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on urinary stone disease: insights
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machine learning models

Yufeng Liu®, Aoyu Yang', Ziyi Zhang', Chen Shen,
Wei Wang and Xiancheng Li*
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Background: Urinary stones are a multifactorial disease. In recent years, the role
of microorganisms in its pathogenesis has attracted considerable attention.
Although studies have suggested that certain microbes present in the gut and
urine are associated with the formation of urinary stones, the current criteria for
stone classification are not rigorous enough. Therefore, this study aimed to
analyze the gut and urinary microbiota composition via 16S rRNA sequencing in
patients with pure CaOx, pure UA, and pure Inf stones. By integrating these
microbiota data with clinical data, we constructed machine learning models and
evaluated their diagnostic value in distinguishing stone types.

Methods: A total of 81 patients with urinary stones (including 30 with pure CaOx
stones, 31 with pure UA stones, and 20 with pure Inf stones) and 26 healthy
volunteers were enrolled. Stool and urine samples were collected from each
participant and subjected to 16S rRNA sequencing to obtain microbiota data and
characterize the gut and urinary microbiota profiles of patients with different
stone types. We further integrated microbiota and clinical data, such as age,
gender and BMI, using LASSO feature selection and six machine learning
algorithms (e.g. SVM, Random Forest and XGBoost) to create prediction
models for stone type. Model performance was evaluated through
cross-validation.

Results: Results showed enrichment of Paramuribaculum, Muribaculum,
Mesorhizobium, and Acinetobacter in the gut of CaOx stone patients, with
concurrent urinary enrichment of Enterococcus. Patients with UA stones
demonstrated an increase in the abundance of Massilioclostridium in the gut
and an increase in the abundance of Fenollaria, Anaerococcus, Enterococcus
and Escherichia in the urine. Patients with Inf stones showed no differentially
abundant gut taxa compared to healthy volunteers, but did exhibit urinary
enrichment of Escherichia. The predictive model, which was based on urinary
microbiota and clinical data, demonstrated excellent performance. The AUC was
0.922, 0.866 and 0.913 for the SVM, Random Forest and XGBoost
models, respectively.
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Conclusion: This study reveals that different types of stone are characterized by
distinct compositions of microbiota. Machine learning models based on
microbiota and clinical data can predict urinary stone types noninvasively. This
provides novel insights into the microecological mechanisms of urinary stones
and opens up new avenues for clinical diagnosis.

KEYWORDS

calcium oxalate stones, uric acid stones, infectious stones, gut microbiota, urinary
microbiota, machine learning models

Introduction

Urinary stones are a multifactorial disease whose prevalence is
influenced by a number of factors, including age, gender, diet, fluid
intake, climatic conditions and ethnic differences (Scales et al., 2016;
Liu et al, 2018 Wu et al, 2023). In recent years, the role of
microorganisms in the formation of urinary stones has attracted
increasing attention in the scientific community. It has been
established that the presence of urease-producing bacteria in the
urine can facilitate the breakdown of urea, thereby contributing to the
alkalization of the urine (Tamborino et al., 2024). This, in turn,
creates favorable conditions for the formation of infectious (Inf)
stones (Tamborino et al., 2024). Furthermore, non-urease-producing
bacteria have been demonstrated to possess the capacity to facilitate
the growth and aggregation of calcium oxalate (CaOx) crystals
(Chutipongtanate et al., 2013; Li et al., 2025).

CaOx stones are the most prevalent type of stone and their
formation is closely related to urinary oxalate excretion.
Oxalobacter formigensis is a pivotal species in the degradation of
oxalate (Dawson et al., 1980; Allison et al., 1985; Daniel et al., 2021).
However, subsequent studies have revealed that its efficacy in
reducing urinary oxalate excretion is not consistent. The
colonization rate is found to be influenced by a number of factors
(Stewart et al, 2004; Hoppe et al,, 2011; Daniel et al., 2021).
Furthermore, it has been demonstrated that Lactobacillus and
Bifidobacterium can also degrade oxalate (Abratt and Reid, 2010).
This finding indicates that the association between bacteria and
stones is extensive and encompasses a wide range of bacterial
species, rather than being confined to a specific type of bacterium.

