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Introduction: Obesity is a multifactorial condition influenced by various factors,

including the gut microbiota. However, the relationship between the gastric

microbiota and obesity remains poorly understood. This study aimed to

investigate the composition of gastric microbiota, excluding Helicobacter

pylori, in relation to body mass index (BMI) and metabolic indicators.

Methods: Thirty participants undergoing health checkups were classified into

three groups—normal weight (BMI 18.5–22.9), overweight (BMI 23.0–24.9), and

obese (BMI ≥25.0)—with ten individuals per group. Those with H. pylori infection,

atrophic gastritis, or intestinal metaplasia were excluded. Gastric microbiota from

four antral biopsies per subject were analyzed using 16S rRNA sequencing and

functional profiling by metagenomic prediction.

Results and discussion: Alpha diversity (Gini–Simpson index) was significantly

lower in the combined overweight/obese group than that in the normal group

(P=0.049). Beta diversity analysis revealed clear group separation (Bray–Curtis,

P=0.005; unweighted UniFrac, P=0.004). Significant species differences

between the groups were observed; specifically, the abundances of

Muribaculum gordoncarteri, Turicibacter bilis, and Duncaniella dubosii, were

significantly reduced in the overweight/obese group. Functional predictions

showed differential enrichment of pathways related to fatty acid, amino acid,

vitamin, and carbohydrate metabolism across BMI categories. These findings

suggest that alterations in the gastric microbiota may be linked to obesity and

metabolic dysregulation.
KEYWORDS

body mass index, gastr ic microbiota, obesity , 16S rRNA sequencing,
metabolic dysregulation
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1 Introduction

Obesity has become a global health issue due to its association

with numerous comorbidities, including type 2 diabetes, metabolic

dysfunction-associated steatotic liver disease, cardiovascular

diseases, and certain cancers (Fall et al., 2017). The prevalence of

obesity is increasing, prompting considerable interest in

understanding its underlying mechanisms and contributing

factors (Afshin et al., 2017).

Obesity is a complex multifactorial disease with diverse

etiologies, including genetics, lifestyle, and socioeconomic, and

environmental risk factors (Ghosh and Bouchard, 2017). Among

these risk factors, the role of gut microbiota in the pathogenesis of

obesity has gained substantial attention through various studies

(Ley et al., 2005; Turnbaugh et al., 2006; Maruvada et al., 2017).

Alterations in gut microbial composition, known as dysbiosis, have

been implicated in metabolic disturbances that exacerbate obesity-

related conditions. Specifically, obesity has been associated with a

decrease in the relative abundance of beneficial bacterial species,

such as Bacteroidota (formerly known as Bacteroidetes) and an

increase in Bacillota (formerly known as Firmicutes) (Ley et al.,

2005; Turnbaugh et al., 2006). Studies using next-generation

sequencing techniques, such as 16S rRNA sequencing have

revealed that these microbial changes affect energy harvesting,

lipid metabolism, and systemic inflammation, thereby

contributing to obesity.

While most research has focused on the intestinal microbiota,

other regions of the gastrointestinal tract, such as the stomach, also

harbor distinct microbial communities that may influence

metabolic health (Engstrand and Graham, 2020). Helicobacter

pylori has been suggested to be associated not only with various

gastrointestinal diseases but also with obesity and metabolic

disorders (Azami et al., 2021; Baryshnikova et al., 2024).

However, the gastric microbiota, except H. pylori infection,

remain understudied in relation to obesity. A previous study in

mice reported that high-fat diets induced dysbiosis not only in the

intestinal microbiota but also in the gastric microbiota, potentially

affecting the development and progression of metabolic diseases

(He et al., 2018). This study aimed to investigate the gastric

microbiota composition according to body mass index (BMI)

categories and their potential associations with metabolic indices

in humans. By analyzing gastric mucosal samples using 16S rRNA

sequencing and functional profiling, this study seeks to bridge the

gap in understanding the relationship between gastric microbiota

(except H. pylori) and obesity beyond the established roles of

intestinal microbiota.
Abbreviations: ANOSIM, analysis of similarities; ASV, amplicon sequence

variant; BMI, body mass index; FXR, farnesoid X receptor; LEfSe, linear

discriminant analysis effect size; PCoA, principal coordinates analysis; PD,

phylogenetic diversity; PERMANOVA, permutational multivariate analysis of

variance; SCFA, short chain fatty acid.

