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Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain

viruses, pose a significant public health threat.Our research focuses on the immune

responses of Lutzomyia longipalpis, the primary vector for visceral leishmaniasis in

the Americas. We use L. longipalpis LL5 cells as a model to study how sand flies

respond to pathogens. These cells exhibit robust immune reactions, producing

molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In

previous studies, we detected a non-specific antiviral response in LL5 cells

following double-stranded RNAs (dsRNAs) transfection. A previous complete

secretome of these cells showed molecules resembling an interferon-like

antiviral response when transfected with polyinosinic–polycytidylic acid (poly I:C),

a synthetic dsRNA analog. In the current study, we analyzed soluble proteins

secreted by LL5 cells after poly I:C transfection. Using comparative mass

spectrometry, we examined protein composition of conditioned media depleted

of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected

groups had low abundance compared to the overall expressed proteins.

Interactome prediction analysis revealed that at 24 h, the proteins uniquely found

in the secretome of the transfected group were involved in RNA degradation and

purine metabolism, while at 48 h they were linked to ribosomal proteins and

signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-b),
and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-b-
induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin

(48 h) in the secretion of transfected groups compared to the controls. We also

performed an interaction analysis of proteinsmore secreted by the treated group at

24 h and 48 h. Unlike the interactome of uniquely identified proteins, few

interactions were observed at 24 h, with a predominance of extracellular matrix

and cell adhesion proteins. The set of proteins more secreted at 48 h presented
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more interactions than at 24 h, with emphasis on catabolic processes, including

RNA degradation. These findings indicate that poly I:C transfection in LL5 cells

induces the secretion of proteins involved in cellular defense and repair, revealing

molecules involved in the LL5 non-specific antiviral response.
KEYWORDS

sand fly cell line, poly I:C, non-specific antiviral response, RNA degradation, cell repair,
secreted proteins
Introduction

Sand flies can transmit parasites, bacteria, and viruses that cause

diseases that affect humans and animals (Maroli et al., 2013; Ready,

2013). Phlebotomine species from the Phlebotomus and Lutzomyia

genera are vectors of Leishmania parasites, important to public

health in the Old and New World, respectively. In the Old World,

sand flies are known vectors for Phlebovirus, Vesiculovirus, and

Orbivirus, among others (Maroli et al., 2013; Jancarova et al., 2023).

While definitive evidence of the New World sand flies transmitting

viruses to humans is lacking, studies have detected various viruses

in Lutzomyia species, as Phlebovirus (Palacios et al., 2011a, 2011b,

2015; De Carvalho et al., 2018; Hughes et al., 2019), Vesiculoviruses

(Galindo et al., 1966; Travassos Da Rosa et al., 1984; Tesh et al.,

1987; Corn et al., 1990). Other viruses in the Rhabdoviridae family

(Aitken et al., 1975; Corn et al., 1990; Comer et al., 1992; Alkan

et al., 2015), Peribunyaviridae (Shelokov and Peralta, 1967; Tesh

et al., 1974; Aitken et al., 1975; Bonifay et al., 2023), Togaviridae

(Bonifay et al., 2023), and Flaviviridae (Vasilakis et al., 2013) have

also been identified in these vectors in the Americas.

The Lutzomyia longipalpis LL5 embryonic cell line (Tesh and

Modi, 1983) is a useful study model that exhibits elaborate immune

responses when exposed to various microbial challenges. For

example, genes related to Toll, IMD, and Jak-STAT pathway

regulators, as well as antimicrobial peptides, are differentially

expressed after microbial challenges such as bacteria, yeast, and

Leishmania parasites (Tinoco-Nunes et al., 2016; Telleria et al.,

2021). These cells also present a non-specific antiviral response. For

instance, after the transfection of several double-stranded RNA

(dsRNA), LL5 cells suppress the luciferase reporter expression of a

West Nile Virus-like particle. This response occurs regardless of the

transfected dsRNA nucleotide sequence (Pitaluga et al., 2008). Such

nonspecific antiviral response is reported in a few invertebrates,

such as bees and shrimp (Flenniken and Andino, 2013; Wang et al.,

2015), indicating a noncanonical regulatory pathway reminiscent of

the interferon response in mammals, which is still not completely

understood in arthropods.

To better understand the mechanisms behind the observed non-

specific antiviral responses of LL5 cells, we previously transfected

these cells with polyinosinic-polycytidylic acid (poly I:C)

(Chamberlin and Patterson, 1965), a synthetic analog of double-
02
stranded RNA (dsRNA) that mimics viral infection, and we analyzed

the proteins present in the whole LL5 secretome released in the

conditioned medium (Martins-da-Silva et al., 2018). Activation of the

cellular immune response can occur when naïve cells come in contact

with viral components or other signaling molecules from nearby

infected cells, thus altering the repertoire of secreted proteins (Assil

et al., 2015; Kalluri and LeBleu, 2020; Gurung et al., 2021). Such

proteins can act as key players in cell signaling. In this previous study

(Martins-da-Silva et al., 2018), the most abundant protein secreted by

the poly I:C transfected LL5 cells is a phospholipid scramblase, a

membrane protein involved in plasma membrane maintenance (Dal

Col et al., 2022) with an additional role as an interferon-inducible

protein that mediates antiviral activity (Luo et al., 2018). The other

abundant protein is a forskolin-binding protein (FKBP), a member of

the immunophilin family that participates in various biochemical

processes such as protein folding, receptor signaling, protein

trafficking, and transcription (Ghartey-Kwansah et al., 2018). These

results from Martins-da-Silva et al. (2018) suggest that LL5 cells can

present a nonspecific antiviral-like response similar to an interferon

response in mammals.

