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A microbiota-based perspective
on urinary stone disease: insights
from 16S rRNA sequencing and
machine learning models
Yufeng Liu †, Aoyu Yang †, Ziyi Zhang †, Chen Shen,
Wei Wang and Xiancheng Li*

Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
Background: Urinary stones are a multifactorial disease. In recent years, the role

of microorganisms in its pathogenesis has attracted considerable attention.

Although studies have suggested that certain microbes present in the gut and

urine are associated with the formation of urinary stones, the current criteria for

stone classification are not rigorous enough. Therefore, this study aimed to

analyze the gut and urinary microbiota composition via 16S rRNA sequencing in

patients with pure CaOx, pure UA, and pure Inf stones. By integrating these

microbiota data with clinical data, we constructed machine learning models and

evaluated their diagnostic value in distinguishing stone types.

Methods: A total of 81 patients with urinary stones (including 30 with pure CaOx

stones, 31 with pure UA stones, and 20 with pure Inf stones) and 26 healthy

volunteers were enrolled. Stool and urine samples were collected from each

participant and subjected to 16S rRNA sequencing to obtain microbiota data and

characterize the gut and urinary microbiota profiles of patients with different

stone types. We further integrated microbiota and clinical data, such as age,

gender and BMI, using LASSO feature selection and six machine learning

algorithms (e.g. SVM, Random Forest and XGBoost) to create prediction

models for stone type. Model performance was evaluated through

cross-validation.

Results: Results showed enrichment of Paramuribaculum, Muribaculum,

Mesorhizobium, and Acinetobacter in the gut of CaOx stone patients, with

concurrent urinary enrichment of Enterococcus. Patients with UA stones

demonstrated an increase in the abundance of Massilioclostridium in the gut

and an increase in the abundance of Fenollaria, Anaerococcus, Enterococcus

and Escherichia in the urine. Patients with Inf stones showed no differentially

abundant gut taxa compared to healthy volunteers, but did exhibit urinary

enrichment of Escherichia. The predictive model, which was based on urinary

microbiota and clinical data, demonstrated excellent performance. The AUC was

0.922, 0.866 and 0.913 for the SVM, Random Forest and XGBoost

models, respectively.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623429/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623429/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623429/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1623429/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1623429&domain=pdf&date_stamp=2025-10-23
mailto:lxc2620@163.com
https://doi.org/10.3389/fcimb.2025.1623429
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1623429
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Liu et al. 10.3389/fcimb.2025.1623429

Frontiers in Cellular and Infection Microbiology
Conclusion: This study reveals that different types of stone are characterized by

distinct compositions of microbiota. Machine learning models based on

microbiota and clinical data can predict urinary stone types noninvasively. This

provides novel insights into the microecological mechanisms of urinary stones

and opens up new avenues for clinical diagnosis.
KEYWORDS

calcium oxalate stones, uric acid stones, infectious stones, gut microbiota, urinary
microbiota, machine learning models
Introduction

Urinary stones are a multifactorial disease whose prevalence is

influenced by a number of factors, including age, gender, diet, fluid

intake, climatic conditions and ethnic differences (Scales et al., 2016;

Liu et al., 2018; Wu et al., 2023). In recent years, the role of

microorganisms in the formation of urinary stones has attracted

increasing attention in the scientific community. It has been

established that the presence of urease-producing bacteria in the

urine can facilitate the breakdown of urea, thereby contributing to the

alkalization of the urine (Tamborino et al., 2024). This, in turn,

creates favorable conditions for the formation of infectious (Inf)

stones (Tamborino et al., 2024). Furthermore, non-urease-producing

bacteria have been demonstrated to possess the capacity to facilitate

the growth and aggregation of calcium oxalate (CaOx) crystals

(Chutipongtanate et al., 2013; Li et al., 2025).

CaOx stones are the most prevalent type of stone and their

formation is closely related to urinary oxalate excretion.

Oxalobacter formigensis is a pivotal species in the degradation of

oxalate (Dawson et al., 1980; Allison et al., 1985; Daniel et al., 2021).