Frontiers in Cellular and Infection Microbiology 02
2 Materials and methods

2.1 Study design and population

This study was a cross-sectional observational analysis

conducted at three medical centers in South Korea: Kangwon

National University Hospital, Korea University Anam Hospital,

and Hallym University Dongtan Sacred Heart Hospital. Thirty

participants, aged 20 to 65 years, with no upper gastrointestinal

symptoms were recruited between December 2021 and November

2023. Participants were categorized into three groups (n=10) based

on BMI: normal weight (18.5–22.9 kg/m²), overweight (23.0–24.9

kg/m²), and obese (≥25.0 kg/m²). Participants were excluded if they:

(1) did not consent to participate in the study; (2) were pregnant or

breastfeeding; (3) had serious underlying diseases such as heart

disease, renal failure, or liver cirrhosis (excluding hypertension,

diabetes, and dyslipidemia); (4) had taken proton pump inhibitors

or H2-blockers within the past 4 weeks; (5) had taken antibiotics or

probiotics within the past 4 weeks; (6) were underweight with a BMI

<18.5; (7) tested positive for H. pylori or had previously received H.

pylori eradication therapy; (8) had atrophic gastritis or intestinal

metaplasia detected on upper endoscopy; (9) had undergone

previous gastric surgery; (10) had a prior diagnosis of gastric

cancer; (11) had a history of acute cerebrovascular or

cardiovascular events within the past 3 months; (12) had human

immunodeficiency virus or active tuberculosis; or (13) were

otherwise deemed unsuitable for participation by the investigators.

Written informed consent was obtained from all the

participants. The study was approved by the Institutional Review

Board of Kangwon National University Hospital (KNUH B-2021-

08-029-024). This research was registered at the Clinical Research

Information Service of the Republic of Korea (KCT0006751).
2.2 Data collection and baseline
assessments

All participants underwent baseline assessments, including

medical history and related medication, metabolic indices, and

anthropometric measurements. BMI was calculated as weight

(kg)/height (m2). Metabolic indices, such as waist circumference,

blood pressure, heart rate, hemoglobin A1c, fasting blood glucose,

and lipid profiles (total, low-density lipoprotein, and high-density

lipoprotein cholesterol, and triglycerides) were measured.
2.3 Gastric sample collection

Four gastric mucosal tissue specimens were obtained under

fasting conditions from the greater curvature of the antrum, using

sterile biopsy forceps during endoscopic examination. Samples were

collected under sterile conditions and stored in a refrigerator at −80

°C until DNA extraction. Rapid urease tests were performed to

confirm the absence of H. pylori infection, and histological

examinations ruled out atrophic gastritis and intestinal metaplasia.
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2.4 16S rRNA sequencing of gastric
microbiota

The gastric mucosal tissue specimens were subjected to 16S

rRNA sequencing by Macrogen (Seoul, South Korea). Genomic

DNA was extracted from the sample using a DNeasy PowerSoil Pro

Kit (Qiagen, Hilden, Germany). We targeted the V3–V4 regions of

the 16S rRNA gene within the genomic DNA by conducting

polymerase chain reaction using two primers: 341F (5′-
C C T A C GGGNGGCWGCAG - 3 ′ ) a n d 8 0 5 R ( 5 ′ -
GACTACHVGGGTATCTAATCC-3′). The obtained amplicons

were further processed according to the Illumina protocols to

construct a sequencing library, which was then applied to the

Illumina MiSeq platform to obtain paired-end (2×300 bp) reads.

A representative library quality control report confirming the

expected size distribution of the V3–V4 amplicons is provided in

Supplementary Figure S1.
2.5 Amplicon sequence variant clustering
of sequenced reads

All bioinformatic processes and analyses described below were

performed within the Macrogen bioinformatics cloud platform. The

raw reads were demultiplexed based on index sequences, and

Cutadapt (v3.2) (Martin, 2011) was used to remove sequencing

adapter and forward/reverse primer sequences. Subsequently, the

reads were trimmed to obtain the forward (250 bp) and reverse (200

bp) sequence for paired-end reads. The trimmed reads were then

error-corrected and denoised using the DADA2 (v1.18.0) (Callahan

et al., 2016) package in R (v4.0.3). Reads with expected errors of 2 or

more were removed. The sequencing-error-corrected paired-end

reads were aligned with single sequences and chimeric sequences

were eliminated using the consensus method in DADA2 to

generate ASVs.
2.6 Analysis of microbial community

Each ASV sequence was subjected to BLAST+ (v2.9.0)

(Camacho et al., 2009) against the NCBI 16S Microbial Database

to assign taxonomy information based on the most similar

organism: if the best-hit query coverage was 85% or higher and

the identity of the matched region was 85% or higher. To obtain a

phylogenetic tree required for diversity analysis, ASVs were aligned

using MAFFT (v7.475) (Katoh and Standley, 2013) and a

phylogenetic tree was constructed from the alignment using

FastTreeMP (v2.1.10) (Price et al., 2010). QIIME (v1.9) (Caporaso

et al., 2010) was used for diversity analyses and data normalization

through subsampling. To assess species diversity and evenness

within samples, Shannon, Gini–Simpson, and phylogenetic

diversity (PD) whole tree indices, were calculated and the

relevance of alpha diversity was examined using rarefaction

curves. Microbial community diversity among samples was

determined based on Bray–Curtis and weighted/unweighted
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UniFrac distances. The relationships between samples were

visualized using principal coordinates analysis (PCoA) and

UPGMA trees (Rambault; Caporaso et al., 2010).
2.7 Metagenomic prediction of microbial
community

To predict the MetaCyc metabolic pathways of microbial

communities for each sample, Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States

(PICRUSt2) (Douglas et al., 2020) was used. ASVs with a nearest

sequenced taxon index value of ≥2 were excluded from the analysis.

