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with a dsRNA viral mimic:
insights into cellular defense
and repair signals
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Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain
viruses, pose a significant public health threat. Our research focuses on the immune
responses of Lutzomyia longipalpis, the primary vector for visceral leishmaniasis in
the Americas. We use L. longipalpis LL5 cells as a model to study how sand flies
respond to pathogens. These cells exhibit robust immune reactions, producing
molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAIi pathways. In
previous studies, we detected a non-specific antiviral response in LL5 cells
following double-stranded RNAs (dsRNAs) transfection. A previous complete
secretome of these cells showed molecules resembling an interferon-like
antiviral response when transfected with polyinosinic—polycytidylic acid (poly I:C),
a synthetic dsRNA analog. In the current study, we analyzed soluble proteins
secreted by LL5 cells after poly I:C transfection. Using comparative mass
spectrometry, we examined protein composition of conditioned media depleted
of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected
groups had low abundance compared to the overall expressed proteins.
Interactome prediction analysis revealed that at 24 h, the proteins uniquely found
in the secretome of the transfected group were involved in RNA degradation and
purine metabolism, while at 48 h they were linked to ribosomal proteins and
signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-f),
and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-3-
induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin
(48 h) in the secretion of transfected groups compared to the controls. We also
performed an interaction analysis of proteins more secreted by the treated group at
24 h and 48 h. Unlike the interactome of uniquely identified proteins, few
interactions were observed at 24 h, with a predominance of extracellular matrix
and cell adhesion proteins. The set of proteins more secreted at 48 h presented
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more interactions than at 24 h, with emphasis on catabolic processes, including
RNA degradation. These findings indicate that poly I:C transfection in LL5 cells
induces the secretion of proteins involved in cellular defense and repair, revealing
molecules involved in the LL5 non-specific antiviral response.

KEYWORDS

sand fly cell line, poly I:C, non-specific antiviral response, RNA degradation, cell repair,

secreted proteins

Introduction

Sand flies can transmit parasites, bacteria, and viruses that cause
diseases that affect humans and animals (Maroli et al., 2013; Ready,
2013). Phlebotomine species from the Phlebotomus and Lutzomyia
genera are vectors of Leishmania parasites, important to public
health in the Old and New World, respectively. In the Old World,
sand flies are known vectors for Phlebovirus, Vesiculovirus, and
Orbivirus, among others (Maroli et al., 2013; Jancarova et al., 2023).
While definitive evidence of the New World sand flies transmitting
viruses to humans is lacking, studies have detected various viruses
in Lutzomyia species, as Phlebovirus (Palacios et al., 2011a, 2011b,
2015; De Carvalho et al., 2018; Hughes et al., 2019), Vesiculoviruses
(Galindo et al., 1966; Travassos Da Rosa et al., 1984; Tesh et al,,
1987; Corn et al., 1990). Other viruses in the Rhabdoviridae family
(Aitken et al., 1975; Corn et al.,, 1990; Comer et al., 1992; Alkan
et al., 2015), Peribunyaviridae (Shelokov and Peralta, 1967; Tesh
et al,, 1974; Aitken et al., 1975; Bonifay et al., 2023), Togaviridae
(Bonifay et al., 2023), and Flaviviridae (Vasilakis et al., 2013) have
also been identified in these vectors in the Americas.

The Lutzomyia longipalpis LL5 embryonic cell line (Tesh and
Modi, 1983) is a useful study model that exhibits elaborate immune
responses when exposed to various microbial challenges. For
example, genes related to Toll, IMD, and Jak-STAT pathway
regulators, as well as antimicrobial peptides, are differentially
expressed after microbial challenges such as bacteria, yeast, and
Leishmania parasites (Tinoco-Nunes et al., 2016; Telleria et al.,
2021). These cells also present a non-specific antiviral response. For
instance, after the transfection of several double-stranded RNA
(dsRNA), LL5 cells suppress the luciferase reporter expression of a
West Nile Virus-like particle. This response occurs regardless of the
transfected dsRNA nucleotide sequence (Pitaluga et al., 2008). Such
nonspecific antiviral response is reported in a few invertebrates,
such as bees and shrimp (Flenniken and Andino, 2013; Wang et al.,
2015), indicating a noncanonical regulatory pathway reminiscent of
the interferon response in mammals, which is still not completely
understood in arthropods.

To better understand the mechanisms behind the observed non-
specific antiviral responses of LL5 cells, we previously transfected
these cells with polyinosinic-polycytidylic acid (poly I:C)
(Chamberlin and Patterson, 1965), a synthetic analog of double-
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stranded RNA (dsRNA) that mimics viral infection, and we analyzed
the proteins present in the whole LL5 secretome released in the
conditioned medium (Martins-da-Silva et al., 2018). Activation of the
cellular immune response can occur when naive cells come in contact
with viral components or other signaling molecules from nearby
infected cells, thus altering the repertoire of secreted proteins (Assil
et al., 2015; Kalluri and LeBleu, 2020; Gurung et al., 2021). Such
proteins can act as key players in cell signaling. In this previous study
(Martins-da-Silva et al., 2018), the most abundant protein secreted by
the poly I:C transfected LL5 cells is a phospholipid scramblase, a
membrane protein involved in plasma membrane maintenance (Dal
Col et al., 2022) with an additional role as an interferon-inducible
protein that mediates antiviral activity (Luo et al., 2018). The other
abundant protein is a forskolin-binding protein (FKBP), a member of
the immunophilin family that participates in various biochemical
processes such as protein folding, receptor signaling, protein
trafficking, and transcription (Ghartey-Kwansah et al., 2018). These
results from Martins-da-Silva et al. (2018) suggest that LL5 cells can
present a nonspecific antiviral-like response similar to an interferon
response in mammals.