Insects employ several antiviral responses. For example, one key

mechanism is RNA interference (RNAi), where small interfering

RNAs (siRNAs) guide the RNA-induced silencing complex (RISC)

to degrade viral RNA (Zhu and Palli, 2020). In sand fly cell lines, the

RNAi pathway is active (Tinoco-Nunes et al., 2016; Telleria et al.,

2021; Alexander et al., 2023). Additionally, RNA decay pathways

target viral RNA for degradation. Adenosine deaminase acting on

RNA (ADAR) can deaminate adenosine residues in viral RNA,

altering or degrading it (Samuel, 2012). Protein kinase R (PKR)

detects double-stranded RNA and phosphorylates cellular and viral

proteins, leading to the degradation of the viral RNA (Marques and

Imler, 2016). Endoribonucleases, such as RNases, also cleave viral

RNA, contributing to the antiviral cellular response through RNA

degradation (Kingsolver et al., 2013; Cooper et al., 2014). These are

molecular events directly involved in an antiviral cellular response.

Other immunity pathways also help eliminate viral infections.

The Toll pathway’s pattern recognition receptors (PRRs) detect

viral components, triggering a cascade that produces antimicrobial

peptides and immune responses (Kingsolver et al., 2013).

Regulatory pathways like TGF-b, which is important for tissue

repair and controlling excessive immune reactions (Ishimaru et al.,
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2016), and the Wnt pathway, which maintains epithelial integrity

(Ljungberg et al., 2019) and indirectly regulates antiviral gene

expression, also contribute to viral resistance (Zhu and Zhang,

2013; Brutscher et al., 2017). These pathways highlight the

complexity of the antiviral response within host cells.

Our current study presents the mass spectrometry analysis of

the poly I:C transfected LL5 supernatant medium depleted of

extracellular vesicles. This soluble fraction contains the proteins

released from the cells into the extracellular environment that can

play crucial roles in cell-cell communication, tissue development,

immune response, and other physiological processes.
Materials and methods

LL5 cell culture

L. longipalpis embryonic LL5 cells (Tesh and Modi, 1983) were

cultured at 30°C in L-15 medium (Sigma, Saint Louis, MO, USA)

supplemented with 10% fetal bovine serum (Hyclone, Chicago, IL,

USA), 10% Tryptose Phosphate Broth, and 1% antibiotics

(penicillin 100 U/mL and streptomycin 100 mg/mL, Sigma).
Transfection and collection of
supernatants of conditioned medium

The experimental transfection mix consisted of 4 ng/mL of

Lipofectin Transfection Reagent (Invitrogen, Carlsbad, CA, USA)

mixed into L-15 medium (Sigma) containing 20% tryptose

phosphate broth (Sigma) and 2 ng/mL of poly I:C (Chamberlin

and Patterson, 1965), a synthetic analog of double-stranded RNA

(Invitrogen). The transfection control used the same amount of

Lipofectin Transfection Reagent mixed with the L-15 medium

supplemented as described above, without the poly I:C. These two

mixtures were added separately to 8 x 107 LL5 cells distributed in 6-

well flat bottom plates. After 24 h of incubation, the supernatant

was carefully removed without disturbing the adherent cells,

separated for subsequent centrifugation, and a fresh medium was

added for an additional 24 h incubation. The supernatant was once

again collected. The viability of the cells was confirmed through

trypan blue staining, with over 98% of cells being viable in

all experiments.

The supernatants were supplemented with Protease Inhibitor

Cocktail 1X (Sigma) and centrifuged at 2000 x g for 10 min to pellet

dead cells and large debris. The supernatants were subjected to

another round of centrifugation at 10,000 x g for 30 min to

eliminate any remaining cell debris and microvesicles. An

additional centrifugation at 100,000 x g for 1 h was done to

remove exosomes. The proteins in the supernatant were

precipitated using trichloroacetic acid (TCA), as described below.
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Trichloroacetic acid precipitation

For protein precipitation, the supernatant was mixed with TCA

100% (Sigma) in the ratio of one volume of TCA to four volumes of

conditioned medium. The mixture was then incubated at -20°C for

20 min. Subsequently, the samples were centrifuged at 10,000 x g for

10 min. The supernatant was carefully discarded, and the protein

pellet was washed with cold acetone. After vortexing, the samples

were centrifuged at 10,000 x g for 5 min. The resulting material was

prepared for mass spectrometry analysis.
Mass spectrometry analysis

Each experimental condition (transfected and control) was

processed in duplicate for proteomics, for both 24 h and 48 h

time points (n = 2 per group per time). The precipitated proteins

were mixed with a solution containing 6 M urea, 2 M thiourea, and

10 mM Hepes. The proteins were reduced using 1 mM

dithiothreitol (DTT) and 50 mM ammonium bicarbonate (ABC),

followed by alkylation with 5.5 mM iodacetamide and 50 mM ABC.

Before trypsinization, the samples underwent purification using

detergent removal spin columns (Thermo Scientific, Rockford, IL,

USA). Subsequently, the samples were digested in a solution of 50

mM ABC with trypsin (Promega, Madison, WI, USA) at a 1:50

trypsin-to-protein mass ratio and incubated at 24°C for 18 h. After

trypsinization, trifluoroacetic acid (TFA) was added to achieve a

final concentration of 0.5%. The peptides were desalted using

homemade C18 spin columns. The peptide analysis was

performed in triplicate using an LC-MS/MS system in a Thermo

Scientific Easy-nLC 1000 coupled to an LTQ Orbitrap XL ETD at

the mass spectrometry facility RPT02H/Carlos Chagas Institute -

Fiocruz Paraná. Peptide separation occurred in a 15 cm fused silica

column (inner diameter: 75 µm) packed in-house with reversed-

phase ReproSil-Pur C18-AQ 3 µm resin from Dr. Maisch GmbH,

Ammerbuch-Entringen. Chromatography runs were carried out

with a flow rate of 250 nL/min, using a 120-min gradient from 5

to 40% MeCN in 0.1% formic acid. Peptide ionization was achieved

by applying a voltage of 2.3 kV. The mass spectrometer operated in

a data-dependent acquisition mode. Full-scan MS spectra were

acquired in the Orbitrap analyzer within the range of 300 to

1,650 m/z, with a resolution of 60,000 at m/z 400, after

accumulating to a target value of 500,000 in the C-trap. The ten

most intense ions were sequentially isolated and fragmented in the

linear ion trap using collision-induced dissociation with a target

value of 30,000. The “lock mass” option was enabled at 445.120025

m/z in all full scans to improve the mass accuracy of precursor ions

(Olsen et al., 2005). Protein identification was performed using the

MaxQuant algorithm (version 1.4.1.2) (Cox and Mann, 2008; Cox

et al., 2011), with default parameters unless otherwise specified. The

search was conducted against a protein sequence database for L.
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longipalpis, which included 10,110 protein sequences from the