Heatmaps for visualization of selected pathways were designed

using R (v4.4.1).
2.8 Statistical analysis of microbial
communities

The Kruskal–Wallis test was used for comparisons among three

groups, whereas the Wilcoxon rank-sum test was used for

comparisons between two groups (Hollander et al., 2013). To

compare beta diversity between groups, the previously calculated

Bray–Curtis and weighted/unweighted UniFrac distance matrices

were used for analysis of similarities (ANOSIM) (Clarke, 1993) and

permutational multivariate analysis of variance (PERMANOVA)

(Anderson, 2001). To compare the microbial community

composition (relative abundance) between groups, linear

discriminant analysis effect size (LEfSe) was used (Segata et al.,

2011). Taxa with a linear discriminant analysis score of ≥2.0 and P-

value ≤0.05 were selected (Hollander et al., 2013). The extent of

differences was represented by the linear discriminant analysis

score. The distribution of each taxon and significantly different

microbial taxa identified using LEfSe were visualized using

GraPhlAn (Asnicar et al., 2015). Spearman’s correlation (Best and

Roberts, 1975) was calculated using species-level relative abundance

and BMI variables of each sample. The correlation coefficient (Rho)

and P-value for each species were calculated and species with a P-

value ≤0.05 were visualized using scatter plots generated using

ggplot (v3.5.1) (Wickham and Wickham, 2016) in R (v4.2.1).
3 Results

3.1 Baseline characteristics

The study included 30 participants, who were divided into three

groups based on their BMI: normal weight (18.5–22.9 kg/m²),

overweight (23.0–24.9 kg/m²), and obese (≥25.0 kg/m²). Although

not statistically significant due to the small number of participants,

there was a lower proportion of males in the normal weight group

compared with that in the other groups. The body weight showed a

significant difference among the three groups: 55.8 ± 3.7 kg in the

normal weight group, 69.3 ± 6.2 kg in the overweight group, and
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73.2 ± 11.6 kg in the obese group (P<0.001; Table 1). Similarly, the

waist circumference was 75.4 ± 4.0, 86.7 ± 7.4, and 91.4 ± 7.1 cm in

the normal weight, overweight, and obese groups, respectively

(P<0.001). The hip circumference also showed a significant

difference, measuring 90.0 ± 1.9, 97.2 ± 6.0, and 99.3 ± 4.2 cm in

the three groups (P<0.001). Regarding underlying medical

conditions, there were no significant differences among the

groups. Hemoglobin levels were significantly lower in the normal

weight group (12.5 ± 1.8 g/dL) compared with that in the

overweight (14.5 ± 2.8 g/dL) and obese (14.5 ± 1.7 g/dL) groups

(P=0.021). Other laboratory parameters showed no significant

differences between the groups.
3.2 Statistics of sequenced reads

We obtained raw reads (104,637 ± 36,054 reads/sample) from

the Illumina sequencing. After filtering (see Materials and

Methods), a total of 46,685 ± 19,672 reads/sample were retained

for ASV determination. The read count per sample ranged from

13,886 to 122,502. From these reads, a total of 2,985 ASV sequences

were assembled. These results indicate that our dataset was

sufficient for subsequent microbial community analysis.
3.3 Alpha diversity of gastric microbiota

When the participants were categorized into two groups—

overweight/obese and normal weight—alpha diversity, as assessed

using the Gini–Simpson index for evenness, was significantly lower

in the overweight/obese group than that in the normal weight group

(P=0.049). However, the PD whole tree index (P=0.4480), Shannon

index (P=0.5588), or observed ASVs (P=0.5672) were not

statistically different among groups (Figure 1). When analyzed as

three separate BMI groups, a trend of reduced diversity in

overweight and obese individuals was observed, although not

statistically significant (see Supplementary Figure S2).
3.4 Beta diversity of gastric microbiota

PCoA demonstrated clear separations in microbial composition

among the three BMI groups, indicating significant differences in

beta diversity. Statistical analyses showed that Bray–Curtis distances

assessed by ANOSIM revealed significant differences among the

three groups (P=0.005) (Figures 2A, B), as did unweighted UniFrac

distances tested by PERMANOVA (P=0.004) (Figure 2C). Pairwise

comparisons showed significant differences between the normal

weight and overweight groups (P=0.02 and 0.005, respectively), and

between the normal weight and obese groups (P=0.05 and 0.035,

respectively). However, no significant differences were observed

between the overweight and obese groups. In addition, weighted

UniFrac distance, also assessed by PERMANOVA, demonstrated a

significant difference between the normal weight and overweight

groups (P=0.02) (Figure 2D).
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3.5 Composition of gastric microbiota

In total, 28 phyla, 653 genera, and 1,118 species were identified

across all samples. Relative abundance was visualized using two

stacked bar plots at the phylum and genus levels (Figures 3A, B).