However, subsequent studies have revealed that its efficacy in

reducing urinary oxalate excretion is not consistent. The

colonization rate is found to be influenced by a number of factors

(Stewart et al., 2004; Hoppe et al., 2011; Daniel et al., 2021).

Furthermore, it has been demonstrated that Lactobacillus and

Bifidobacterium can also degrade oxalate (Abratt and Reid, 2010).

This finding indicates that the association between bacteria and

stones is extensive and encompasses a wide range of bacterial

species, rather than being confined to a specific type of bacterium.

The advent of high-throughput sequencing technologies has

provided deeper insight into the composition of the gut and urinary

microbiota. Studies have shown that patients with urinary stone

exhibit “ecological dysbiosis” in both the gut and urinary

microbiota (Zampini et al., 2019; Zhao et al., 2021).

Nevertheless, current studies are limited by the lack of a precise

classification based on stone composition. Therefore, this study

used 16S rRNA sequencing to analyze the composition of the gut

and urinary microbiota of patients with three different types of

urinary stone. The aim was to shed light on the potential roles of gut

and urinary microorganisms in the development of different types
02
of stone. Furthermore, we developed machine learning models by

combining microbiota and clinical data to assess their potential for

differentiating stone types.
Methods

Study population and sample collection

At the Second Affiliated Hospital of Dalian Medical University

in China, we recruited 81 patients with urinary stones, including 30

patients with CaOx stones (20 males, 10 females, mean age of

57.73 ± 11.13 years), 31 patients with uric acid (UA) stones (14

males, 17 females, mean age of 57.45 ± 12.03 years), and 20 patients

with Inf stones (4 males, 16 females, mean age of 53.15 ± 12.46

years). Each patient had only one stone component, or the total

composition of a single stone type was 100%. The composition of

the stone components was obtained by Fourier transform infrared

spectroscopy analysis. In addition, we recruited 26 healthy

volunteers who were confirmed to be free of urinary stones via

urinary ultrasound to serve as the control group (14 males and 12

females, mean age of 28.62 ± 2.90 years). The study was approved

by the Ethics Committee of the Second Affiliated Hospital of Dalian

Medical University in China, and all participants signed an

informed consent form at the time of inclusion. Participants were

excluded if they: (1) had used antibiotics within the past 4 weeks; (2)

had inflammatory bowel disease, cystic fibrosis, celiac disease,

chronic diarrhea, or a history of cancer; (3) had undergone

bariatric surgery; (4) had a history of diabetes insipidus over the

past year; (5) had urinary diversion or required indwelling urinary

catheters or intermittent catheterization. And healthy volunteers

with no history of urinary stones were included. Samples were

collected into special containers and stored in a refrigerator at -80°C

until DNA extraction.
DNA extraction and PCR amplification

Microbial DNA was extracted from stool and urine samples

according to the E.Z.N.A.® Soil DNA Kit (Omega Bio-tek, Norcross,
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GA, USA) according to manufacturer’s protocols. The V1-V9 region

of the bacteria 16S ribosomal RNA gene was amplified by PCR (95°C

for 2 min, followed by 27 cycles at 95°C for 30 s, 55°C for 30 s, and

72°C for 60 s and a final extension at 72°C for 5 min) using primers

27F 5’-AGRGTTYGATYMTGGCTCAG-3’ and 1492R 5’-

RGYTACCTTGTTACGACTT-3’, where barcode is an eight-base

sequence unique to each sample (Pacific Biosciences, PN: 102-135-

500). PCR reactions were performed in triplicate 20 mL mixture

containing 4 mL of 5×FastPfu Buffer, 2 mL of 2.5 mM dNTPs, 0.8 mL
of each primer (5 mM), 0.4 mL of FastPfu Polymerase, and 10 ng of

template DNA. A negative control (using sterile water instead of

template DNA) was included in each PCR run to check for potential

contamination. Amplicons were extracted from 2% agarose gels and

purified using the AxyPrep DNA Gel Extraction Kit (Axygen

Biosciences, Union City, CA, U.S.) according to the

manufacturer’s instructions.
Library construction and sequencing

SMRTbell libraries were prepared from the amplified DNA by

blunt-ligation according to the manufacturer’s instructions with

SMRTbell prep kit 3.0 (Pacific Biosciences, PN: 102-182-700).