VectorBase protein database (Amos et al., 2022) (downloaded on

December 09, 2013), along with common contaminants and their

respective reverse sequences to estimate the false discovery rate

(FDR). Carbamidomethylation of cysteine was set as a fixed

modification, while methionine oxidation and N-terminal

acetylation (protein) were allowed as variable modifications. A

threshold FDR of 0.01 was applied at both peptide and protein

levels. Protein quantification was performed using a label-free

approach, where the peptide peaks were detected as three-

dimensional features (retention time versus signal intensity versus

mass/charge) and aligned across the runs for comparison, as

previously described (Luber et al., 2010). Following the

identification and quantification by MaxQuant, zero values that

represented the limit of detection were replaced with the minimum

value found, which was 35,000, in order to obtain fold-changes for

all comparisons. To obtain a representative value for each sample,

the replicates were grouped using the median, which is less affected

by extremely high or low values and provides a more typical value.
In silico analyses

The amino acid sequences of the identified secreted proteins

underwent bioinformatic analyses. To identify conserved protein

domains and assign putative functions, we analyzed all amino acid

sequences using profile hidden Markov models (HMM) via

HMMER hmmscan (Potter et al., 2018) to query the protein

sequences against the Pfam protein families database (Finn et al.,

2016) with default parameters. For each protein, we retained the

highest-confidence domain match, defined as the hit with the lowest

E-value among all alignments. Hits with an E-value < 1e−5 were

considered statistically significant and included in downstream

analyses. We retrieved the protein log fold change expression

values of the soluble fraction (current study) and the complete

secretome (Martins-da-Silva et al., 2018) of the conditioned

medium of LL5 transfected with poly I:C. The differential

expression, as originally described in the corresponding methods

of each study, was calculated compared to the mock-transfected LL5

control group (t-test, p < 0.05).

The Cytoscape software version 3.10.3 (Shannon et al., 2003)

was used to create a network representation of the expression data

from the soluble fraction (soluble proteins) or the complete

secretome). We used the VectorBase accession numbers as nodes

and the log fold change expression values for a color gradient

representing upregulated (red) and downregulated (blue) proteins.

The network edges indicate the corresponding soluble or exosome

fractions of the transfected LL5 conditioned medium.

Domain descriptions were used to assist in biological

interpretation and pathway enrichment.

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

et al., 2021) pathway enrichment was performed using the STRING

database (Szklarczyk et al., 2023), using query protein names with

Drosophila melanogaster as the reference organism due to its well-
Frontiers in Cellular and Infection Microbiology 04
annotated genome. Results significance was assessed using FDR-

adjusted p-values < 1e−5.

The protein signal peptide (SP) of secreted proteins was

determined using the software tool Prediction of Signal Peptide

“PrediSi” (Hiller et al., 2004), with the default settings.

The Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) database version 12.0 was used for protein-protein

interaction analysis (Szklarczyk et al., 2023).
Results

To identify the proteins secreted by the L. longipalpis LL5 cells

after the mimicked virus-like transfection, we conducted mass

spectrometry analyses of the soluble proteins present in the

conditioned medium collected at two different time points (24 h

and 48 h) after poly I:C transfection compared to a control group

collected at the same corresponding time points. A total of 611

proteins were identified, as indicated in Supplementary Table 1,

from two biological replicates per condition. Most of these proteins

(75%) were present throughout all analyzed time points in

experimental and control samples. At 24 h post-transfection, 43

proteins were exclusively present in the experimental group (Transf

24 h), 60 proteins were present exclusively in the control group

(Contr 24 h), and 310 proteins were shared among both groups

(Figure 1A). At 48 h post-transfection, 92 proteins were present in

the experimental group (Transf 48 h), 38 proteins were present

exclusively in the control group (Contr 48 h), and 441 proteins were

shared among both groups (Figure 1B).

Among the 43 proteins exclusively present in the poly I:C

transfected group at 24 h, 41 presented similarity to protein

domains in Pfam database. Among them, one of the most

abundant proteins contained a myosin domain (PF00063). Other

less expressed proteins had domains of a component of the nuclear

pore complex (PF04097), a vitellinogen (PF09172), effectors that

stimulate actin polymerization (PF07159), thioredoxin (PF00085

and PF13848), helicase (PF00270), prolyl 4-hydroxylase (PF08336),

ubiquitin carboxyl-terminal hydrolase (PF00443), glucosamine-6-

phosphate isomerase (PF01182), proteasome stabilizer (PF13001),

Sm proteins involved in pre-mRNA splicing (PF01423), and

sarcoma homology 2 domain (PF00017) (Supplementary Table 1).

Among the 92 proteins exclusively present in the transfected

group at 48 h, 81 presented similarity to the HMM database, and

one unknown protein was highly abundant. Among the less

expressed proteins, there were proteins with domains belonging

to an end-binding protein 1 (EB1) protein (PF03271), a ubiquitin-

associated protein 2 (PF12478), another involved in U snRNA

export from the nucleus (PF09088), a vacuolar protein involved

in protein trafficking (PF03635), ribosomal protein S19 (PF00203)

and L34e (PF01199), a 50S ribosome-binding GTPase (PF01926), a

component of the nuclear pore complex (PF04097) (also present at

24 h), a metalloprotease M16C (PF08367), pre RNA processing

ribonucleoproteins (PF01798), caprin-1 protein involved in cellular

proliferation, innate immune response and synaptic plasticity
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(PF18293), a nuclear protein localization protein 4 (NPL4)

associated to nuclear transport and protein degradation

(PF05021), a minichromosome maintenance (MCM) involved in

the initiation of eukaryotic DNA replication (PF00493), alpha/beta

hydrolases (PF02230), a pheromone binding protein (PF01395), a

glucose-6-phosphate dehydrogenase (PF02781), and an importin

subunit alpha-2 involved in nucleocytoplasmic transport (PF16186)

(Supplementary Table 1).

