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Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), poses a
significant global health and economic burden. Despite extensive research, a
comprehensive understanding of M. bovis pathogenesis, particularly its
transcriptional adaptation across different growth phases and within the host
environment, remains incomplete. Here, we performed a comprehensive
transcriptomic analysis of virulent M. bovis and the attenuated M. bovis BCG strain
(BCQG) across early-log, mid-log, and stationary growth phases to elucidate the
molecular underpinnings of their phenotypic distinctions. Differential expression was
computed with DESeq2, and coexpression modules were derived with WGCNA.
Gene sets emphasized secretion systems and lipid metabolism. For biological
context, selected transcripts were quantified by gRT PCR from lungs of infected
C3HeB FeJ mice at four and sixteen weeks. Both strains remodeled transcription
across growth, highlighting significant differences in pathways related to cell wall
biosynthesis, lipid metabolism, transcriptional regulation, protein secretion, and the
PE/PPE protein family. Notably, the Virulent M. bovis showed higher expression of
envelope lipid genes, including the Pks13 and FadD32 locus, and a subset of DosR
targets, while BCG emphasized stress and metabolic adjustment. Coexpression
analysis provided a systems-level view of the transcriptional programs governing
M. bovis and M. bovis BCG physiology, identifying key modules of co-expressed
genes that regulate small molecules transport, amino acid biosynthesis and immune
evasion in M. bovis. Furthermore, we analyzed M. bovis transcriptional responses
during murine lung infection, identifying a core set of DEGs linked to host-pathogen
interactions and mechanisms of persistence. These findings offer novel insights into
M. bovis adaptation strategies and transcriptomic signatures that separate virulent M.
bovis from attenuated BCG across growth and in the host. Differences in secretion
capacity and lipid metabolism align with known deletions and attenuation
mechanisms, and the in vivo measurements provide context for prioritizing
pathways and BCG substrain evaluation.
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Introduction

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M.
bovis), is a major animal and zoonotic disease prevalent in many
countries, imposing substantial economic losses and posing a public
health threat (Cosivi et al., 1998). In developing countries, where
approximately 85% of global cattle and 82% of the human
population reside, bTB often remains an underdiagnosed and
inadequately controlled problem (Ayele et al, 2004). The
presence of bTB undermines the development of the dairy and
beef industries and acts as an impediment to international trade.
Genomic comparisons reveal over 99.9% nucleotide sequence
similarity between M. bovis and Mycobacterium tuberculosis (M.
tb), the primary causative agent of human tuberculosis (Brosch
et al., 2002; Smith et al., 2006). However, M. bovis exhibits distinct
biological properties compared to M. tb, including differences in
transmissibility, host range, antigenic composition, and virulence
(Golby et al., 2007; Golby et al., 2013). A thorough understanding of
the unique virulence mechanisms of M. bovis is crucial for
developing novel and effective control strategies for bTB. Earlier
studies aiming to decipher these virulence mechanisms, often
comparing M. bovis to the attenuated M. bovis BCG vaccine
strain, utilized DNA microarrays. While these identified some
differentially expressed genes (DEGs) that were further analyzed
in murine macrophages (Blanco et al., 2009), they lacked a
comprehensive analysis of gene regulatory networks across
different growth phases. Using a high throughput approach for
transcriptional analysis, we employed RNA sequencing (RNASeq)
to fill this knowledge gap and compare the transcriptome of virulent
and vaccine strains of M. bovis during different phases of growth.
Additionally, among the diverse BCG sub-strains, BCG Russia is
categorized as an early strain and retains certain ancestral features,
which may influence transcriptional behavior and virulence-
associated pathways compared to late sub-strains such as BCG
Pasteur (Elton et al., 2023).

Early on, several RNA-Seq approaches were employed to
decipher gene regulatory network on a whole transcriptome level
for members of M. tb complex (Chiner-Oms et al., 2019; Abdelaal
etal., 2022). However, much of the analysis of bTB has concentrated
on the host’s immune response to infection (Nalpas et al., 2013;
McLoughlin et al.,, 2014; Abdelaal et al., 2022), with less attention
paid to the M. bovis expressed genes during infection or across
distinct physiological states. In cattle, RNA-Seq identified key
transcriptional markers of infection when M. bovis-infected cows
were analyzed, identifying genes such as GMBZ and CCL8 as
significantly regulated genes during transition from early to
chronic phases of infection (Abdelaal et al., 2022). Other studies
identified genes associated with IL-17A expression, as indicators for
the development of immune responses to M. bovis infection or
immunization with effective vaccines directed against M. bovis
(Waters et al., 2016). Unfortunately, comprehensive analysis of
host-pathogen interactions during infection and on a genome-wide
level, is difficult to conduct in the target host (e.g. cattle for M. bovis)
or even animal models that lack key aspects of the disease. Recently,
the C3HeB/Fe] mouse model which develops caseous necrotic
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granulomas; a hallmark of human and bovine tuberculosis lung
lesions; was utilized to examine the molecular pathogenesis of M. tb
and M. bovis infections (Kramnik and Beamer, 2016; Boute et al,,
2017). This model was considered a significant advancement over
traditional murine models (e.g BALB/c and C57Bl/6 mice) that lack
granuloma structures observed during the target host infection
(Calderon et al,, 2013). Fortunately, necrotizing granuloma were
observed in M. bovis infected C3H3B/Fe] mice associated with high
bacterial and neutrophile loads (Boute et al., 2017), very similar to
lungs of naturally infected cattle. This model was used in this study
to examine the transcription of a selected list of genes with a unique
in vitro transcriptional profile.

In this report, we first compared the gene expression profiles of
virulent M. bovis and its attenuated BCG counterpart during in vitro
growth, aiming to identify key genes crucial for the transitions
between early-log, mid-log, and stationary growth phases. These
genes are potentially significant contributors to the differential
growth of each M. bovis strain. We found that the expression of
genes encoding a range of functional activities varied significantly
between the strains. Subsequently, we investigated the biological
implications of these findings by analyzing the M. bovis
transcriptome within the lungs of infected C3HeB/Fe] mice
during both active and chronic phases of bTB. This approach
allowed us to identify both unique and common transcriptional
signatures of M. bovis during transition to different growth phases,
with several genes found to be regulated both in vitro and during
murine infection.