Purified SMRTbell libraries from the pooled and barcoded

samples were sequenced on a single PacBio Sequel IIe cell.
Processing of sequencing data

PacBio raw reads were processed using the SMRT Link Analysis

software version 11.0 to obtain demultiplexed circular consensus

sequence (CCS) reads with the following settings: minimum

number of passes=3, minimum predicted accuracy=0.99. Raw

reads were processed through SMRT Portal to filter sequences for

length (<1000 or >1800 bp) and quality. Sequences were further

filtered by removing barcode and primer sequences with lima

pipeline (Pacific Biosciences demultiplexing barcoded software,

https://lima.how/).

After an average of 30,000 high-quality reads per sample were

retained, chimeric sequences were identified and removed using

UCHIME, followed by OTU clustering with a 98.65% similarity

cutoff using UPARSE (version 10, http://drive5.com/uparse/). The

phylogenetic affiliation of each 16S rRNA gene sequence was

analyzed by uclust algorithm (https://github.com/topics/uclust)

against the Silva (SSU138.2) 16S rRNA database (http://www.arb-

silva.de) using confidence threshold of 80%.
Statistical analysis and bioinformatics
analysis

Statistical analyses were performed using SPSS 25.0 software.

The measurement data were expressed as mean ± standard
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deviation and were compared using one-way analysis of variance

or corrected one-way analysis of variance depending on normality

and homogeneity of variance. The count data were expressed as the

number of cases or percentage and were compared using the chi-

square test of Fisher’s exact test when expected frequencies were

low. The difference was considered to be statistically significant

at P < 0.05.

The rarefaction analysis based on Mothur v.1.21.1 was

conducted to reveal the diversity indices, including the Chao1,

ACE, Simpson, and Shannon diversity indices (Li et al., 2013). An

evaluation of beta diversity among four distinct groups was

conducted through the implementation of principal coordinate

analysis (PCoA), Adonis test, and ANOSIM test (Wei et al., 2019;

Xiong et al., 2020). Wilcoxon rank-sum tests was employed to

identify differentially abundant species, with false discovery rate

(FDR) adjustment applied to Wilcoxon comparisons (Mann and

Whitney, 1947).
Machine learning models

The model was developed by combining species-level relative

abundance data of gut and urinary microbiota with clinical data

such as age, sex, and body mass index (BMI). Prior to model

training, feature selection was performed using the LASSO (Least

Absolute Shrinkage and Selection Operator) algorithm to reduce

dimensionality and eliminate redundant features. The penalty

coefficient alpha of the LASSO algorithm was optimized via intra-

training-fold cross-validation, and the direction of key features

selected by this algorithm was consistent with the results of

differential abundance analysis. After feature filtering with

LASSO, the finally retained features were incorporated into six

classic supervised learning classifiers-AdaBoost, Support Vector

Machine (SVM), Gradient Boosting, Extra Trees, Random Forest,

and XGBoost-for the construction of multi-class classification

models. These models were used to discriminate among the four

groups: CaOx, UA, Inf, and control. For data splitting and

validation, given the moderate sample size (total n=107) and class

imbalance (30 cases in CaOx, 31 in UA, 20 in Inf, and 26 in control),

the dataset was first randomly partitioned into an 80% training set

and a 20% independent test set. Stratified 10-fold cross-validation

was implemented on the training set to optimize the LASSO penalty

coefficient and compare classifier performance. Stratified sampling

was adopted in both data partitioning and cross-validation to

preserve the proportional distribution of the four groups and

address class imbalance during the sampling phase. The

diagnostic performance of the models was evaluated by plotting

Receiver Operating Characteristic (ROC) curves and calculating the

Area Under the ROC Curve (AUC). Two complementary AUC

metrics were reported to account for class imbalance: micro-

averaged AUC, which is weighted by class frequency and reflects

the overall model performance; and macro-averaged AUC, which is

the unweighted mean of class-wise AUC values and emphasizes
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consistent performance across groups. The 95% confidence

intervals were calculated for all AUC values.
Results

Subject characteristics

A total of 81 patients with urinary stones and 26 healthy

volunteers were included in this study. Statistically significant

differences were observed among the four groups with regard to

age, gender and BMI (P < 0.001; P = 0.012; P < 0.001; Table 1).
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Diversity of the microbiota