We analyzed the interactome of the proteins uniquely present in

the poly I:C transfected group at 24 h. Among them, 17 matched

with D. melanogaster proteins available on the String interactome

database (Supplementary Table 2). We found the most significant

functional enrichment corresponding to KEGG pathways on RNA

degradation (false discovery rate 3.3e-09) and purine metabolism

(false discovery rate 8.1e-05) (Figure 2A). At 48 h, 39 uniquely

identified proteins in the transfected group matched with the D.

melanogaster String database. The most significant functional

enrichment corresponding to KEGG pathways were ribosome

(false discovery rate 5.09e-20), Hedgehog, TGF-b, and Wnt

signaling pathways (false discovery rate 4.07e-06) (Figure 2B).

Because many proteins were present in both experimental and

control groups, we analyzed whether there were significant

upregulated or downregulated protein secretion based on

statistical testing among these two groups. We analyzed those

proteins identified in both transfected and control groups at 24 h

(310 proteins) and 48 h (441 proteins) post-transfection out of the

611 total proteins. Among the proteins with label-free

quantification (LFQ) intensity in all replicates, we identified 26

proteins at 24 h, and 9 of them were differentially secreted in

transfected compared to the control group (Figure 3A). One protein

had the highest similarity with histone deacetylase 3 from the

mosquito Aedes aegypti and was increased in the control group.

Eight other proteins were increased in the transfected group and

had the highest similarity with prosaposin, signal-induced

proliferation-associated 1-like protein 2, and a hypothetical

protein from Bradysia fungi; phosphatidylinositol-specific
Frontiers in Cellular and Infection Microbiology 05
phospholipase C, X (PI-PLC X) domain-containing protein 1 and

a TGF-b-induced protein ig-h3 from the black soldier fly Hermetia

illucens; cathepsin B from Anopheles stephensi; deoxyribonuclease I

from Culex quinquefasciatus; and a chitinase-like protein 9 from L.

longipalpis. Among the proteins with LFQ intensity in all replicates,

at 48 h, we identified 52 proteins, and 19 of them were differentially

secreted in transfected compared to the control group (Figure 3B).

Four of them were decreased in the transfected group: one similar to

a predicted phosphomannomutase from the house fly Musca

domestica two similar to mosquito’s glutathione S-transferases,

and another similar to a tripeptidyl-peptidase 2 from C.

quinquefasciatus. Fifteen proteins were increased in the

transfected group with highest similarity with: toll-like receptor 3,

transport protein Sec24C, coronin-7 isoform X1, and beta-

mannosidase from the fungus Bradysia coprophila; splicing factor

3B subunit 2-like from the American grasshopper Schistocerca

americana; a putative Venom serine carboxypeptidase from the

non-biting midge Clunio marinus; chaperone DnaJ homolog

subfamily A, also known as heat shock protein 40 kD (Hsp40),

from the swede midge Contarinia nasturtii; actin-related protein 1,

serine/threonine-protein phosphatase PP2A 65 kDa regulatory

subunit isoform X2, PI-PLC X domain-containing protein 1 and

TGF-b-induced protein ig-h3 from H. illucens (both increased at

24 h); a cytoplasmic leucine-tRNA ligase from M. domestica;

glutathione S-transferase 1-6, tripeptidyl-peptidase 2,

deoxyribonuclease I from C. quinquefasciatus (also increased at

24 h); glutathione S-transferase 1 isoform X3 from Anopheles

arabiensis; and a putative adenosine deaminase from L. longipalpis.

We also performed an interaction cluster analysis using

proteins that were most secreted at 24 h and those that were

most present at 48 h. The protein groups presented PPI

enrichment p-values of 3.18 x 10-3 and 2.24 x 10-11, respectively.

These values indicate that the networks have significantly more

interactions than expected. The group of 26 proteins prevalent at

24 h showed few interactions, with the formation of four clusters

enriched in extracellular functions (Figure 4A). Gene ontology
FIGURE 1

Number of soluble proteins identified in LL5 cells conditioned medium collected after poly I:C transfection. (A) medium collected at 24 h.
(B) medium collected at 48 h post-transfection. Blue circles indicate the poly I:C transfected groups. Red circles indicate control groups.
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analysis of this group showed enrichment of biological processes

related to basal membrane assembly (GO:0070831) and

extracellular matrix organization (GO:0030198). The only

enriched KEGG pathway was the ECM-receptor interaction

(dme04512) (Supplementary Data Sheet 1). The 52 proteins

analyzed at 48 h showed a greater number of interactions, with

the formation of 14 clusters. (Figure 4B). Gene ontology analysis of

the most secreted proteins 48 h after poly I:C treatment shows
Frontiers in Cellular and Infection Microbiology 06
enrichment of catabolic biological processes (GO:0009056;

GO:1901575; GO:1901136). This set of secreted proteins showed

the highest enrichment of KEGG pathways related to amino acid

biosynthesis (dme01230); cysteine and methionine metabolism

(dme00270), and glycolysis/gluconeogenesis (dme00010)

(Supplementary Data Sheet 2).

