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Introduction: Obesity is a multifactorial condition influenced by various factors,
including the gut microbiota. However, the relationship between the gastric
microbiota and obesity remains poorly understood. This study aimed to
investigate the composition of gastric microbiota, excluding Helicobacter
pylori, in relation to body mass index (BMI) and metabolic indicators.

Methods: Thirty participants undergoing health checkups were classified into
three groups—normal weight (BMI 18.5-22.9), overweight (BMI 23.0-24.9), and
obese (BMI >25.0)—with ten individuals per group. Those with H. pylori infection,
atrophic gastritis, or intestinal metaplasia were excluded. Gastric microbiota from
four antral biopsies per subject were analyzed using 16S rRNA sequencing and
functional profiling by metagenomic prediction.

Results and discussion: Alpha diversity (Gini—Simpson index) was significantly
lower in the combined overweight/obese group than that in the normal group
(P=0.049). Beta diversity analysis revealed clear group separation (Bray—Curtis,
P=0.005; unweighted UniFrac, P=0.004). Significant species differences
between the groups were observed; specifically, the abundances of
Muribaculum gordoncarteri, Turicibacter bilis, and Duncaniella dubosii, were
significantly reduced in the overweight/obese group. Functional predictions
showed differential enrichment of pathways related to fatty acid, amino acid,
vitamin, and carbohydrate metabolism across BMI categories. These findings
suggest that alterations in the gastric microbiota may be linked to obesity and
metabolic dysregulation.
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1 Introduction

Obesity has become a global health issue due to its association
with numerous comorbidities, including type 2 diabetes, metabolic
dysfunction-associated steatotic liver disease, cardiovascular
diseases, and certain cancers (Fall et al., 2017). The prevalence of
obesity is increasing, prompting considerable interest in
understanding its underlying mechanisms and contributing
factors (Afshin et al., 2017).

Obesity is a complex multifactorial disease with diverse
etiologies, including genetics, lifestyle, and socioeconomic, and
environmental risk factors (Ghosh and Bouchard, 2017). Among
these risk factors, the role of gut microbiota in the pathogenesis of
obesity has gained substantial attention through various studies
(Ley et al., 2005; Turnbaugh et al., 2006; Maruvada et al., 2017).
Alterations in gut microbial composition, known as dysbiosis, have
been implicated in metabolic disturbances that exacerbate obesity-
related conditions. Specifically, obesity has been associated with a
decrease in the relative abundance of beneficial bacterial species,
such as Bacteroidota (formerly known as Bacteroidetes) and an
increase in Bacillota (formerly known as Firmicutes) (Ley et al,
2005; Turnbaugh et al., 2006). Studies using next-generation
sequencing techniques, such as 16S rRNA sequencing have
revealed that these microbial changes affect energy harvesting,
lipid metabolism, and systemic inflammation, thereby
contributing to obesity.

While most research has focused on the intestinal microbiota,
other regions of the gastrointestinal tract, such as the stomach, also
harbor distinct microbial communities that may influence
metabolic health (Engstrand and Graham, 2020). Helicobacter
pylori has been suggested to be associated not only with various
gastrointestinal diseases but also with obesity and metabolic
disorders (Azami et al.,, 2021; Baryshnikova et al., 2024).
However, the gastric microbiota, except H. pylori infection,
remain understudied in relation to obesity. A previous study in
mice reported that high-fat diets induced dysbiosis not only in the
intestinal microbiota but also in the gastric microbiota, potentially
affecting the development and progression of metabolic diseases
(He et al, 2018). This study aimed to investigate the gastric
microbiota composition according to body mass index (BMI)
categories and their potential associations with metabolic indices
in humans. By analyzing gastric mucosal samples using 16S rRNA
sequencing and functional profiling, this study seeks to bridge the
gap in understanding the relationship between gastric microbiota
(except H. pylori) and obesity beyond the established roles of
intestinal microbiota.

Abbreviations: ANOSIM, analysis of similarities; ASV, amplicon sequence
variant; BMI, body mass index; FXR, farnesoid X receptor; LEfSe, linear
discriminant analysis effect size; PCoA, principal coordinates analysis; PD,
phylogenetic diversity; PERMANOVA, permutational multivariate analysis of
variance; SCFA, short chain fatty acid.
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2 Materials and methods
2.1 Study design and population

This study was a cross-sectional observational analysis
conducted at three medical centers in South Korea: Kangwon
National University Hospital, Korea University Anam Hospital,
and Hallym University Dongtan Sacred Heart Hospital. Thirty
participants, aged 20 to 65 years, with no upper gastrointestinal
symptoms were recruited between December 2021 and November
2023. Participants were categorized into three groups (1=10) based
on BMI: normal weight (18.5-22.9 kg/m?), overweight (23.0-24.9
kg/m?), and obese (>25.0 kg/m?). Participants were excluded if they:
(1) did not consent to participate in the study; (2) were pregnant or
breastfeeding; (3) had serious underlying diseases such as heart
disease, renal failure, or liver cirrhosis (excluding hypertension,
diabetes, and dyslipidemia); (4) had taken proton pump inhibitors
or H2-blockers within the past 4 weeks; (5) had taken antibiotics or
probiotics within the past 4 weeks; (6) were underweight with a BMI
<18.5; (7) tested positive for H. pylori or had previously received H.
pylori eradication therapy; (8) had atrophic gastritis or intestinal
metaplasia detected on upper endoscopy; (9) had undergone
previous gastric surgery; (10) had a prior diagnosis of gastric
cancer; (11) had a history of acute cerebrovascular or
cardiovascular events within the past 3 months; (12) had human
immunodeficiency virus or active tuberculosis; or (13) were
otherwise deemed unsuitable for participation by the investigators.