Materials and methods
Bacterial strains and media

M. bovis AF2122/97 and M. bovis BCG-Russia (BCG-1) strains
were grown in at 37 °C in Middlebrook 7H9 broth (Difco)
containing 10% albumin- dextrose-catalase (ADC), 0.5%
Pyruvate, and 0.05% Tween 80. To define the distinct in vitro
growth phases, we generated standard growth curves for both M.
bovis and BCG Russia by measuring CFU/mL over time at 24-hour
intervals (Supplementary Figures SIA, B). This allowed consistent
and biologically validated sampling at early-log, mid-log, and
stationary phase.

For RNA preparation, bacterial cultures at OD600 0.5, 1 and 2 were
snap-frozen on ice and centrifuged at 3,000 x g for 10 min at 4°C.
Bacterial pellets were then stored at -80°C. Bacterial stocks for mouse
infections were prepared as previously described (AL et al., 1997).

Mouse infections

C3HeB/Fe] mice groups (N = 20/each) at 5-6 weeks age was
infected with approximately 100 CFU per mouse were administered
by aerosol using the Glas-Col inhalation system (Glas-Col, LLC,
Terre Haute, IN) as outlined before (Abdelaal et al., 2019). The
infectious dose for each group was confirmed by plating lungs of an
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infected mouse at 1-day post- challenge. Mice were sacrificed at 4-
and 16-weeks’ post infection for both histopathology bacterial CFU
enumeration as detailed before (Marcus et al, 2016; Abdelaal
et al., 2019).

RNA extraction and preparation

RNA was isolated form frozen cultures using a TRIzol based
method described previously (Abomoelak et al., 2009; Ward et al.,
2010a; Ward et al, 2010b). RNA from murine lung tissues was
isolated by homogenizing in TRIzol Reagent (Molecular Research
Center, Cincinnati) and centrifuging at 3,000 x g for 5 min at 4 °C.
Bacterial pellets were resuspended in 0.5 ml TRIzol Reagent
containing 1% polyacryl carrier (Molecular Research Center),
transferred to screw-caped tubes with 0.25 ml of zirconia/silica
beads, and broken in a bead beater (Biospec Products, Bartlesville,
OK). RNA was isolated by using TRIzol per the manufacturer’s
instructions and treated with DNase I (DNA-free kit, Ambion).
RNA was treated with TURBO DNase until PCR negative to
remove contaminating DNA.

RNAseq analysis

RNA-seq data analysis was performed on the CLC Genomics
Workstation 8.0. Sequence reads were aligned to the
Mpycobacterium bovis AF2122/97 parental reference genome
(GenBank accession number NC_002755). Raw sequencing reads
underwent quality control using FastQC, and adapter trimming was
performed with Trimmomatic to remove low-quality bases (Bolger
etal, 2014). Reads were then aligned to the reference genome using
HISAT2 (Kim et al, 2015). The reads per kilobase per million
(RPKM) value for each gene was generated. Normalization was
conducted using the median of ratios method within DESeq2 to
account for sequencing depth and RNA composition biases (Love
et al., 2014). Differential gene expression analysis using the R
DEseq2 package was performed for the following groups of data
sets for OD600 of 0.5, 1.0 and 2.0. The exact-test function was
applied to determine the association of the differences in expression
read counts within each group, and corresponding P-values were
adjusted using the default Benjamini & Hochberg procedure
(Benjamini et al, 2001; Reiner et al, 2003). Their adjusted P-
values, in -log10 scale on the y axis and fold changes in log2 scale on
the x axis, were plotted as a volcano plot. Differential gene
expression was determined by a false discovery rate (FDR)
threshold of p < 0.05. Genes with read counts of less than 5
were eliminated.

To identify gene co-expression modules associated with
biological processes in M. bovis, we performed Weighted Gene
Co-expression Network Analysis (WGCNA) using normalized gene
expression data (Zhang and Horvath, 2005). Prior to network
construction, lowly expressed genes were filtered, and variance-
stabilized counts were used as input. A soft-thresholding power =
12 was selected using the scale-free topology criterion, ensuring

Frontiers in Cellular and Infection Microbiology

10.3389/fcimb.2025.1643664

optimal network fit and connectivity. A signed adjacency matrix
was computed and transformed into a Topological Overlap Matrix
(TOM), followed by hierarchical clustering to define co-expression
modules. Gene module “eigengenes” were assigned distinct colors,
and eigengenes were calculated to summarize module expression
patterns. To investigate biological relevance, module-trait
correlations were computed using sample metadata, identifying
key modules associated with experimental conditions. Gene
ontology (GO) enrichment and pathway analyses were performed
using ClusterProfiler to assess functional relevance (Yu et al., 2012).
Hub genes were determined based on intramodular connectivity,
identifying core regulators within each module.

Inter-module relationships were visualized through eigengene
expression analysis, highlighting shared and unique regulatory
patterns. To enhance reproducibility, all analyses were performed
in R using the DESeq2, WGCNA, and ClusterProfiler packages.
This framework provided a robust systems-level approach for
uncovering transcriptional signatures linked to growth-phase
dynamics and virulence-associated differences in M. bovis strains.

Quantitative real-time PCR analysis of
mycobacterial transcripts

Primers with similar melting temperatures (60-66°C) were
designed by using PRIMER 3 software (Rozen and Skaletsky,
2000). The sequences of primers are available on Supplementary
Table S1. All primers were tested in PCRs with 100 AF2122/97
genome equivalents as template and the amplification products
were evaluated by gel electrophoresis. A total of 1-2 g RNA were
used as template for cDNA using Superscript III. A SYBR green
based qRT-PCR protocol utilizing GoTaq® qPCR Master Mix
(Promega, Madison, WI) and the Step One Plus TM Real-Time
PCR System (Applied Biosystems®, Foster City, CA) were used. For
in vitro samples, gene expression was normalized to 16S rRNA (rrs).
For in vivo samples, expression was normalized to sigA
(BQ2027_MBO0760), a stable internal control during mycobacterial
infection in mice. Analysis was carried out using LinRegPCR
(Ruijter et al., 2009). Two biological replicates with no less than
three technical replicates each were completed. Gene expression
levels were determined using the AACt method (Livak and
Schmittgen, 2001) for murine lungs relative to in vitro culture at
mid-log phase. Statistical significance between groups was assessed
using a one-way ANOVA with Tukey’s post-hoc test for multiple
comparisons or an unpaired Student’s t-test for two-
group comparisons.