Among the clusters identified among the 52 most present

proteins in 48 h, the RISC complex (cluster 6) stands out. This
FIGURE 2

Interactome of proteins uniquely secreted by poly I:C transfected LL5 cells. (A) Functional enrichment corresponding to KEGG pathways from
transfected cells at 24 h. Red color indicates RNA degradation, and blue color indicates purine metabolism pathways. (B) Functional enrichment
corresponding to KEGG pathways from transfected cells at 48 h. Green color indicates the ribosome pathway. Yellow, orange, and light blue colors
indicate the Hedgehog, TGF-b, and Wnt signaling pathways, respectively. Line thickness indicates the strength of data support. The edges indicate
both functional and physical protein associations (FDR-adjusted p-values < 1e−5).
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1638505
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Martins da Silva et al. 10.3389/fcimb.2025.1638505
cluster is formed by the proteins Tudor staphylococcal nuclease

(Tudor-SN), Adenosine deaminase-related growth factor B (Adgf-

B) and Dicer-2 (Figure 3B). The Tudor-SN protein is an

endonuclease with activity on DNA and RNA substrates. In

Drosophila, it is involved in translation regulation, piwi regulation

and transposons control in the germline through its association
Frontiers in Cellular and Infection Microbiology 07
with the with the RISC complex. The Adgf-B protein has adenosine

deaminase activity. It is in the inosine biosynthetic process and the

adenosine catabolic process. Dicer-2 encodes a member of the

RNase III family of double-stranded RNA-specific endonucleases.

It acts in the RNAi pathway by cutting dsRNA into siRNAs and

helps defend flies against viral infection, particularly RNA viruses. It
FIGURE 3

Heatmap representation of protein abundance. Secreted proteins 24 h (A) and 48 h (B) in transfected (T24_1, T24_2, T48_1, and T48_2) and control
(M24_1, M24_2, M48_1, and M48_2) LL5 cells. Red color indicates increased detection. Green color indicates decreased detection. Protein
sequences are identified by the VectorBase ID on the left and the protein description of the best match against the NCBI database on the right side
of the image. Yellow rectangles indicate differentially secreted proteins (t-test, p<0.05). The lower inset represents the color scale for protein
intensity.
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also processes long, partially double-stranded endogenous

transcripts (hairpin RNAs) into endo-siRNAs.

Since one of the mechanisms of protein secretion is through

signal peptides, we investigated the presence of signal peptides in

the set of proteins with LFQ intensity in all replicates (Figures 3A,

B). Using the Phobius and PrediSi prediction tools, we identified 13

proteins secreted at 24 h, and 12 proteins at 48 h contained signal

peptide (Table 1).
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Discussion

Our study of L. longipalpis LL5 cells transfected with poly I:C

mimics a dsRNA virus infection and provides insights into their

antiviral-like response. Virus detection in Lutzomyia genus is

geographically widespread, with reports from Brazil to USA

(Fonseca et al., 2021; Jancarova et al., 2023; Tempone et al.,

2024). While the frequency of infection varies depending on the
FIGURE 4

Interaction analysis of differentially secreted protein after poly I:C treatment. (A) Interaction of secreted protein clusters 24 h after poly I:C.
(B) Interaction of secreted protein clusters 48 h after poly I:C.
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specific virus and sand fly species, as well as the geographic location,

many of the sand fly viruses appear to establish persistent, non-

lethal infections in the sand fly (Mavale et al., 2006; Alkan et al.,

2013; Laroche et al., 2024).

Although poly I:C is not derived from any specific viral genome

and does not correspond to the nucleotide sequences of known

viruses transmitted by sand flies, it is widely used as a synthetic

analog of dsRNA—a molecular pattern recognized by host cells as a

hallmark of viral infection (Wang et al., 2015). During the

replication of many RNA viruses, including those from the

famil ies Reoviridae, Flavivir idae, Rhabdoviridae, and

Phenuiviridae (which includes Phlebovirus), dsRNA molecules

are produced as replication intermediates, typically in the form of

double-stranded replicative forms or transient RNA duplexes

formed during synthesis (Tao and Ye, 2010; Rampersad and

Tennant, 2018). Poly I:C mimics the structural and molecular

features of these viral dsRNA intermediates by forming long,

stable duplexes. Nevertheless, this synthetic molecule does not

replicate other hallmarks of a viral infection, such as productive

viral replication, cytopathic effects, or virulence-associated

mechanisms, including host cell lysis, manipulation of host gene

expression by viral proteins, or subversion of immune signaling

pathways (Alexopoulou et al., 2001; Matsumoto and Seya, 2008;

Wang et al., 2015). Instead, poly I:C primarily mimics the presence

of viral dsRNA, triggering cellular recognition and innate immune

signaling without inducing virus-specific pathogenic outcomes.

Previous analyses of the LL5 complete secretome showed that

these cells can mount a response mirroring vertebrate interferon

response (Martins-da-Silva et al., 2018). Although invertebrates lack

a canonical IFN system, nucleic acid stimulation and viral infections

can activate an inducible non-specific antiviral response that shares

several features with the vertebrate IFN system (Wang and He,

2019; Marques et al., 2024). By employing mass spectrometry to

analyze the soluble proteins in the conditioned medium from two

biological replicates at two distinct time points (24 h and 48 h post-

transfection), the current study reveals a distinct profile of the

proteins involved in the complex response to the mimicked

viral infection.

Nearly 10% and 16% of the overall secreted proteins were

identified uniquely at 24 h and 48 h post-transfection,

respectively, suggesting that they are involved in the response to

poly I:C transfection. Conversely, approximately 14% and 7% (24 h

and 48 h, respectively) of the proteins were found only in the

control group, indicating that these proteins may be involved in

routine cellular activities or responses unrelated to viral mimicry.

Additionally, 75% and 77% (24 h and 48 h, respectively) of the

proteins were shared between both groups, reflecting that most of

the secreted proteins belong to common activated functions or
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pathways, emphasizing that many cellular processes remain active

despite the viral mimicry. The increased number of shared secreted

proteins at 48 h indicates that the effect of poly I:C may be fading

over time.