The six predominant phyla—Bacillota, Pseudomonadota,

Bacteroidota, Actinomycetota, Verrucomicrobiota, and

Fusobacteriota—accounted for 93.3% of the gastric microbiota. At

the genus level, Streptococcus, Akkermansia, Aquabacterium,

Haemophilus, Enterococcus, Prevotella , Pseudescherichia ,

Clostridium, Veillonella, Bacteroides, Staphylococcus, Neisseria,

Muribaculum, and Fusobacterium collectively comprised 40.0% of

the total microbial composition.

In the comparison between the overweight/obese and normal

weight groups, LEfSe analysis at the genus level identified 17 genera

with significant differences. Among them, Muribaculum,

Duncaniella , Yokenella , Deinococcus , Desulfosporosinus ,

Adlercreutzia, Rhodopseudomonas, and Nitrosomonas were

reduced in the overweight/obese group compared with those in

the normal weight group. Conversely, Haemophilus, Prevotella,

Vei l lone l la , Nei s ser ia , Segate l la , Rothia , Col l inse l la ,

Bradyrhizobium, and Capnocytophaga were increased in the

overweight/obese group (Figure 3C). In LEfSe analysis at the

species level, 17 bacterial species were significantly different

between the BMI groups. Notably, Muribaculum gordoncarteri,

Turicibacter bilis, Duncaniella dubosii, Bacteroides caccae,

Yokenellar regensburgei, Bythopirellula polymerisocia, and

Rhodopseudomonas palustris were significantly reduced in the

overweight/obese group compared with those in the normal

weight group. Conversely, other species, such as Haemophilus

parainfluenzae, Prevotella melaninogenica, Veillonella atypica,

Neisseria perflava, Collinsella aerofaciens, Streptococcus salivarius,

Rothia mucilaginosa, Bradyrhizobium australiense, Campylobacter

concisus, and Streptococcus rubneri showed increased abundance in

the overweight/obese group (Figure 3D).

In the three-group comparison among the normal weight,

overweight, and obese groups at the genus level, Muribaculum,

Yokenella, and Rhodopseudomonas abundance were higher in the

normal weight group, whereas Haemophilus, Prevotella, and

Neisseria abundance were higher in the overweight group (see

Supplementary Figure S3). Additionally, Segatella and an

unclassified genus were more abundant in the obese group. At the

species level, M. gordoncarteri, Bacteroides caccae, and Y.

regensburgei were more abundant in the normal weight group,

whereas H. parainfluenzae, N. perflava, and Haemophilus

pittmaniae were more abundant in the overweight group.

Additionally, Ruminococcus gauvreauii and Clostridium innocuum

were more abundant in the obese group.
3.6 Functional profiling of gastric
microbiota

Functional prediction analysis using PICRUSt2 between the two

groups (overweight/obese vs. normal weight) revealed that
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TABLE 1 Demographic and clinical characteristics of study population.

Variables
Normal weight Overweight Obesity

P-value (F, df)
(n=10) (n=10) (n=10)

Sex, Male (%) 2 (20%) 6 (60%) 5 (50%) 0.182 (3.412, 2)

Age (year) 50.1 ± 7.9 48.4 ± 13.7 49.6 ± 11.4 0.993 (0.014, 2)

Height (cm) 160.8 ± 5.9 170.0 ± 8.05 164.3 ± 9.2 0.075 (5.182, 2)

Weight (cm) 55.8 ± 3.7 69.3 ± 6.2 73.2 ± 11.6 <.001 (16.733, 2)

Waist circumference (cm) 75.4 ± 4.0 86.7 ± 7.4 91.4 ± 7.1 <.001 (15.704, 2)

Hip circumference (cm) 90.0 ± 1.9 97.2 ± 6.0 99.3 ± 4.2 <.001 (13.735, 2)

Underlying disease

Diabetes mellitus 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Thyroid disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Hypertension 0 (0%) 1 (10%) 0 (0%) 0.368 (2.000, 2)

Cerebrovascular disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Tuberculosis 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Liver disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Renal disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Hyperlipidemia 0 (0%) 2 (20%) 1 (10%) 0.342 (2.148, 2)

Surgical history 0 (0%) 2 (20%) 1 (10%) 0.342 (2.148, 2)

Drug history

Probiotics 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Nonsteroidal anti-inflammatory drugs 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Aspirin 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Steroid 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)

Anticoagulants 0 (0%) 1 (10%) 0 (0%) 0.368 (2.000, 2)

Smoking 0 (0%) 1 (10%) 2 (20%) 0.342 (2.148, 2)

Alcohol 1 (10%) 4 (40%) 1 (10%) 0.163 (3.625, 2)

Vital sign

Systolic blood pressure (mmHg) 118 ± 14.6 126.0 ± 11.6 131.0 ± 11.1 0.071 (5.280, 2)

Diastolic blood pressure (mmHg) 77.5 ± 8.3 77.8 ± 11.2 78.0 ± 5.7 0.940 (0.124, 2)

Heart rate 78.9 ± 10.4 77.9 ± 12.1 79.8 ± 13.5 0.898 (0.214, 2)