Statistical analysis section

Statistical analyses for RT-qPCR, bacterial enumeration, and
growth curve assays were conducted using GraphPad Prism 9.4.1
(GraphPad Software, San Diego, CA, USA). Differences between
groups were evaluated using a one-way analysis of variance
(ANOVA) with Dunnett’s post-test to control for multiple
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TABLE 1 Summary statistics for lllumina RNA sequencing data from individual samples.

Gro_up/ (OD600) Number of = Mapped 'reads in Mapped reac_js in % of mapped % of mapped
Replicate reads pairs broken pairs reads genes
Mbo-0OD0.5-1 0.5 179,088,686 143,248,892 35,839,794 93.36 5636764
Mbo-0OD0.5-2 0.5 131,656,524 98,763,404 20,327,902 90.46 80.81154
Mbo-ODI1-1 1 193,904,818 161,024,976 19,132,377 92.91 5270105
Mbo-OD1-2 1 155,148,040 127,200,414 127,200,414 93.14 5243217
Mbo-OD2-1 2 32,538,652 26,928,321 23,536,147 92.16 68.83403
Mbo-OD2-2 2 30,634,044 25,045,460 16,511,101 91.60 69.34735
BCG-ODO0.5-1 0.5 164,360,570 129,471,154 21,038,933 91.57 96.6023
BCG-OD0.5-2 0.5 151,063,370 111,551,380 24,199,541 89.86 96.87118
BCG-ODI1-1 1 150,539,890 109,999,798 27,153,812 9111 96.62674
BCG-OD1-2 1 161,153,618 119,262,856 24,153,595 89.00 96.55341
BCG-OD2-1 2 153,514,454 120,747,084 19,050,340 91.07 96.65119
BCG-OD2-2 2 152,643,502 114,372,230 24,056,422 90.69 96.72452

comparisons. Growth curves were fitted using a nonlinear
regression model to determine key growth parameters, including
lag phase duration, maximum growth rate, and stationary
phase plateau.

All statistical analyses were performed under parametric
assumptions, with normality and homogeneity of variance
assessed using the Shapiro-Wilk test and Levene’s test,
respectively. A threshold of p < 0.05 was considered statistically
significant. **Significant differences are labeled accordingly in the
figures as * p <0.05, ** p <0.01, ** p <0.001, and **p < 0.0001.

Results and discussion

Characteristics of mycobacterial
transcriptome

To profile M. bovis transcriptional machinery, we employed an
RNA-Seq approach to identify genes associated with the growth of
the virulent M. bovis AF2122/97 strain and the attenuated BCG-
Russia strain. To capture the complete transcriptional landscape
across different growth phases, cultures of M. bovis and M. bovis
BCG (BCG) were harvested at early log (ODggo = 0.5), mid-log
(ODgpo = 1.0), and stationary phases (ODgoo = 2.0) Growth curves
for both strains are shown in Supplementary Figure SI1B. This
design enabled us to assess the dynamic transcriptional changes
associated with bacterial growth at early-log, mid-log and stationary
phases. The RNA-Seq analysis generated an average of 138 + 5.2
million paired-end reads per library, exceeding previously defined
quality control criteria for sequencing depth and alignment
(Tarazona et al., 2011; Castel et al., 2015). On average, 91 + 1.3%
of reads mapped uniquely to the M. bovis AF2122/97 reference
genome (GenBank accession number NC_002755). The RNA-Seq
datasets detected transcripts for 64-66% of the coding regions in
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each sample, providing robust transcriptome coverage for 98.2% of
the predicted genes encoded in M. bovis under all examined growth
phases. The sample distance matrix showed clear clustering by
biological replicate (Supplementary Figure 2A), and the library size
distributions across samples (Supplementary Figure 2B). Together,
these metrics ensured robust differential gene expression analysis.
The summary statistics of the RNA-Seq data for each replicate are
summarized in Table 1.

Differential gene expression across growth
phases of M. bovis AF2122/97 and M. bovis
BCG- Russia

To analyze the transcriptomic differences between the virulent
and the attenuated bovine tubercle bacilli, we employed direct
pairwise comparisons of the transcriptome of both organisms
using a P-value threshold of < 0.05 and > * 1.5-fold change.
When early log (ODggo = 0.5) versus mid-log (ODgoo = 1.0)
cultures were compared in M. bovis, significant downregulation
was observed for genes (n = 105) such as fadE23, fadE24, and fadE5
(Figure 1A), essential components of lipid metabolism pathways
(Crick and Guan, 2016), suggesting metabolic reprogramming
during growth progression. Additionally, the downregulation of
cydB and ndh highlights adjustments in respiratory pathways
(Mittal et al., 2018). In contrast, BCG at the same transition
exhibited significant upregulation of BQ2027_MBI1086 and scoA
among the 126 upregulated and 95 downregulated genes
(Figure 1A), pointing toward enhanced central metabolic activity
in the attenuated strain (Houben et al., 2006).

When early log (ODggo = 0.5) versus stationary phase (ODgqg =
2.0) cultures were compared in M. bovis, consistent downregulation
of genes such as BQ2027_MBI1650c, cydB, and cydA was observed,
indicating shifts in respiratory and electron transport processes
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(Figure 1B) (Vaziri and Brosch, 2019). Upregulation of yrbE2A,
fusA2b, and rnj suggests adaptive mechanisms involving nutrient
acquisition and stress responses during exponential growth
(Figure 1B) (Seshadri et al., 2009; Forrellad et al., 2013; Wang
et al, 2022; Silva-Pereira et al., 2024). Similarly, BCG exhibited
distinct metabolic changes with the upregulation of genes such as
fadE22a, BQ2027_MB2662, and PEI2, reflecting enhanced stress
response mechanisms. Genes related to lipid metabolism, such as
mcelD and espc, were significantly downregulated in BCG at this
growth stage, consistent with its attenuated phenotype (Figure 1E)
(Houben et al., 2006).