Written informed consent was obtained from all the
participants. The study was approved by the Institutional Review
Board of Kangwon National University Hospital (KNUH B-2021-
08-029-024). This research was registered at the Clinical Research
Information Service of the Republic of Korea (KCT0006751).

2.2 Data collection and baseline
assessments

All participants underwent baseline assessments, including
medical history and related medication, metabolic indices, and
anthropometric measurements. BMI was calculated as weight
(kg)/height (m?). Metabolic indices, such as waist circumference,
blood pressure, heart rate, hemoglobin Alc, fasting blood glucose,
and lipid profiles (total, low-density lipoprotein, and high-density
lipoprotein cholesterol, and triglycerides) were measured.

2.3 Gastric sample collection

Four gastric mucosal tissue specimens were obtained under
fasting conditions from the greater curvature of the antrum, using
sterile biopsy forceps during endoscopic examination. Samples were
collected under sterile conditions and stored in a refrigerator at —80
°C until DNA extraction. Rapid urease tests were performed to
confirm the absence of H. pylori infection, and histological
examinations ruled out atrophic gastritis and intestinal metaplasia.
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2.4 16S rRNA sequencing of gastric
microbiota

The gastric mucosal tissue specimens were subjected to 16S
rRNA sequencing by Macrogen (Seoul, South Korea). Genomic
DNA was extracted from the sample using a DNeasy PowerSoil Pro
Kit (Qiagen, Hilden, Germany). We targeted the V3-V4 regions of
the 16S rRNA gene within the genomic DNA by conducting
polymerase chain reaction using two primers: 341F (5'-
CCTACGGGNGGCWGCAG-3") and 805R (5'-
GACTACHVGGGTATCTAATCC-3'). The obtained amplicons
were further processed according to the Illumina protocols to
construct a sequencing library, which was then applied to the
Mlumina MiSeq platform to obtain paired-end (2x300 bp) reads.
A representative library quality control report confirming the
expected size distribution of the V3-V4 amplicons is provided in
Supplementary Figure S1.

2.5 Amplicon sequence variant clustering
of sequenced reads

All bioinformatic processes and analyses described below were
performed within the Macrogen bioinformatics cloud platform. The
raw reads were demultiplexed based on index sequences, and
Cutadapt (v3.2) (Martin, 2011) was used to remove sequencing
adapter and forward/reverse primer sequences. Subsequently, the
reads were trimmed to obtain the forward (250 bp) and reverse (200
bp) sequence for paired-end reads. The trimmed reads were then
error-corrected and denoised using the DADA?2 (v1.18.0) (Callahan
etal., 2016) package in R (v4.0.3). Reads with expected errors of 2 or
more were removed. The sequencing-error-corrected paired-end
reads were aligned with single sequences and chimeric sequences
were eliminated using the consensus method in DADA2 to
generate ASVs.

2.6 Analysis of microbial community

Each ASV sequence was subjected to BLAST+ (v2.9.0)
(Camacho et al., 2009) against the NCBI 16S Microbial Database
to assign taxonomy information based on the most similar
organism: if the best-hit query coverage was 85% or higher and
the identity of the matched region was 85% or higher. To obtain a
phylogenetic tree required for diversity analysis, ASVs were aligned
using MAFFT (v7.475) (Katoh and Standley, 2013) and a
phylogenetic tree was constructed from the alignment using
FastTreeMP (v2.1.10) (Price et al., 2010). QIIME (v1.9) (Caporaso
et al,, 2010) was used for diversity analyses and data normalization
through subsampling. To assess species diversity and evenness
within samples, Shannon, Gini-Simpson, and phylogenetic
diversity (PD) whole tree indices, were calculated and the
relevance of alpha diversity was examined using rarefaction
curves. Microbial community diversity among samples was
determined based on Bray-Curtis and weighted/unweighted
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UniFrac distances. The relationships between samples were
visualized using principal coordinates analysis (PCoA) and
UPGMA trees (Rambault; Caporaso et al., 2010).

2.7 Metagenomic prediction of microbial
community

To predict the MetaCyc metabolic pathways of microbial
communities for each sample, Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States
(PICRUSt2) (Douglas et al., 2020) was used. ASVs with a nearest
sequenced taxon index value of >2 were excluded from the analysis.
Heatmaps for visualization of selected pathways were designed
using R (v4.4.1).

