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Rapid detection of Hemophilus
influenzae and Streptococcus
pneumoniae simultaneously
using a duplex recombinase-
aided amplification assay directly
from invasive clinical samples
Lin Zhou, Yuyan Xia †, Yanling Feng †, Bing Du, Xianyi Huang,
Wenjian Xu †, Jing Li, Fang Fang, Chun Meng, Li Yu, Lijuan Ma*,
Guanhua Xue* and Jing Yuan*

Capital Center for Children’s Health, Capital Medical University, Capital Institute of Pediatrics,
Beijing, China
Introduction: Community-acquired pneumonia (CAP) remains a leading cause

of mortality in children under five years of age worldwide. Streptococcus

pneumoniae and Haemophilus influenzae are the most common bacterial

pathogens causing CAP that requires hospitalization, highlighting the critical

need for a simple, low-cost, and highly sensitive method for rapid diagnosis.

Methods: We developed a duplex recombinase-aided amplification (RAA) assay

for the simultaneous detection of S. pneumoniae and H. influenzae. Following

comparative genomic analysis, the conserved lytA gene and omp6 gene were

selected as the specific targets for S. pneumoniae andH. influenzae, respectively.

The reaction conditions, including temperature and probe concentration,

were optimized.

Results: The established duplex RAA assay can be completed within 10 minutes

at a constant temperature of 39°C, with an optimal probe concentration

combination of 0.6 mM for S. pneumoniae and 0.8 mM for H. influenzae. The

assay demonstrated high sensitivity, with a limit of detection of 72 copies per

reaction for S. pneumoniae and 35 copies per reaction for H. influenzae.

Discussion: This study presents a rapid and accurate nucleic acid amplification

assay for the concurrent detection of twomajor bacterial pathogens in childhood

CAP. The speed, simplicity, and sensitivity of the duplex RAA assay make it a

promising tool for early and rapid etiological diagnosis in clinical settings.
KEYWORDS

recombinase aided amplification (RAA), Streptococcus pneumoniae, community-
acquired pneumonia (CAP), pediatric infections, point-of-care testing
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Introduction

Community-acquired pneumonia (CAP) is one of the most

common and serious infections in children worldwide, potentially

leading to severe complications such as sepsis, acute respiratory

distress syndrome, or death (Vaughn et al., 2024). The etiological

spectrum of CAP is broad, encompassing a variety of bacteria and

viruses (Liu et al., 2023). Among bacterial pathogens, Haemophilus

influenzae and Streptococcus pneumoniae are the two most

frequently implicated species. Furthermore, these two pathogens,

along with Neisseria meningitidis, are leading causes of invasive

diseases, including bacteremia, pneumonia, and meningitis. They

are also common agents of secondary infections following viral

respiratory disease and frequent co-pathogens with Mycoplasma

pneumoniae (Brueggemann et al., 2021).

H. influenzae is a Gram-negative, non-motile bacterium first

isolated from the nasopharynx of patients during an influenza

epidemic (Wen et al., 2020). S. pneumoniae is a Gram-positive,

encapsulated diplococcus pathogen first identified from the sputum

of a pneumonia patient in 1881 (Zivich et al., 2018). Both organisms

are transmitted via respiratory droplets from infected or colonized

individuals and subsequently colonize the mucosal surfaces of the

nasopharynx and upper airway. This colonization can lead to a

range of infections, including otitis media, epiglottitis, sinusitis,

pneumonia, meningitis, and bacteremia (Revai et al., 2008). The

identification of S. pneumoniae and H. influenzae is also critical

for guiding appropriate antibiotic therapy. A recent study

demonstrated that antibiotics were of little benefit for children

with acute sinusitis if these bacterial pathogens were absent in the

nasopharynx, suggesting that accurate testing for these two bacteria

could help reduce unnecessary antibiotic use (Shaikh et al., 2023).

Given the clinical significance of these pathogens, the development

of accurate and rapid molecular detection methods is crucial for

timely diagnosis and treatment.

