO deficiency, a hallmark of
diminished host defense (Grasemann and Ratjen, 2012).
Interestingly, L-arginine also supports phenazine production, and
arginine metabolism remains largely unexplored (Ha et al., 2011).

4.1.3 Pyruvate fermentation regulatory genes

A genome-wide analysis of anaerobic metabolism in P. aeruginosa
identified several key pyruvate-metabolizing genes, including NADH-
dependent lactate dehydrogenase (IdhA), phosphotransacetylase (pta),
and acetate kinase (ackA) (Eschbach et al., 2004). The conversion of
pyruvate to lactate and acetate relies on the intact IdhA and ackA-pta
gene clusters, respectively (Eschbach et al, 2004). The anaerobic
induction of the ackA-pta promoter is modulated by oxygen tension
through the transcriptional regulators Anr and the integration host
factor (IHF) (Eschbach et al., 2004). THF, potentially encoded by the
anr gene, is believed to contain a 4Fe-4S cluster that functions as an
oxygen tension sensor (Galimand et al, 1991; Sawers, 1991; Green
et al, 2001). The ihfA locus encodes a subunit of the DNA-bending
IHF protein, which plays a role in transcriptional regulation (Delic-
Attree et al,, 1995, 1996). Additionally, the gacS-IdhA operon (PA0926
and PA0927) was identified, encoding the sensor kinase GacS of the
GacA/GacS two-component regulatory system and a putative
fermentative lactate dehydrogenase (LdhA), respectively (Eschbach
et al., 2004). The ackA-pta locus (PA0835 and PA0836) likely
encodes acetate kinase and Pta, respectively, while the adhA locus
(PA5427) encodes a putative alcohol dehydrogenase (AdhA)
(Eschbach et al., 2004). Under oxygen-limited conditions, adhA is
induced to facilitate ethanol catabolism, contributing to anaerobic
energy metabolism (Crocker et al., 2019).

4.2 Quorum sensing

P. aeruginosa utilizes quorum sensing (QS), a cell-density-
dependent intercellular communication system, which plays a
pivotal role in regulating bacterial virulence and biofilm
formation (Lee and Zhang, 2015). Two principal QS signaling
molecules, N-butyryl-L-homoserine lactone (C4-HSL) and N-(3-
oxododecanoyl)-L-homoserine lactone (30-C12-HSL), mediate QS
through the transcriptional activator pairs lasR/lasI and rhIR/rhlI,
respectively. Notably, the expression of lasI and rhil is significantly
upregulated under low oxygen conditions (Alvarez-Ortega and
Harwood, 2007b). The QS system modulates genes involved in
denitrification, thereby influencing bacterial growth and survival by
regulating NO levels within the biofilm. Additionally, QS activates
the transcription of the pel gene, partially through the Rhl system.
The pel gene product synthesizes the glucose-rich extracellular
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polysaccharide matrix essential for P. aeruginosa biofilm
formation (Friedman and Kolter, 2004; Sakuragi and Kolter, 2007).

In the CF airway environment, optimal expression of the rhl QS
component benefits P. aeruginosa persistence. QS controls the
expression of the smnr-1 gene, which in turn regulates the
denitrification rate (Hassett et al., 2002). Specifically, the rhl
system acts as an anaerobic repressor of snr-1 transcription.
Consequently, in the absence of RhIR, the reducing power
provided by Snr-1 increases, thus enhancing NAR activity.
However, dysregulation of denitrification genes in rh[R mutants
leads to elevated transcription of nar and nir genes, causing
accumulation of toxic NO and subsequent self-damage (Yoon
et al., 2002). NO, a by-product of anaerobic respiration,
accumulates in vhIR mutants despite a modest increase (2-fold) in
NOR activity, which is insufficient to mitigate NO toxicity (Yoon
et al,, 2002). Thus, under anaerobic conditions, P. aeruginosa relies
on the rhl QS system and NO reductase to regulate NO levels and
sustain robust biofilm formation and survival (Yoon et al., 2002).