2.8 Statistical analysis of microbial
communities

The Kruskal-Wallis test was used for comparisons among three
groups, whereas the Wilcoxon rank-sum test was used for
comparisons between two groups (Hollander et al, 2013). To
compare beta diversity between groups, the previously calculated
Bray-Curtis and weighted/unweighted UniFrac distance matrices
were used for analysis of similarities (ANOSIM) (Clarke, 1993) and
permutational multivariate analysis of variance (PERMANOVA)
(Anderson, 2001). To compare the microbial community
composition (relative abundance) between groups, linear
discriminant analysis effect size (LEfSe) was used (Segata et al,
2011). Taxa with a linear discriminant analysis score of 22.0 and P-
value <0.05 were selected (Hollander et al., 2013). The extent of
differences was represented by the linear discriminant analysis
score. The distribution of each taxon and significantly different
microbial taxa identified using LEfSe were visualized using
GraPhlAn (Asnicar et al., 2015). Spearman’s correlation (Best and
Roberts, 1975) was calculated using species-level relative abundance
and BMI variables of each sample. The correlation coefficient (Rho)
and P-value for each species were calculated and species with a P-
value <0.05 were visualized using scatter plots generated using
ggplot (v3.5.1) (Wickham and Wickham, 2016) in R (v4.2.1).

3 Results
3.1 Baseline characteristics

The study included 30 participants, who were divided into three
groups based on their BMIL: normal weight (18.5-22.9 kg/m?),
overweight (23.0-24.9 kg/m?), and obese (>25.0 kg/m?). Although
not statistically significant due to the small number of participants,
there was a lower proportion of males in the normal weight group
compared with that in the other groups. The body weight showed a
significant difference among the three groups: 55.8 + 3.7 kg in the
normal weight group, 69.3 + 6.2 kg in the overweight group, and
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73.2 £ 11.6 kg in the obese group (P<0.001; Table 1). Similarly, the
waist circumference was 75.4 + 4.0, 86.7 + 7.4, and 91.4 + 7.1 cm in
the normal weight, overweight, and obese groups, respectively
(P<0.001). The hip circumference also showed a significant
difference, measuring 90.0 + 1.9, 97.2 £ 6.0, and 99.3 + 4.2 cm in
the three groups (P<0.001). Regarding underlying medical
conditions, there were no significant differences among the
groups. Hemoglobin levels were significantly lower in the normal
weight group (12.5 + 1.8 g/dL) compared with that in the
overweight (14.5 + 2.8 g/dL) and obese (14.5 + 1.7 g/dL) groups
(P=0.021). Other laboratory parameters showed no significant
differences between the groups.

3.2 Statistics of sequenced reads

We obtained raw reads (104,637 + 36,054 reads/sample) from
the Illumina sequencing. After filtering (see Materials and
Methods), a total of 46,685 + 19,672 reads/sample were retained
for ASV determination. The read count per sample ranged from
13,886 to 122,502. From these reads, a total of 2,985 ASV sequences
were assembled. These results indicate that our dataset was
sufficient for subsequent microbial community analysis.

3.3 Alpha diversity of gastric microbiota

When the participants were categorized into two groups—
overweight/obese and normal weight—alpha diversity, as assessed
using the Gini-Simpson index for evenness, was significantly lower
in the overweight/obese group than that in the normal weight group
(P=0.049). However, the PD whole tree index (P=0.4480), Shannon
index (P=0.5588), or observed ASVs (P=0.5672) were not
statistically different among groups (Figure 1). When analyzed as
three separate BMI groups, a trend of reduced diversity in
overweight and obese individuals was observed, although not
statistically significant (see Supplementary Figure S2).

3.4 Beta diversity of gastric microbiota

PCoA demonstrated clear separations in microbial composition
among the three BMI groups, indicating significant differences in
beta diversity. Statistical analyses showed that Bray—Curtis distances
assessed by ANOSIM revealed significant differences among the
three groups (P=0.005) (Figures 2A, B), as did unweighted UniFrac
distances tested by PERMANOVA (P=0.004) (Figure 2C). Pairwise
comparisons showed significant differences between the normal
weight and overweight groups (P=0.02 and 0.005, respectively), and
between the normal weight and obese groups (P=0.05 and 0.035,
respectively). However, no significant differences were observed
between the overweight and obese groups. In addition, weighted
UniFrac distance, also assessed by PERMANOVA, demonstrated a
significant difference between the normal weight and overweight
groups (P=0.02) (Figure 2D).
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3.5 Composition of gastric microbiota

In total, 28 phyla, 653 genera, and 1,118 species were identified
across all samples. Relative abundance was visualized using two
stacked bar plots at the phylum and genus levels (Figures 3A, B).
The six predominant phyla—Bacillota, Pseudomonadota,
Bacteroidota, Actinomycetota, Verrucomicrobiota, and
Fusobacteriota—accounted for 93.3% of the gastric microbiota. At
the genus level, Streptococcus, Akkermansia, Aquabacterium,
Haemophilus, Enterococcus, Prevotella, Pseudescherichia,
Clostridium, Veillonella, Bacteroides, Staphylococcus, Neisseria,
Muribaculum, and Fusobacterium collectively comprised 40.0% of
the total microbial composition.