To characterize the microbiota between the stone and control

groups, we performed 16S rRNA sequencing on all subject samples

and obtained 206,281 OTUs in the gut and 109,921 OTUs in the

urine (Figures 1A, B). A total of 778 genera were identified in the

gut and 1,242 genera were identified in the urine (Supplementary

Table 1). As the Shannon-Wiener curves gradually flattened, this

indicated that the applied sequencing depth had sufficiently covered

the biodiversity (Figures 1C, D).

Microbial alpha diversity was described by four indices: Chao1,

ACE, Shannon and Simpson. Significant differences were observed in

Chao1 and ACE indices, which are used to assess gut microbial alpha

diversity, in comparisons of CaOx vs. Inf groups andUA vs. Inf groups.

However, no significant differences were detected in alpha diversity

indices of either gut or urinary microbiota when comparing each of the

three stone groups with the control group (Figures 2A–H).

PCoA analysis revealed significant differences in beta diversity

among the four groups, although there was no clear separation

(Figures 3A, B). Statistical analysis revealed that significant

differences were detected among the four groups based on Bray-

Curtis distances as assessed by Adonis (P = 0.001; P = 0.018). It was

found that the Bray-Curtis distances that passed the ANOSIM test

were also statistically different (P = 0.006; P = 0.021).
TABLE 1 Characteristics of subjects.

Characteristic CaOx UA Inf Control P

Age (years)
57.73
(11. 13)

57.45
(12.03)

53. 15
(12.46)

28.62
(2.90)

<0.001

Gender 0.012

Male 20 14 4 14

Female 10 17 16 12

BMI
24.56
(2.66)

27.08
(4. 13)

25.89 (4.
10)

23.02 (3.
19)

<0.001
FIGURE 1

Analysis of gut and urinary microbiota in each group using 16S rRNA. (A) Venn diagram showing the shared and unique OTUs in the gut among the
four groups. (B) Venn diagram showing the shared and unique OTUs in the urine among the four groups. (C) Shannon-Wiener curve: used to reflect
the diversity of the gut microbiota. (D) Shannon-Wiener curve: used to reflect the diversity of the urinary microbiota.
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Differentially abundant taxa

To further clarify regarding the microbiota composition

differences among the three stone groups and the control group, a

comparison of taxa at the genus level was performed using the

Wilcoxon rank-sum test. The test results were adjusted for the FDR.

When compared to the control group, patients with CaOx stones

exhibited significant enrichment of four taxa in the gut; those with

UA stones had one significantly enriched taxon; and no

differentially abundant taxa were detected in the gut of Inf stone

patients (Figures 4A, B; Supplementary Table 2). One taxon was

significantly enriched in the urine of CaOx stone patients, four in
Frontiers in Cellular and Infection Microbiology 05
UA stone patients, and one in Inf stone patients, respectively

(Figures 5A-C; Supplementary Table 3).
Machine learning models

As illustrated in Figures 6A–C, the model integrates patient gut

16S rRNA sequencing data with clinical data. It presents the fused

feature selection based on the LASSO algorithm, the mean squared

error (MSE) and 10-fold cross-validation coefficients, and a

histogram of the feature scores for the selected characteristics.

Figures 6D–I presents the ROC curves for six machine learning
FIGURE 3

Beta diversity of gut and urinary microbiota among the four groups. (A) Bray-Curtis distance PCoA plot for the gut microbiota. (B) Bray-Curtis
distance PCoA plot for the urinary microbiota.
FIGURE 2

Comparison of alpha diversity of gut microbiota and urinary microbiota among groups ACE and Chao1 are indices that estimate the number of
OTUs contained in the sample; Shannon and Simpson are indices that estimate the microbial diversity in the sample. (A–D) Alpha diversity indices for
gut microbiota. (E–H) Alpha diversity indices for urinary microbiota.
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models (SVM, Random Forest, Gradient Boosting, XGBoost, Extra

Trees and AdaBoost) evaluated on the cross-validation folds.