Insects employ several antiviral responses. For example, one key
mechanism is RNA interference (RNAi), where small interfering
RNAs (siRNAs) guide the RNA-induced silencing complex (RISC)
to degrade viral RNA (Zhu and Palli, 2020). In sand fly cell lines, the
RNAi pathway is active (Tinoco-Nunes et al., 2016; Telleria et al.,
2021; Alexander et al., 2023). Additionally, RNA decay pathways
target viral RNA for degradation. Adenosine deaminase acting on
RNA (ADAR) can deaminate adenosine residues in viral RNA,
altering or degrading it (Samuel, 2012). Protein kinase R (PKR)
detects double-stranded RNA and phosphorylates cellular and viral
proteins, leading to the degradation of the viral RNA (Marques and
Imler, 2016). Endoribonucleases, such as RNases, also cleave viral
RNA, contributing to the antiviral cellular response through RNA
degradation (Kingsolver et al., 2013; Cooper et al., 2014). These are
molecular events directly involved in an antiviral cellular response.

Other immunity pathways also help eliminate viral infections.
The Toll pathway’s pattern recognition receptors (PRRs) detect
viral components, triggering a cascade that produces antimicrobial
peptides and immune responses (Kingsolver et al., 2013).
Regulatory pathways like TGF-B, which is important for tissue
repair and controlling excessive immune reactions (Ishimaru et al.,
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2016), and the Wnt pathway, which maintains epithelial integrity
(Ljungberg et al., 2019) and indirectly regulates antiviral gene
expression, also contribute to viral resistance (Zhu and Zhang,
2013; Brutscher et al., 2017). These pathways highlight the
complexity of the antiviral response within host cells.

Our current study presents the mass spectrometry analysis of
the poly L:C transfected LL5 supernatant medium depleted of
extracellular vesicles. This soluble fraction contains the proteins
released from the cells into the extracellular environment that can
play crucial roles in cell-cell communication, tissue development,
immune response, and other physiological processes.

Materials and methods
LL5 cell culture

L. longipalpis embryonic LL5 cells (Tesh and Modi, 1983) were
cultured at 30°C in L-15 medium (Sigma, Saint Louis, MO, USA)
supplemented with 10% fetal bovine serum (Hyclone, Chicago, IL,
USA), 10% Tryptose Phosphate Broth, and 1% antibiotics
(penicillin 100 U/mL and streptomycin 100 mg/mL, Sigma).

Transfection and collection of
supernatants of conditioned medium

The experimental transfection mix consisted of 4 ng/mL of
Lipofectin Transfection Reagent (Invitrogen, Carlsbad, CA, USA)
mixed into L-15 medium (Sigma) containing 20% tryptose
phosphate broth (Sigma) and 2 ng/mL of poly I:C (Chamberlin
and Patterson, 1965), a synthetic analog of double-stranded RNA
(Invitrogen). The transfection control used the same amount of
Lipofectin Transfection Reagent mixed with the L-15 medium
supplemented as described above, without the poly I:C. These two
mixtures were added separately to 8 x 107 LL5 cells distributed in 6-
well flat bottom plates. After 24 h of incubation, the supernatant
was carefully removed without disturbing the adherent cells,
separated for subsequent centrifugation, and a fresh medium was
added for an additional 24 h incubation. The supernatant was once
again collected. The viability of the cells was confirmed through
trypan blue staining, with over 98% of cells being viable in
all experiments.

The supernatants were supplemented with Protease Inhibitor
Cocktail 1X (Sigma) and centrifuged at 2000 x g for 10 min to pellet
dead cells and large debris. The supernatants were subjected to
another round of centrifugation at 10,000 x g for 30 min to
eliminate any remaining cell debris and microvesicles. An
additional centrifugation at 100,000 x g for 1 h was done to
remove exosomes. The proteins in the supernatant were
precipitated using trichloroacetic acid (TCA), as described below.
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Trichloroacetic acid precipitation

For protein precipitation, the supernatant was mixed with TCA
100% (Sigma) in the ratio of one volume of TCA to four volumes of
conditioned medium. The mixture was then incubated at -20°C for
20 min. Subsequently, the samples were centrifuged at 10,000 x g for
10 min. The supernatant was carefully discarded, and the protein
pellet was washed with cold acetone. After vortexing, the samples
were centrifuged at 10,000 x g for 5 min. The resulting material was
prepared for mass spectrometry analysis.