The advent of high-throughput sequencing technologies has
provided deeper insight into the composition of the gut and urinary
microbiota. Studies have shown that patients with urinary stone
exhibit “ecological dysbiosis” in both the gut and urinary
microbiota (Zampini et al., 2019; Zhao et al., 2021).

Nevertheless, current studies are limited by the lack of a precise
classification based on stone composition. Therefore, this study
used 16S rRNA sequencing to analyze the composition of the gut
and urinary microbiota of patients with three different types of
urinary stone. The aim was to shed light on the potential roles of gut
and urinary microorganisms in the development of different types
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of stone. Furthermore, we developed machine learning models by
combining microbiota and clinical data to assess their potential for
differentiating stone types.

Methods
Study population and sample collection

At the Second Affiliated Hospital of Dalian Medical University
in China, we recruited 81 patients with urinary stones, including 30
patients with CaOx stones (20 males, 10 females, mean age of
57.73 + 11.13 years), 31 patients with uric acid (UA) stones (14
males, 17 females, mean age of 57.45 + 12.03 years), and 20 patients
with Inf stones (4 males, 16 females, mean age of 53.15 + 12.46
years). Each patient had only one stone component, or the total
composition of a single stone type was 100%. The composition of
the stone components was obtained by Fourier transform infrared
spectroscopy analysis. In addition, we recruited 26 healthy
volunteers who were confirmed to be free of urinary stones via
urinary ultrasound to serve as the control group (14 males and 12
females, mean age of 28.62 + 2.90 years). The study was approved
by the Ethics Committee of the Second Affiliated Hospital of Dalian
Medical University in China, and all participants signed an
informed consent form at the time of inclusion. Participants were
excluded if they: (1) had used antibiotics within the past 4 weeks; (2)
had inflammatory bowel disease, cystic fibrosis, celiac disease,
chronic diarrhea, or a history of cancer; (3) had undergone
bariatric surgery; (4) had a history of diabetes insipidus over the
past year; (5) had urinary diversion or required indwelling urinary
catheters or intermittent catheterization. And healthy volunteers
with no history of urinary stones were included. Samples were
collected into special containers and stored in a refrigerator at -80°C
until DNA extraction.

DNA extraction and PCR amplification

Microbial DNA was extracted from stool and urine samples
according to the E.ZN.A.® Soil DNA Kit (Omega Bio-tek, Norcross,
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GA, USA) according to manufacturer’s protocols. The V1-V9 region
of the bacteria 16S ribosomal RNA gene was amplified by PCR (95°C
for 2 min, followed by 27 cycles at 95°C for 30 s, 55°C for 30 s, and
72°C for 60 s and a final extension at 72°C for 5 min) using primers
27F 5-AGRGTTYGATYMTGGCTCAG-3" and 1492R 5’-
RGYTACCTTGTTACGACTT-3’, where barcode is an eight-base
sequence unique to each sample (Pacific Biosciences, PN: 102-135-
500). PCR reactions were performed in triplicate 20 UL mixture
containing 4 UL of 5xFastPfu Buffer, 2 uL of 2.5 mM dNTPs, 0.8 uL
of each primer (5 uM), 0.4 UL of FastPfu Polymerase, and 10 ng of
template DNA. A negative control (using sterile water instead of
template DNA) was included in each PCR run to check for potential
contamination. Amplicons were extracted from 2% agarose gels and
purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, U.S.) according to the
manufacturer’s instructions.

Library construction and sequencing

SMRTbell libraries were prepared from the amplified DNA by
blunt-ligation according to the manufacturer’s instructions with
SMRTbell prep kit 3.0 (Pacific Biosciences, PN: 102-182-700).
Purified SMRTbell libraries from the pooled and barcoded
samples were sequenced on a single PacBio Sequel Ile cell.