Overall, the models achieved discriminative performance, with

SVM, XGBoost, and Random Forest demonstrating relatively

higher predictive accuracy (macro-AUC: 0.954, 0.890 and 0.929,

respectively). The full set of micro-AUC, macro-AUC values, and

their 95% confidence intervals for all models are provided

in Figure 6.

As illustrated in Figures 7A–C, the model integrates patient

urine 16S rRNA sequencing data with clinical data. It presents the

fused feature selection based on the LASSO algorithm, the MSE and

10-fold cross-validation coefficients, and a histogram of the feature

scores for the selected characteristics. Figures 7D–I presents the

ROC curves for the six machine learning models, evaluated on the

cross-validation folds. Overall, the models achieved favorable

discrimination performance. The SVM, Random Forest and

XGBoost models demonstrated the higher predictive accuracy

(macro-AUC values of 0.922, 0.866 and 0.913, respectively). The

full set of micro-AUC, macro-AUC values, and their 95%

confidence intervals for all models are provided in Figure 7.
Discussion

This study analyzed the gut and urinary microbiota in patients

with CaOx stones, UA stones, and Inf stones, revealing distinct

patterns of microbial community dysbiosis specific to each stone

type. It is noteworthy that the prediction model based on urinary

microbiota and clinical data demonstrated superior discriminative

ability compared to the gut microbiome-based model, highlighting

its potential value for distinguishing among different stone types.
Frontiers in Cellular and Infection Microbiology 06
The results of this study indicate that Paramuribaculum,

Muribaculum, Mesorhizobium, and Acinetobacter were enriched

in the gut of CaOx stone patients. Both Paramuribaculum and

Muribaculum are members of Muribaculaceae (Smith et al., 2021;

Zhu et al., 2024). Previous studies have reported the capacity of

bacterial strains belonging to this family to degrade oxalate. The

enrichment of these bacteria in these patients may be substrate-

driven. These individuals often have increased intestinal oxalate

absorption or higher dietary oxalate intake, leading to elevated

intestinal luminal oxalate concentrations that create favorable

conditions for bacterial growth and proliferation (Miller et al.,

2016). Although the role of Mesorhizobium is well-established in

the context of plant symbiosis, its function within the human gut

remains unclear (Wang et al., 2022). Its enrichment in the patient’s

gut may suggest the emergence of a specific ecological niche under

the condition of gut microbiota dysbiosis. It is recommended that

subsequent studies examine whether its enrichment in the gut has a

substantial impact on the development of CaOx stones.

Acinetobacter, a prevalent opportunistic pathogen, can trigger an

inflammatory response and compromise intestinal barrier integrity.

This, in turn, may increase paracellular oxalate absorption, thereby

driving the initiation and progression of CaOx stones (Doughari

et al., 2011). Enterococcus, which is enriched in the urine of CaOx

stone patients, relies on purine and carbohydrate metabolism. This

suggests that it may influence the crystallization microenvironment

of the stones by altering the chemical composition of urine (Tan

et al., 2024). Furthermore, Enterococcus has the ability to form

biofilms. These biofilms have the capacity to entrap mineral ions

and crystals in the urine, thereby accelerating the processes of

crystal formation and aggregation. Concurrently, Enterococcus has

been observed to induce damage to the urothelial mucosa and
FIGURE 5

Wilcoxon rank-sum tests after FDR correction. Bars show the relative abundance of CaOx, UA and Inf that differ at the genus level. (A) Urinary
microbiota of patients with CaOx stones. (B) Urinary microbiota of patients with UA stones. (C) Urinary microbiota of patients with Inf stones.
FIGURE 4

Wilcoxon rank-sum tests after FDR correction. Bars show the relative abundance of CaOx and UA that differ at the genus level. (A) Gut microbiota of
patients with CaOx stones. (B) Gut microbiota of patients with UA stones.
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upregulate the expression of factors such as osteopontin. This

enhances the retention capacity of crystals in the urine,

collectively promoting the initiation and progression of CaOx

stones (Fisher and Phillips, 2009; Arias and Murray, 2012;

Djojodimedjo et al., 2013; Nicu-Canareica et al., 2025).