Laboratory findings

Whole blood count 5,320.0 ± 1,291.7 5,260.0 ± 1,082.4 6,328.0 ± 1,486.8 0.218 (3.050, 2)

Hemoglobin 12.5 ± 1.8 14.5 ± 2.8 14.5 ± 1.7 0.021 (7.683 2)

Platelet count 266,928.1 ± 111,359.8 260,500.0 ± 91,147.3 237,723.2 ± 91,371.0 0.453 (1.583, 2)

Blood urea nitrogen 11.9 ± 3.1 13.9 ± 3.1 13.3 ± 3.9 0.302 (2.395, 2)

Creatine 0.7 ± 0.2 0.8 ± 0.2 0.8 ± 0.2 0.366 (2.010, 2)

Total bilirubin 0.8 ± 0.3 0.9 ± 0.4 0.704 ± 0.209 0.581 (1.087, 2)

Aspartate aminotransferase 25.2 ± 5.1 29.5 ± 9.5 30.7 ± 15.1 0.636 (0.905, 2)

Alanine aminotransferase 22.1 ± 9.0 31.3 ± 15.1 35.1 + 22.86 0.173 (3.504, 2)

(Continued)
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metabolic pathways related to fatty acid synthesis, amino acid

synthesis/degradation, vitamin synthesis, S-adenocyl-L-

methionine (SAM) synthesis, carbohydrate metabolism, and

mycolate synthesis differed across BMI categories (Figure 4).

Fatty acid biosynthesis pathways, including palmitate

biosynthesis II (bacteria and plants), superpathway of fatty acid

biosynthesis initiation (Escherichia coli), palmitoleate biosynthesis I

(from (5Z)-dodec-5-enoate), (5Z)-dodec-5-enoate biosynthesis,

stearate biosynthesis II (bacteria and plants), and oleate

biosynthesis IV (anaerobic), were significantly associated with the

overweight/obese group. In contrast, the pathway related to fatty

acid salvage was significantly upregulated in the normal

weight group.

Amino acid synthesis pathways, such as the superpathway of L-

alanine biosynthesis and L-methionine biosynthesis (transsulfuration),

were significantly associated with the overweight/obese group. Amino

acid degradation pathways, such as L-leucine degradation I and L-

tyrosine degradation I were downregulated in the overweight/

obese group.

Vitamin synthesis pathways, including superpathway of

tetrahydrofolate biosynthesis, superpathway of tetrahydrofolate

biosynthesis and salvage, thiamin salvage II, 6-hydroxymethyl-

dihydropterin diphosphate biosynthesis I, and 6-hydroxymethyl-

dihydropterin diphosphate biosynthesis III (Chlamydia) showed

high activity in the normal weight group.

SAM synthesis pathways, such as SAM cycle I, superpathway of

tetrahydrofolate biosynthesis, superpathway of tetrahydrofolate

biosynthesis and salvage, and superpathway of L-methionine

biosynthesis (transsulfuration) were significantly associated with

the overweight/obese group.

Carbohydrate metabolism pathways, such as TCA cycle VII

(acetate-producers), lactose and galactose degradation I,

superpathway of hexitol degradation (bacteria), and hexitol

fermentation to lactate, formate, ethanol, and acetate were

significantly associated with the overweight/obese group.

The mycolate biosynthesis pathway was significantly high in the

overweight/obese group.
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3.7 Correlation between BMI and gastric
microbiota

Correlation analysis further emphasized the associations between

specific bacterial species and BMI. Reduced abundance of M.

gordoncarteri (Rho=−0.4, P=0.027), T. bilis (Rho=−0.4, P=0.0286), D.

dubosii (Rho=−0.37, P=0.0426), Aquabacterium commune (Rho=

−0.36, P=0.0487), Bifidobacterium pseudolongum (Rho=−0.39,

P=0.034), and Sphingobium xenophagum (Rho=−0.39, P=0.034)

negatively correlated with BMI, suggesting a potential role in obesity-

related metabolic dysregulation (see Supplementary Figure S4).
4 Discussion

This study demonstrates significant differences in the

composition and functional profiles of the gastric microbiota

between BMI categories, suggesting gastric microbial communities,

like their intestinal counterparts, may play a role in obesity-related

metabolic alterations (Ley et al., 2005; Turnbaugh et al., 2009; Denou

et al., 2016; Yun et al., 2017; Kim et al., 2020; Duan et al., 2021).

In this study, among the four indices related to alpha diversity,

only the Gini–Simpson index for evenness significantly decreased in

overweight and obese individuals. This aligns with previous studies

on the intestinal microbiota, where dysbiosis and decreased

microbial diversity were strongly associated with obesity and

metabolic disorders (Turnbaugh et al., 2009; Denou et al., 2016;

Yun et al., 2017; Kim et al., 2020; Duan et al., 2021). This reduced

diversity may impair the microbiota functional capacity, including

energy homeostasis and anti-inflammatory processes, as shown in

other regions of the gastrointestinal tract.