The overview of the conserved domains of the proteins uniquely

detected in the transfected group at 24 h showed proteins involved

in cellular structure, indicating that cytoskeletal dynamics may be

altered in response to viral mimicry (Walsh and Naghavi, 2019;

Khorramnejad et al., 2021). Other proteins uniquely identified in

the same group included components associated with critical

cellular functions such as nucleocytoplasmic transport, which is

vital during viral infections when pathogens often hijack nucleic

acid trafficking (Yarbrough et al., 2014; Shen et al., 2021);

cytoskeletal rearrangement, potentially facilitating immune cell

migration or phagocytosis in an in vivo model (Mostowy and

Shenoy, 2015; Mylvaganam et al., 2021); antioxidant properties,

indicating a response to oxidative stress (Peterhans, 1997; Espinosa-

Diez et al., 2015); and proteins involved in RNA processing,

highlighting the importance of mRNA splicing and processing in

mounting an effective immune response (Lee et al., 2019; Cui

et al., 2022).

At 48 h post-transfection, the conserved domain analysis of the

proteins uniquely identified in the transfected group contained one

unknown protein that was notably abundant, warranting further

investigation to elucidate its function. Other interesting proteins in

the same group are involved in microtubule dynamics that are

crucial for intracellular transport and signaling during immune

responses (Seo and Gammon, 2022), protein degradation pathways

that are essential for regulating protein levels during stress

responses (Flick and Kaiser, 2012; Rosche et al., 2021), ribosomal

proteins suggesting the activation of protein synthesis as part of the

cellular response to viral mimicry (Wang et al., 2022), probably as

an attempt to translate the poly I:C sequence, and a protein linked

to cellular proliferation and innate immune responses, highlighting

its potential role in modulating cell growth during infection.

Through the String interactome, we can highlight the biological

pathways that are significantly impacted during the response to the

poly I:C. At 24 h post-transfection, the most significant functional

enrichment was observed in two KEGG pathways. One of them is

RNA degradation, a critical mechanism for controlling viral

replication and preventing the accumulation of viral RNA within

cells (Houseley and Tollervey, 2009; Singh et al., 2017). The activation

of this pathway suggests that LL5 cells are actively engaging in

antiviral strategies by degrading the potentially harmful RNA

molecules. This is consistent with known roles of exonucleases,

deadenylases, and decapping enzymes in innate immunity in

insects and other eukaryotes (Cui et al., 2022). The other is purine

metabolism, which reflects an increased demand for nucleotides

during the immune response, particularly for synthesizing nucleic

acids as part of cellular repair and proliferation processes (Dolezal

et al., 2019; Ariav et al., 2021). This metabolic shift could provide the

necessary building blocks for synthesizing new cellular components

required during stress responses.

At 48 h post-transfection, the interactome analysis identified

the ribosome pathway’s prominence, highlighting an upregulation
TABLE 1 Prediction of Signal Peptides (Phobius and PrediSi).

Transfected group Phobius PrediSi

24 h (26 proteins) 13 (50%) 13 (50%)

48 h (52 proteins) 12 (23.1%) 12 (23.1%)
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in protein synthesis (Wang et al., 2022). The increased ribosomal

activity suggests that LL5 cells are prioritizing the production of

proteins potentially for defense mechanisms, signaling, and cellular

repair. Other enriched signaling pathways indicate a complex

regulatory network activated in response to viral mimicry. For

instance, hedgehog signaling is known to play roles in cell

differentiation and development (Villarreal et al., 2015) but may

also influence immune responses by regulating cell fate decisions

(Benson et al., 2004). The TGF-b signaling is involved in various

cellular processes, including immune regulation and tissue repair

(Ishimaru et al., 2016; Massagué and Sheppard, 2023), suggesting

that LL5 cells may be engaging in mechanisms to restore

homeostasis following viral challenge. In addition, the Wnt

signaling contributes to cell proliferation and differentiation (Teo

and Kahn, 2010), further emphasizing the dynamic nature of

cellular responses during infection.

The findings of uniquely secreted proteins in the transfected

group from both time points illustrate how LL5 cells adapt to

engage specific pathways and resist the viral mimicry effectively.

The activation of RNA degradation suggests an activation of RNA

surveillance and purine metabolism pathways, reflecting increased

nucleotide turnover at 24 h, which in turn reflects a metabolic

reprogramming and an immediate antiviral response consistent

with an early antiviral defense phase. The later activation of

ribosomal biogenesis and key signaling pathways at 48 h reflects a

transition toward recovery and adaptation. The secretion of such

dynamic sets of proteins to the extracellular milieu can act as

damage-associated molecular patterns (DAMPs), influencing

neighboring cells, systemic immunity, or even facilitating tissue

remodeling, analogous to innate immune signaling in other

invertebrates (Su et al., 2024). It is possible that secreted

metabolic and RNA-related proteins at 24 h served as both

effectors and messengers in shaping later immune response at

48 h involving hedgehog, TGF-b, and Wnt signaling; however,

this interpretation has not yet been tested. Cluster interaction

analysis of the proteins differentially secreted by the treated group

at both time points reveals that, similar to what was observed

among the exclusively secreted proteins, the cellular response to

dsRNA challenge leads to a bimodal response. Initially, we see an

increase in proteins related to processes that structure the

extracellular matrix environment. Later, we observe a shift among

the most secreted proteins, now with an emphasis on catabolic

processes, which also involve RNA degradation. This temporal

analysis highlights the dynamic nature of immune responses,

where initial defensive actions evolve into broader regulatory

mechanisms to sustain cellular function under stress.