This study found that Massilioclostridium was enriched in the

gut of patients with UA stones. Only a limited number of

publications have reported a potential association between this

genus and human diseases, and its biological function requires

further elucidation (Wang et al., 2024). Fenollaria, Anaerococcus,

Enterococcus, and Escherichia were enriched in the urine of patients

with UA stones. Fenollaria and Anaerococcus have been reported to

decrease urinary pH, thereby creating favorable conditions for the

formation of UA stones (Abou-Elela, 2017; Hurst et al., 2024).

Fenollaria sporofastidiosus has been reported to encode a predicted

citrate lyase complex, which is involved in the citrate degradation

pathway and metabolizes citrate to oxaloacetate and acetyl-CoA

(Schwaderer and Wolfe, 2017; Segall et al., 2024; Skolarikos et al.,
Frontiers in Cellular and Infection Microbiology 07
2024). Low systemic citrate levels have been demonstrated to

compromise its regulatory capacity on urinary pH, thereby

potentially increasing the risk of UA stone formation.

Enterococcus and Escherichia can release ATP via lysosomal

exocytosis. This ATP is then enzymatically converted to urate,

thereby promoting the formation of UA stones (Silberfeld

et al., 2020).

While no differentially abundant taxa were identified in the gut

of Inf stone patients compared to healthy volunteers, Escherichia

was enriched in the patients’ urine. Previous studies have

demonstrated that it possesses urease activity, which catalyzes

urea hydrolysis to generate ammonia and carbon dioxide. This

reaction elevates urinary pH, thereby promoting the formation of

Inf stones such as magnesium ammonium phosphate (struvite) and

carbonate apatite (Halinski et al., 2022; Skolarikos et al., 2024).

These findings underscore the predominant role of urinary

microbial activities and the host urinary environment in the

pathogenesis of Inf stones. While the gut microbiota plays crucial
FIGURE 6

Models constructed by combining patient gut microbiota 16S strain sequencing results and subject characteristics. (A) Feature fusion selection based on
the LASSO algorithm. (B) MSE and tenfold cross-validation coefficients and (C) histogram of feature scores based on selected characteristics. (D-I) ROC
curves for the test set of six machine learning models.
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roles in overall metabolism and immune regulation, its direct

contribution to Inf stone formation appears to be more limited,

which could explain the absence of gut microbial differences

observed in our analysis.

Preoperative identification of the primary stone composition is

of guiding significance for clinical decision-making. However,

conventional imaging modalities, such as CT or urinary

ultrasound, lack the capability to accurately determine the specific

stone type prior to surgery. A meta-analysis revealed significant

differences in microbiota diversity when stratified by the presence of

urolithiasis, stone composition, age, and study location.

Furthermore, the OTU-based taxonomic approach exhibited

superior performance in distinguishing sample types and gender.

These findings emphasize the potential of microbiota in predicting

stone types (Kachroo et al., 2021). Microbiota-based machine

learning has shown promising performance for diagnosing both

juvenile idiopathic arthritis and neonatal jaundice (Chen et al.,
Frontiers in Cellular and Infection Microbiology 08
2024; Tu et al., 2024). The integration of gut and urinary microbiota

with clinical data (e.g. age, gender, metabolic indicators) was

therefore undertaken in order to develop a clinical prediction

model. The objective of this model is to predict stone types and

compare the performance of the two groups, thereby enhancing its

predictive power. The integration of multimodal data holds

superior diagnostic value.

In this study, comparing the CaOx stone, UA stone, Inf stone,

and control groups. The predictive model we constructed

demonstrated superior performance among the six machine

learning models. Studies have shown that, compared to the gut

microbiota, the urinary microbiota can more accurately distinguish

between stone formers and non-stone-formers (Zampini et al.,

2019). In our study, the predictive model integrating urinary

microbiota with clinical data outperformed the model based on

gut microbiota, which is consistent with previous findings.