Although some studies have reported no significant differences,

obesity has generally been associated with changes in the composition

of the gut microbiota, including an increased relative abundance of

Bacillota at the phylum level and a higher Bacillota/Bacteroidota ratio

compared to individuals with normal weight (Ley et al., 2005; Andoh

et al., 2016; Koliada et al., 2017; Murga-Garrido et al., 2022). In this
TABLE 1 Continued

Variables
Normal weight Overweight Obesity

P-value (F, df)
(n=10) (n=10) (n=10)

Laboratory findings

Gamma glutamic
pyruvate transaminase

18.0 ± 6.1 28.6 ± 15.8 30.9 + 20.55 0.096 (4.697, 2)

Fasting blood glucose 94.0 + 11.29 98.1 + 4.30 103.4 ± 6.9 0.121 (4.220, 2)

Hemoglobin A1c 5.7 ± 0.2 5.5 ± 0.3 5.6 ± 0.3 0.348 (2.111, 2)

Total cholesterol 204.0 ± 29.5 207.5 ± 30.3 214.9 + 42.76 0.941 (0.122, 2)

Triglycerides 69.7 ± 28.3 117.6 ± 67.5 117.6 + 40.738 0.009 (9.425, 2)

High density lipoprotein 62.2 ± 12.7 56.0 ± 14.6 49.6 ± 9.8 0.111 (4.396, 2)

Low density lipoprotein 121.8 ± 21.7 120.8 ± 32.3 134.3 ± 37.6 0.717 (0.667, 2)
Data are expressed as mean ± standard deviation (SD) or number (%).
df, degree of freedom.
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study, there was no significant difference in the gastric microbiota at the

phylum level among normal weight, overweight, and obese groups.

Seventeen bacterial species showed significant differences between the

normal weight and overweight/obese groups.M. gordoncarteri, T. bilis,

and D. dubosii were notably reduced in the overweight/obese group

and are linked to lipid and carbohydrate metabolism (Lagkouvardos

et al., 2019; Chung et al., 2020; Zhu et al., 2024), whereas H.

parainfluenzae and V. atypica were more abundant and may

contribute to metabolic dysregulation via pro-inflammatory
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pathways. A meta-analysis identified Pseudomonadota (formerly

Proteobacteria) as the phylum most consistently associated with

obesity (Xu et al., 2022). Several species belonging to

Pseudomonadota, such as Proteus mirabilis and E. coli, promote

gastrointestinal inflammation, contributing to insulin resistance and

metabolic diseases (Longstreth, 2007; Zhang et al., 2021). In this study,

H. parainfluenzae, N. perflava, B. australiense, and C. concisus—all

within this phylum—were more abundant in the overweight/

obese group.
FIGURE 1

Comparison of alpha diversity between the overweight/obese and normal weight groups. (A) Observed amplicon sequence variants (ASVs).
(B) Gini–Simpson index. (C) Phylogenetic diversity (PD) whole tree. (D) Shannon index. P-values were determined using the Wilcoxon rank-sum test.
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The obesity-related microbes identified in previous studies

using fecal samples, such as H. parainfluenzae, V. atypica, and R.

mucilaginosa were also found in this study in gastric mucosal

samples. This suggests that changes in these microbes may

originate in the stomach, leading to their increase or decrease

throughout the gastrointestinal tract, ultimately affecting the

colon and fecal microbiota. Notably, the altered abundance of D.

dubosii, B. polymerisocia, and R. palustris (decreased), and N.

perflava, B. australiense, C. concisus, S. rubneri (increased) in the

overweight/obese group has not been previously reported in studies

using intestinal or fecal microbiota. These shifts may reflect unique

gastric environmental factors rather than obesity per se. Given that

H. pylori infection alters gastric microbial diversity during

progression to atrophic gastritis and intestinal metaplasia (Noto

and Peek, 2017), we excluded individuals with such conditions to

minimize confounding by inflammation. Therefore, the observed

changes likely reflect gastric-specific rather than inflammation-

driven microbiota alterations.

The gut microbiota contribute to obesity via pathways involving

energy harvest, inflammation, and lipid and bile acid metabolism

(Kim, 2023; Zhuang et al., 2023). Gut microbiota play a crucial role

in the host’s energy harvest, as demonstrated in germ-free mouse
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models where mice harboring gut microbiota exhibited greater

weight gain and higher energy absorption despite consuming the

same diet (Lupp et al., 2012; Rooks and Garrett, 2016). In this study,

PICRUSt2 analysis revealed BMI-related differences in fatty acid,

amino acid, and vitamin metabolism. The increased activity of fatty

acid biosynthesis pathways in obesity aligns with prior findings

linking this shift to enhanced energy extraction and adipogenesis

(Turnbaugh et al., 2006; Kim et al., 2020; Duan et al., 2021).