4.3 3,5-cyclic diguanylic acid (c-di-GMP)

Another crucial signaling molecule in P. aeruginosa is the
second messenger 3,5-cyclic diguanylic acid (c-di-GMP), which
facilitates bacterial adaptation to diverse environmental conditions
(Haand O’Toole, 2015; Romling et al., 2013). The c-di-GMP plays a
central role in regulating biofilm formation and dispersion
(Romling et al., 2013). Elevated intracellular c-di-GMP levels
drive the transition from a planktonic to a biofilm lifestyle by
repressing motility-related genes, including those regulated by FleQ,
and activating genes involved in exopolysaccharide production and
biofilm maturation (Baraquet and Harwood, 2013). Conversely,
reduced c-di-GMP levels trigger biofilm dispersion by activating
motility structures, including flagella and pili (Ha and O'Toole,
2015). The synthesis and degradation of c-di-GMP are catalyzed by
diguanylate cyclases (DGCs) and phosphodiesterases (PDEs),
respectively (Kalia et al., 2013). Although the interplay between
QS and c-di-GMP signaling in P. aeruginosa is not fully elucidated,
both pathways regulate virulence and biofilm dynamics, suggesting
potential crosstalk. Current evidence indicates that the QS system
can modulate intracellular c-di-GMP concentrations (Kim et al,,
2018). Specifically, the Las-QS system may elevate c-di-GMP levels
by stimulating DGC activity, whereas the Rhl-QS system might
decrease c-di-GMP by inducing PDE activity. Furthermore, the
tyrosine phosphatase TpbA inhibits the activity of the DGC TpbB
via dephosphorylation, thereby reducing biofilm formation. Las-QS
positively regulates TpbA expression, while Rhl-QS does not
influence it (Ueda and Wood, 2009). Interestingly, TpbA also
enhances rhl transcription, indicating that QS can negatively
regulate c-di-GMP production in P. aeruginosa. However, the
exact dynamics of c-di-GMP synthesis under varying QS states
remain unclear. Moreover, NO has been reported to modulate DGC
and PDE activities (Cutruzzola and Frankenberg-Dinkel, 2016; Park
et al,, 2020). NO inhibits biofilm formation by enhancing PDE
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activity, leading to decreased intracellular c-di-GMP levels
(Cutruzzola and Frankenberg-Dinkel, 2016).

4.4 Transcription factors

TFs play a crucial role in regulating gene expression in response
to environmental changes. Bacteria sense oxygen-limited conditions
in their environment through Anr or Dnr, and regulate the
expression of a series of genes to enable the bacteria to colonize
and grow in oxygen-limited environments.

4.4.1 Anr

Anr is a well-characterized global transcriptional regulator and
a key activator of gene expression under hypoxic conditions. It
governs a regulatory network of hypoxia-responsive genes and
serves as a hallmark of anaerobic or microaerobic growth (Trunk
et al,, 2010). Under low oxygen tension, active Anr promotes P.
aeruginosa biofilm formation and virulence, playing a crucial role in
host colonization (Jackson et al., 2014; Hammond et al.,, 2015).
Deletion of the anr gene results in defective biofilm development
and often abolishes anaerobic growth, whereas elevated Anr activity
enhances biofilm formation (Jackson et al., 2013). Nevertheless, the
precise underlying mechanisms remain incompletely understood.
Notably, Anr regulon genes show no significant transcriptional
increase under hypoxia, consistent with the findings of Alvarez-
Orgeta et al (Alvarez-Ortega and Harwood, 2007b), suggesting Anr
regulation involves mechanisms beyond its own
regulon transcription.