In the comparison between the overweight/obese and normal
weight groups, LEfSe analysis at the genus level identified 17 genera
with significant differences. Among them, Muribaculum,
Duncaniella, Yokenella, Deinococcus, Desulfosporosinus,
Adlercreutzia, Rhodopseudomonas, and Nitrosomonas were
reduced in the overweight/obese group compared with those in
the normal weight group. Conversely, Haemophilus, Prevotella,
Veillonella, Neisseria, Segatella, Rothia, Collinsella,
Bradyrhizobium, and Capnocytophaga were increased in the
overweight/obese group (Figure 3C). In LEfSe analysis at the
species level, 17 bacterial species were significantly different
between the BMI groups. Notably, Muribaculum gordoncarteri,
Turicibacter bilis, Duncaniella dubosii, Bacteroides caccae,
Yokenellar regensburgei, Bythopirellula polymerisocia, and
Rhodopseudomonas palustris were significantly reduced in the
overweight/obese group compared with those in the normal
weight group. Conversely, other species, such as Haemophilus
parainfluenzae, Prevotella melaninogenica, Veillonella atypica,
Neisseria perflava, Collinsella aerofaciens, Streptococcus salivarius,
Rothia mucilaginosa, Bradyrhizobium australiense, Campylobacter
concisus, and Streptococcus rubneri showed increased abundance in
the overweight/obese group (Figure 3D).

In the three-group comparison among the normal weight,
overweight, and obese groups at the genus level, Muribaculum,
Yokenella, and Rhodopseudomonas abundance were higher in the
normal weight group, whereas Haemophilus, Prevotella, and
Neisseria abundance were higher in the overweight group (see
Supplementary Figure S3). Additionally, Segatella and an
unclassified genus were more abundant in the obese group. At the
species level, M. gordoncarteri, Bacteroides caccae, and Y.
regensburgei were more abundant in the normal weight group,
whereas H. parainfluenzae, N. perflava, and Haemophilus
pittmaniae were more abundant in the overweight group.
Additionally, Ruminococcus gauvreauii and Clostridium innocuum
were more abundant in the obese group.

3.6 Functional profiling of gastric
microbiota

Functional prediction analysis using PICRUSt2 between the two
groups (overweight/obese vs. normal weight) revealed that
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TABLE 1 Demographic and clinical characteristics of study population.

Variables

Normal weight

(n=10)

Overweight
(GENT0)]

Obesity
(n=10)

10.3389/fcimb.2025.1651316

P-value (F, df)

Sex, Male (%) 2 (20%) 6 (60%) 5 (50%) 0.182 (3.412, 2)
Age (year) 50.1 +79 484 +13.7 496 + 114 0.993 (0.014, 2)
Height (cm) 160.8 + 5.9 170.0 + 8.05 164.3 +9.2 0.075 (5.182, 2)
Weight (cm) 558 + 3.7 69.3 +6.2 732 £ 11.6 <.001 (16.733, 2)
Waist circumference (cm) 754 + 4.0 86.7 +7.4 914 +7.1 <.001 (15.704, 2)
Hip circumference (cm) 90.0 + 1.9 97.2 £ 6.0 99.3 £ 4.2 <.001 (13.735, 2)
Underlying disease
Diabetes mellitus 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Thyroid disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Hypertension 0 (0%) 1 (10%) 0 (0%) 0.368 (2.000, 2)
Cerebrovascular disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Tuberculosis 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Liver disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Renal disease 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Hyperlipidemia 0 (0%) 2 (20%) 1 (10%) 0.342 (2.148, 2)
Surgical history 0 (0%) 2 (20%) 1 (10%) 0.342 (2.148, 2)
Drug history
Probiotics 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Nonsteroidal anti-inflammatory drugs 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Aspirin 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Steroid 0 (0%) 0 (0%) 0 (0%) 1.000 (0.000, 2)
Anticoagulants 0 (0%) 1 (10%) 0 (0%) 0.368 (2.000, 2)
Smoking 0 (0%) 1 (10%) 2 (20%) 0.342 (2.148, 2)
Alcohol 1 (10%) 4 (40%) 1 (10%) 0.163 (3.625, 2)
‘ Vital sign
Systolic blood pressure (mmHg) 118 + 14.6 126.0 + 11.6 131.0 + 11.1 0.071 (5.280, 2)
Diastolic blood pressure (mmHg) 77.5 £ 8.3 77.8 + 11.2 78.0 + 5.7 0.940 (0.124, 2)
Heart rate 789 + 10.4 779 £ 12.1 79.8 £ 13.5 0.898 (0.214, 2)

Laboratory findings

‘Whole blood count

5,320.0 £ 1,291.7

5,260.0 + 1,082.4

6,328.0 + 1,486.8

0.218 (3.050, 2)

Hemoglobin

125+ 1.8

145+28

145+ 17

0.021 (7.683 2)

Platelet count

266,928.1 + 111,359.8

260,500.0 + 91,147.3

237,723.2 £ 91,371.0

0.453 (1.583, 2)

Blood urea nitrogen 119 £ 3.1 139 + 3.1 133 £3.9 0.302 (2.395, 2)
Creatine 0.7 £0.2 0.8+0.2 0.8+0.2 0.366 (2.010, 2)
Total bilirubin 0.8+03 0.9+ 04 0.704 + 0.209 0.581 (1.087, 2)
Aspartate aminotransferase 252 + 5.1 29.5+9.5 30.7 + 15.1 0.636 (0.905, 2)
Alanine aminotransferase 22.1 +9.0 313 +15.1 35.1 + 22.86 0.173 (3.504, 2)
(Continued)
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TABLE 1 Continued