The comparison of proteins present in both transfected and

control groups at 24 h and 48 h post-transfection revealed potential

mechanisms of immune modulation. For instance, at 24 h, the

protein similar to A. aegypti HDAC3 (Gaddelapati et al., 2022) had

increased secretion in the control group; thus, by analogy, there was

a proportional reduction in the transfected group. The increase of

HDACs is often associated with responses to cellular stress,

indicating that the cells from the control group are ready to

mitigate the potential transfection challenges, whereas the
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transfected cells are less capable of using this molecular repertoire

to maintain the chromatin structure and gene regulation (Somers

et al., 2023). In contrast, the transfected group increased the

secretion of eight other proteins. The prosaposin is involved in

cell survival and differentiation (Leonova et al., 1996), indicating

another protective mechanism activated against cellular stress. The

TGF-b-induced protein ig-h3 is involved in tissue repair and

immune modulation (Thapa et al., 2007), indicating an active

response to the viral mimicry, and the chitinase-like protein 9

suggests a role in pathogen defense or tissue remodeling (Arakane

and Muthukrishnan, 2010) with activity for soluble polymeric

substrates as seen in Drosophila (Zhu et al., 2008). The presence

of these proteins indicates that LL5 cells are initiating specific

immune responses upon exposure to poly I:C, focusing on

survival and repair mechanisms.

At 48 h, the analysis of differentially secreted proteins in both

transfected and control groups revealed four proteins with

decreased presence in the transfected group. The decrease of a

tripeptidyl-peptidase 2 suggests alterations in proteolytic processes

(Tomkinson and Lindås, 2005). In addition, a predicted

phosphomannomutase from the house fly M. domestica (Ray and

Heslop, 1963) and two glutathione S-transferases from mosquitoes

(Ranson and Hemingway, 2005) showed that proteins typically

involved in detoxification processes were reduced and suggested a

reduced need for detoxification as cells adapt to viral mimicry.

Conversely, fifteen proteins were increased in the transfected group,

including the Toll-like receptor 3 (TLR3), which is pivotal in

recognizing viral RNA and initiating immune responses (Leulier

and Lemaitre, 2008; Perales-Linares and Navas-Martin, 2013),

underscoring its role in the antiviral response; a heat shock

protein 40 (Hsp40) known for its chaperone functions during

stress conditions (King and Macrae, 2015; Zhang and Yu, 2022),

indicating that LL5 cells are actively managing protein folding and

preventing aggregation under stress; a coronin-7 isoform X1

involved in actin dynamics and cellular signaling pathways,

suggesting enhanced cytoskeletal rearrangements necessary for

immune responses (Shina et al., 2010; Yumura et al., 2022).

Interestingly, one protein was uniquely present in the

transfected cells, and three others were increased in the

transfected group at both time points: a component of the

nuclear pore complex, phosphatidylinositol-specific phospholipase

C, X (PI-PLC X) domain-containing protein 1, a TGF-b-induced
protein ig-h3, and a deoxyribonuclease I. The presence of these

proteins in transfected cells highlights how these cells are

responding to viral mimicry. By enhancing nucleocytoplasmic

transport, modulating lipid signaling pathways, promoting tissue

repair, and managing extracellular DNA, these proteins collectively

contribute to the cell’s ability to adapt and respond effectively to

stressors associated with viral infections.

When we analyzed the proteins that are present in both groups

and that were more secreted in the cells treated with poly I:C, we

observed that in 24 h there is an increase in the secretion of proteins

involved in the structuring of extracellular components, while in

48 h the most secreted proteins are more related to cellular

catabolic processes.
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In summary, the differential secretion of these proteins

highlights the adaptive nature of LL5 cells when faced with viral

mimicry. The initial response at 24 h focuses on survival and repair

mechanisms, while by 48 h, there is a shift towards more robust

immune signaling and stress management. The upregulation of

TLR3 and Hsp40 secretion indicates an escalation of antiviral

defenses as the cells continue to respond to poly I:C.

In other insect cell lines challenged by dsRNA viral-like

molecules also showed a non-specific response. For example, the

mosquito C. quinquefasciatus ovary-derived cells upregulated

multiple Toll pathway receptors (Prince et al., 2023), while the A.

aegypti Aag2 cells activated the IMD pathway (Russell et al., 2021)

after poly I:C transfection. Earlier studies on lepidopteran cells

showed that the silkworm Bombyx mori BmN4 and fall armyworm

Spodoptera frugiperda Sf21 pose a nonspecific effect after poly I:C

transfection (Sakashita et al., 2009). More interestingly, in the honey

bee Apis melifera, the dsRNA challenge revealed an RNAi-

independent non-specific antiviral immune mechanism

(Flenniken and Andino, 2013).

The prediction of the signal peptides in the amino acid

sequences showed that only a small fraction of the identified

proteins, approximately 12% at 24 h and 4% at 48 h post-

transfection, were secreted via canonical pathways involving the

endoplasmic reticulum and Golgi apparatus (Mijaljica et al., 2006;

Balmer and Faso, 2021). This indicates that the majority of the

proteins were likely secreted through non-canonical mechanisms.

Specifically, two major unconventional pathways are known to be

involved in the secretion of soluble proteins synthesized in the

cytoplasm. Type I secretion involves direct translocation across

lipid pores in the plasma membrane. In type III secretion,

cytoplasmic proteins are recruited into vesicular compartments of

the endocytic membrane system that subsequently fuse with the

plasma membrane to release proteins into the extracellular space

(Dimou and Nickel, 2018).

Interestingly, the most abundant proteins secreted by the poly I:

C transfected LL5 cells detected in the previous complete secretome

(Martins-da-Silva et al., 2018), a phospholipid scramblase, with a

role as an interferon-inducible protein that mediates antiviral

activity and a forskolin-binding protein, a member of the

immunophilin family, were not found in the present study. This

is most probably explained by the presence of these proteins in

exosomes, which were removed in the present study. The

comparative analysis between the soluble and the complete

secreted proteomes of LL5 cells transfected with poly I:C (see also

Supplementary Data Sheet 3), where a predominance of proteins

associated with exosomes was observed, reveals both overlapping

and distinct features in the secretory response of these insect cells.