Anr is indispensable for activating energy metabolism pathways
during hypoxia. It strongly induces denitrification and regulates the
expression of other transcriptional regulators, including dnr and the
narXL two-component system (Jackson et al., 2014). The dnr is
essential for activating denitrification during anaerobic growth,
controlling a subset of genes involved in nitrate respiration
(Ferrara et al, 2021). The NarL response regulator modulates
energy metabolism under hypoxic stress by promoting nitrate
utilization and repressing less efficient energy-yielding pathways
such as pyruvate and arginine fermentation (Schreiber et al., 2007;
Benkert et al,, 2008). Interestingly, while Anr enhances NarL
production, it also independently promotes arginine fermentation
by upregulating the arcDABC operon under anaerobic conditions
(Filiatrault et al., 2006). Furthermore, Anr activates the ackA-pta
operon responsible for pyruvate fermentation in response to low
oxygen (Eschbach et al., 2004; Filiatrault et al., 2006).

Anr also upregulates genes encoding high-affinity cytochrome
oxidases (hemF and hemN) and CupA fimbriae components (oprG
and cupAl-5), facilitating respiratory adaptation during hypoxia
and contributing to biofilm development and pathogenicity
(Hammond et al, 2015). Additionally, Anr influences quorum
sensing by regulating the small regulatory RNA PhrS (Sonnleitner
et al, 2011), thereby modulating biofilm adaptability under
low oxygen.

A well-studied virulence factor of P. aeruginosa, the hemolytic
phospholipase C (PIcH), is tightly regulated by Anr. The catabolism

Frontiers in Cellular and Infection Microbiology

10.3389/fcimb.2025.1655335

of choline released by PIcH enhances Anr activity (Massimelli et al.,
2005; Jackson et al., 2013, 2014). The plcH promoter contains a
conserved Anr consensus binding sequence across all P. aeruginosa
genomes (Galimand et al., 1991; Trunk et al., 2010). Anr represses
plcH expression, maintaining PIcH protein at levels that facilitate
effective host-pathogen interactions without compromising biofilm
integrity (Jackson et al, 2014). Under oxygen-limited conditions,
PIcH production may become disadvantageous, as excessive PlcH
protein can compromise the structural integrity of the P. aeruginosa
biofilm. Anr likely binds directly to the plcH promoter, which
contains a conserved Anr consensus sequence across all P.
aeruginosa genomes. Mutations in this conserved sequence result
in increased plcH expression under hypoxia. Although Anr shares
its consensus binding sequence with the secondary regulator Dnr,
their activation mechanisms differ; notably, Dnr does not
participate in plcH repression (Jackson et al.,, 2014). Anr is active
when its 4Fe-4S iron-sulfur cluster remains intact, whereas Dnr is
activated by the oxidation of its heme cofactor by nitric oxide, which
induces a conformational change enabling DNA binding (Rodionov
et al., 2005; Trunk et al., 2010).

The small RNA ErsA also plays an important role in anaerobic
adaptation. It regulates bacterial-host interactions, including
biofilm maturation, motility, and antibiotic resistance (Falcone
et al,, 2018; Zhang et al., 2017; Sonnleitner et al., 2020). ErsA is
transcriptionally induced under oxygen-limited conditions (Ferrara
etal., 2015) and transmits low-oxygen signals to the Anr regulon. It
positively regulates Anr expression at the post-transcriptional level
(Ferrara et al., 2021). Once ErsA surpasses a certain threshold, the
RNA-binding protein Hfq acts synergistically with ErsA to activate
Anr. This function of Hfq complements its own post-
transcriptional regulation of Anr, indicating that ErsA-mediated
activation of anr expression depends on Hfq (Ferrara et al., 2021).
Hfq’s chaperone activity likely promotes the interaction between
ErsA and anr mRNA, enhancing anr mRNA translation, possibly
by improving access to its initiation site. This positive regulation by
ErsA contributes to the stabilization of anr mRNA, consistent with
the observed reduction in anr mRNA levels when ErsA is absent.
Additionally, Hfq has been reported to stimulate anr expression via
an unknown mechanism (Sonnleitner et al., 2011; Sonnleitner and
Blisi, 2014). Deletion of ErsA leads to reduced virulence of P.
aeruginosa both in vitro and in vivo, markedly impaired biofilm
formation and maturation (Ferrara et al, 2020), and severely
compromised anaerobic growth through denitrification and
arginine fermentation. The role of ErsA in biofilm regulation may
also involve downregulation of the AlgC enzyme (Ferrara et al,
2015) and the activation of the AmrZ regulon (Falcone et al., 2018).
Furthermore, ErsA directly negatively regulates oprD mRNA,
affecting the envelope composition of P. aeruginosa (Zhang et al.,
2017; Sonnleitner et al., 2020). These findings suggest that P.
aeruginosa’s adaptation to the CF lung environment may increase
its reliance on ErsA for regulating anaerobic metabolism.