Mass spectrometry analysis

Each experimental condition (transfected and control) was
processed in duplicate for proteomics, for both 24 h and 48 h
time points (n = 2 per group per time). The precipitated proteins
were mixed with a solution containing 6 M urea, 2 M thiourea, and
10 mM Hepes. The proteins were reduced using 1 mM
dithiothreitol (DTT) and 50 mM ammonium bicarbonate (ABC),
followed by alkylation with 5.5 mM iodacetamide and 50 mM ABC.
Before trypsinization, the samples underwent purification using
detergent removal spin columns (Thermo Scientific, Rockford, IL,
USA). Subsequently, the samples were digested in a solution of 50
mM ABC with trypsin (Promega, Madison, WI, USA) at a 1:50
trypsin-to-protein mass ratio and incubated at 24°C for 18 h. After
trypsinization, trifluoroacetic acid (TFA) was added to achieve a
final concentration of 0.5%. The peptides were desalted using
homemade C18 spin columns. The peptide analysis was
performed in triplicate using an LC-MS/MS system in a Thermo
Scientific Easy-nLC 1000 coupled to an LTQ Orbitrap XL ETD at
the mass spectrometry facility RPT02H/Carlos Chagas Institute -
Fiocruz Parana. Peptide separation occurred in a 15 cm fused silica
column (inner diameter: 75 pum) packed in-house with reversed-
phase ReproSil-Pur C18-AQ 3 um resin from Dr. Maisch GmbH,
Ammerbuch-Entringen. Chromatography runs were carried out
with a flow rate of 250 nL/min, using a 120-min gradient from 5
to 40% MeCN in 0.1% formic acid. Peptide ionization was achieved
by applying a voltage of 2.3 kV. The mass spectrometer operated in
a data-dependent acquisition mode. Full-scan MS spectra were
acquired in the Orbitrap analyzer within the range of 300 to
1,650 m/z, with a resolution of 60,000 at m/z 400, after
accumulating to a target value of 500,000 in the C-trap. The ten
most intense ions were sequentially isolated and fragmented in the
linear ion trap using collision-induced dissociation with a target
value of 30,000. The “lock mass” option was enabled at 445.120025
m/z in all full scans to improve the mass accuracy of precursor ions
(Olsen et al., 2005). Protein identification was performed using the
MaxQuant algorithm (version 1.4.1.2) (Cox and Mann, 2008; Cox
etal., 2011), with default parameters unless otherwise specified. The
search was conducted against a protein sequence database for L.
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longipalpis, which included 10,110 protein sequences from the
VectorBase protein database (Amos et al., 2022) (downloaded on
December 09, 2013), along with common contaminants and their
respective reverse sequences to estimate the false discovery rate
(FDR). Carbamidomethylation of cysteine was set as a fixed
modification, while methionine oxidation and N-terminal
acetylation (protein) were allowed as variable modifications. A
threshold FDR of 0.01 was applied at both peptide and protein
levels. Protein quantification was performed using a label-free
approach, where the peptide peaks were detected as three-
dimensional features (retention time versus signal intensity versus
mass/charge) and aligned across the runs for comparison, as
previously described (Luber et al., 2010). Following the
identification and quantification by MaxQuant, zero values that
represented the limit of detection were replaced with the minimum
value found, which was 35,000, in order to obtain fold-changes for
all comparisons. To obtain a representative value for each sample,
the replicates were grouped using the median, which is less affected
by extremely high or low values and provides a more typical value.

In silico analyses

The amino acid sequences of the identified secreted proteins
underwent bioinformatic analyses. To identify conserved protein
domains and assign putative functions, we analyzed all amino acid
sequences using profile hidden Markov models (HMM) via
HMMER hmmscan (Potter et al, 2018) to query the protein
sequences against the Pfam protein families database (Finn et al.,
2016) with default parameters. For each protein, we retained the
highest-confidence domain match, defined as the hit with the lowest
E-value among all alignments. Hits with an E-value < le-5 were
considered statistically significant and included in downstream
analyses. We retrieved the protein log fold change expression
values of the soluble fraction (current study) and the complete
secretome (Martins-da-Silva et al., 2018) of the conditioned
medium of LL5 transfected with poly I:C. The differential
expression, as originally described in the corresponding methods
of each study, was calculated compared to the mock-transfected LL5
control group (t-test, p < 0.05).

The Cytoscape software version 3.10.3 (Shannon et al.,, 2003)
was used to create a network representation of the expression data
from the soluble fraction (soluble proteins) or the complete
secretome). We used the VectorBase accession numbers as nodes
and the log fold change expression values for a color gradient
representing upregulated (red) and downregulated (blue) proteins.
The network edges indicate the corresponding soluble or exosome
fractions of the transfected LL5 conditioned medium.

Domain descriptions were used to assist in biological
interpretation and pathway enrichment.

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
etal, 2021) pathway enrichment was performed using the STRING
database (Szllarczyk et al., 2023), using query protein names with
Drosophila melanogaster as the reference organism due to its well-
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annotated genome. Results significance was assessed using FDR-
adjusted p-values < le-5.

The protein signal peptide (SP) of secreted proteins was
determined using the software tool Prediction of Signal Peptide
“PrediSi” (Hiller et al., 2004), with the default settings.

The Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database version 12.0 was used for protein-protein
interaction analysis (Szklarczyk et al., 2023).

Results

To identify the proteins secreted by the L. longipalpis LL5 cells
after the mimicked virus-like transfection, we conducted mass
spectrometry analyses of the soluble proteins present in the
conditioned medium collected at two different time points (24 h
and 48 h) after poly I:C transfection compared to a control group
collected at the same corresponding time points. A total of 611
proteins were identified, as indicated in Supplementary Table 1,
from two biological replicates per condition. Most of these proteins
(75%) were present throughout all analyzed time points in
experimental and control samples. At 24 h post-transfection, 43
proteins were exclusively present in the experimental group (Transf
24 h), 60 proteins were present exclusively in the control group
(Contr 24 h), and 310 proteins were shared among both groups
(Figure 1A). At 48 h post-transfection, 92 proteins were present in
the experimental group (Transf 48 h), 38 proteins were present
exclusively in the control group (Contr 48 h), and 441 proteins were
shared among both groups (Figure 1B).