Normal weight
Variables

Overweight

10.3389/fcimb.2025.1651316

Obesity
P-value (F, df)

(n=10)

Laboratory findings

(n=10)

(n=10)

pyii:?:?ri‘:;ﬁ:ase 180 + 6.1 28.6 + 158 30.9 + 20.55 0.096 (4.697, 2)
Fasting blood glucose 94.0 + 11.29 98.1 + 4.30 1034 £ 6.9 0.121 (4.220, 2)
Hemoglobin Alc 57+02 55+0.3 56+ 0.3 0.348 (2.111, 2)
Total cholesterol 204.0 £ 29.5 207.5 + 30.3 214.9 + 42.76 0.941 (0.122, 2)
Triglycerides 69.7 +28.3 117.6 + 67.5 117.6 + 40.738 0.009 (9.425, 2)
High density lipoprotein 622+ 127 560 + 14.6 496 + 9.8 0.111 (4.396, 2)
Low density lipoprotein 1218 +21.7 1208 +32.3 1343 + 37.6 0.717 (0.667, 2)

Data are expressed as mean + standard deviation (SD) or number (%).
df, degree of freedom.

metabolic pathways related to fatty acid synthesis, amino acid
synthesis/degradation, vitamin synthesis, S-adenocyl-L-
methionine (SAM) synthesis, carbohydrate metabolism, and
mycolate synthesis differed across BMI categories (Figure 4).

Fatty acid biosynthesis pathways, including palmitate
biosynthesis II (bacteria and plants), superpathway of fatty acid
biosynthesis initiation (Escherichia coli), palmitoleate biosynthesis I
(from (5Z)-dodec-5-enoate), (5Z)-dodec-5-enoate biosynthesis,
stearate biosynthesis II (bacteria and plants), and oleate
biosynthesis IV (anaerobic), were significantly associated with the
overweight/obese group. In contrast, the pathway related to fatty
acid salvage was significantly upregulated in the normal
weight group.

Amino acid synthesis pathways, such as the superpathway of L-
alanine biosynthesis and L-methionine biosynthesis (transsulfuration),
were significantly associated with the overweight/obese group. Amino
acid degradation pathways, such as L-leucine degradation I and L-
tyrosine degradation I were downregulated in the overweight/
obese group.

Vitamin synthesis pathways, including superpathway of
tetrahydrofolate biosynthesis, superpathway of tetrahydrofolate
biosynthesis and salvage, thiamin salvage II, 6-hydroxymethyl-
dihydropterin diphosphate biosynthesis I, and 6-hydroxymethyl-
dihydropterin diphosphate biosynthesis III (Chlamydia) showed
high activity in the normal weight group.

SAM synthesis pathways, such as SAM cycle I, superpathway of
tetrahydrofolate biosynthesis, superpathway of tetrahydrofolate
biosynthesis and salvage, and superpathway of L-methionine
biosynthesis (transsulfuration) were significantly associated with
the overweight/obese group.

Carbohydrate metabolism pathways, such as TCA cycle VII
(acetate-producers), lactose and galactose degradation I,
superpathway of hexitol degradation (bacteria), and hexitol
fermentation to lactate, formate, ethanol, and acetate were
significantly associated with the overweight/obese group.

The mycolate biosynthesis pathway was significantly high in the
overweight/obese group.
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3.7 Correlation between BMI and gastric
microbiota

Correlation analysis further emphasized the associations between
specific bacterial species and BMI. Reduced abundance of M.
gordoncarteri (Rho=-0.4, P=0.027), T. bilis (Rho=-0.4, P=0.0286), D.
dubosii (Rho=—-0.37, P=0.0426), Aquabacterium commune (Rho=
-0.36, P=0.0487), Bifidobacterium pseudolongum (Rho=-0.39,
P=0.034), and Sphingobium xenophagum (Rho=-0.39, P=0.034)
negatively correlated with BMI, suggesting a potential role in obesity-
related metabolic dysregulation (see Supplementary Figure S4).

4 Discussion

This study demonstrates significant differences in the
composition and functional profiles of the gastric microbiota
between BMI categories, suggesting gastric microbial communities,
like their intestinal counterparts, may play a role in obesity-related
metabolic alterations (Ley et al., 2005; Turnbaugh et al., 2009; Denou
et al.,, 2016; Yun et al., 2017; Kim et al., 2020; Duan et al., 2021).

In this study, among the four indices related to alpha diversity,
only the Gini-Simpson index for evenness significantly decreased in
overweight and obese individuals. This aligns with previous studies
on the intestinal microbiota, where dysbiosis and decreased
microbial diversity were strongly associated with obesity and
metabolic disorders (Turnbaugh et al., 2009; Denou et al., 2016;
Yun et al,, 2017; Kim et al., 2020; Duan et al., 2021). This reduced
diversity may impair the microbiota functional capacity, including
energy homeostasis and anti-inflammatory processes, as shown in
other regions of the gastrointestinal tract.