Furthermore, the diminished activity of amino acid degradation

pathways in obese individuals may suggest alterations in protein

metabolism. Although short-chain fatty acids (SCFAs) support lipid

metabolism and intestinal health, their role in obesity remains

debated due to variable effects (Turnbaugh et al., 2006; Chambers

et al., 2015). In addition, gut microbes modulate bile acid

deconjugation, which influences hepatic cholesterol and lipid

metabolism (Kalaany and Mangelsdorf, 2006; Watanabe et al.,

2006; Wahlström et al., 2016). While we identified alterations in

predicted pathways related to amino acid metabolism (e.g.,

degradation) and SAM biosynthesis using PICRUSt2, our study

did not include untargeted metabolomics or direct quantification of

SAM/S-adenosylhomocysteine levels. Although microbial functions

can be inferred using PICRUSt2, the lack of supporting data such as
FIGURE 2

Comparison of beta diversity among the overweight, obese, and normal weight groups. (A) Bray–Curtis distance (2D). (B) Bray–Curtis distance (3D).
(C) Unweighted UniFrac distance matrix. (D) Weighted UniFrac distance matrix.
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serum metabolite measurements or untargeted metabolomics

prevents confirmation of the metabolic relevance of the gastric

microbiota in this study.

Among the species significantly associated with BMI, there is

limited research on the association between M. gordoncarteri and

metabolic diseases. However, the Muribaculum genus plays a key

role in carbohydrate metabolism, particularly glycolysis and

gluconeogenesis (Chung et al., 2020; Zhu et al., 2024), which are

central to energy regulation and may influence obesity.

Muribaculum also contributes to SCFA production from dietary

fiber, supporting energy balance, lipid metabolism, and anti-

inflammatory effects beneficial in metabolic disorders like obesity

and type 2 diabetes. Additionally, through bile salt hydrolase

activity, Muribaculum affects bile acid metabolism. Its depletion

has been associated with reduced levels of hyodeoxycholic and
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ursodeoxycholic acid, bile acids that activate the intestinal farnesoid

X receptor (FXR), thereby influencing lipid absorption and bile acid

synthesis via the FXR– fibroblast growth factor 19 axis (Xu et al.,

2023). Therefore, reducedMuribaculum abundance may contribute

to lipid dysregulation through impaired bile acid signaling.

Although D. dubosii has not been directly linked to obesity or

metabolic diseases in humans or animal models, it belongs to the

Muribaculaceae family, known for its role in carbohydrate metabolism

and SCFA production—key processes in energy and lipid regulation

(Lagkouvardos et al., 2019; Chung et al., 2020). Given its reduced

abundance in obese individuals, further research is warranted to clarify

its potential involvement in metabolic dysregulation via impaired

carbohydrate metabolism and SCFA-associated protective functions.

Studies suggest that Turicibacter genus, including T. bilis, may

affect host lipid metabolism and be associated with obesity-related
FIGURE 3

Relative abundance of the microbial community and differentially abundant taxa. Stacked bar plots show the taxonomic composition at the
(A) phylum and (B) genus levels. All detected phyla are included, whereas genera are presented if the relative abundance in any group exceeded
1.0%. Differentially abundant taxa between overweight/obese and normal-weight groups were identified using linear discriminant analysis effect size
(LEfSe) at the (C) genus and (D) species levels.
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changes in body weight (Fung et al., 2019; Lynch et al., 2023). A

systematic review also reported lower levels of Turicibacter-related

taxa in obese individuals compared to lean controls, indicating a

potential protective role against metabolic dysfunction (Xu

et al., 2022).

Regarding chronic inflammation, lipopolysaccharides from gram-

negative bacteria can cross the intestinal barrier and trigger systemic

inflammation via the Toll-like receptor-4 pathway, promoting the

production of pro-inflammatory cytokines (such as IL-1, IL-6, and

TNF-a) and contributing to insulin resistance (Cani et al., 2009; Lee

et al., 2020). The elevated abundance of H. parainfluenzae and V.

atypica in obese individuals in our study suggests a possible role of

gastric microbiota in systemic inflammation and metabolic disorders.

H. parainfluenzae is known to elicit mucosal immune responses in

chronic obstructive pulmonary disease (Mitchell and Hill, 2000), while

V. atypica, prevalent in dysbiotic oral biofilms, has been linked to

altered inflammatory and nutritional status in children (Theodorea

et al., 2022).

Several studies have linked H. pylori infection to metabolic

dysregulation, including obesity and insulin resistance (Azami et al.,

2021; Baryshnikova et al., 2024). For instance, Azami et al. (2021)

reported significantly elevated BMI and insulin resistance in H.

pylori-positive individuals, while Baryshnikova et al. (2024)

suggested that reduced ghrelin levels and chronic inflammation

may underlie these metabolic disturbances. To avoid confounding

effects of infection-induced microbiota shifts, our study excluded H.

pylori-positive subjects, allowing for a more accurate assessment of

BMI-associated changes in gastric microbiota among non-infected

individuals. Future research directly comparing H. pylori-positive

and -negative populations across BMI categories could provide

valuable insights into the interactive effects of H. pylori infection

and host metabolic status on gastric microbial ecology.
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The association between gastric microbiota and BMI highlights

the stomach as a potential therapeutic target for modulating obesity.

Interventions targeting the gastric microbiota, such as probiotics or

dietary modifications, may complement existing treatments aimed

at restoring gut microbial balance. Additionally, the distinct

microbial profiles observed in this study warrant further research

to elucidate the causal relationships between specific bacterial taxa

and metabolic pathways.