Processing of sequencing data

PacBio raw reads were processed using the SMRT Link Analysis
software version 11.0 to obtain demultiplexed circular consensus
sequence (CCS) reads with the following settings: minimum
number of passes=3, minimum predicted accuracy=0.99. Raw
reads were processed through SMRT Portal to filter sequences for
length (<1000 or >1800 bp) and quality. Sequences were further
filtered by removing barcode and primer sequences with lima
pipeline (Pacific Biosciences demultiplexing barcoded software,
https://lima.how/).

After an average of 30,000 high-quality reads per sample were
retained, chimeric sequences were identified and removed using
UCHIME, followed by OTU clustering with a 98.65% similarity
cutoff using UPARSE (version 10, http://drive5.com/uparse/). The
phylogenetic affiliation of each 16S rRNA gene sequence was
analyzed by uclust algorithm (https://github.com/topics/uclust)
against the Silva (SSU138.2) 16S rRNA database (http://www.arb-
silva.de) using confidence threshold of 80%.

Statistical analysis and bioinformatics
analysis

Statistical analyses were performed using SPSS 25.0 software.
The measurement data were expressed as mean * standard
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deviation and were compared using one-way analysis of variance
or corrected one-way analysis of variance depending on normality
and homogeneity of variance. The count data were expressed as the
number of cases or percentage and were compared using the chi-
square test of Fisher’s exact test when expected frequencies were
low. The difference was considered to be statistically significant
at P < 0.05.

The rarefaction analysis based on Mothur v.1.21.1 was
conducted to reveal the diversity indices, including the Chaol,
ACE, Simpson, and Shannon diversity indices (Li et al., 2013). An
evaluation of beta diversity among four distinct groups was
conducted through the implementation of principal coordinate
analysis (PCoA), Adonis test, and ANOSIM test (Wei et al., 2019;
Xiong et al, 2020). Wilcoxon rank-sum tests was employed to
identify differentially abundant species, with false discovery rate
(FDR) adjustment applied to Wilcoxon comparisons (Mann and
Whitney, 1947).

Machine learning models

The model was developed by combining species-level relative
abundance data of gut and urinary microbiota with clinical data
such as age, sex, and body mass index (BMI). Prior to model
training, feature selection was performed using the LASSO (Least
Absolute Shrinkage and Selection Operator) algorithm to reduce
dimensionality and eliminate redundant features. The penalty
coefficient alpha of the LASSO algorithm was optimized via intra-
training-fold cross-validation, and the direction of key features
selected by this algorithm was consistent with the results of
differential abundance analysis. After feature filtering with
LASSO, the finally retained features were incorporated into six
classic supervised learning classifiers-AdaBoost, Support Vector
Machine (SVM), Gradient Boosting, Extra Trees, Random Forest,
and XGBoost-for the construction of multi-class classification
models. These models were used to discriminate among the four
groups: CaOx, UA, Inf, and control. For data splitting and
validation, given the moderate sample size (total n=107) and class
imbalance (30 cases in CaOx, 31 in UA, 20 in Inf, and 26 in control),
the dataset was first randomly partitioned into an 80% training set
and a 20% independent test set. Stratified 10-fold cross-validation
was implemented on the training set to optimize the LASSO penalty
coefficient and compare classifier performance. Stratified sampling
was adopted in both data partitioning and cross-validation to
preserve the proportional distribution of the four groups and
address class imbalance during the sampling phase. The
diagnostic performance of the models was evaluated by plotting
Receiver Operating Characteristic (ROC) curves and calculating the
Area Under the ROC Curve (AUC). Two complementary AUC
metrics were reported to account for class imbalance: micro-
averaged AUC, which is weighted by class frequency and reflects
the overall model performance; and macro-averaged AUC, which is
the unweighted mean of class-wise AUC values and emphasizes
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consistent performance across groups. The 95% confidence
intervals were calculated for all AUC values.