Although some studies have reported no significant differences,
obesity has generally been associated with changes in the composition
of the gut microbiota, including an increased relative abundance of
Bacillota at the phylum level and a higher Bacillota/Bacteroidota ratio
compared to individuals with normal weight (Ley et al., 2005; Andoh
et al,, 2016; Koliada et al., 2017; Murga-Garrido et al., 2022). In this
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FIGURE 1

Comparison of alpha diversity between the overweight/obese and normal weight groups. (A) Observed amplicon sequence variants (ASVs).
(B) Gini—Simpson index. (C) Phylogenetic diversity (PD) whole tree. (D) Shannon index. P-values were determined using the Wilcoxon rank-sum test.

study, there was no significant difference in the gastric microbiota at the
phylum level among normal weight, overweight, and obese groups.
Seventeen bacterial species showed significant differences between the
normal weight and overweight/obese groups. M. gordoncarteri, T. bilis,
and D. dubosii were notably reduced in the overweight/obese group
and are linked to lipid and carbohydrate metabolism (Lagkouvardos
et al, 2019; Chung et al, 2020; Zhu et al, 2024), whereas H.
parainfluenzae and V. atypica were more abundant and may
contribute to metabolic dysregulation via pro-inflammatory

Frontiers in Cellular and Infection Microbiology

pathways. A meta-analysis identified Pseudomonadota (formerly
Proteobacteria) as the phylum most consistently associated with
obesity (Xu et al., 2022). Several species belonging to
Pseudomonadota, such as Proteus mirabilis and E. coli, promote
gastrointestinal inflammation, contributing to insulin resistance and
metabolic diseases (Longstreth, 2007; Zhang et al,, 2021). In this study,
H. parainfluenzae, N. perflava, B. australiense, and C. concisus—all
within this phylum—were more abundant in the overweight/
obese group.
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FIGURE 2

Comparison of beta diversity among the overweight, obese, and normal weight groups. (A) Bray—Curtis distance (2D). (B) Bray—Curtis distance (3D).
(C) Unweighted UniFrac distance matrix. (D) Weighted UniFrac distance matrix.

The obesity-related microbes identified in previous studies
using fecal samples, such as H. parainfluenzae, V. atypica, and R.
mucilaginosa were also found in this study in gastric mucosal
samples. This suggests that changes in these microbes may
originate in the stomach, leading to their increase or decrease
throughout the gastrointestinal tract, ultimately affecting the
colon and fecal microbiota. Notably, the altered abundance of D.
dubosii, B. polymerisocia, and R. palustris (decreased), and N.
perflava, B. australiense, C. concisus, S. rubneri (increased) in the
overweight/obese group has not been previously reported in studies
using intestinal or fecal microbiota. These shifts may reflect unique
gastric environmental factors rather than obesity per se. Given that
H. pylori infection alters gastric microbial diversity during
progression to atrophic gastritis and intestinal metaplasia (Noto
and Peek, 2017), we excluded individuals with such conditions to
minimize confounding by inflammation. Therefore, the observed
changes likely reflect gastric-specific rather than inflammation-
driven microbiota alterations.

The gut microbiota contribute to obesity via pathways involving
energy harvest, inflammation, and lipid and bile acid metabolism
(Kim, 2023; Zhuang et al., 2023). Gut microbiota play a crucial role
in the host’s energy harvest, as demonstrated in germ-free mouse
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models where mice harboring gut microbiota exhibited greater
weight gain and higher energy absorption despite consuming the
same diet (Lupp et al., 2012; Rooks and Garrett, 2016). In this study,
PICRUSt2 analysis revealed BMI-related differences in fatty acid,
amino acid, and vitamin metabolism. The increased activity of fatty
acid biosynthesis pathways in obesity aligns with prior findings
linking this shift to enhanced energy extraction and adipogenesis
(Turnbaugh et al., 2006; Kim et al, 2020; Duan et al., 2021).
Furthermore, the diminished activity of amino acid degradation
pathways in obese individuals may suggest alterations in protein
metabolism. Although short-chain fatty acids (SCFAs) support lipid
metabolism and intestinal health, their role in obesity remains
debated due to variable effects (Turnbaugh et al., 2006; Chambers
et al., 2015). In addition, gut microbes modulate bile acid
deconjugation, which influences hepatic cholesterol and lipid
metabolism (Kalaany and Mangelsdorf, 2006; Watanabe et al.,
2006; Wahlstrom et al.,, 2016). While we identified alterations in
predicted pathways related to amino acid metabolism (e.g.,
degradation) and SAM biosynthesis using PICRUSt2, our study
did not include untargeted metabolomics or direct quantification of
SAM/S-adenosylhomocysteine levels. Although microbial functions
can be inferred using PICRUSt2, the lack of supporting data such as

