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Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, China

Background: Sepsis is a complex systemic inflammatory response syndrome
triggered by infection with high morbidity and mortality. The systemic immune-
inflammmation index (Sl) is a biomarker of inflammation and immune status. This
study investigated the relationship between the Sl trajectory and in-hospital
mortality in patients with sepsis.

Methods: This retrospective study included 1015 adults who were admitted via
the emergency department of the First Hospital of Jilin University with a first
episode of sepsis between June 2018 and February 2025. Latent-class mixed
models (LCMM) were used to identify Sl trajectory subgroups, and Cox
regression was used to analyze the relationship between subgroups and in-
hospital mortality. An eXtreme Gradient Boosting (XGBoost) machine learning
model was used to quantify the effect of each variable on the risk of in-hospital
mortality. Restricted cubic spline (RCS) analysis assessed the nonlinear
relationship between Sll and in-hospital mortality.

Results: LCMM analysis identified five Sl trajectory subgroups. Cox regression
analysis showed that Class 1 (the group with continuous increase in Sll from a low
to medium level), Class 3 (the group with a stable decline in Sl from a high level),
Class 4 (the group with a stable high Sll level) and Class 5 (the group with a stable
medium Sl level) all had higher risk of in-hospital mortality than Class 2 (the
group with a stable medium-high SlI level). Class 1 and Class 4 had the highest
risk of in-hospital mortality (hazard ratio [HR] 15.14 and 6.31, respectively). The
XGBoost model confirmed that the Sl trajectories were independent predictors
of in-hospital mortality. The RCS analysis revealed a U-shaped relationship
between the Sll within 24 hours after admission and in-hospital mortality, with
both low and high SlI levels associated with higher in-hospital mortality.
Conclusions: In patients with sepsis, the risk of in-hospital mortality differs
according to the Sl within 24 hours of admission and the SlI trajectory. The
risk of in-hospital mortality was greatest in patients whose Sll increased
continuously and those whose Sl stabilized at a high level, and was lowest in
patients with an Sl stabilized at a medium-high level. The SII within 24 hours after
admission had a U-shaped relationship with in-hospital mortality.

sepsis, systemic immune-inflammation index, restricted cubic spline, predictive model,
in-hospital mortality
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1 Introduction

Sepsis is a complex systemic inflammatory response syndrome
triggered by infection, characterized by complex pathophysiological
processes, including immune imbalances, endothelial damage, and
metabolic disorders (Evans et al., 2021).Sepsis is one of the most
common life-threatening diseases among patients admitted to
emergency departments and intensive care units (ICUs), with a
mortality rate of up to 26%, and is associated with high medical
costs (Rudd et al., 2020).The Third International Consensus
Definition of Sepsis (Sepsis 3.0) guidelines emphasize the
importance of early risk screening and prognosis assessment in
patients with sepsis (Singer et al., 2016).

The systemic immune-inflammatory index (SII) is an
inflammatory indicator calculated based on the lymphocyte,
neutrophil, and platelet counts. As a derivative indicator based on
routine blood tests, SII has the advantages of cost-effectiveness and
clinical availability, and reflects both the inflammation and immune
status of patients (Jiang et al., 2023). SII plays an important role in
the diagnosis and treatment of a variety of diseases, and in
cardiovascular disease SII can predict the occurrence of adverse
cardiovascular events (Tang et al., 2021). In addition, SII is
significantly associated with the occurrence of rheumatoid
arthritis and other rheumatological diseases (Liu B. et al., 2023;
Ma et al, 2024), and chronic kidney disease prevalence and
mortality. In the field of oncology, SII is an independent
predictor of treatment response and survival (Kou et al., 2023).
SII is also a valuable indicator in the field of sepsis. SII combined
with the Systemic Organ Failure Assessment (SOFA) or quick
SOFA (qSOFA) score, or SII combined with procalcitonin are
superior to any single indicator for predicting the prognosis in
patients with sepsis (Liu C. et al., 2023; Mangalesh et al., 2023; Li
etal., 2024). Moreover, in patients with sepsis, SII is an independent
risk factor for in-hospital mortality, with both low and high SII
levels being associated with an increased risk of in-hospital
mortality (Liu C. et al,, 2023).