Results
Subject characteristics

A total of 81 patients with urinary stones and 26 healthy
volunteers were included in this study. Statistically significant
differences were observed among the four groups with regard to
age, gender and BMI (P < 0.001; P = 0.012; P < 0.001; Table 1).

TABLE 1 Characteristics of subjects.

Characteristic CaOx UA Inf Control P
Age (years) 57.73 57.45 53. 15 28.62 0001
ge (11.13) | (12.03)  (12.46) (2.90) :
Gender 0.012
Male 20 14 4 14
Female 10 17 16 12
2456 2708 | 2589 (4. 23.02 (3.
BMI <0.001
(2.66) (4.13) 10) 19)
Control Inf

CaOx UA

% =
33095

8740 ° 5135
= 7033 =
8964
RV
4912
\@/

shannon

)

IR )
Number of Reads Sampled

FIGURE 1

Analysis of gut and urinary microbiota in each group using 16S rRNA. (A) Venn diagram showing the shared and unique OTUs in the gut among the
four groups. (B) Venn diagram showing the shared and unique OTUs in the urine among the four groups. (C) Shannon-Wiener curve: used to reflect
the diversity of the gut microbiota. (D) Shannon-Wiener curve: used to reflect the diversity of the urinary microbiota.
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Diversity of the microbiota

To characterize the microbiota between the stone and control
groups, we performed 16S rRNA sequencing on all subject samples
and obtained 206,281 OTUs in the gut and 109,921 OTUs in the
urine (Figures 1A, B). A total of 778 genera were identified in the
gut and 1,242 genera were identified in the urine (Supplementary
Table 1). As the Shannon-Wiener curves gradually flattened, this
indicated that the applied sequencing depth had sufficiently covered
the biodiversity (Figures 1C, D).

Microbial alpha diversity was described by four indices: Chaol,
ACE, Shannon and Simpson. Significant differences were observed in
Chaol and ACE indices, which are used to assess gut microbial alpha
diversity, in comparisons of CaOx vs. Inf groups and UA vs. Inf groups.
However, no significant differences were detected in alpha diversity
indices of either gut or urinary microbiota when comparing each of the
three stone groups with the control group (Figures 2A-H).

PCoA analysis revealed significant differences in beta diversity
among the four groups, although there was no clear separation
(Figures 3A, B). Statistical analysis revealed that significant
differences were detected among the four groups based on Bray-
Curtis distances as assessed by Adonis (P = 0.001; P = 0.018). It was
found that the Bray-Curtis distances that passed the ANOSIM test
were also statistically different (P = 0.006; P = 0.021).

10000 15000 20000
Number of Reads Sampled
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Comparison of alpha diversity of gut microbiota and urinary microbiota among groups ACE and Chaol are indices that estimate the number of
OTUs contained in the sample; Shannon and Simpson are indices that estimate the microbial diversity in the sample. (A—D) Alpha diversity indices for

gut microbiota. (E=H) Alpha diversity indices for urinary microbiota.

Differentially abundant taxa

To further clarify regarding the microbiota composition
differences among the three stone groups and the control group, a
comparison of taxa at the genus level was performed using the
Wilcoxon rank-sum test. The test results were adjusted for the FDR.
When compared to the control group, patients with CaOx stones
exhibited significant enrichment of four taxa in the gut; those with
UA stones had one significantly enriched taxon; and no
differentially abundant taxa were detected in the gut of Inf stone
patients (Figures 4A, B; Supplementary Table 2). One taxon was
significantly enriched in the urine of CaOx stone patients, four in
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FIGURE 3

UA stone patients, and one in Inf stone patients, respectively

(Figures 5A-C; Supplementary Table 3).