Despite being the traditional gold standard for diagnosis,

bacterial culture often yields a lower positive rate for these two

fastidious organisms compared to other pathogens, which is a major

constraint in many clinical laboratories (Farajzadeh Sheikh et al.,

2021; Sharma et al., 2021). Recombinase-aided amplification (RAA)

assay is an isothermal amplification technology known for its high

specificity, sensitivity, and portability. The RAA system is

composed of three key proteins: a recombinase (which anneals

primers to the template DNA), a single-strand DNA binding

protein (SSB), and a DNA polymerase (for amplification and

extension). The coordinated action of these components with

specific primers and fluorescent probes enables a rapid and

specific reaction, making the technology highly suitable for point-

of-care testing (POCT) and the detection of fastidious bacteria.

Recently, RAA has been successfully used to detect various

microbial pathogens, such as Mycoplasma pneumoniae ,

Monkeypox virus, and Candida auris (Xue et al., 2020; Cui et al.,

2023; Feng et al., 2024).
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In this study, we developed a duplex RAA assay for the

simultaneous detection of S. pneumoniae and H. influenzae in a

single tube. We then validated the application of this method using

invasive clinical samples and compared its performance against

bacterial culture and a previously published real-time PCR method.
Materials and methods

Ethics statement and clinical specimen
collection

This study was approved by the Ethics Committee of the Capital

Institute of Pediatrics. Written informed consent was obtained from

the legal guardian of each pediatric patient prior to sample collection.

A total of 168 specimens were collected from pediatric patients

at the Capital Center for Children’s Health, Capital Medical

University, Capital Institute of Pediatrics, Beijing, China, between

January 2023 and December 2024. Each specimen was obtained

from a unique patient, and the collection comprised 160

bronchoalveolar lavage fluid (BALF) samples and 8 cerebrospinal

fluid (CSF) samples.
Bacterial and viral strains/DNA

Standard reference strains of H. influenzae (non-encapsulated,

ATCC 49247; and encapsulated, ATCC 9334) and S. pneumoniae

(ATCC 49619) were used to establish and validate the assay. To

evaluate analytical specificity, a panel of nucleic acids from common

respiratory pathogens stored at the Capital Institute of Pediatrics

was tested. This panel included: Mycoplasma pneumoniae,

Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas

aeruginosa, Escherichia coli, Legionella pneumophila, Listeria

monocytogenes, Acinetobacter baumannii, Mycobacterium

tuberculosis, Bordetella pertussis, Streptococcus mitis, Streptococcus

oralis, Streptococcus agalactiae, Streptococcus mutans, Streptococcus

parasanguinis, Streptococcus sanguinis, Streptococcus salivarius,

influenza A and B viruses, parainfluenza viruses, adenoviruses,

respiratory syncytial virus, human metapneumovirus, human

bocavirus, and rhinovirus (Table 1).
DNA extraction

Total genomic DNA was extracted from bacterial cultures and

clinical specimens using the QIAamp DNA Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s instructions.

The extracted DNA was eluted in 150 mL of nuclease-free water and

stored at −80°C until further use. DNA concentrations were

measured using a NanoDrop spectrophotometer (Thermo Fisher

Scientific, USA). DNA copy numbers were calculated using the
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following formula: DNA copy number (copies/mL) = [6.02 × 1023 ×

plasmid concentration (ng/mL) × 10−9]/[DNA length (in

nucleotides) × 660].
Primer and probe design

Conserved regions within the lytA gene of S. pneumoniae and

the omp6 gene of H. influenzae were selected as amplification

targets. Specific primers and probes were designed following the

principles of the recombinase-aided amplification (RAA) assay. The

specificity of all primers and probes was confirmed in silico using

NCBI’s Primer-BLAST tool. Potential secondary structures, such as

primer-dimers and hairpins, were analyzed using the online

OligoEvaluator software. All oligonucleotides were synthesized

and purified via high-performance liquid chromatography by

Sangon Biotech (Shanghai, China).
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Recombinant plasmid construction