However, most previous studies used SII data measured at a single
time-point, without considering the dynamic nature of sepsis (Rabb
et al, 2016), which is characterized by excessive inflammation in the
early stage and changes in immunosuppression in the later stage
(Bernsmeier et al., 2020; Liu et al,, 2022). Failure to consider changes
in the SIT level may lead to the loss of key pathophysiological
information. In contrast, latent-class mixed models (LCMM) are
statistical models that analyze longitudinal data to reveal
heterogeneity in the data by introducing latent classes and
constructing mixed-effect models for each class separately to map
out the unique trajectory pattern for each subgroup (Herle et al,
2020). This approach enables differences in disease progression to be

Abbreviations: SII, systemic immune-inflammation index; RCS, restricted cubic
spline; LCMM, latent-class mixed model; HR, hazard ratio; ICU, intensive care
unit; SOFA, Systemic Organ Failure Assessment; QSOFA, quick Systemic Organ
Failure Assessment; Cr, creatinine; BIC, Bayesian information criteria; SABIC,

sample-adjusted BIC.
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identified in different subgroups based on differences in
their trajectories.

Therefore, in order to better understand the dynamic trajectory
of SII in patients with sepsis and its association with adverse
outcomes, we conducted a retrospective cohort study to identify
the relationship between SII trajectory and in-hospital mortality in
patients with sepsis, and provide a scientific basis for
personalized treatment.

2 Materials and methods
2.1 Study population

This study included adult patients with a first episode of
sepsis, who were hospitalized in the emergency department of the
First Hospital of Jilin University between June 2018 and
February 2025. Sepsis was defined according to the Sepsis-3
criteria as follows (Singer et al., 2016): (i) confirmed or suspected
infection; (ii) an increase of > 2 points in the baseline SOFA score.
The exclusion criteria included: (i) duration of hospitalization <48
hours; or (ii) <3 days of complete blood count data within the
first 5 days after admission. The Medical Ethics Committee of the
First Hospital of Jilin University approved this study (approval no.
2023-723), and we conducted the study following the ethical
standards of the Declaration of Helsinki. The requirement for
informed consent was waived owing to the retrospective
study design.

2.2 Data collection and outcomes

We collected detailed data on the demographic and clinical
characteristics of patients, including age, sex, comorbidities
(including hypertension, diabetes, coronary atherosclerotic heart
disease, chronic obstructive pulmonary disease, cerebrovascular
disease, hematological diseases, malignancies, liver diseases
[including cirrhosis, primary or secondary liver cancer], kidney
diseases, and immune system diseases). In addition, data were
collected on patients’ most abnormal complete blood counts
(including white blood cell count, neutrophil count, lymphocyte
count, platelet count, hemoglobin); C-reactive protein, prolactin,
fibrinogen and alanine aminotransferase levels; activated partial
prothrombin time, prothrombin time, International Normalized
Ratio, within 24 hours of admission. Data were also collected on
patients’ aspartate aminotransferase, lactic acid, albumin, total
bilirubin, direct bilirubin, creatinine (Cr), potassium, sodium,
chloride, calcium, N-terminal prohormone of brain natriuretic
peptide, and troponin I levels; pH in blood gas analysis, oxygen
partial pressure, carbon dioxide partial pressure, Sequential Organ
Failure Assessment (SOFA) score, and whole blood cell counts for 5
consecutive days after admission. The primary outcome of this
study was in-hospital mortality, and secondary outcomes were the
need for mechanical ventilation and continuous renal replacement
therapy, length of ICU stay, and total length of hospital stay.

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1616538
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Xu et al.