Among the 43 proteins exclusively present in the poly I:C
transfected group at 24 h, 41 presented similarity to protein
domains in Pfam database. Among them, one of the most
abundant proteins contained a myosin domain (PF00063). Other
less expressed proteins had domains of a component of the nuclear
pore complex (PF04097), a vitellinogen (PF09172), effectors that
stimulate actin polymerization (PF07159), thioredoxin (PF00085
and PF13848), helicase (PF00270), prolyl 4-hydroxylase (PF08336),
ubiquitin carboxyl-terminal hydrolase (PF00443), glucosamine-6-
phosphate isomerase (PF01182), proteasome stabilizer (PF13001),
Sm proteins involved in pre-mRNA splicing (PF01423), and
sarcoma homology 2 domain (PF00017) (Supplementary Table 1).

Among the 92 proteins exclusively present in the transfected
group at 48 h, 81 presented similarity to the HMM database, and
one unknown protein was highly abundant. Among the less
expressed proteins, there were proteins with domains belonging
to an end-binding protein 1 (EB1) protein (PF03271), a ubiquitin-
associated protein 2 (PF12478), another involved in U snRNA
export from the nucleus (PF09088), a vacuolar protein involved
in protein trafficking (PF03635), ribosomal protein S19 (PF00203)
and L34e (PF01199), a 50S ribosome-binding GTPase (PF01926), a
component of the nuclear pore complex (PF04097) (also present at
24 h), a metalloprotease M16C (PF08367), pre RNA processing
ribonucleoproteins (PF01798), caprin-1 protein involved in cellular
proliferation, innate immune response and synaptic plasticity
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Transf 24

Contr 24h

FIGURE 1

Number of soluble proteins identified in LL5 cells conditioned medium collected after poly I:C transfection. (A) medium collected at 24 h.
(B) medium collected at 48 h post-transfection. Blue circles indicate the poly I:C transfected groups. Red circles indicate control groups.

(PF18293), a nuclear protein localization protein 4 (NPL4)
associated to nuclear transport and protein degradation
(PF05021), a minichromosome maintenance (MCM) involved in
the initiation of eukaryotic DNA replication (PF00493), alpha/beta
hydrolases (PF02230), a pheromone binding protein (PF01395), a
glucose-6-phosphate dehydrogenase (PF02781), and an importin
subunit alpha-2 involved in nucleocytoplasmic transport (PF16186)
(Supplementary Table 1).

We analyzed the interactome of the proteins uniquely present in
the poly L:C transfected group at 24 h. Among them, 17 matched
with D. melanogaster proteins available on the String interactome
database (Supplementary Table 2). We found the most significant
functional enrichment corresponding to KEGG pathways on RNA
degradation (false discovery rate 3.3e-09) and purine metabolism
(false discovery rate 8.1e-05) (Figure 2A). At 48 h, 39 uniquely
identified proteins in the transfected group matched with the D.
melanogaster String database. The most significant functional
enrichment corresponding to KEGG pathways were ribosome
(false discovery rate 5.09e-20), Hedgehog, TGF-B, and Wnt
signaling pathways (false discovery rate 4.07e-06) (Figure 2B).

Because many proteins were present in both experimental and
control groups, we analyzed whether there were significant
upregulated or downregulated protein secretion based on
statistical testing among these two groups. We analyzed those
proteins identified in both transfected and control groups at 24 h
(310 proteins) and 48 h (441 proteins) post-transfection out of the
611 total proteins. Among the proteins with label-free
quantification (LFQ) intensity in all replicates, we identified 26
proteins at 24 h, and 9 of them were differentially secreted in
transfected compared to the control group (Figure 3A). One protein
had the highest similarity with histone deacetylase 3 from the
mosquito Aedes aegypti and was increased in the control group.
Eight other proteins were increased in the transfected group and
had the highest similarity with prosaposin, signal-induced
proliferation-associated 1-like protein 2, and a hypothetical
protein from Bradysia fungi; phosphatidylinositol-specific
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Transf 48

Contr 48h

phospholipase C, X (PI-PLC X) domain-containing protein 1 and
a TGF-B-induced protein ig-h3 from the black soldier fly Hermetia
illucens; cathepsin B from Anopheles stephensi; deoxyribonuclease I
from Culex quinquefasciatus; and a chitinase-like protein 9 from L.
longipalpis. Among the proteins with LFQ intensity in all replicates,
at 48 h, we identified 52 proteins, and 19 of them were differentially
secreted in transfected compared to the control group (Figure 3B).
Four of them were decreased in the transfected group: one similar to
a predicted phosphomannomutase from the house fly Musca
domestica two similar to mosquito’s glutathione S-transferases,
and another similar to a tripeptidyl-peptidase 2 from C.
quinquefasciatus. Fifteen proteins were increased in the
transfected group with highest similarity with: toll-like receptor 3,
transport protein Sec24C, coronin-7 isoform X1, and beta-
mannosidase from the fungus Bradysia coprophila; splicing factor
3B subunit 2-like from the American grasshopper Schistocerca
americana; a putative Venom serine carboxypeptidase from the
non-biting midge Clunio marinus; chaperone DnaJ homolog
subfamily A, also known as heat shock protein 40 kD (Hsp40),
from the swede midge Contarinia nasturtii; actin-related protein 1,
serine/threonine-protein phosphatase PP2A 65 kDa regulatory
subunit isoform X2, PI-PLC X domain-containing protein 1 and
TGF-B-induced protein ig-h3 from H. illucens (both increased at
24 h); a cytoplasmic leucine-tRNA ligase from M. domestica;
glutathione S-transferase 1-6, tripeptidyl-peptidase 2,
deoxyribonuclease I from C. quinquefasciatus (also increased at
24 h); glutathione S-transferase 1 isoform X3 from Anopheles
arabiensis; and a putative adenosine deaminase from L. longipalpis.