Additionally, our model demonstrated superior efficacy compared
FIGURE 7

Models constructed by combining patient urinary microbiota 16S strain sequencing results and subject characteristics. (A) Feature fusion selection
based on LASSO algorithm. (B) MSE and tenfold cross-validation coefficients and (C) Histogram of feature scores based on selected characteristics.
(D-I) ROC curves for the test set of six machine learning models.
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to the machine learning model that combined gut microbiota and

clinical data for predicting CaOx stone formation (Xiang

et al., 2022).

Our research presents the first systematic classification of

urinary stones, moving beyond the traditional binary comparison

(stone-formers vs. non-stone-formers) or rough subtyping by

composition. Such a refined classification strategy facilitates the

acquisition of more pathologically specific microbial profiles.

Secondly, we analyzed the microbiota from both gut and urine

and compared their effectiveness in discriminating stone types. The

model that combined urinary microbiota and clinical data exhibited

superior predictive performance. This provides key evidence for the

development of non-invasive diagnostic tools. Furthermore, we

integrated microbiota and clinical data, employing multiple

machine learning algorithms to construct predictive models. This

demonstrates the considerable potential of multimodal data fusion

for accurately discriminating among stone types. These systematic

explorations offer fresh insights into the microbial contributions to

stone formation, thereby establishing the methodological

groundwork for creating future microbiota-targeted therapies and

auxiliary diagnostic instruments.

The main limitation of this study was the restricted sample size

resulting from its single-center design. Particularly in the Inf stone

group (n=20), the small cohort may affect statistical power and limit

the generalizability of the findings. Furthermore, significant

differences in demographic characteristics (e.g., age, gender, and

BMI) existed between the control and stone groups. These

differences may have a confounding effect on the structure of the

microbiota, making it difficult to attribute the observed microbial

variations solely to the disease itself. Additionally, the absence of

dietary assessments via food questionnaires prevents the exclusion

of dietary influences. Compounding this issue, antibiotic usage was

self-reported, which may introduce bias into the results.

Methodologically, this study assessed the relative abundance of

microbiota via 16S rRNA sequencing rather than absolute

abundance. In future research, quantitative PCR (qPCR) could be

employed to provide a more precise quantitative analysis. The

modest sample size for the machine learning models suggests that

the reported AUC values of 0.89–0.95 may be subject to bias. These

performance metrics were derived solely from internal validation,

including data partitioning and K-fold cross-validation within the

same dataset. This approach poses a risk of overfitting and limits the

generalizability of the model, as it does not involve independent

external cohort validation. Finally, due to the observational design

of this study, we cannot infer a causal relationship between the

microbiota and urinary stone formation.

Building on the initial insights into the microbiota profiles of

urinary stone patients revealed by this study, large-scale multicenter

cohort studies should be undertaken in the future. In these studies,

rigorous matching or statistical adjustment for key confounders

such as age, gender, and BMI during participant recruitment is

necessary to validate the observed microbiota-stone type

associations and enhance the generalizability of the findings. And

future work integrating metagenomics, metabolomics, and animal

models is essential to functionally validate the putative mechanisms
Frontiers in Cellular and Infection Microbiology 09
uncovered in this study and to establish causal links between the

microbiota and urinary stone formation.
Conclusion

In summary, this study confirmed significant associations

between stone types and distinct patterns of microbiota dysbiosis

by analyzing the gut and urine microbiota of patients with different

types of urinary stone. Specifically, microorganisms enriched in

patients with CaOx stones are implicated in the disease process via

multiple mechanisms, such as affecting gut barrier integrity and

modifying urinary environment. For UA stones, relevant dysbiosis

may function through altering urine pH and promoting urate

generation. Meanwhile, Inf stones are definitively driven by

enriched urease-producing microorganisms (e.g., Escherichia) that

induce an alkaline milieu. These findings suggest that urinary stone

formation and progression are closely linked to structural and

functional disruptions to the human microbial ecosystem.

The r e f o r e , i n co rpo r a t i n g th e m i c rob i o t a i n t o th e

pathophysiological framework of urinary stones is crucial for

deepening our understanding of its pathogenesis and developing

novel microecological intervention strategies.
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