2.3 Data processing

2.3.1 Missing value processing

We excluded variables with a proportion of missing values
greater than 20% (namely, prolactin, lactic acid, N-terminal
prohormone of brain natriuretic peptide levels; pH in blood gas
analysis, partial pressure of oxygen, and partial pressure of carbon
dioxide). For the other missing data, we used the Multivariate
Imputation by Chained Equations method, a predictive mean-
matching technique based on the Multivariate Imputation by
Chained Equations function in R language using five different
interpolation modalities to impute the missing data.

2.3.2 Sll calculation
The SIT was calculated daily for 5 consecutive days using the

formula:

SII = P x N/L

where P, N and L are the platelet, neutrophil, and lymphocyte
counts, respectively. As the original SII values were large, we used
the logarithm-transformed values (Ln-SII) in the analysis to ensure
statistical stability.

2.4 Statistical analysis

2.4.1 Latent-class mixed model

All statistical analyses were performed using R software (v4.2.3).
We used LCMM to analyze and classify the trajectory of SII changes
in the patients with sepsis (Eriksson et al., 2021). LCMM is a robust
statistical method designed to identify subgroups of patients with
similar longitudinal trajectories. Using linear mixed models, the
method captures trends at the individual level through random
effects and uses latent category analysis to group patients according
to common trajectories of change, effectively identifying patient
subgroups with different characteristics. To select the optimal
number of potential categories, we built LCMM models with 2 to 6
different categories in the cohort. We used the Akaike Information
criteria, Bayesian information criteria (BIC), sample-adjusted BIC
(SABIC), and entropy to evaluate the goodness-of-fit of the LCMM.
The higher the entropy and the lower the Akaike Information criteria,
BIC and SABIC, the better the model fit. We used entropy >0.80 as a
selection criterion. In addition, in order to ensure the stability of the
model, we set the sample size of each category to be >0.1% of the total
study population, and confirmed the goodness-of-fit of the model by
ensuring an average posterior probability of >70% for all categories.

2.4.2 Comparison of the clinical features and
results between subgroups

Continuous variables with a normal distribution were reported
as the mean + standard deviation, and the statistical significance of
differences between subgroups was tested using analysis of variance.
Continuous variables with a non-normal distribution were reported
as the median and interquartile range (IQR), and the Kruskal-
Wallis test was used to assess the statistical significance of
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differences between groups. Categorical variables were reported as
frequencies and percentages, and the Chi-square test or Fisher’s
exact test was used to assess the statistical significance of differences
between groups. Two-tailed P values <0.05 were considered
statistically significant.

2.4.3 Survival analysis and machine learning
model to evaluate the effect of the Sll trajectory
on in-hospital mortality in patients with sepsis

Kaplan-Meier survival curves were plotted to show the survival of
subgroups with different SII trajectories, and the log-rank test was used
to assess the significance of differences in survival between subgroups.
In addition, an unadjusted Cox regression model was used to calculate
the hazard ratio (HR) for in-hospital mortality among SII trajectory
subgroups. To investigate the independent predictive value of SII
trajectory subgroups for in-hospital mortality in patients with sepsis,
forward stepwise Cox regression was used to screen variables. Age,
kidney disease, platelet count, PT, International Normalized Ratio, and
fibrinogen, were included in the multivariable Cox regression model.
Subsequently, septic shock was forcibly incorporated into the model,
and the multivariate Cox regression was repeated.

We used the eXtreme Gradient Boosting (XGBoost) machine-
learning algorithm to quantify the effect of each risk factors on in-
hospital mortality. The contribution of each variable to an
individual’s predicted outcome was quantified using the Shapley
additive explanation (SHAP) value, which visually depicted the
relative importance of each variable to the risk of in-hospital
mortality. In addition, we evaluated the sensitivity and specificity
of the XGBoost model using receiver operating characteristic curve
analysis, and the area under the curve was used to confirm the
predictive value of the model.