The full-length sequences of the lytA and omp6 genes were

PCR-amplified and subsequently cloned into the pUC57 vector

(Tiangen Biotech Co., Ltd., Beijing, China). These recombinant

plasmids served as standards. Tenfold serial dilutions were prepared

to create standards with concentrations ranging from 107 to 100

copies/mL, which were then stored at −80°C.
Duplex RAA assay procedure

RAA assays were conducted in a total reaction volume of 50 mL
using a commercial RAA kit (Jiangsu Qitian Bio-Tech Co., Ltd.,

China). Each reaction mixture contained 2 μL of template DNA, 25

μL of reaction buffer, 15.7 μL of DNase-free water, 2.5 μL of 280

mM magnesium acetate, 2.1 μL of each lytA primer (10 μM), 2.1 μL

of each omp6 primer (10 μM), and a combination of lytA (VIC-

labeled) and omp6 (FAM-labeled) probes. Probe concentrations

were optimized by testing various combinations (0.6/0.8 μM, 0.6/0.6

μM, and 0.8/0.6 μM). The mixture was added to a tube containing

the lyophilized RAA enzyme pellet. The tubes were vortexed and

centrifuged, then incubated in a B6100 Oscillation Mixer for 4 min.

Finally, the tubes were transferred to a real-time fluorescence

detector (QT-RAA-1620) for signal acquisition at 39°C for 20 min.
Analysis of sensitivity and specificity

The analytical sensitivity of the RAA assay was determined

using tenfold serial dilutions of the recombinant plasmid ranging

from 107 to 100 copies/mL. The analytical specificity was evaluated

by testing the RAA assay against the panel of non-target microbial

pathogens listed in Table 1. Standard S. pneumoniae and H.

influenzae DNA were used as positive controls, and nuclease-free

water served as the negative control.
Clinical specimen evaluation

All 168 clinical specimens were tested in parallel using the newly

developed duplex RAA assay, the previously published real-time PCR

assays for S. pneumoniae (Carvalho et al., 2007) and H. influenzae

(Abdeldaim et al., 2010), and conventional bacterial culture. The

primers and probes used for real-time PCR are listed in Table 2. PCR

cycling conditions were performed as described in the respective

publications (Carvalho et al., 2007; Abdeldaim et al., 2010).
Statistical analysis

Statistical analyses were performed using SPSS version 21.0.

The diagnostic performance of the duplex RAA assay, including

its sensitivity, specificity, positive predictive value (PPV), and
TABLE 1 Bacterial or virus strain/DNA types used in this study.

Strain/DNA Source

Streptococcus pneumoniae ATCC49619 Our microorganism center

Haemophilus influenzae ATCC49247 Our microorganism center

Haemophilus influenzae ATCC9334 Our microorganism center

Influenza A Our microorganism center

Influenza B Our microorganism center

Parainfluenza viruses (PIV) Our microorganism center

Adenoviruses (ADV) DNA Clinical isolate DNA

Respiratory syncytial virus (RSV) Our microorganism center

Human metapneumovirus (HMPV) Our microorganism center

Human bocavirus (BoV) Our microorganism center

Rhinovirus (Rh) Clinical isolate DNA

Mycoplasma pneumoniae M129 Our microorganism center

Mycoplasma pneumoniae FH Our microorganism center

Legionella pneumophila ATCC33823 Our microorganism center

Listeria monocytogenes Clinical isolate DNA

Staphylococcus aureus ATCC29213 Our microorganism center

Klebsiella pneumoniae ATCC BAA-2146 Our microorganism center

Pseudomonas aeruginosa Our microorganism center

Escherichia coli ATCC 25922 Our microorganism center

Acinetobacter baumannii Our microorganism center

Mycobacterium tuberculosis Clinical isolate DNA

Bordetella pertussis Clinical isolate DNA

Streptococcus mitis Clinical isolate DNA

Streptococcus agalactiae Clinical isolate DNA

Streptococcus salivarius Clinical isolate DNA
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1631633
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhou et al. 10.3389/fcimb.2025.1631633
negative predictive value (NPV), was evaluated by the chi-square

test using real-time PCR as the gold standard. Based on the

confusion matrix, samples were classified as true positive (TP),

false positive (FP), true negative (TN), or false negative (FN). The

detailed metrics were calculated as follows: Sensitivity = TP/(TP +

FN); Specificity = TN/(TN + FP); PPV = TP/(TP + FP); NPV =

TN/(TN + FN).
Results

Establishment and workflow of the duplex
RAA method

The workflow for the duplex recombinase-aided amplification

(RAA) assay was streamlined for rapid sample-to-result analysis.