4.4.2 DNR

DNR is a critical transcriptional activator essential for initiating
the denitrification process in P. aeruginosa. It was the first protein
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identified to restore anaerobic respiration and arginine substrate-
level phosphorylation growth in anr mutants (Hassett et al., 2009).
The expression and activity of Dnr are themselves regulated by Anr,
positioning Dnr downstream in the oxygen-sensing regulatory
cascade. Under hypoxic conditions, both Anr and Dnr coordinate
to activate transcription of genes involved in denitrification and
anaerobic respiration. Key operons under their control include
narKGHJIm, encoding nitrate reductase; nirSM-CFLGHJEN,
encoding nitrite reductase; and ccoN,0,Q,P,, encoding the cbb; 2
cytochrome oxidase complex.

In the presence of nitrate under anaerobic conditions, expression
from the narKI promoter is induced through the combined action of
Anr, Dnr, and the nitrate-responsive two-component regulatory
system NarXL (Schreiber et al., 2007). The DNA-bending protein
integration host factor (IHF) is also crucial for optimal promoter
activity. Moreover, Anr and NarXL induce dnr expression,
amplifying the regulatory cascade (Schreiber et al., 2007). The
cooperative function of NarXL and Dnr, regulated by ANR, is
necessary for transcription of the nitrite reductase regulatory gene
nirQ under anaerobic conditions (Schreiber et al., 2007; Hassett et al.,
2009). Dnr belongs to the Crp-Fnr superfamily of transcriptional
regulators and has been reported to activate expression of genes
involved in the denitrification pathway, including nir, nor, and nos
(Hasegawa et al., 1998; Arai et al., 2003). Transcriptional control of
the nar locus occurs via the intergenic region between narXL and
narK1. Both nitrate and nitrite induce narK expression, and a basal
induction persists even during arginine fermentation (Schreiber et al.,
2007). The narKI promoter activity is modulated by both Anr and
Dnr, with Anr being indispensable for its baseline activation, while
Dnr enhances promoter activity independently of Anr (Schreiber
etal, 2007). Anr indirectly facilitates transcriptional activation of nirS
by inducing dnr expression in this regulatory hierarchy. The
transcription of NorC also requires Anr and Dunr in the presence of
nitrous oxide but is not directly regulated by NarL (Arai et al., 1995).

Although the small RNA ErsA positively regulates Anr post-
transcriptional (Ferrara et al., 2021), no direct regulation of Dnr by
ErsA has been observed. Nevertheless, dnr transcript levels decrease
in the absence of ErsA, likely due to diminished Anr expression.
Additionally, under anaerobic conditions, expression of the narXL
genes is also upregulated by both Anr and Dnr (Schreiber
et al., 2007).