We also performed an interaction cluster analysis using
proteins that were most secreted at 24 h and those that were
most present at 48 h. The protein groups presented PPI
enrichment p-values of 3.18 x 107 and 2.24 x 107", respectively.
These values indicate that the networks have significantly more
interactions than expected. The group of 26 proteins prevalent at
24 h showed few interactions, with the formation of four clusters
enriched in extracellular functions (Figure 4A). Gene ontology
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FIGURE 2

Interactome of proteins uniquely secreted by poly I:C transfected LL5 cells. (A) Functional enrichment corresponding to KEGG pathways from
transfected cells at 24 h. Red color indicates RNA degradation, and blue color indicates purine metabolism pathways. (B) Functional enrichment
corresponding to KEGG pathways from transfected cells at 48 h. Green color indicates the ribosome pathway. Yellow, orange, and light blue colors
indicate the Hedgehog, TGF-f, and Wnt signaling pathways, respectively. Line thickness indicates the strength of data support. The edges indicate
both functional and physical protein associations (FDR-adjusted p-values < 1e-5).
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analysis of this group showed enrichment of biological processes
related to basal membrane assembly (GO:0070831) and
extracellular matrix organization (GO:0030198). The only
enriched KEGG pathway was the ECM-receptor interaction
(dme04512) (Supplementary Data Sheet 1). The 52 proteins
analyzed at 48 h showed a greater number of interactions, with
the formation of 14 clusters. (Figure 4B). Gene ontology analysis of
the most secreted proteins 48 h after poly I:C treatment shows
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enrichment of catabolic biological processes (GO:0009056;
GO:1901575; GO:1901136). This set of secreted proteins showed
the highest enrichment of KEGG pathways related to amino acid
biosynthesis (dme01230); cysteine and methionine metabolism
(dme00270), and glycolysis/gluconeogenesis (dme00010)
(Supplementary Data Sheet 2).

Among the clusters identified among the 52 most present
proteins in 48 h, the RISC complex (cluster 6) stands out. This
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Heatmap representation of protein abundance. Secreted proteins 24 h (A) and 48 h (B) in transfected (T24_1, T24_2, T48_1, and T48_2) and control
(M24_1, M24_2, M48_1, and M48_2) LL5 cells. Red color indicates increased detection. Green color indicates decreased detection. Protein
sequences are identified by the VectorBase ID on the left and the protein description of the best match against the NCBI database on the right side
of the image. Yellow rectangles indicate differentially secreted proteins (t-test, p<0.05). The lower inset represents the color scale for protein

intensity.

cluster is formed by the proteins Tudor staphylococcal nuclease
(Tudor-SN), Adenosine deaminase-related growth factor B (Adgt-
B) and Dicer-2 (Figure 3B). The Tudor-SN protein is an
endonuclease with activity on DNA and RNA substrates. In
Drosophila, it is involved in translation regulation, piwi regulation
and transposons control in the germline through its association
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with the with the RISC complex. The Adgf-B protein has adenosine
deaminase activity. It is in the inosine biosynthetic process and the
adenosine catabolic process. Dicer-2 encodes a member of the
RNase III family of double-stranded RNA-specific endonucleases.
It acts in the RNAi pathway by cutting dsRNA into siRNAs and
helps defend flies against viral infection, particularly RNA viruses. It
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FIGURE 4
Interaction analysis of differentially secreted protein after poly I:C treatment.
(B) Interaction of secreted protein clusters 48 h after poly I:C.

also processes long, partially double-stranded endogenous
transcripts (hairpin RNAs) into endo-siRNAs.

Since one of the mechanisms of protein secretion is through
signal peptides, we investigated the presence of signal peptides in
the set of proteins with LFQ intensity in all replicates (Figures 3A,
B). Using the Phobius and PrediSi prediction tools, we identified 13
proteins secreted at 24 h, and 12 proteins at 48 h contained signal
peptide (Table 1).
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(A) Interaction of secreted protein clusters 24 h after poly I:C.

Discussion

Our study of L. longipalpis LL5 cells transfected with poly I:C
mimics a dsRNA virus infection and provides insights into their
antiviral-like response. Virus detection in Lutzomyia genus is
geographically widespread, with reports from Brazil to USA
(Fonseca et al., 2021; Jancarova et al., 2023; Tempone et al,
2024). While the frequency of infection varies depending on the
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TABLE 1 Prediction of Signal Peptides (Phobius and PrediSi).

Transfected group Phobius PrediSi

24 h (26 proteins) 13 (50%) 13 (50%)

48 h (52 proteins) 12 (23.1%) 12 (23.1%)

specific virus and sand fly species, as well as the geographic location,
many of the sand fly viruses appear to establish persistent, non-
lethal infections in the sand fly (Mavale et al., 2006; Alkan et al.,
2013; Laroche et al., 2024).

Although poly I:C is not derived from any specific viral genome
and does not correspond to the nucleotide sequences of known
viruses transmitted by sand flies, it is widely used as a synthetic
analog of dsSRNA—a molecular pattern recognized by host cells as a
hallmark of viral infection (Wang et al, 2015). During the
replication of many RNA viruses, including those from the
families Reoviridae, Flaviviridae, Rhabdoviridae, and
Phenuiviridae (which includes Phlebovirus), dsRNA molecules
are produced as replication intermediates, typically in the form of
double-stranded replicative forms or transient RNA duplexes
formed during synthesis (Tao and Ye, 2010; Rampersad and
Tennant, 2018). Poly I:C mimics the structural and molecular
features of these viral dsRNA intermediates by forming long,
stable duplexes. Nevertheless, this synthetic molecule does not
replicate other hallmarks of a viral infection, such as productive
viral replication, cytopathic effects, or virulence-associated
mechanisms, including host cell lysis, manipulation of host gene
expression by viral proteins, or subversion of immune signaling
pathways (Alexopoulou et al., 2001; Matsumoto and Seya, 2008;
Wang et al., 2015). Instead, poly I:C primarily mimics the presence
of viral dsRNA, triggering cellular recognition and innate immune
signaling without inducing virus-specific pathogenic outcomes.