2.4.4 Restricted cubic spline analysis to
characterize the nonlinear relationship between
Sll and in-hospital mortality in patients with
sepsis

RCS plots were used to explore the potential nonlinear
relationship between the mean SII within 24 hours of admission
and the mean SII within 5 days of admission and in-hospital
mortality in patients with sepsis. The corresponding HR and 95%
confidence interval (CI) were calculated, and an RCS with four
nodes was used to capture the nonlinear effect of SII on mortality,
with the selection of nodes determined based on the criteria
recommended in previous studies (Elhakeem et al, 2022) or by
maximizing the goodness-of-fit of the model.

3 Results
3.1 Sl trajectories and baseline features

A total of 1015 patients were included in the analysis (Figure 1).
The goodness-of-fit of the LCMMs are shown in Supplementary Table

SI. The SABIC values decreased and the entropy increased from
Model 1 to Model 6. The entropy of Model 5 and Model 6 was >0.8,
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Sepsis patients with first
hospital admission
(n =1303)
Excluded (n = 288)
Hospital stay < 48 hours (n = 159)
Patients with less than 3 days of blood
routine data within 5 days (n=129)
Y
Patients Included
(n=1015)
4>[Latent growth mixture modeling]
Y Y Y Y Y
Class 1 Class 2 Class 3 Class 4 Class 5
(n=7) (n=663) (n=237) (n=25) (n=283)
FIGURE 1

Flow chart of the study.

but the average posterior probability of Class 2, Class 3, Class 4, Class

5, and Class 6 in Model 6 was <70%; therefore, we chose Model 5.
The SII trajectories in Model 5 are shown in Figure 2. The

specific characteristics of the five subgroups were as follows:

e Class 1 (continuous increase from a low to medium SII level
group): accounting for 0.69% of the total sample,
characterized by a continuing rapid increase in the SII
from a low to medium level;

* Class 2 (stable medium-high SII level group): accounting
for 65.32% of the total sample, with SII levels showing a
slight decrease but remaining stable at medium-high levels.

* Class 3 (stable decline from high SII level group):
accounting for 23.35% of the total sample, the SII in this
group gradually decreased from a high level to a medium-
high level.

* Class 4 (stable high-level SIT group): accounting for 2.46%
of the total sample, the SII of this group remained at a high
level, with a slight increase but generally stable.

e Class 5 (stable medium-level SII group): accounting for
8.18% of the total sample, the SII of this group remained at a
moderate level, with a slight decline but generally stable.

Frontiers in Cellular and Infection Microbiology 04

The sex, age, comorbidities, SOFA score, laboratory test results,
and outcomes were compared among the five subgroups, and
significant differences were found in age and length of ICU stay.
There were no statistically significant differences by sex. Except for
the lymphocyte count and C-reactive protein level, most of the
laboratory test results varied significantly between subgroups,.
Among the comorbidities, the prevalence of hypertension,
diabetes, coronary atherosclerotic heart disease, cerebrovascular
disease, and hematological diseases varied significantly between
subgroups, but no statistically significant differences were found
among the other comorbidities considered. The SOFA score
differed significantly between subgroups. The in-hospital
mortality differed significantly between subgroups (Table 1), but
the length of hospital stay did not differ significantly between
subgroups (Table 2).

3.2 Relationship between SlI trajectory and
in-hospital mortality

Patients in Class 1 accounted for the highest proportion (71.4%)
of in-hospital mortality, whereas patients in Class 2 accounted for
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FIGURE 2

Sl logarithmic trajectories of patients with sepsis.

the lowest proportion (8.5%) (Table 2). Kaplan-Meier survival
analysis revealed statistically significant differences in survival
between subgroups with different trajectories (Figure 3). Class 1
(continuous increase from low to medium SII level) had the highest
in-hospital mortality and the fastest decline in survival probability.
Class 2 (stable medium-high SII level) had the highest and most
stable probability of survival. Class 4 (stable high-level SII) had a
survival curve similar to that of Class 1. Class 3 (stable decline from
high SII level) and Class 5 (stable medium-level SII) had similar
survival curves with higher survival than those of Classes 1 and 4,
but lower survival than that of Class 2.