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1651316
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Lee et al. 10.3389/fcimb.2025.1651316
overweight overwe!gm
normal _obesity 0% normal _obesity
0% i m Streptococcus
SBachiota w Akkermansia
= Pseudomonadota w Aquabacterium
10% = Bacteroidota 10% = Haemophilus
) = Enterococcus
®Actinomycetota =Prevotella
= Verrucomicrobiota mPseudescherichia
20% mFusobacteriota 20% mClostridium
: = Veillonella
= Cyanobacteriota mBacteroides
m Chloroflexota [ ] St:i_phylpooows
30% mignavibacteriota 30% 1 uNeisseria
0] . @ = Muribaculum
o 8 Spirochaetota 2 = Fusobacterium
% ®Armatimonadota @  40% = Ruminococcus
3 40% = Nitrospirota 'g . :%ng?‘;'\ﬁla
g u Acidobacteriota S = Lactobacillus
O 50 » Planctomycetota L 50% _ _— mBlautia
p eersavtmpen F = ectonanalace
g u Thermodesulfobacteriota CI>) l mPotamosiphon
= 60% Gemmatimonadota = 60% = Sphingobium
K = Deinococcota ) — = Turicibacter
Q [0 = Ligilactobacillus
4 mMyxococcota (v u Faecalibacterium
70% = Euryarchaeota 70% Romboutsia
aas wGemella
= Thermomicrobiota achnoclostridium
= Rhodothermota 80% Paramuribaculum
80% u Bdellovibrionota mHeminiphilus
i mSphingomonas
» Synergistota mRothia
0% = Mycoplasmatota 90% mFusimonas
Chlamydiota mignavibacterium
» Balneolota = Fimbriimonas
= Aggregatilinea
100%  — - Dictyoglomota 100% uOthers
[0 normal_weight [ overweight_obesity [ normal_weight [ overweight_obesity
el 0 R e 1
g_Duncaniela | s_Turicibacter_bilis 3
g_Yokenella | s_Duncaniella_dubosii '
g_Deinococcus H s_Bacteroides_caccae !
g_Desulfosporosinus E s_Yokenella_regensburgei :
o_Adercreutzia ' s_Bythopirellula_polymerisocia ;
g_Rhodopseudomonas : 's_Rhodopseudomonas_palustris i
| P — 3
w ! s_Prevotella_melaninogenica '
g_Prevotella H s_Veillonella_atypica |
. - 3 s_Neisseria_perflava '
q’ e £ s_Colinsella_aerofaciens '
Py : s_Sureptococcus_salivarius .
_u_Romu 3 s_Rothia_mucilaginosa :
o H s_Bradyrhizobium_australiense .
g_Bradyrhizobium : s_Campylobacter_concisus !
H s_Streptococcus_rubneri |
9_Capnocytophaga ' 1
L 5
LDA SCORE (log 10)
LDA SCORE (log 10) (lon 10)
FIGURE 3

Relative abundance of the microbial community and differentially abundant taxa. Stacked bar plots show the taxonomic composition at the
(A) phylum and (B) genus levels. All detected phyla are included, whereas genera are presented if the relative abundance in any group exceeded
1.0%. Differentially abundant taxa between overweight/obese and normal-weight groups were identified using linear discriminant analysis effect size

(LEfSe) at the (C) genus and (D) species levels.

serum metabolite measurements or untargeted metabolomics
prevents confirmation of the metabolic relevance of the gastric
microbiota in this study.

Among the species significantly associated with BMI, there is
limited research on the association between M. gordoncarteri and
metabolic diseases. However, the Muribaculum genus plays a key
role in carbohydrate metabolism, particularly glycolysis and
gluconeogenesis (Chung et al., 2020; Zhu et al., 2024), which are
central to energy regulation and may influence obesity.
Muribaculum also contributes to SCFA production from dietary
fiber, supporting energy balance, lipid metabolism, and anti-
inflammatory effects beneficial in metabolic disorders like obesity
and type 2 diabetes. Additionally, through bile salt hydrolase
activity, Muribaculum affects bile acid metabolism. Its depletion
has been associated with reduced levels of hyodeoxycholic and

Frontiers in Cellular and Infection Microbiology

ursodeoxycholic acid, bile acids that activate the intestinal farnesoid
X receptor (FXR), thereby influencing lipid absorption and bile acid
synthesis via the FXR- fibroblast growth factor 19 axis (Xu et al.,
2023). Therefore, reduced Muribaculum abundance may contribute
to lipid dysregulation through impaired bile acid signaling.
Although D. dubosii has not been directly linked to obesity or
metabolic diseases in humans or animal models, it belongs to the
Muribaculaceae family, known for its role in carbohydrate metabolism
and SCFA production—key processes in energy and lipid regulation
(Lagkouvardos et al., 2019; Chung et al, 2020). Given its reduced
abundance in obese individuals, further research is warranted to clarify
its potential involvement in metabolic dysregulation via impaired
carbohydrate metabolism and SCFA-associated protective functions.
Studies suggest that Turicibacter genus, including T. bilis, may
affect host lipid metabolism and be associated with obesity-related
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FIGURE 4

Functional prediction analysis using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) between the
overweight/obese and normal weight groups. TCA, tricarboxylic acid; E. coli, Escherichia coli.

changes in body weight (Fung et al., 2019; Lynch et al., 2023). A
systematic review also reported lower levels of Turicibacter-related
taxa in obese individuals compared to lean controls, indicating a
potential protective role against metabolic dysfunction (Xu
et al., 2022).