This study had several limitations. First, the small sample size

(n=10 per group) substantially limits the statistical power and

generalizability of our findings. In particular, the limited sample

size increases the risk of false-positive or -negative results and

precludes robust detection of subtle microbial differences.

Furthermore, the unequal sex distribution in the normal weight

group and the absence of sex-stratified statistical analysis limits our

ability to draw definitive conclusions regarding sex-specific

microbial patterns. In our study, the proportion of women was

higher than that of men in the normal weight group. Subgroup

analysis based on sex (Supplementary Figure S5A) revealed that

female participants exhibited lower alpha diversity metrics—

including the Shannon index, observed ASVs, and Faith’s PD—

compared to their male counterparts; however, these differences

were not statistically significant (P>0.05). Furthermore, we

confirmed that the separation observed between the normal and

overweight/obese groups in the beta diversity of PCoA (Figure 2A)

may not have been influenced by this sex imbalance

(Supplementary Figure S5B). In addition, most participants in

this study resided in a specific region of South Korea, which

limits the ability to reflect geographic diversity related to dietary

habits and lifestyle. Given the homogeneity of the study population,

further validation in multi-center and multi-ethnic cohorts is

necessary to confirm the findings. Second, this study is a cross-
FIGURE 4

Functional prediction analysis using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) between the
overweight/obese and normal weight groups. TCA, tricarboxylic acid; E. coli, Escherichia coli.
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sectional analysis comparing overweight/obese and normal-weight

groups using 16S rRNA gene sequencing. Due to the nature of this

design, it is difficult to determine whether the observed differences

in microbial composition are a cause or consequence of obesity.

Third, although we excluded individuals with H. pylori infection to

minimize its confounding effect on the gastric microbiota, other

potential confounders such as dietary habits, physical activity,

medication use, socioeconomic status, and host genetic factors

were not systematically assessed and thus could not be adjusted

for. In addition, local physiological variables, including gastric pH

and mucosal immune markers such as cytokine levels, were not

measured. This was due to the limited volume of biopsy tissue

obtained from clinical endoscopy. Nonetheless, these factors may be

important in shaping the gastric microbial environment. Lastly, we

acknowledge that deeper functional validation, such as shotgun

metagenomics, metatranscriptomics, or experimental verification of

microbial metabolic activity, was not performed. While our findings

suggest that taxa such as Muribaculum and Turicibacter are linked

to metabolic pathways involving SCFA production and bile acid

metabolism, our study did not include direct measurement of host

biomarkers such as circulating bile acids, inflammatory cytokines,

or fecal SCFA concentrations. These data would be valuable in

confirming the functional consequences of microbial shifts.

Therefore, future studies with larger, geographically diverse

cohorts and balanced sex distributions are necessary to validate

these preliminary observations. Moreover, longitudinal studies

integrating host metabolic profiles with microbial community

data—using multi-omics approaches such as metabolomics,

microbial genome analysis, and host genotyping—and accounting

for dietary habits, local physiological parameters, and other

potential confounding factors, would be valuable to better

characterize the functional implications of gastric microbiota

alterations in obesity.

In conclusion, our findings highlight significant differences in

the composition and functional potential of the gastric microbiota

across BMI categories. The identification of specific microbial taxa

and metabolic pathways associated with obesity provides a valuable

basis for future research into the metabolic roles of the gastric

microbiota and its potential as a therapeutic target.
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SUPPLEMENTARY FIGURE 1

Representative library quality control reports showing fragment size

distribution of V3–V4 amplicons, confirming successful amplification and
appropriate library preparation for sequencing.
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SUPPLEMENTARY FIGURE 2

Comparison of alpha diversity metrics of gastric microbiota among three
BMI-defined groups (normal, overweight, obese). (A) Observed amplicon

sequence variants (ASVs). (B) Gini–Simpson index. (C) Phylogenetic diversity
(PD) whole tree. (D) Shannon index. P-values were determined using the

Wilcoxon rank-sum test.

SUPPLEMENTARY FIGURE 3

Comparative analysis of gastric microbiota composition among normal weight,
overweight, and obese groups. (A) Cladogram generated from linear discriminant

analysis effect size (LEfSe) showing differentially abundant taxa across the three
BMI groups (normal weight, overweight, and obese). (B) Histogram of the linear

discriminant analysis (LDA) scores computed for features with differential

abundance among the three BMI groups.

SUPPLEMENTARY FIGURE 4

Correlation analysis between specific bacterial species and body mass index.

(A) Muribaculum gordoncarteri, (B) Turicibacter bilis, (C) Duncaniella dubosii,
(D) Aquabacterium commune, (E) Bifidobacterium pseudolongum, and (F)
Sphingobium xenophagum.

SUPPLEMENTARY FIGURE 5

Sex-based analysis of alpha and beta diversity in gastric microbiota. (A)
Rarefaction curves of the Shannon index according to sex. (B) Principal

coordinates analysis (PCoA) based on Bray–Curtis distance colored by sex.
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