Previous analyses of the LL5 complete secretome showed that
these cells can mount a response mirroring vertebrate interferon
response (Martins-da-Silva et al., 2018). Although invertebrates lack
a canonical IFN system, nucleic acid stimulation and viral infections
can activate an inducible non-specific antiviral response that shares
several features with the vertebrate IFN system (Wang and He,
2019; Marques et al., 2024). By employing mass spectrometry to
analyze the soluble proteins in the conditioned medium from two
biological replicates at two distinct time points (24 h and 48 h post-
transfection), the current study reveals a distinct profile of the
proteins involved in the complex response to the mimicked
viral infection.

Nearly 10% and 16% of the overall secreted proteins were
identified uniquely at 24 h and 48 h post-transfection,
respectively, suggesting that they are involved in the response to
poly L:C transfection. Conversely, approximately 14% and 7% (24 h
and 48 h, respectively) of the proteins were found only in the
control group, indicating that these proteins may be involved in
routine cellular activities or responses unrelated to viral mimicry.
Additionally, 75% and 77% (24 h and 48 h, respectively) of the
proteins were shared between both groups, reflecting that most of
the secreted proteins belong to common activated functions or
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pathways, emphasizing that many cellular processes remain active
despite the viral mimicry. The increased number of shared secreted
proteins at 48 h indicates that the effect of poly I:C may be fading
over time.

The overview of the conserved domains of the proteins uniquely
detected in the transfected group at 24 h showed proteins involved
in cellular structure, indicating that cytoskeletal dynamics may be
altered in response to viral mimicry (Walsh and Naghavi, 2019;
Khorramnejad et al.,, 2021). Other proteins uniquely identified in
the same group included components associated with critical
cellular functions such as nucleocytoplasmic transport, which is
vital during viral infections when pathogens often hijack nucleic
acid trafficking (Yarbrough et al., 2014; Shen et al.,, 2021);
cytoskeletal rearrangement, potentially facilitating immune cell
migration or phagocytosis in an in vivo model (Mostowy and
Shenoy, 2015; Mylvaganam et al., 2021); antioxidant properties,
indicating a response to oxidative stress (Peterhans, 1997; Espinosa-
Diez et al, 2015); and proteins involved in RNA processing,
highlighting the importance of mRNA splicing and processing in
mounting an effective immune response (Lee et al, 2019; Cui
et al., 2022).

At 48 h post-transfection, the conserved domain analysis of the
proteins uniquely identified in the transfected group contained one
unknown protein that was notably abundant, warranting further
investigation to elucidate its function. Other interesting proteins in
the same group are involved in microtubule dynamics that are
crucial for intracellular transport and signaling during immune
responses (Seo and Gammon, 2022), protein degradation pathways
that are essential for regulating protein levels during stress
responses (Flick and Kaiser, 2012; Rosche et al., 2021), ribosomal
proteins suggesting the activation of protein synthesis as part of the
cellular response to viral mimicry (Wang et al., 2022), probably as
an attempt to translate the poly I:C sequence, and a protein linked
to cellular proliferation and innate immune responses, highlighting
its potential role in modulating cell growth during infection.

Through the String interactome, we can highlight the biological
pathways that are significantly impacted during the response to the
poly I:C. At 24 h post-transfection, the most significant functional
enrichment was observed in two KEGG pathways. One of them is
RNA degradation, a critical mechanism for controlling viral
replication and preventing the accumulation of viral RNA within
cells (Houseley and Tollervey, 2009; Singh et al., 2017). The activation
of this pathway suggests that LL5 cells are actively engaging in
antiviral strategies by degrading the potentially harmful RNA
molecules. This is consistent with known roles of exonucleases,
deadenylases, and decapping enzymes in innate immunity in
insects and other eukaryotes (Cui et al., 2022). The other is purine
metabolism, which reflects an increased demand for nucleotides
during the immune response, particularly for synthesizing nucleic
acids as part of cellular repair and proliferation processes (Dolezal
etal, 2019; Ariav et al., 2021). This metabolic shift could provide the
necessary building blocks for synthesizing new cellular components
required during stress responses.

At 48 h post-transfection, the interactome analysis identified
the ribosome pathway’s prominence, highlighting an upregulation
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in protein synthesis (Wang et al., 2022). The increased ribosomal
activity suggests that LL5 cells are prioritizing the production of
proteins potentially for defense mechanisms, signaling, and cellular
repair. Other enriched signaling pathways indicate a complex
regulatory network activated in response to viral mimicry. For
instance, hedgehog signaling is known to play roles in cell
differentiation and development (Villarreal et al, 2015) but may
also influence immune responses by regulating cell fate decisions
(Benson et al., 2004). The TGF-f signaling is involved in various
cellular processes, including immune regulation and tissue repair
(Ishimaru et al., 2016; Massagué and Sheppard, 2023), suggesting
that LL5 cells may be engaging in mechanisms to restore
homeostasis following viral challenge. In addition, the Wnt
signaling contributes to cell proliferation and differentiation (Teo
and Kahn, 2010), further emphasizing the dynamic nature of
cellular responses during infection.