Unadjusted Cox regression analysis confirmed these findings
(Table 3). Compared with Class 2 as the reference group, the Class
1, Class 3, Class 4, and Class 5 subgroups had a significantly higher
risk of in-hospital mortality, with HRs of 15.14 (95% CI: 6.03-
38.03) and 2.48 (95% CI: 1.72-3.59), 6.31 (95% CI: 3.43-11.59), and
2.36 (95% CI: 1.35-4.11), respectively. There was no significant
difference in mortality risk between Class 3 and Class 5 (HR: 0.95,
95% CI: 0.55-1.65, P =0.856) (Supplementary Table 52).

These findings were confirmed using multivariable Cox
regression analysis, which included the variables selected through
the stepwise regression process (Supplementary Table S3).
Compared with Class 2 as the reference group, the Class 1, Class
3, Class 4, and Class 5 subgroups had had a significantly higher risk
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of in-hospital mortality, with HRs of 15.03 (95% CI: 5.79-39.05),
2.13 (95% CI: 1.42-3.19), 5.41 (95% CI: 2.79-10.47), and 2.49 (95%
CI: 1.38-4.46), respectively (Table 4). After forcibly incorporating
septic shock into the multivariate Cox regression model, the
association between different trajectory subgroups and increased
mortality remained significant. For example, Class 4 exhibited the
following: (unadjusted HR: 5.41, P=0.000; adjusted HR: 5.28,
p=0.000) (Supplementary Table S4).

Using the mean SIT within 24 hours after admission and the mean
SII at 5 days after admission as dependent variables, RCS plots were
plotted for in-hospital mortality (Figures 4A, B). The variation ranges
of SII corresponding to the five subgroups were analyzed using a
trajectory chart, and the corresponding RCS curve segments of the
variation ranges of SII corresponding to different subgroups were
marked on the RCS curve with the 5-day mean SII as the dependent
variable. The location of the RCS segments corresponding to these
subgroups revealed the differences in the risk of in-hospital mortality
among the subgroups. The curves for Class 1, Class 3, Class 4, and
Class 5 were all above Class 2, consistent with the results of the
Kaplan-Meier and Cox regression analyses, showing that, compared
with Class 2, Class 1, Class 4, and Class 5 subgroups had a higher risk
of in-hospital mortality (Figure 4B).

An XGBoost model was used to analyze the degree of influence
of each variable on the risk of mortality in patients with sepsis. This
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TABLE 1 Baseline characteristics of the sepsis patients with different Sl logarithmic trajectory groups at admission.

Variables

Demographic data

Class 1 (n =7)

Class 2 (n = 663)

Class 3 (nh = 237)

Class 4 (n = 25)

Class 5 (n = 83)

P

Age [Median (IQR), year] 63.00 (58.00,64.50) 63.00 (53.00,71.00) 66.00 (55.00,75.00) 69.00 (61.00,77.00) 57.00 (48.00,64.00) <.001
Male, n(%) 3 (42.86) 344 (51.89) 128 (54.01) 16 (64.00) 46 (55.42) 0713
SOFA score (points) 6.00 (4.50,11.00) 6.00 (3.00,8.00) 5.00 (3.00,8.00) 5.00 (4.00,7.00) 8.00 (5.00,12.00) <001
Comorbidities,n(%)