Following DNA extraction from clinical specimens, the prepared

reaction mixture—containing primers and probes for both S.

pneumoniae (VIC channel) and H. influenzae (FAM channel)—

was incubated in an isothermal instrument. Positive results were

typically observed within 10 min, with a total turnaround time of

under 20 min (Figure 1A).

To ensure comprehensive detection across diverse strains—

including typeable (a-f) and non-typeable H. influenzae (Bakaletz

and Novotny, 2018) and the numerous serogroups of S.

pneumoniae (Davies et al., 2022)—we selected highly conserved

target regions. Through comparative genomic analysis, the omp6

gene of H. influenzae and the lytA gene of S. pneumoniae were

chosen. Specific primers and probes were designed within these

conserved regions, with certain single-nucleotide polymorphism

(SNP) loci among different types accounted for by introducing

degenerate bases (Figures 1B, C). The potential for primer-dimer

and hairpin formation was assessed using online tools from

Integrated DNA Technologies (IDT), and no significant

secondary structures were predicted.
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Optimization of the duplex RAA reaction
system

To achieve optimal amplification efficiency, we systematically

tested different probe concentrations and reaction temperatures.

Various combinations of the lytA (S. pneumoniae) and omp6 (H.

influenzae) probes were evaluated. A final concentration of 0.8 mM
for the lytA probe and 0.6 mM for the omp6 probe yielded the most

robust and consistent amplification signals. Subsequently, this

optimal probe combination was tested at 37°C, 39°C, and 42°C.

The reaction performed at 39°C produced the highest fluorescence

intensity (Figure 2). Consequently, these optimal conditions (0.8/

0.6 mM probes at 39°C) were used for all subsequent experiments.
Analytical specificity and sensitivity

The analytical specificity of the duplex RAA assay was confirmed

using a panel of common respiratory pathogens. As shown in Figure 3,

amplification signals were generated exclusively from S. pneumoniae

andH. influenzae templates. No cross-reactivity was observed with any

of the other bacterial or viral nucleic acids tested, nor in the no-

template (water) control, demonstrating 100% specificity.

The analytical sensitivity was determined using tenfold serial

dilutions of recombinant plasmids containing the target genes. A

clear fluorescence signal was detected across dilutions ranging from

1 × 107 down to 1 × 10¹ copies/reaction. The limit of detection

(LOD) was established as 72 copies/reaction for S. pneumoniae and

35 copies/reaction for H. influenzae.
Evaluation of the duplex RAA assay on
clinical samples

The clinical performance of the duplex RAA assay was

evaluated using 168 invasive specimens, with results compared
TABLE 2 Primers and probes used in this study.

Name Sequence (5’-3’) Source

LytA-F-RAA TCAAAGTAGTACCAAGTGCCATTGATTTTC

LytA-R-RRA AGCCGTGAGCAGTTTAAGCYATGATATTGAGAA

LytA-P-RAA TAAGAGCCGTCTGARTGTACGTACCAGTAGCCAG[VIC-dT][THF][BHQ-dT] CATTCTTCTGCCAGCCT

Omp6-F-RAA CAATGGTGCTGCTCAAACTTTTGGCGGATAC

Omp6-R-RAA CTTCTACTAATACTTTAGCAGCTGGCGTTGCA

Omp6-P-RAA CTGATCTTCAACAACGTTACAACACCGTATAT[FAM-dT][THF][BHQ-dT] GGTTTTGATAAATAC

LytA-F-qPCR 5′-ACGCAATCTAGCAGATGAAGCA-3′

Ref (Carvalho et al., 2007)LytA-R-qPCR 5′-TCGTGCGTTTTAATTCCAGCT-3′

LytA-P-qPCR 5′-FAM-GCCGAAAACGCTTGATACAGGGAG-3′-BHQ1

Omp6-F-qPCR 5’-CCAGCTGCTAAAGTATTAGTAGAA G-3’