The findings of uniquely secreted proteins in the transfected
group from both time points illustrate how LL5 cells adapt to
engage specific pathways and resist the viral mimicry effectively.
The activation of RNA degradation suggests an activation of RNA
surveillance and purine metabolism pathways, reflecting increased
nucleotide turnover at 24 h, which in turn reflects a metabolic
reprogramming and an immediate antiviral response consistent
with an early antiviral defense phase. The later activation of
ribosomal biogenesis and key signaling pathways at 48 h reflects a
transition toward recovery and adaptation. The secretion of such
dynamic sets of proteins to the extracellular milieu can act as
damage-associated molecular patterns (DAMPs), influencing
neighboring cells, systemic immunity, or even facilitating tissue
remodeling, analogous to innate immune signaling in other
invertebrates (Su et al., 2024). It is possible that secreted
metabolic and RNA-related proteins at 24 h served as both
effectors and messengers in shaping later immune response at
48 h involving hedgehog, TGF-B, and Wnt signaling; however,
this interpretation has not yet been tested. Cluster interaction
analysis of the proteins differentially secreted by the treated group
at both time points reveals that, similar to what was observed
among the exclusively secreted proteins, the cellular response to
dsRNA challenge leads to a bimodal response. Initially, we see an
increase in proteins related to processes that structure the
extracellular matrix environment. Later, we observe a shift among
the most secreted proteins, now with an emphasis on catabolic
processes, which also involve RNA degradation. This temporal
analysis highlights the dynamic nature of immune responses,
where initial defensive actions evolve into broader regulatory
mechanisms to sustain cellular function under stress.

The comparison of proteins present in both transfected and
control groups at 24 h and 48 h post-transfection revealed potential
mechanisms of immune modulation. For instance, at 24 h, the
protein similar to A. aegypti HDAC3 (Gaddelapati et al., 2022) had
increased secretion in the control group; thus, by analogy, there was
a proportional reduction in the transfected group. The increase of
HDACs is often associated with responses to cellular stress,
indicating that the cells from the control group are ready to
mitigate the potential transfection challenges, whereas the
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transfected cells are less capable of using this molecular repertoire
to maintain the chromatin structure and gene regulation (Somers
et al, 2023). In contrast, the transfected group increased the
secretion of eight other proteins. The prosaposin is involved in
cell survival and differentiation (Leonova et al., 1996), indicating
another protective mechanism activated against cellular stress. The
TGF-B-induced protein ig-h3 is involved in tissue repair and
immune modulation (Thapa et al,, 2007), indicating an active
response to the viral mimicry, and the chitinase-like protein 9
suggests a role in pathogen defense or tissue remodeling (Arakane
and Muthukrishnan, 2010) with activity for soluble polymeric
substrates as seen in Drosophila (Zhu et al., 2008). The presence
of these proteins indicates that LL5 cells are initiating specific
immune responses upon exposure to poly I:C, focusing on
survival and repair mechanisms.

At 48 h, the analysis of differentially secreted proteins in both
transfected and control groups revealed four proteins with
decreased presence in the transfected group. The decrease of a
tripeptidyl-peptidase 2 suggests alterations in proteolytic processes
(Tomkinson and Lindds, 2005). In addition, a predicted
phosphomannomutase from the house fly M. domestica (Ray and
Heslop, 1963) and two glutathione S-transferases from mosquitoes
(Ranson and Hemingway, 2005) showed that proteins typically
involved in detoxification processes were reduced and suggested a
reduced need for detoxification as cells adapt to viral mimicry.
Conversely, fifteen proteins were increased in the transfected group,
including the Toll-like receptor 3 (TLR3), which is pivotal in
recognizing viral RNA and initiating immune responses (Leulier
and Lemaitre, 2008; Perales-Linares and Navas-Martin, 2013),
underscoring its role in the antiviral response; a heat shock
protein 40 (Hsp40) known for its chaperone functions during
stress conditions (King and Macrae, 2015; Zhang and Yu, 2022),
indicating that LL5 cells are actively managing protein folding and
preventing aggregation under stress; a coronin-7 isoform X1
involved in actin dynamics and cellular signaling pathways,
suggesting enhanced cytoskeletal rearrangements necessary for
immune responses (Shina et al., 2010; Yumura et al., 2022).

Interestingly, one protein was uniquely present in the
transfected cells, and three others were increased in the
transfected group at both time points: a component of the
nuclear pore complex, phosphatidylinositol-specific phospholipase
C, X (PI-PLC X) domain-containing protein 1, a TGF-B-induced
protein ig-h3, and a deoxyribonuclease I. The presence of these
proteins in transfected cells highlights how these cells are
responding to viral mimicry. By enhancing nucleocytoplasmic
transport, modulating lipid signaling pathways, promoting tissue
repair, and managing extracellular DNA, these proteins collectively
contribute to the cell’s ability to adapt and respond effectively to
stressors associated with viral infections.

When we analyzed the proteins that are present in both groups
and that were more secreted in the cells treated with poly I:C, we
observed that in 24 h there is an increase in the secretion of proteins
involved in the structuring of extracellular components, while in
48 h the most secreted proteins are more related to cellular
catabolic processes.
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In summary, the differential secretion of these proteins
highlights the adaptive nature of LL5 cells when faced with viral
mimicry. The initial response at 24 h focuses on survival and repair
mechanisms, while by 48 h, there is a shift towards more robust
immune signaling and stress management. The upregulation of
TLR3 and Hsp40 secretion indicates an escalation of antiviral
defenses as the cells continue to respond to poly I:C.