Finally, when comparing mid-log (ODggo = 1.0) versus stationary
(ODggp = 2.0) phases, M. bovis exhibited upregulation of (n = 162)
including dormancy- and survival-related genes, such as fadE23,
fadE24, and BQ2027_MB0909, underscores its preparation for
stationary phase and environmental adaptation (Figure 1C)
(Houben et al., 2006). Concurrently, downregulation of genes (n =
189) such as BQ2027_MB2981 and BQ2027_MBI1023 highlights the
metabolic shifts favoring survival over replication (Vaziri and Brosch,
2019). In contrast, BCG demonstrated upregulation of stress
response genes, such as desa3, desAl, and modA (Figure 1F)
(Chang and Fox, 2006), while showing downregulation of genes
like inol, suggesting a diminished reliance on virulence-associated
pathways (Movahedzadeh et al., 2004).

Comparative transcriptomics of M. bovis
and M. bovis BCG.

To further explore the transcriptional divergence of M. bovis
AF2122/97 and M. bovis BCG-Russia, we conducted direct pairwise
comparisons between both strains growing at different growth
phases. This analysis reveals phase-specific expression patterns
that define the M. bovis virulent and attenuated strains (Figure 2).

At early growth phase, M. bovis significantly upregulates (n =
326) including key virulence-associated genes, such as eccc2_2
(encoding ESX-II secretion-associated protein EccC2) and mmsA
(encoding methylmalonate-semialdehyde dehydrogenase)
(Figure 2A) (Gibson et al, 2022). The level of changes in gene
expression ranged between log,FC = 5.79 to log,FC = 8.73
respectively. These Differentially Expressed Genes (DEGs) are
integral to pathogenic mechanisms, including secretion systems
and metabolic processes crucial for early-stage infection (Gibson
et al., 2022). Although eccC2_2 expression was higher in M. bovis
than in BCG, canonical ESX-1 genes (e.g., esxA/B, espA/C) were
undetectable in BCG due to the stable deletion of the RD1 locus
known to underlie its attenuation. The expression differences in
eccC2_2 and mmsA do not themselves imply virulence roles but
rather reflect strain-dependent variation in secretion-system
activity and lipid metabolism.

At mid-log growth phase, the transcriptional landscape further
differentiates (n = 374), with M. bovis continuing to show elevated
expression of mmsA (MB0775¢; methylmalonate—semialdehyde
dehydrogenase), BQ2027_MB3287 (a putative metallopeptidase
family protein), and BQ2027_MB0467 (exaC; NAD"—dependent
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acetaldehyde dehydrogenase), with log2 fold changes exceeding 6.
Their regulation is consistent with known virulence strategies:
metallopeptidases like Zmpl are implicated in macrophage
inflammasome suppression, and aldehyde dehydrogenation is
required for detoxifying host-derived reactive aldehydes during
persistent infection. Consequently, these genes are better framed as
components of metabolic adaptation layers indirectly supportive of
virulence (Guo et al., 2023). Meanwhile, M. bovis BCG demonstrates
upregulation of stress-response and metabolic genes, indicative of its
focus on environmental adaptability rather than virulence (Figure 2B).
At stationary phase, the virulent strain adapts to long-term
survival, with pronounced upregulation of genes (n = 378) like tkt
(encoding transketolase) and apa (encoding alanine-proline-rich
antigen), highlighting a focus on dormancy and immune modulation
(Sable et al,, 2011; Fullam et al,, 2012). In contrast, M. bovis BCG
continues to prioritize stress response pathways, with limited
expression of virulence-associated factors (Figure 2C). These findings
illustrate the phase-specific transcriptional shifts underlying the
divergent phenotypes of M. bovis and M. bovis BCG, providing
insights into the molecular determinants of virulence and attenuation.
To further examine the overlap in differential gene expression
across growth phases, we analyzed the intersection of differentially
expressed genes between early, mid-log, and stationary phases for
both M. bovis and M. bovis BCG (Figure 2D). The UpSet plot
illustrates the extent of shared and unique transcriptional responses
across growth transitions. Notably, M. bovis exhibits a greater
number of overlapping DE genes between OD600 0.5 and OD600
1.0 (n = 31), suggesting a coordinated metabolic shift between early
and mid-log phases. Conversely, M. bovis BCG shows fewer shared
DE genes across phases, indicating a more gradual transcriptional
adaptation with a focus on stress response mechanisms. The
relatively high number of distinct genes (n = 42) differentially
expressed only in the stationary phase in M. bovis further
underscores its ability to enter a dormancy-like state, a feature
less pronounced in M. bovis BCG. This comparative transcriptomic
analysis highlights key regulatory mechanisms that distinguish
virulence-driven metabolic shifts in M. bovis from the
attenuation-associated transcriptional changes in BCG.

Distinct modules underlying transcriptional
changes during growth phase transition

To better characterize gene underlying the M. bovis adaptation
at different growth phases, we employed Weighted Gene Co-
expression Network Analysis (WGCNA) to identify co-expressed
gene networks and their relationships with experimental traits
(Figure 3). This analysis revealed 13 distinct gene modules
(Supplementary Table S2, Supplementary Figure 3) that show
correlation with bacterial growth phase progression, reinforcing
the phase-specific regulatory mechanisms governing virulence and
metabolic adaptation.

The module-trait correlation analysis (Figure 3A) revealed that
five modules (turquoise, blue, brown, yellow, and greenyellow)
exhibited significant correlations with bacterial growth phase
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FIGURE 1

Differential gene expression analysis across growth phases of M. bovis and M. bovis BCG. Volcano plots represent the average log2 fold change
versus the -logl0 P-values between growth phases for M. bovis (A—C) and M. bovis BCG (D—F). (A) Comparison of M. bovis OD600 0.5 vs OD600 1.
(B) Comparison of M. bovis OD600 0.5 vs OD600 2. (C) Comparison of M. bovis OD600-1 vs OD600 2. (D) Comparison of M. bovis BCG OD600

0.5 vs OD600 1. (E) Comparison of M. bovis BCG OD600 0.5 vs OD600

diagram showing the overlap of significantly differentially expressed genes (DEGs) across the three pairwise growth phase comparisons in M. bovis,
(H) Venn diagram showing the overlap of significantly DEGs across the three pairwise comparisons in M. bovis BCG. Teal dots represent
downregulated transcripts, gold dots represent upregulated transcripts, and gray dots represent non-significant changes (fold change > + 1 log2 and
p < 0.05). Key differentially expressed genes are labeled. The differentially expressed genes [|log2FC|>1, FDR<0.05 ('*')] that are upregulated in M.

bovis AF2122/97 or M. bovis AF2122/97-BCG-Russia.

progression. While not all modules exceeded an R-value of 0.6, their
eigengenes expression (co-expressed genes based on WGCNA)
trends (Figure 3B) aligned with observed DEGs and strain-
specific transcriptomic behavior, prompting their inclusion in
subsequent functional analyses.