Regarding chronic inflammation, lipopolysaccharides from gram-
negative bacteria can cross the intestinal barrier and trigger systemic
inflammation via the Toll-like receptor-4 pathway, promoting the
production of pro-inflammatory cytokines (such as IL-1, IL-6, and
TNF-0)) and contributing to insulin resistance (Cani et al,, 2009; Lee
et al, 2020). The elevated abundance of H. parainfluenzae and V.
atypica in obese individuals in our study suggests a possible role of
gastric microbiota in systemic inflammation and metabolic disorders.
H. parainfluenzae is known to elicit mucosal immune responses in
chronic obstructive pulmonary disease (Mitchell and Hill, 2000), while
V. atypica, prevalent in dysbiotic oral biofilms, has been linked to
altered inflammatory and nutritional status in children (Theodorea
et al,, 2022).

Several studies have linked H. pylori infection to metabolic
dysregulation, including obesity and insulin resistance (Azami et al.,
2021; Baryshnikova et al., 2024). For instance, Azami et al. (2021)
reported significantly elevated BMI and insulin resistance in H.
pylori-positive individuals, while Baryshnikova et al. (2024)
suggested that reduced ghrelin levels and chronic inflammation
may underlie these metabolic disturbances. To avoid confounding
effects of infection-induced microbiota shifts, our study excluded H.
pylori-positive subjects, allowing for a more accurate assessment of
BMI-associated changes in gastric microbiota among non-infected
individuals. Future research directly comparing H. pylori-positive
and -negative populations across BMI categories could provide
valuable insights into the interactive effects of H. pylori infection
and host metabolic status on gastric microbial ecology.
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The association between gastric microbiota and BMI highlights
the stomach as a potential therapeutic target for modulating obesity.
Interventions targeting the gastric microbiota, such as probiotics or
dietary modifications, may complement existing treatments aimed
at restoring gut microbial balance. Additionally, the distinct
microbial profiles observed in this study warrant further research
to elucidate the causal relationships between specific bacterial taxa
and metabolic pathways.

This study had several limitations. First, the small sample size
(n=10 per group) substantially limits the statistical power and
generalizability of our findings. In particular, the limited sample
size increases the risk of false-positive or -negative results and
precludes robust detection of subtle microbial differences.
Furthermore, the unequal sex distribution in the normal weight
group and the absence of sex-stratified statistical analysis limits our
ability to draw definitive conclusions regarding sex-specific
microbial patterns. In our study, the proportion of women was
higher than that of men in the normal weight group. Subgroup
analysis based on sex (Supplementary Figure S5A) revealed that
female participants exhibited lower alpha diversity metrics—
including the Shannon index, observed ASVs, and Faith’s PD—
compared to their male counterparts; however, these differences
were not statistically significant (P>0.05). Furthermore, we
confirmed that the separation observed between the normal and
overweight/obese groups in the beta diversity of PCoA (Figure 2A)
may not have been influenced by this sex imbalance
(Supplementary Figure S5B). In addition, most participants in
this study resided in a specific region of South Korea, which
limits the ability to reflect geographic diversity related to dietary
habits and lifestyle. Given the homogeneity of the study population,
further validation in multi-center and multi-ethnic cohorts is
necessary to confirm the findings. Second, this study is a cross-
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sectional analysis comparing overweight/obese and normal-weight
groups using 16S rRNA gene sequencing. Due to the nature of this
design, it is difficult to determine whether the observed differences
in microbial composition are a cause or consequence of obesity.
Third, although we excluded individuals with H. pylori infection to
minimize its confounding effect on the gastric microbiota, other
potential confounders such as dietary habits, physical activity,
medication use, socioeconomic status, and host genetic factors
were not systematically assessed and thus could not be adjusted
for. In addition, local physiological variables, including gastric pH
and mucosal immune markers such as cytokine levels, were not
measured. This was due to the limited volume of biopsy tissue
obtained from clinical endoscopy. Nonetheless, these factors may be
important in shaping the gastric microbial environment. Lastly, we
acknowledge that deeper functional validation, such as shotgun
metagenomics, metatranscriptomics, or experimental verification of
microbial metabolic activity, was not performed. While our findings
suggest that taxa such as Muribaculum and Turicibacter are linked
to metabolic pathways involving SCFA production and bile acid
metabolism, our study did not include direct measurement of host
biomarkers such as circulating bile acids, inflammatory cytokines,
or fecal SCFA concentrations. These data would be valuable in
confirming the functional consequences of microbial shifts.
Therefore, future studies with larger, geographically diverse
cohorts and balanced sex distributions are necessary to validate
these preliminary observations. Moreover, longitudinal studies
integrating host metabolic profiles with microbial community
data—using multi-omics approaches such as metabolomics,
microbial genome analysis, and host genotyping—and accounting
for dietary habits, local physiological parameters, and other
potential confounding factors, would be valuable to better
characterize the functional implications of gastric microbiota
alterations in obesity.

In conclusion, our findings highlight significant differences in
the composition and functional potential of the gastric microbiota
across BMI categories. The identification of specific microbial taxa
and metabolic pathways associated with obesity provides a valuable
basis for future research into the metabolic roles of the gastric
microbiota and its potential as a therapeutic target.
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Representative library quality control reports showing fragment size
distribution of V3-V4 amplicons, confirming successful amplification and
appropriate library preparation for sequencing.
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