Notably, although 48 proteins were identified as differentially

regulated in both fractions across the 24 h and 48 h time points,

their expression profiles often diverged depending on the secretory

route. For instance, at 24 h post-transfection, proteins such as

signal-induced proliferation-associated protein and prosaposin

domain-containing protein were upregulated in the soluble

fraction but not in the complete proteome, while other proteins

like FKBP and GST_N were significantly modulated in the complete
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secretome only, suggesting differential sorting or retention

mechanisms. By 48 h, although hemocytin and PMM showed

concordant regulation across both compartments, eIF2A and

GST_N displayed opposite or compartment-specific regulation

(Basisty et al., 2020). These discrepancies underscore a dynamic

and potentially compartmentalized cellular response to viral

mimic stimulation.

These differences reflect the temporal and functional divergence

of the secretory routes mobilized in response to viral mimicry. The

soluble secretome may represent a more rapid, expansive means of

extracellular signaling, incorporating metabolic enzymes, signaling

ligands, and even components of translational machinery with

potential immunomodulatory effects. In contrast, the exosomal

pathway appears to orchestrate a more regulated and selective

export of immune and stress-related proteins, possibly tuned for

cell-to-cell delivery and long-range effects (Munoz-Perez et al.,

2021). Together, the two secretomes illustrate distinct yet

potentially complementary aspects of the innate antiviral

landscape in sand fly cells.

Importantly, this study differs from Martins-da-Silva et al.

(2018) not only in the focus on soluble secreted proteins but also

in the cellular context captured. While exosomes represent a vesicle-

based, potentially regulated route of intercellular communication,

the soluble proteome likely reflects a range of secreted proteins,

including freely diffusing mediators of local and systemic responses

(Samuelson and Vidal-Puig, 2018). The soluble fraction may also

contain proteins related to acute-phase responses, stress signaling,

or passive leakage, not captured within the exosomal compartment.

This distinction highlights the complementary nature of both

datasets: the exosomal proteome reveals targeted export of

regulatory components, while the soluble proteome captures the

immediate extracellular milieu, including potential effector proteins

(Basisty et al., 2020). Together, the two studies provide a more

integrated view of how LL5 cells modulate their secretory

machinery in response to dsRNA analogs and may contribute

differentially to cell-cell signaling, immune modulation, and

antiviral defense.

We emphasize that this is an exploratory in vitro study aimed at

characterizing the soluble secreted protein response of LL5 sand fly

cells following exposure to poly I:C. The experimental design is

constrained by the limited yield of secreted proteins after the

depletion of extracellular vesicles, which restricts downstream

proteomic analyses. Accordingly, the interpretation of the data

should be made with caution, particularly regarding broader

physiological relevance. Future studies will be required to validate

and expand these findings in vivo, including oral administration or

microinjection of poly I:C into adult Lutzomyia longipalpis to

evaluate systemic immune responses.

In conclusion, our results showed that the LL5 cells initially

secreted molecules involved in RNA processing, cell repair, and

maintenance in response to the dsRNA viral mimicry. Then, they

switched to protein recycling and a more complex immune

response. Concomitantly, there was a reduction in some stress

and detoxification response mechanisms. Their identification

provides a novel set of candidate markers for immune activation
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in sand flies, offering new targets for functional studies of immune

priming antiviral immunity, systemic signaling, and host–virus–

parasite interactions.
Data availability statement

The original contributions presented in the study are included

in the article and Supplementary Material. Further inquiries can be

directed to the corresponding author.
Ethics statement

This study was conducted using established insect cell lines.

Ethical approval was not required for this research.
Author contributions

AS: Methodology, Investigation, Formal Analysis, Data

curation, Writing – review & editing. IS: Methodology,

Investigation, Formal Analysis, Data curation, Writing – review &

editing. MB: Methodology, Formal Analysis, Writing – review &

editing. FM: Methodology, Formal Analysis, Writing – review &

editing. AT: Methodology, Formal Analysis, Visualization, Writing

– review & editing. ET: Formal Analysis, Visualization, Writing –

original draft, Writing – review & editing. YT-C: Conceptualization,

Resources, Funding acquisition, Project administration,

Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was funded by

FAPERJ, Inova-Fiocruz and CAPES-INCT-Entomologia
Frontiers in Cellular and Infection Microbiology 12
Molecular. Erich L. Telleria was supported by Czech Science

Foundation GACR (grant number 25-15318S), and by ERD

Funds, project CePaViP (16_019/0000759).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors and

do not necessarily represent those of their affiliated organizations, or

those of the publisher, the editors and the reviewers. Any product that

may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2025.1638505/

full#supplementary-material
References
Aitken, T. H. G., Woodall, J. P., de Andrade, A. H. P., Bensabath, G., and Shope, R. E.
(1975). Pacui virus, phlebotomine flies, and small mammals in Brazil: an
epidemiological study. Am. J. Trop. Med. Hygiene 24, 358–368. doi: 10.4269/
ajtmh.1975.24.358

Alexander, A. J. T., Salvemini, M., Sreenu, V. B., Hughes, J., Telleria, E. L., Ratinier,
M., et al. (2023). Characterisation of the antiviral RNA interference response to
Toscana virus in sand fly cells. PloS Pathog. 19, e1011283. doi: 10.1371/
journal.ppat.1011283

Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001). Recognition of
double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 413,
732–738. doi: 10.1038/35099560

Alkan, C., Bichaud, L., De Lamballerie, X., Alten, B., Gould, E. A., and Charrel, R. N.
(2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic
diversity, geographic range, control measures. Antiviral Res. 100, 54–74.
doi: 10.1016/J.ANTIVIRAL.2013.07.005

Alkan, C., Zapata, S., Bichaud, L., Moureau, G., Lemey, P., Firth, A. E., et al. (2015).
Ecuador paraiso escondido virus, a new flavivirus isolated from new world sand flies in
Ecuador, is the first representative of a novel clade in the genus flavivirus. J. Virol. 89,
11773–11785. doi: 10.1128/JVI.01543-15
Amos, B., Aurrecoechea, C., Barba, M., Barreto, A., Basenko, E. Y., Bażant, W., et al.
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