The turquoise module I (1,626 genes) exhibited the strongest
correlation with bacterial growth phase (r = 1.0, p < 0.01), suggesting
its role in adaptive responses to metabolic shifts during transition from
exponential to stationary phase. Genes within this module included
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several lipid metabolism regulators, such as fadD21, fadD22, fadD23,
fadD25, fadD26, fadD28, fadD29, and fadD30, which are involved in
fatty acid degradation and lipid utilization (Figures 3A, B, ]), processes
essential for energy metabolism and adaptation to stationary phase
(Simeone et al,, 2010). Additionally, the presence of yrbE2A, fusA2b,
rnj, and mmpL3 suggests that this module also contributes to
membrane transport and stress adaptation (Su et al., 2021), enabling
bacterial survival under nutrient-limited condition which is
considered key factors for mycobacterial virulence during infection.
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The blue module II, (695 genes), exhibited a strong negative
correlation with the bacterial strain factor (r = -0.40, p < 0.05),
indicating an inverse relationship—higher expression in M. bovis
relative to BCG—which is a valid and interpretable outcome within
the WGCNA framework (Langfelder and Horvath, 2008). This
module was enriched with genes associated with virulence and
host-pathogen interactions. Notably, eccC2_2 and mmsA, key
components of the ESX-1 secretion system and methylmalonate
metabolism, respectively, were strongly upregulated in M. bovis
compared to M. bovis BCG (Figures 3A, D, G) (Cole et al.,, 1998).
The presence of PPE and PE_PGRS family genes further suggests
that this module plays a crucial role in immune evasion and
intracellular persistence, consistent with the virulent phenotype of
M. bovis (Domenech et al., 2005).

Conversely, the brown module III, (466 genes), which exhibited
a moderate correlation with growth phase (r = 0.35, p < 0.05),
contained genes linked to central metabolism and oxidative stress
response, including scoA, BQ2027_MBI1086, and fadE22a
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(Figures 3A, C, H) (Bitter et al., 2009). The upregulation of these
genes in M. bovis BCG suggests an enhanced reliance on metabolic
pathways that compensate for the attenuation of virulence-
associated factors (Gey van Pittius et al., 2006).

The yellow module IV, (193 genes), displayed a strong
association with stationary phase adaptation (r = 0.73, p < 0.01)
and contained genes such as bfrB and desa2, which are known to be
involved in oxidative stress protection and lipid homeostasis
(Figures 3A, F) (Geiman et al., 2006). The presence of these genes
in this module suggests an essential role in long-term survival
strategies, particularly for M. bovis BCG, which exhibits increased
dormancy-associated gene expression (Brosch et al., 2007).

The green-yellow module V, (49 genes), was enriched with genes
involved in cell wall remodeling and transport processes, such as
mcelD, espc, and yrbE2A, which were significantly upregulated in M.
bovis compared to BCG (Figures 3A, F, I) (Reddy et al,, 2012). This
module showed a moderate negative correlation with bacterial strain
(r =-0.74, p = 0.03), indicating strain-specific expression differences
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Key Weighted Gene Co-expression Network Analysis Identifies Modules Underlie Growth Phase and Strain Differences in M. bovis AF2122/97 and M.
bovis BCG-Russia. (A) Module-trait relationships heatmap illustrating the correlation between WGCNA-identified gene modules and experimental
traits, including bacterial strain, time points, and infection state. The heatmap shows the Pearson correlation values (R) and corresponding p-values
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red representing positive correlation and blue representing negative correlation. (B-F) Boxplots of eigengene expression values for the turquoise,
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within each module.

rather than direct regulation by bacterial growth phase. The higher
expression of these genes in M. bovis suggests a potential role in
cellular integrity and nutrient uptake during early exponential
growth. However, their expression declines over time, indicating
that they are primarily utilized in the early stages of growth rather
than throughout bacterial adaptation (Boon and Dick, 2002).

Overall, these findings provide a comprehensive view of the
transcriptional programs governing M. bovis and M. bovis BCG
physiology. Among the 13 identified co-expression modules, five
were strongly associated with virulence, metabolic adaptation, and
growth phase progression; turquoise, blue, brown, yellow, and green-
yellow. These modules encapsulate key gene networks related to lipid
metabolism, immune evasion, oxidative stress response, dormancy,
and cell wall remodeling. Together, they highlight distinct strategies
employed by the virulent and attenuated strains to adapt to
environmental shifts and host-related pressures.

Transcription factor enrichment analysis

M. bovis encodes nearly 200 transcriptional factors, similar to M.
tuberculosis (Smith, 2003). The differential gene expression observed
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between the virulent and the attenuated bovine tubercle bacilli may be a
consequence of differences in global transcriptional regulators between
the two species. To address this hypothesis, a curated transcription
factor enrichment analysis was performed and revealed the significant
2015)
(Figure. 4A). The transcription factors included in our analysis were
selected based on known regulatory networks within the MTBC, and
their differential expression (list fold of change used here) observed in
our dataset and their known associations with virulence. This targeted
approach allowed us to focus on the most relevant transcription factors

association of 10 transcription factors (Turkarslan et al,

impacting pathogenicity.