Machine learning models

As illustrated in Figures 6A-C, the model integrates patient gut
16S rRNA sequencing data with clinical data. It presents the fused
feature selection based on the LASSO algorithm, the mean squared
error (MSE) and 10-fold cross-validation coefficients, and a
histogram of the feature scores for the selected characteristics.
Figures 6D-I presents the ROC curves for six machine learning

PCoA - Microbial communities
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Beta diversity of gut and urinary microbiota among the four groups. (A) Bray-Curtis distance PCoA plot for the gut microbiota. (B) Bray-Curtis

distance PCoA plot for the urinary microbiota.
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FIGURE 4

Wilcoxon rank-sum tests after FDR correction. Bars show the relative abundance of CaOx and UA that differ at the genus level. (A) Gut microbiota of

patients with CaOx stones. (B) Gut microbiota of patients with UA stones.

models (SVM, Random Forest, Gradient Boosting, XGBoost, Extra
Trees and AdaBoost) evaluated on the cross-validation folds.
Overall, the models achieved discriminative performance, with
SVM, XGBoost, and Random Forest demonstrating relatively
higher predictive accuracy (macro-AUC: 0.954, 0.890 and 0.929,
respectively). The full set of micro-AUC, macro-AUC values, and
their 95% confidence intervals for all models are provided
in Figure 6.

As illustrated in Figures 7A-C, the model integrates patient
urine 16S rRNA sequencing data with clinical data. It presents the
fused feature selection based on the LASSO algorithm, the MSE and
10-fold cross-validation coefficients, and a histogram of the feature
scores for the selected characteristics. Figures 7D-I presents the
ROC curves for the six machine learning models, evaluated on the
cross-validation folds. Overall, the models achieved favorable
discrimination performance. The SVM, Random Forest and
XGBoost models demonstrated the higher predictive accuracy
(macro-AUC values of 0.922, 0.866 and 0.913, respectively). The
full set of micro-AUC, macro-AUC values, and their 95%
confidence intervals for all models are provided in Figure 7.

Discussion

This study analyzed the gut and urinary microbiota in patients
with CaOx stones, UA stones, and Inf stones, revealing distinct
patterns of microbial community dysbiosis specific to each stone
type. It is noteworthy that the prediction model based on urinary
microbiota and clinical data demonstrated superior discriminative
ability compared to the gut microbiome-based model, highlighting
its potential value for distinguishing among different stone types.

95% confidence intervals

The results of this study indicate that Paramuribaculum,
Muribaculum, Mesorhizobium, and Acinetobacter were enriched
in the gut of CaOx stone patients. Both Paramuribaculum and
Muribaculum are members of Muribaculaceae (Smith et al.,, 2021;
Zhu et al., 2024). Previous studies have reported the capacity of
bacterial strains belonging to this family to degrade oxalate. The
enrichment of these bacteria in these patients may be substrate-
driven. These individuals often have increased intestinal oxalate
absorption or higher dietary oxalate intake, leading to elevated
intestinal luminal oxalate concentrations that create favorable
conditions for bacterial growth and proliferation (Miller et al,
2016). Although the role of Mesorhizobium is well-established in
the context of plant symbiosis, its function within the human gut
remains unclear (Wang et al., 2022). Its enrichment in the patient’s
gut may suggest the emergence of a specific ecological niche under
the condition of gut microbiota dysbiosis. It is recommended that
subsequent studies examine whether its enrichment in the gut has a
substantial impact on the development of CaOx stones.
Acinetobacter, a prevalent opportunistic pathogen, can trigger an
inflammatory response and compromise intestinal barrier integrity.
This, in turn, may increase paracellular oxalate absorption, thereby
driving the initiation and progression of CaOx stones (Doughari
et al., 2011). Enterococcus, which is enriched in the urine of CaOx
stone patients, relies on purine and carbohydrate metabolism. This
suggests that it may influence the crystallization microenvironment
of the stones by altering the chemical composition of urine (Tan
et al,, 2024). Furthermore, Enterococcus has the ability to form
biofilms. These biofilms have the capacity to entrap mineral ions
and crystals in the urine, thereby accelerating the processes of
crystal formation and aggregation. Concurrently, Enterococcus has
been observed to induce damage to the urothelial mucosa and
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FIGURE 5