In other insect cell lines challenged by dsRNA viral-like
molecules also showed a non-specific response. For example, the
mosquito C. quinquefasciatus ovary-derived cells upregulated
multiple Toll pathway receptors (Prince et al., 2023), while the A.
aegypti Aag2 cells activated the IMD pathway (Russell et al., 2021)
after poly L:C transfection. Earlier studies on lepidopteran cells
showed that the silkworm Bombyx mori BmN4 and fall armyworm
Spodoptera frugiperda Sf21 pose a nonspecific effect after poly I.C
transfection (Sakashita et al., 2009). More interestingly, in the honey
bee Apis melifera, the dsRNA challenge revealed an RNAi-
independent non-specific antiviral immune mechanism
(Flenniken and Andino, 2013).

The prediction of the signal peptides in the amino acid
sequences showed that only a small fraction of the identified
proteins, approximately 12% at 24 h and 4% at 48 h post-
transfection, were secreted via canonical pathways involving the
endoplasmic reticulum and Golgi apparatus (Mijaljica et al., 20065
Balmer and Faso, 2021). This indicates that the majority of the
proteins were likely secreted through non-canonical mechanisms.
Specifically, two major unconventional pathways are known to be
involved in the secretion of soluble proteins synthesized in the
cytoplasm. Type I secretion involves direct translocation across
lipid pores in the plasma membrane. In type III secretion,
cytoplasmic proteins are recruited into vesicular compartments of
the endocytic membrane system that subsequently fuse with the
plasma membrane to release proteins into the extracellular space
(Dimou and Nickel, 2018).

Interestingly, the most abundant proteins secreted by the poly I:
C transfected LL5 cells detected in the previous complete secretome
(Martins-da-Silva et al., 2018), a phospholipid scramblase, with a
role as an interferon-inducible protein that mediates antiviral
activity and a forskolin-binding protein, a member of the
immunophilin family, were not found in the present study. This
is most probably explained by the presence of these proteins in
exosomes, which were removed in the present study. The
comparative analysis between the soluble and the complete
secreted proteomes of LL5 cells transfected with poly I:C (see also
Supplementary Data Sheet 3), where a predominance of proteins
associated with exosomes was observed, reveals both overlapping
and distinct features in the secretory response of these insect cells.
Notably, although 48 proteins were identified as differentially
regulated in both fractions across the 24 h and 48 h time points,
their expression profiles often diverged depending on the secretory
route. For instance, at 24 h post-transfection, proteins such as
signal-induced proliferation-associated protein and prosaposin
domain-containing protein were upregulated in the soluble
fraction but not in the complete proteome, while other proteins
like FKBP and GST_N were significantly modulated in the complete
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secretome only, suggesting differential sorting or retention
mechanisms. By 48 h, although hemocytin and PMM showed
concordant regulation across both compartments, eIF2A and
GST_N displayed opposite or compartment-specific regulation
(Basisty et al., 2020). These discrepancies underscore a dynamic
and potentially compartmentalized cellular response to viral
mimic stimulation.

These differences reflect the temporal and functional divergence
of the secretory routes mobilized in response to viral mimicry. The
soluble secretome may represent a more rapid, expansive means of
extracellular signaling, incorporating metabolic enzymes, signaling
ligands, and even components of translational machinery with
potential immunomodulatory effects. In contrast, the exosomal
pathway appears to orchestrate a more regulated and selective
export of immune and stress-related proteins, possibly tuned for
cell-to-cell delivery and long-range effects (Munoz-Perez et al,
2021). Together, the two secretomes illustrate distinct yet
potentially complementary aspects of the innate antiviral
landscape in sand fly cells.

Importantly, this study differs from Martins-da-Silva et al.
(2018) not only in the focus on soluble secreted proteins but also
in the cellular context captured. While exosomes represent a vesicle-
based, potentially regulated route of intercellular communication,
the soluble proteome likely reflects a range of secreted proteins,
including freely diffusing mediators of local and systemic responses
(Samuelson and Vidal-Puig, 2018). The soluble fraction may also
contain proteins related to acute-phase responses, stress signaling,
or passive leakage, not captured within the exosomal compartment.
This distinction highlights the complementary nature of both
datasets: the exosomal proteome reveals targeted export of
regulatory components, while the soluble proteome captures the
immediate extracellular milieu, including potential effector proteins
(Basisty et al., 2020). Together, the two studies provide a more
integrated view of how LL5 cells modulate their secretory
machinery in response to dsRNA analogs and may contribute
differentially to cell-cell signaling, immune modulation, and
antiviral defense.

We emphasize that this is an exploratory in vitro study aimed at
characterizing the soluble secreted protein response of LL5 sand fly
cells following exposure to poly I:C. The experimental design is
constrained by the limited yield of secreted proteins after the
depletion of extracellular vesicles, which restricts downstream
proteomic analyses. Accordingly, the interpretation of the data
should be made with caution, particularly regarding broader
physiological relevance. Future studies will be required to validate
and expand these findings in vivo, including oral administration or
microinjection of poly I:C into adult Lutzomyia longipalpis to
evaluate systemic immune responses.

In conclusion, our results showed that the LL5 cells initially
secreted molecules involved in RNA processing, cell repair, and
maintenance in response to the dsRNA viral mimicry. Then, they
switched to protein recycling and a more complex immune
response. Concomitantly, there was a reduction in some stress
and detoxification response mechanisms. Their identification
provides a novel set of candidate markers for immune activation
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in sand flies, offering new targets for functional studies of immune
priming antiviral immunity, systemic signaling, and host-virus-
parasite interactions.
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