The association of transcription factors such as alternate sigma
factors SigK and SigF along with cytoplasmic redox sensor WhiB3
with the differentially expressed gene (DEG) lists indicates that
disparate expression of virulence- relate pathways regulated by
these transcription factors between the two pathogens could have
significant consequence for infection (Gebhard et al.,, 2008; Veyrier
et al, 2008). Importantly, PhoP and EspR were significantly
differentially expressed, these transcription factors are important
for adaptation of M. bovis to the intracellular environment and are
functionally linked by such processes (Sherman et al., 2001; Singh

et al, 2009). PhoP and EspR regulate the expression of ESX-1
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secretion system-related genes. Furthermore, PhoP was expressed to
a higher level in BCG; this may represent an attempt at a
compensatory mechanism for aberrant PhoP signaling and
supports previous reports of suboptimal PhoP signaling in M.
bovis (Gonzalo Asensio et al., 2006; Walters et al., 2006; Gonzalo-
Asensio et al., 2014). Additionally, 8 of 48 canonical DosR regulon,
namely BQ2027_MB1632c, BQ2027_MB1633c, BQ2027_MBI1634c,
BQ2027_MBI1636¢c, BQ2027_MB1650, BQ2027_MB1653,
BQ2027_MB2030, and BQ2027_MB2033 (Sivaramakrishnan and
de Montellano, 2013; Belardinelli et al., 2025) were significantly
upregulated in M. bovis virulent strain, consistent with the role of
DosR in early adaptation to hypoxic or stress conditions. This
differential expression pattern may reflect the integration of DosR
responses with other transcriptional regulators such as PhoP, EspR,
and WhiB3 (Gonzalo Asensio et al., 2006; Gonzalo-Asensio et al.,
2014). DosR regulon is important during conditions that do not
allow aerobic respiration (Leistikow et al., 2010), like in the lungs of

A B Cc D
ESX-1 locus
ARD1 BCG
'vapb40 p
sigk espFt espH  eccsl eccCbl  ppe6s esiA  eccDl espk esp et
espG eccAl eccCol pe3s esxB  espl esp) espl ‘eccEl
EsxA PE3S
IprA oAY .E:;g freess I esx-1 secretion-associated proteins
espr # M esx-1 conserved components
20 PE/PPE protein families
2 EccEr | @ MycPa . P
phoP o [ MycP1 serine protease
“EccCar— EsxA/ EsxB
EccCbigm .
terx 1 EccAr
e EsxAYEsxB EspA EspC
whiB3
sigF
dosR
pyrR
espc
£ =
eccel
§ 3
s 5 espg!
@
8 X espd
(2
] 8 eccht
[
& 9 esph
> = S
= =
] S
S, S.
« 2
2 3
(2] N
Y]
§ &
2 ~
) = <
§ £
@ o’
@ >
(<] m
g 8
o ~N
&
FIGURE 4

Differential Expression and Genomic Architecture of the ESX-1 Locus in M. bovis and BCG. Differentially expressed genes [|log,FC| > 1.5, FDR < 0.05]
identified across all growth phases (OD600 = 0.5, 1.0, and 2.0) comparing M. bovis AF2122/97 and M. bovis BCG-Russia are shown. (A) Heat map
displaying transcriptional factors and virulence-associated genes. (B) Heat map displaying ESX-1-associated genes, highlighting the deletion of the
RD1 region in BCG and its impact on secretion system components. (C) Schematic representation of the ESX-1 locus, highlighting the RD1 deletion
in BCG strains. Genes encoding ESX-1 secretion-associated proteins (blue), conserved ESX-1 components (red), PE/PPE family proteins (purple), and
the MycP1 serine protease (green) are illustrated, along with interactions between secretion system components. (D) Heat map displaying genes
involved in lipid metabolism and cell envelope biosynthesis. Note scale bar for the heat maps where numbers indicate log, fold—change (M. bovis vs
BCG): < -15 (blue) to 0 (white) to > +1.5 (red); zero-change baseline is white.
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M. tb-infected mice (Voskuil et al., 2003) and in interferon-gamma-
activated murine macrophages (Schnappinger et al., 2003).
Interestingly, several genes that were in the deleted regions from
BCG were highly expressed in M. bovis (Supplementary Figure 4)
including the major antigens ESAT-6 and CFP10, secreted by the
ESX-1 secretion system of the MTBC, a system which has been
implicated in mycobacterial escape from the phagosome to the
cytosol that results in a Type-I interferon response within the
infected macrophage (Simeone et al, 2009; Simeone et al., 2012;
Simeone et al., 2015a). As EspR is induced in M. bovis AF2122/97,
there is a significant induction of the ESX-1 secretion system in M.
bovis, including esx-1-related proteins such as esxA, espA, espC,
espD (Raghavan et al., 2008; Simeone et al., 2009; Chen et al., 2013;
Solans et al., 2014; Cao et al,, 2015) (Figure 4B). Additionally, all
genes related to RD1 region (Figures 4B, C) was observed to be
diminished expression in M. bovis BCG-Russia, this is an emphasis
on the identity of each strain as RD1 is absent from the vaccinal
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strain. Alternate transcriptional regulation between the M. bovis
BCG-Russia and the M. bovis AF2122/97 may represent differential
priming events in preparation for the initial interactions of both
species with their respective host immune systems. Increased
expression of the ESX-1 secretion system may facilitate faster
escape of M. bovis AF2122/97 from the phagosome into the
cytosol in contrast to BCG, hence triggering DNA-sensing
pathways and increased IFN response seen in our data (Simeone
et al., 2012; Simeone et al., 2015b).

Lipid metabolism enrichment analysis

The results of transcriptomic analysis indicated subtle difference
in lipid metabolism related genes between the virulent and the
attenuated bovine tubercle bacilli. M. bovis AF2122/97 showed
higher expression of the Pks13/FadD32 pair (Figure 4D), which
are involved in the Biosynthesis of Mycolic Acids (Gavalda et al,
2009). FadD32 gene is adjacent to pks13, this genetic loci, fadD32-
pks13, is conserved also in M. tb and M. leprae (Marrakchi et al,
2014), as this gene cluster is restricted to mycolic-acid-producing
bacterial species (Gande et al., 2004). FadD32, a fatty acyl- AMP
ligase, is involved in catalyzing the formation of acyl-adenylates, the
activated form of meromycolic acid substrate in the mycolic
condensation reaction (Trivedi et al., 2004). It also assists the
transfer of the meromycoloyl chain onto the N-terminal acyl
carrier protein (ACP) domain of the condensing enzyme Pks13
(Le et al,, 2016). While Pks13 is a unique polyketide synthase (PKS)
forms the a-alkyl B-ketoesters which is the direct precursors of
mycolic acids (Gavalda et al, 2009). Importantly, Polyketide
synthase Pks13 and its acyl-AMP ligase partner FadD32, encoded
within the same locus, are universally regarded as essential for
mycolic acid biosynthesis and bacterial viability in the M. tb
complex (Portevin et al, 2004). Also, Pks13/FadD32 pair have
been shown to be required for virulence in M. tb (Sassetti and
Rubin, 2003; Mukhopadhyay et al., 2012). The M. bovis virulent
strain orthologues may also, therefore, play a role in virulence.
Upregulation of Pks13/FadD32 pair (log, fold change ranging from
2.3 to 4.3 across growth phases) may indicate divergent expression
of Mycolic acid between the virulent and attenuated strains of M.
bovis, an observation that can be reflected on the composition of the
cell wall of each bacillus.