Ref (Abdeldaim et al., 2010)Omp6-R-qPCR 5’-TTCACCGTAAGATACTGTGCC-3’

Omp6-P-qPCR 5’-VIC-CAGATGCAGTTGAAGGTTATTTAG-3′-BHQ1
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against those from a validated real-time PCR assay and

conventional bacterial culture. The RAA assay identified 18

specimens as positive for S. pneumoniae and 21 for H. influenzae.

Among these, six specimens were positive for both pathogens.

When real-time PCR was used as the diagnostic gold standard,

the duplex RAA assay for the two pathogens showed 100% positive

predictive value (PPV) and negative predictive value (NPV). In

contrast, bacterial culture yielded significantly fewer positive results,

detecting only nine cases of S. pneumoniae and seven cases of H.

influenzae (Table 3).
Discussion

Streptococcus pneumoniae and Haemophilus influenzae are

common inhabitants of the human nasopharyngeal microflora

but can migrate to sterile sites to cause invasive disease (Eichner
Frontiers in Cellular and Infection Microbiology 05
et al., 2021). Recent metagenomic studies of BALF from children

have identified S. pneumoniae and H. influenzae as dominant

pathogens (Yang et al., 2022). Similarly, advanced sequencing of

cerebrospinal fluid in resource-limited settings has shown S.

pneumoniae to be a primary cause of bacterial meningitis

(Pallerla et al., 2022). Given the clinical importance of these

bacteria, a rapid and accurate detection method applicable

directly to clinical samples is essential for early diagnosis. Any

diagnostic delay can increase mortality, prolong hospital stays, and

elevate healthcare expenditures (Pallerla et al., 2022).

Since both pathogens can asymptomatically colonize the

nasopharynx, a positive result from noninvasive samples (e.g.,

pharyngeal swabs) can make it difficult to distinguish between

pathogenic infection and carriage. To address this diagnostic

ambiguity, our study focused on developing a duplex

recombinase-aided amplification (RAA) assay and evaluating it

on invasive clinical samples (BALF and CSF). This approach
FIGURE 1

Establishment of the duplex recombinase-aided amplification (RAA) method. (A) Workflow of the duplex RAA method. (B) Alignment of the lytA gene among
different S. pneumoniae strains, including serotype 1, type 3, type 4, type 6A, type 7F, type 9C, type 14, type 19A, type 19F, and type 23F. (C) Alignment of the
omp6 gene among different H influenzae strains, including typeable (encapsulated a–f) and nontypeable (nonencapsulated) strains.
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FIGURE 2

Optimization of the duplex RAA assay parameters. (A) Relative fluorescence curves for different RAA probe combinations for S. pneumoniae. (B) Relative
fluorescence curves for different RAA probe combinations for H influenzae. (C) Relative fluorescence curves at different incubation temperatures (37°C,
39 °C,42°C for S. pneumoniae. (D) Relative fluorescence curves at different incubation temperatures (37°C, 39 °C,42°C for H influenzae.
FIGURE 3

Specificity and sensitivity of the duplex RAA assay for S. pneumoniae and H influenzae detection. (A) Specificity of the RAA assay for S. pneumoniae.
(B) Specificity of the RAA assay for H influenzae. (C) Sensitivity of the RAA assay for S. pneumoniae. (D) Sensitivity of the RAA assay for H influenzae.
TABLE 3 Comparison of RAA assay, real-time PCR and culture for S.pneumoniae and H. influenzae detection of clinical samples.

Method
S.pneumoniae
positive/ (%)

S.pneumoniae
negative/ (%)

H.influenzae
positive/ (%)

H.influenzae
negative/ (%)

Total

RAA assay 18 (10.71%) 150 (89.29%) 21 (12.5%) 147 (87.5%) 168

Real-time PCR 18 (10.71%) 150 (89.29%) 21 (12.5%) 147 (87.5%) 168

Culture 9 (5.36%) 159 (94.64%) 7 (4.17%) 161 (95.83%) 168
F
rontiers in Cellular and Inf
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provides a more conclusive diagnostic basis for clinicians. The RAA

assay achieves amplification in approximately 10 min, significantly

reducing the turnaround time compared with real-time PCR and

enhancing its utility in clinical settings.