4.5 Two-component regulatory system

Two-component systems (TCSs) are widespread in prokaryotic
genomes and constitute a fundamental regulatory network that
enables bacteria to adapt, survive, and modulate pathogenicity in
response to environmental changes. Functioning as molecular
switches, these systems sense external stimuli and regulate gene
expression accordingly, facilitating bacterial adaptation to diverse
conditions. A canonical TCS consists of a membrane-bound sensor
kinase (SK) and a cytoplasmic response regulator (RR), typically
encoded adjacently in the genome (Linsky et al, 2020). Upon
sensing environmental signals, the sensor domain of the SK
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undergoes conformational changes that are transmitted through
the transmembrane region to its cytoplasmic histidine kinase
domain. This triggers autophosphorylation of a conserved C-
terminal histidine residue in trans (Mitrophanov and Groisman,
2008; Jacob-Dubuisson et al., 2018). The phosphoryl group is then
transferred to a conserved aspartate residue on the RR, activating it.
The activated RR modulates the transcription of downstream genes
involved in diverse physiological processes, including bacterial
virulence, pathogenesis, biofilm formation, cell division, and
metabolite production (Tierney and Rather, 2019; Li et al., 2023).
In P. aeruginosa, the NarXL system is a nitrate-responsive two-
component regulatory system (Krieger et al., 2002). NarX is the
sensor kinase and NarL its response regulator; in the presence of
nitrate, NarXL activates and cooperates with Dnr to upregulate nar,
nir, and nor genes encoding nitrate, nitrite, and nitric oxide
reductases (Hassett et al.,, 2009). Simultaneously, NarL represses
the arginine fermentation pathway by inhibiting the arginine-
dependent activation of the arcDABC operon mediated by the
transcriptional activator ArgR. Specifically, NarL suppresses the
expression of arcA, arcB, and arcC genes without affecting the
oxygen tension-dependent activation driven by Anr (Benkert et al.,
2008). Under conditions where both nitrate and arginine are
present, NarL binding likely interferes with ArgR’s interaction at
overlapping DNA binding sites, thereby preventing ArgR-mediated
induction of arcDABC transcription (Benkert et al., 2008).

4.6 Other factors

In addition to above factors, studies have identified other
specialized genes that promote P. aeruginosa growth and biofilm
formation. OmpW is an eight-helix B-barrel outer membrane porin
that facilitates the uptake of small hydrophobic molecules (Catel-
Ferreira et al, 2016). It has been demonstrated that OmpW
participates in bacterial adaptation to various environmental
stresses (Brambilla et al., 2014). In P. aeruginosa, OmpW
expression is upregulated under hypoxic or anaerobic conditions
(McPhee et al., 2009). However, OmpW expression may be
downregulated when iron levels are low, as OmpW is implicated
in iron uptake (Lin et al., 2008). Concurrently, under hypoxia, the
global regulator Lrp is upregulated (Gil-Marques et al., 2022). The
ompW promoter contains an Lrp-binding site, through which Lrp
negatively regulates ompW expression (Gil-Marques et al., 2022).

Another crucial outer membrane protein, OprF, functions as a
cytokine and plays a vital role in regulating anaerobic metabolism in
P. aeruginosa. It is essential for the optimal survival of anaerobic
biofilms (Hassett et al, 2002). The absence of OprF results in
severely impaired bacterial growth due to the loss of nitrite
reductase activity and defects in anaerobic respiration. Notably,
OprF is detectable exclusively in anaerobic biofilms (Beg et al,
2023), and only CF patients with chronic infections possess
antibodies against OprF. Bacteria lacking oprF exhibit diminished
anaerobic biofilm formation, partly attributable to the lack of NIR
activity. Two hypotheses have been proposed regarding OprF’s
precise role in anaerobic growth. First, OprF may serve as a porin
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facilitating nitrate or nitrite transport into the cell and potentially
interact directly with NIR to stabilize its enzymatic activity. Second,
the absence of OprF may compromise peptidoglycan stability, as
OprF has been shown to interact with this essential cell wall
component (Rawling et al., 1998). Reduced peptidoglycan
integrity renders cells more fragile and susceptible to
environmental stress.

5 Clinical significance and future
directions

Biofilm formation serves as a crucial protective strategy,
enabling pathogenic bacteria to resist various environmental
stresses (Ciofu and Tolker-Nielsen, 2019). The hypoxic
microenvironment within biofilms facilitates bacterial adaptation
through reduced metabolic activity and heightened antibiotic
tolerance (Penesyan et al, 2015; Stokes et al., 2019), which
contributes to persistent chronic infections. Traditional
antibacterial treatments have largely targeted the eradication of
pathogens but often overlook the modulation of the infected
microenvironment, resulting in issues such as antibiotic resistance
and incomplete bacterial clearance (Hou et al., 2021; Zhao et al,
2023b). Recently, strategies aimed at reversing the hypoxic
microenvironment have emerged as a promising research focus
for combating biofilm-associated infections.