MmaA4 was found also to be induced in the virulent M. bovis.
MmaA4, a hydroxy- mycolate synthase, is also involved in mycolic
acid modification by converting it to hydroxy mycolic acid, a
precursor of methoxy- or keto-mycolic acid (Alahari et al., 2009). It
was found that MmaA4 modulates IL-12 production. MmaA4
knockout mutant induced more IL-12 from murine macrophages
and were attenuated for virulence in mice (Dao et al, 2008). As a
result, the AmmaA4 mutant strain induced significantly elevated
levels of this critical Thl-type cytokine in macrophage cultures.
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Additionally, MmaA4 knockout mutant of BCG vaccine induced
higher levels of mycobacterial-specific multifunctional T cells, is more
protective than BCG vaccine, and, surprisingly, may be safer than
BCG when used in immunocompromised animals (Derrick et al,
2012; Derrick et al,, 2016). Although BCG-Russia exhibited overall
lower expression of certain lipid metabolic enzymes, the functional
consequences of these differences require further investigation.
Interestingly, BQ2027_MDb2982c, encoding a glycosyltransferase
involved in the synthesis of the trisaccharide phenolic glycolipid
(PGL) that is derived from phthiocerol dimycocerosates (PDIM), was
found to be expressed at higher levels in M. bovis BCG-Russia (data
not shown). However, it should also be noted that BQ2027_Mb2982c
is non-functional in M. bovis, so the higher expression of its gene may
simply be due to loss of negative feedback inhibition. Previously, it
was found that loss of PIDM/PGL reduces the protective efficacy of
BCG vaccine (Tran et al., 2016). Since the loss of PDIM and PGL
occurs naturally in a subset of BCG strains (Chen et al., 2007), it also
suggests that these strains may have been over-attenuated, which
compromises their effectiveness. Overall, most of these genes are
participated in energy metabolism, including the fatty acid,
cholesterol and glycolipid metabolism. It is postulated that
pathogens downregulated its metabolic activity to reduce energy
consumption and to persist in a prolonged dormant state.

Validation of DEGs in vivo

As we were able to identify in vitro differentially expressed genes
between attenuated and virulent M. bovis strains. To validate the
biological relevance of key genes identified in vitro, we analyzed
gene expression of a limited set of genes in a susceptible murine
model infected with the virulent strain. Lung tissues were analyzed
using qRT-PCR, a sensitive assay for gene expression, to confirm
their expression during in vivo infection. Our analysis focused on
key in vitro expressed differentially expressed genes change their
expression during the infection of the host tissue using the C3HeB/
Fe] mouse model. We chose this model as it recapitulates the
hallmark of bovine tuberculosis lung lesions following M. bovis
aerosol infection (Boute et al., 2017). Mouse groups were sampled at
4- and 16- weeks post-infection to represent early and progressive
stages of infection following aerosol infection with M. bovis
AF2122/97. colonization levels increased at 4 w.p.i but peaked by
16 w.p.i (Figure 5a). Histologically, type I lesions resulted from the
occlusion of alveolar spaces by a cellular infiltrate were noticeable by
4 w.p.i (Figure 5b). However, previous studies of M. bovis infection
in C3HeB/Fe] murine model showed that type I lesions that evolved
into an organized granuloma with a central accumulation of foamy
macrophages were only visible by 5 w.p.i (Boute et al., 2017). This
might explain the less organized lesion observed in the examined
mouse lungs. As infection progressed, the inflammatory responses
were intensified in lungs by 16 w.p.i with the observation of central
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necrosis in type I lesions (Figure 5¢). These histological findings
agree with the increase of bacterial burden by progression
of infection.

Several transcripts were selected to be quantified using quantitative
RT-PCR (Figure 6), from bacterial RNA purified from the murine lung
tissue based on their differential expression magnitude, known
virulence associations, relevance to secretion or lipid metabolism
pathways and their potential involvement in adaptation of M. bovis
into host microenvironment a as suggested previously (Brosch et al,
2007; Malone et al,, 2018). Among the highly regulated genes Mb3614c
(BQ2027_MB3614c), pstS3 (BQ2027_MB0951), PPE40
(BQ2027_MB2377¢c), fbpB (BQ2027_MB1918c), whiB6
(BQ2027_MB3892¢) and espR (BQ2027_MB3910c). Interestingly,
most of the genes whose expression dramatically changed between
virulent and attenuated strains during in vitro culture showed similar
differential expression during lung tissue infection (Figure 5). For
example, Mb3614c is a putative transcription factor reported to play
a regulatory role under starvation conditions (Ramos et al., 2020), was
found to be also induced during early stage of lung tissue infection.
Similarly, PPE40, a hypothetical PPE-family protein predicted to be an
outer membrane protein, which is a part of the ESX 5 secretion system
only found in pathogenic slow growing mycobacteria (Baena et al,
2019). It was found that PPE40 was induced more at early phase of
infection. While pstS3 (BQ2027_MB0951) a periplasmic phosphate-
binding lipoprotein (Garnier et al.,, 2003) was found to be induced to
more extent at earlier stages of infection, while downregulated in In-
Vitro culture. The pstS3 is a known as a component of this primary

10.3389/fcimb.2025.1643664

phosphate uptake system and reported previously to be highly
expressed in mouse lungs (Shi et al., 2004). Moreover, PstS3 is an
excellent immunogen inducing CD8+ T-cell activation and both Thl
and Th17 immunity (Palma et al., 2011). Also, mice vaccinated with
DNA coding for pstS3 demonstrated significant and sustained
reduction in bacterial load in lungs after M. tb challenge (Tanghe
et al,, 1999). The observation of pstS3 induction during lung infection
while downregulated during In-Vitro growth highlights the differential
expression of virulence factors specific for the adaptation of M. bovis to
host microenvironment.