Wilcoxon rank-sum tests after FDR correction. Bars show the relative abundance of CaOx, UA and Inf that differ at the genus level. (A) Urinary
microbiota of patients with CaOx stones. (B) Urinary microbiota of patients with UA stones. (C) Urinary microbiota of patients with Inf stones.
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Models constructed by combining patient gut microbiota 16S strain sequencing results and subject characteristics. (A) Feature fusion selection based on
the LASSO algorithm. (B) MSE and tenfold cross-validation coefficients and (C) histogram of feature scores based on selected characteristics. (D-1) ROC

curves for the test set of six machine learning models.

upregulate the expression of factors such as osteopontin. This
enhances the retention capacity of crystals in the urine,
collectively promoting the initiation and progression of CaOx
stones (Fisher and Phillips, 2009; Arias and Murray, 2012;
Djojodimedjo et al., 2013; Nicu-Canareica et al., 2025).

This study found that Massilioclostridium was enriched in the
gut of patients with UA stones. Only a limited number of
publications have reported a potential association between this
genus and human diseases, and its biological function requires
further elucidation (Wang et al., 2024). Fenollaria, Anaerococcus,
Enterococcus, and Escherichia were enriched in the urine of patients
with UA stones. Fenollaria and Anaerococcus have been reported to
decrease urinary pH, thereby creating favorable conditions for the
formation of UA stones (Abou-Elela, 2017; Hurst et al., 2024).
Fenollaria sporofastidiosus has been reported to encode a predicted
citrate lyase complex, which is involved in the citrate degradation
pathway and metabolizes citrate to oxaloacetate and acetyl-CoA
(Schwaderer and Wolfe, 2017; Segall et al., 2024; Skolarikos et al.,
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2024). Low systemic citrate levels have been demonstrated to
compromise its regulatory capacity on urinary pH, thereby
potentially increasing the risk of UA stone formation.
Enterococcus and Escherichia can release ATP via lysosomal
exocytosis. This ATP is then enzymatically converted to urate,
thereby promoting the formation of UA stones (Silberfeld
et al., 2020).

While no differentially abundant taxa were identified in the gut
of Inf stone patients compared to healthy volunteers, Escherichia
was enriched in the patients’ urine. Previous studies have
demonstrated that it possesses urease activity, which catalyzes
urea hydrolysis to generate ammonia and carbon dioxide. This
reaction elevates urinary pH, thereby promoting the formation of
Inf stones such as magnesium ammonium phosphate (struvite) and
carbonate apatite (Halinski et al., 2022; Skolarikos et al., 2024).
These findings underscore the predominant role of urinary
microbial activities and the host urinary environment in the
pathogenesis of Inf stones. While the gut microbiota plays crucial
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roles in overall metabolism and immune regulation, its direct
contribution to Inf stone formation appears to be more limited,
which could explain the absence of gut microbial differences
observed in our analysis.

Preoperative identification of the primary stone composition is
of guiding significance for clinical decision-making. However,
conventional imaging modalities, such as CT or urinary
ultrasound, lack the capability to accurately determine the specific
stone type prior to surgery. A meta-analysis revealed significant
differences in microbiota diversity when stratified by the presence of
urolithiasis, stone composition, age, and study location.
Furthermore, the OTU-based taxonomic approach exhibited
superior performance in distinguishing sample types and gender.
These findings emphasize the potential of microbiota in predicting
stone types (Kachroo et al., 2021). Microbiota-based machine
learning has shown promising performance for diagnosing both
juvenile idiopathic arthritis and neonatal jaundice (Chen et al,
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superior diagnostic value.
In this study, comparing the CaOx stone, UA stone, Inf stone,

and control groups. The predictive model we constructed
demonstrated superior performance among the six machine
learning models. Studies have shown that, compared to the gut
microbiota, the urinary microbiota can more accurately distinguish
between stone formers and non-stone-formers (Zampini et al,
2019). In our study, the predictive model integrating urinary
microbiota with clinical data outperformed the model based on
gut microbiota, which is consistent with previous findings.
Additionally, our model demonstrated superior efficacy compared

2024; Tu et al,, 2024). The integration of gut and urinary microbiota
with clinical data (e.g. age, gender, metabolic indicators) was
therefore undertaken in order to develop a clinical prediction
model. The objective of this model is to predict stone types and
compare the performance of the two groups, thereby enhancing its
predictive power. The integration of multimodal data holds
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to the machine learning model that combined gut microbiota and
clinical data for predicting CaOx stone formation (Xiang
et al., 2022).