Reversal of hypoxia triggers a cascade of beneficial effects,
including the reactivation of suppressed immune responses,
promotion of osteogenesis and angiogenesis, induction of
cuproptosis-like bacterial death, and stimulation of dendritic cells
and macrophages to enhance antibacterial activity via chemotaxis
and phagocytosis (Luo et al., 2024). Photodynamic therapy (PDT) is
a notable antibacterial approach capable of effectively killing
bacteria and preventing multidrug resistance; however, its efficacy
is markedly compromised under hypoxic conditions. Enhancing
oxygen delivery to treatment sites and alleviating hypoxia
significantly improves PDT efficacy, providing a promising
avenue for biofilm eradication (Xiu et al., 2020; Bai et al., 2021;
Wu et al., 2022).

Recent advancements include the development of porphyrinic
metal-organic framework (MOF)-based metalloantibiotics that
catalyze endogenous hydrogen peroxide (H,O,) decomposition to
generate oxygen. The resulting oxygen enhances oxygen-dependent
sonodynamic therapy (SDT), which disrupts bacterial homeostasis
—affecting cell membrane integrity and quorum sensing systems—
thereby promoting bacterial killing (Su et al., 2024). Concurrently,
sustained oxygen production supports fibroblast survival and
migration, stimulates angiogenic growth factors, promotes
angiogenesis, and increases secretion of anti-inflammatory
cytokines (Su et al., 2024). Nitric oxide (NO) exhibits dual eftects
depending on its concentration: high levels possess bactericidal
activity, whereas low levels induce biofilm dispersion and sensitize
bacteria to antibiotics (Cai et al., 2021). In P. aeruginosa models,
low-dose NO, which is non-lethal, acts as a signaling molecule
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triggering biofilm dispersal in ex vivo cystic fibrosis (CF) sputum,
reducing bacterial tolerance to tobramycin alone or combined with
ceftazidime. This highlights NO’s potential as an adjunct therapy
for managing P. aeruginosa biofilm infections in CF patients
(Howlin et al., 2017). Consequently, NO-based treatments
represent a promising approach against antibiotic-resistant
bacteria and biofilm-associated infections. Overall, alleviating
biofilm hypoxia holds significant potential for enhancing
treatment efficacy and overcoming chronic biofilm-
related infections.

6 Conclusions

Biofilm cells exhibit an oxygen gradient that typically reduces
their sensitivity to antibiotics, making complete eradication
challenging. The adaptation of bacterial biofilms to hypoxic
conditions is considered a crucial factor for their prolonged latent
persistence in the human body. This hypoxic microenvironment
triggers a series of complex bacterial responses. Current studies
suggest that under oxygen-limited conditions, P. aeruginosa shifts
to anaerobic metabolism, utilizing nitrate for denitrification to
support growth. In the absence of nitrate or nitrite, survival is
maintained through arginine or pyruvate fermentation pathways.
Additionally, P. aeruginosa biofilms produce phenazine compounds
to sustain redox balance within the biofilm matrix. Adaptation to
oxygen limitation also involves the regulation of virulence gene
expression and QS systems. These processes are coordinately
controlled by transcriptional regulators such as Anr, Dnr, NarXL,
and other specialized genes, collectively promoting bacterial
survival and biofilm formation. A deeper understanding of the
adaptive mechanisms employed by bacterial biofilms under oxygen-
limited conditions can provide new directions for future treatments
of biofilm-associated infections, including strategies targeting QS or
c-di-GMP pathways, modulation of Anr or Dnr regulators, and
nitric oxide-based therapies.
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