Conclusions

This study provides a comprehensive analysis of the
transcriptional differences between the virulent M. bovis AF2122/
97 and the attenuated M. bovis BCG-Russia strains. Through
RNAseq, we identified significant differentially expressed genes
(DEGs) associated with various growth phases and their roles in
virulence and survival. Our findings highlight the pronounced
upregulation of virulence-associated genes such as esxA and phoP
in the virulent strain, contrasting with the stress response-related
gene sigH in BCG. The comparison across different growth phases
revealed that M. bovis adapts its metabolic and virulence strategies
according to the growth phase. Notably, genes like iclI and mbtH
were upregulated in the virulent strain at mid-log, underscoring
their roles in lipid metabolism and iron acquisition, respectively. At
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FIGURE 5

Infection confirmation through bacterial burden and histopathology. Groups of C3HeB/FeJ mice were infected by aerosol route with M. bovis strain
AF2122/97. Lungs from infected animals were harvested and cultured at 4- and 16- weeks post infection. Each circle represents the colonization
level for each organ from one animal. Asterisks (* for p < 0.05 and ** for p < 0.005) indicate statistically significant difference in colonization level
between 4- and 16- weeks post infection (A). Tissues sections stained with H&E collected from mice lungs infected with M. bovis AF2122/97 at 4
weeks post infection (B) and 16 weeks post infection (C). (B, C) are shown at 40 X magnification (scale bar = 200 um). Insets showing Ziehl-
Neelsen- stained lung sections are also included, with arrowheads indicating acid-fast bacilli at 1000x magpnification (scale bar = 100 um). No bovine
TB-associated granuloma infiltrates or acid-fast bacilli were found in any tissues in the naive group.
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FIGURE 6

The relative expression of selected genes by qRT-PCR analysis. quantitative real- time PCR analysis of total RNA extracted from lung tissue samples
collected C3HeB/Fed mice groups at 4 w.p.i and 16 w.p.i. Expression levels were calculated with AACt relative quantitation method relative to the
gene expression in the mid-log phase In-Vitro culture. At each time point, samples from 5 animals in each group were included and standard errors
of the mean (SEM) of the three measurements were presented as error bars.

stationary phase, the significant upregulation of dormancy-
associated genes dosR and relA in M. bovis indicates its
preparedness for long-term survival under adverse conditions, a
stark contrast to the elevated groEL expression in BCG, which
suggests a focus on stress response. The transcription factor
enrichment analysis identified key regulators, including sigK, sigF,
phoP, and espR, which play crucial roles in the differential
expression of virulence-related pathways. These transcription
factors underscore the complex regulatory networks that drive the
pathogenicity of M. bovis. It is important to note that BCG sub-
strains vary substantially in terms of genomic deletions, antigen
expression, and immunogenicity. As our findings are derived from
BCG Russia, an early sub-strain, the observed transcriptomic
patterns may not fully reflect those of later sub-strains. This
consideration is essential when interpreting generalizability of

Frontiers in Cellular and Infection Microbiology

BCG-associated responses. Additionally, the study identified
critical differences in lipid metabolism genes, such as the Pks13/
FadD32 pair and MmaA4, further linking these pathways to the
virulence and survival strategies of the pathogen. The findings from
the in vivo experiments using the C3HeB/Fe] mouse model
corroborated the in vitro data, particularly the role of Mb3614c,
PPE40, and pstS3 in adapting to the host environment.

Overall, this work provides valuable insights into the molecular
mechanisms underlying the virulence and attenuation of M. bovis.
The identified DEGs and transcription factors present promising
targets for future research aimed at developing novel therapeutic
strategies and improving tuberculosis control measures. Further
studies on these candidate genes could elucidate their roles in the
survival strategies of M. bovis within host tissues, paving the way for
more effective interventions against bovine tuberculosis.
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SUPPLEMENTARY TABLE 1
Primers' sequences used in this study.

SUPPLEMENTARY TABLE 2

Summary of WGCNA gene co-expression modules and their correlations
with experimental traits. This table lists each identified module along with its
correlation values to group (strain), time points, and factor_time (growth
phase), associated p-values, and the total number of genes per module.
Modules were detected using dynamic tree cutting following TOM-based
hierarchical clustering. Correlation values (r) represent Pearson correlation
between each module eigengene and experimental traits. P-values were
computed using Student asymptotic test (WGCNA corPvalueStudent). Only
modules with |r] > 0.5 and p < 0.05 were considered biologically meaningful
in downstream analyses. Modules with lower or nonsignificant correlations
are retained for completeness but not emphasized in the main text.

SUPPLEMENTARY FIGURE 1

Growth kinetics of M. bovis AF2122/97 and M. bovis BCG Russia In-Vitro
cultures. (A) The number of colony forming units (CFU/ml) measured at
specific OD600 measures representing log, stationery and lag phases. (B)
OD600 measurement over time in days. The dashed line indicates the limit of
detection. CFU counts were determined by culturing on 7H10 Middlebrook
media with serial dilutions. Shown are one of two similar biological replicates
with error bars representing standard deviation.

SUPPLEMENTARY FIGURE 2

Overview of RNAseq quality. (A) Pearson correlation distance matrix of reads
mapped to M. bovis genes in the six M. bovis AF2122/97 and six M. bovis BCG
Russia RNA-seq datasets. (B) The sequencing library size bar plot showing many
reads we have for each sample, dashed line indicating cutoff for library coverage.

SUPPLEMENTARY FIGURE 3

Weighted Gene Co-Expression Network Analysis (WGCNA) module
identification and network topology assessment. (A) Hierarchical clustering
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dendrogram of genes based on topological overlap, with branches
representing gene clusters and module assignments indicated by different
colors. The Dynamic Tree Cut method was applied to define modules. (B)
Scale-free topology model fit (signed R?) as a function of the soft-
thresholding power. A power of X was chosen as it reached the threshold
of R? > 0.9, ensuring approximate scale-free topology. (C) Mean connectivity
of the network as a function of the soft-thresholding power. Connectivity
decreases as the power increases, supporting the selected threshold for a
biologically meaningful co-expression network. This analysis enables the
identification of co-expressed gene modules and their relevance to
bacterial growth phase and virulence-associated transcriptional programs.
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