Hypertension, n(%) 1(14.29) 273 (41.18) 106 (44.73) 13 (52.00) 22 (26.51) 0.018
Diabetes, n(%) 2 (28.57) 267 (40.27) 105 (44.30) 10 (40.00) 21 (25.30) 0.046
Coronary atherosclerotic heart disease, n(%) 0 (0.00) 106 (15.99) 47 (19.83) 4 (16.00) 5 (6.02) 0.039
COPD, n(%) 0 (0.00) 20 (3.02) 8 (3.38) 0 (0.00) 0 (0.00) 0515
Cerebrovascular disease, n(%) 0 (0.00) 94 (14.18) 53 (22.36) 3 (12.00) 8 (9.64) 0.011
Hematologic disease, n(%) 2 (28.57) 7 (1.06) 2 (0.84) 2 (8.00) 2 (2.41) <0.001
Malignancies, n(%) 1(14.29) 47 (7.09) 15 (6.33) 3 (12.00) 6 (7.23) 0.795
Liver disease, n(%) 0 (0.00) 21 (3.17) 2 (0.84) 0 (0.00) 4 (4.82) 0.170
Kidney disease, n(%) 2 (28.57) 27 (4.07) 10 (4.22) 2 (8.00) 3 (3.61) 0.083
Immune system diseases, n(%) 0 (0.00) 30 (4.52) 11 (4.64) 2 (8.00) 4 (4.82) 0.816
Laboratory test (Median, IQR)

White blood cell count (x10°/L) 0.41 (0.38,1.64) 12.57 (8.20,18.50) 15.55 (10.39,21.21) 17.27 (13.40,21.63) 9.38 (4.00,16.09) <0.001
Neutrophil count (x10 °IL) 0.06 (0.01,0.23) 11.26 (6.69,16.38) 13.68 (8.85,19.23) 15.35 (12.52,18.83) 7.49 (2.89,14.40) <0.001
Lymphocyte count (x10 °/IL) 0.33 (0.30,1.06) 0.65 (0.39,1.08) 0.84 (0.41,1.15) 0.68 (0.37,1.04) 0.63 (0.28,1.42) 0.210
Hemoglobin (g/L) 78.00 (72.50,103.00) 122.00 (104.00,138.00) 111.00 (94.00,127.00) 96.00 (77.00,128.00) 118.00 (97.50,139.00) <0.001
Platelet count (x10 °/L) 13.00 (12.00,72.00) 108.00 (63.50,162.00) 211.00 (150.00,295.00) 251.00 (206.00,359.00) 42.00 (20.50,91.00) <0.001
C-reactive protein (mg/L) 175.43 (144.99,233.15) 178.90 (100.53,259.94) 195.34 (92.99,274.84) 120.69 (62.39,253.04) 175.97 (93.29,274.97) 0.643
Activated partial thromboplastin time (seconds) 28.90 (25.10,32.15) 30.00 (26.90,33.75) 28.90 (26.00,33.20) 28.10 (26.50,30.30) 36.30 (29.55,45.40) <0.001
Prothrombin time (seconds) 13.90 (12.55,14.00) 13.40 (12.40,15.00) 13.10 (12.30,14.20) 13.90 (13.00,15.20) 14.10 (12.95,16.15) 0.004
International normalized ratio 1.20 (1.08,1.23) 1.17 (1.08,1.31) 1.15 (1.07,1.25) 1.19 (1.10,1.30) 1.25 (1.11,1.44) 0.022
Fibrinogen (g/L) 5.46 (4.27,6.37) 5.16 (3.74,6.58) 6.33 (4.35,7.84) 4.70 (3.83,6.89) 3.55 (1.96,5.49) <0.001
Aspartate aminotransferase (U/L) 35.20 (17.95,44.60) 41.90 (25.10,87.55) 30.10 (18.70,58.60) 30.60 (16.40,70.60) 70.10 (42.00,134.65) <0.001

(Continued)
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TABLE 1 Continued

Variables

Laboratory test (Median, IQR)

Class1(n =7)

Class 2 (n = 663)

Class 3 (n = 237)

Class 4 (n = 25)

Class 5 (n = 83)