Our research presents the first systematic classification of
urinary stones, moving beyond the traditional binary comparison
(stone-formers vs. non-stone-formers) or rough subtyping by
composition. Such a refined classification strategy facilitates the
acquisition of more pathologically specific microbial profiles.
Secondly, we analyzed the microbiota from both gut and urine
and compared their effectiveness in discriminating stone types. The
model that combined urinary microbiota and clinical data exhibited
superior predictive performance. This provides key evidence for the
development of non-invasive diagnostic tools. Furthermore, we
integrated microbiota and clinical data, employing multiple
machine learning algorithms to construct predictive models. This
demonstrates the considerable potential of multimodal data fusion
for accurately discriminating among stone types. These systematic
explorations offer fresh insights into the microbial contributions to
stone formation, thereby establishing the methodological
groundwork for creating future microbiota-targeted therapies and
auxiliary diagnostic instruments.

The main limitation of this study was the restricted sample size
resulting from its single-center design. Particularly in the Inf stone
group (n=20), the small cohort may affect statistical power and limit
the generalizability of the findings. Furthermore, significant
differences in demographic characteristics (e.g., age, gender, and
BMI) existed between the control and stone groups. These
differences may have a confounding effect on the structure of the
microbiota, making it difficult to attribute the observed microbial
variations solely to the disease itself. Additionally, the absence of
dietary assessments via food questionnaires prevents the exclusion
of dietary influences. Compounding this issue, antibiotic usage was
self-reported, which may introduce bias into the results.
Methodologically, this study assessed the relative abundance of
microbiota via 16S rRNA sequencing rather than absolute
abundance. In future research, quantitative PCR (qPCR) could be
employed to provide a more precise quantitative analysis. The
modest sample size for the machine learning models suggests that
the reported AUC values of 0.89-0.95 may be subject to bias. These
performance metrics were derived solely from internal validation,
including data partitioning and K-fold cross-validation within the
same dataset. This approach poses a risk of overfitting and limits the
generalizability of the model, as it does not involve independent
external cohort validation. Finally, due to the observational design
of this study, we cannot infer a causal relationship between the
microbiota and urinary stone formation.

Building on the initial insights into the microbiota profiles of
urinary stone patients revealed by this study, large-scale multicenter
cohort studies should be undertaken in the future. In these studies,
rigorous matching or statistical adjustment for key confounders
such as age, gender, and BMI during participant recruitment is
necessary to validate the observed microbiota-stone type
associations and enhance the generalizability of the findings. And
future work integrating metagenomics, metabolomics, and animal
models is essential to functionally validate the putative mechanisms
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uncovered in this study and to establish causal links between the
microbiota and urinary stone formation.

Conclusion

In summary, this study confirmed significant associations
between stone types and distinct patterns of microbiota dysbiosis
by analyzing the gut and urine microbiota of patients with different
types of urinary stone. Specifically, microorganisms enriched in
patients with CaOx stones are implicated in the disease process via
multiple mechanisms, such as affecting gut barrier integrity and
modifying urinary environment. For UA stones, relevant dysbiosis
may function through altering urine pH and promoting urate
generation. Meanwhile, Inf stones are definitively driven by
enriched urease-producing microorganisms (e.g., Escherichia) that
induce an alkaline milieu. These findings suggest that urinary stone
formation and progression are closely linked to structural and
functional disruptions to the human microbial ecosystem.
Therefore, incorporating the microbiota into the
pathophysiological framework of urinary stones is crucial for
deepening our understanding of its pathogenesis and developing
novel microecological intervention strategies.
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