For developing robust diagnostic methods, selecting highly

conserved target sequences is crucial to ensure comprehensive

detection across numerous serotypes. Given the genomic

variability among different genotypes and serotypes of these

pathogens, this initial step is critical for accuracy. Previous

research on S. pneumoniae has utilized various gene targets,

including those encoding pneumolysin (ply), autolysin (lytA),

Spn9802, capsular polysaccharide biosynthesis proteins (cps), and

pneumococcal surface antigen A (psaA) (Blaschke, 2011; Wessels

et al., 2012; Chang et al., 2021). Notably, the lytA gene, which

encodes a cell wall hydrolase, is a recognized virulence factor due to

its role in releasing highly inflammatory cell wall components and

pneumolysin. Consequently, it has been repeatedly validated as an

effective and reliable detection target (Seki et al., 2005). For H.

influenzae, specific genes such as the outer membrane protein P6

gene (omp6) and 16S rRNA have been successfully targeted (Maleki

et al., 2020; Wang et al., 2022). For instance, Cao et al. established an

isothermal amplification technology based on the omp6 gene,

achieving sensitive detection by coupling multiple cross

displacement amplification with a nanoparticle-based lateral flow

biosensor (Cao et al., 2021).

Informed by these previous studies, we selected the lytA and

omp6 genes as target markers for our assay. Sequence alignments

confirmed that these genes exhibit high sequence homology across

diverse serotypes. Consequently, primers and probes were designed

based on these conserved regions. The resulting single-tube duplex

assay demonstrated high specificity for various strains of H.

influenzae and S. pneumoniae, with no cross-reactivity observed

against other common respiratory pathogens. The analytical

sensitivity was determined to be 72 copies per reaction for S.

pneumoniae (lytA) and 35 copies per reaction for H. influenzae

(omp6). This performance is comparable to the sensitivity of

previously reported real-time PCR assays, which typically ranges

from 10 to 100 copies per reaction (Abdeldaim et al., 2009; Meyler

et al., 2012; Hajia et al., 2014), indicating that our RAA assay

exhibits competitive detection sensitivity.

To evaluate the clinical utility of this method, we analyzed 168

invasive clinical samples. The results from both the RAA and real-

time PCR assays demonstrated 100% concordance, with positive

detection rates of 10.71% for S. pneumoniae and 12.5% for H.

influenzae. In contrast, the positive rates for bacterial culture were

only 5.36% and 4.17%, respectively. Notably, for samples that were

culture-negative but RAA-positive, the amplification dynamics

suggested a low bacterial load, likely below the detection

threshold of conventional culture. This finding highlights the

superior sensitivity of the RAA assay. Furthermore, we observed a

high rate of co-infection: 33.3% (6/18) of the S. pneumoniae-

positive samples were also co-infected with H. influenzae. As

previous studies have indicated, co-infection with these two
Frontiers in Cellular and Infection Microbiology 07
pathogens can exacerbate pneumonia and increase mortality in

pediatric patients (Pneumonia Etiology Research for Child Health

(PERCH) Study Group, 2019). These findings underscore the

clinical importance of simultaneous detection.

However, this study has limitations. The primary limitation is

the qualitative nature of the RAA assay. Although the amplification

curve can provide a semi-quantitative indication of bacterial load, it

does not offer the precise quantification achievable with methods

such as real-time PCR.

In summary, we have developed a duplex RAA assay for the

simultaneous detection of H. influenzae and S. pneumoniae in

clinical samples, demonstrating high specificity and sensitivity.

This assay offers significant advantages, including simplified

reaction conditions, a reduced turnaround time, and lower cost

compared with traditional culture methods and real-time PCR.

Therefore, it holds substantial potential for clinical application,

particularly for the rapid analysis of invasive specimens.
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