Alanine aminotransferase (U/L) 21.80 (13.20,32.20) 32.70 (17.80,81.15) 22.90 (14.10,46.50) 21.00 (12.60,41.30) 41.80 (26.80,98.40) <0.001
Albumin (g/L) 30.20 (27.50,32.95) 30.50 (26.40,34.70) 2920 (25.20,33.30) 26.40 (24.80,32.30) 28.80 (25.65,32.55) 0.007
Total bilirubin (umol/L) 16.00 (14.85,30.85) 21.10 (13.10,37.20) 16.10 (10.90,29.10) 16.60 (9.30,42.80) 27.00 (17.30,52.65) <0.001
Direct bilirubin (umol/L) 6.70 (3.70,17.05) 7.80 (4.10,17.35) 5.90 (3.60,11.80) 6.60 (2.50,14.90) 11.30 (5.55,28.85) <0.001
Creatinine (umol/L) 146.90 (84.10,336.30) 120.80 (81.65,205.50) 104.70 (63.20,191.30) 116.60 (72.60,186.10) 139.30 (75.70,260.35) 0.049
Potassium (mmol/L) 3.54 (3.32,4.33) 3.75 (3.28,4.19) 3.84 (3.34,4.35) 4.12 (3.91,4.50) 3.72 (3.29,4.25) 0.017
Sodium (mmol/L) 133.40 (131.60,136.90) 135.60 (131.70,138.70) 135.00 (130.40,138.90) 135.90 (133.90,140.00) 132.00 (129.10,135.85) <0.001
Chloride (mmol/L) 105.20 (102.20,105.75) 10220 (98.15,106.75) 101.20 (97.00,106.10) 103.40 (100.80,108.20) 99.80 (96.55,104.55) 0.014
Calcium (mmol/L) 1.90 (1.85,1.98) 2.03 (1.89,2.15) 2.04 (1.93,2.16) 1.96 (1.86,2.08) 1.93 (1.81,2.10) <0.001
Troponin T (ng/mL) 0.01 (0.01,0.06) 0.04 (0.01,0.16) 0.03 (0.01,0.13) 0.07 (0.01,0.26) 0.02 (0.01,0.09) 0.049

SOFA score, sequential organ failure assessment score; COPD, chronic obstructive pulmonary disease.

TABLE 2 Clinical outcomes of the study patients with different Sll logarithmic trajectory groups.

Variables

Class1(n=7)

Class 2 (n = 663)

Class 3 (nh = 237)

Class 4 (n = 25)

Class 5 (n = 83)

In-hospital mortality, n(%) 5(71.43) 56 (8.45) 60 (25.32) 13 (52.00) 16 (19.28) <0.001
Length of hospital stay, (days) 7.00 (5.50,10.00) 10.00 (7.00,15.00) 11.00 (7.00,19.00) 8.00 (5.00,12.00) 11.00 (6.00,15.00) 0.056
Length of ICU stay, (hours) 161.00 (84.00,162.00) 34.00 (0.00,135.00) 72.00 (0.00,207.00) 119.00 (0.00,240.00) 67.00 (0.00,136.00) 0.005
Continuous renal replacement therapy, n(%) 1 (14.29) 48 (7.24) 27 (11.39) 2 (8.00) 10 (12.05) 0.247
Mechanical ventilation, n(%) 2 (28.57) 89 (13.42) 71 (29.96) 12 (48.00) 21 (25.30) <0.001

Primary outcomes include overall hospital mortality. Secondary outcomes encompass Length of hospital stay, the length of ICU stay, Continuous renal replacement therapy, Mechanical ventilation.
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FIGURE 3
Kaplan—Meier curves for survival, stratified by five classes.

confirmed the independent predictive value of SII trajectory. A
SHAP value graph was used to quantify the contribution of each
variable to in-hospital mortality (Figure 5A). Of the variables
considered, age had the highest SHAP value (0.316), followed by
Class (0.302), indicating that the different trajectory subgroups were
key determinants of the risk of in-hospital mortality. The area under
the curve of the XGBoost model was 0.984 (Figure 5B), indicating
that the model had high sensitivity and specificity in distinguishing
the contribution of each variable to the risk of in-hospital mortality.

3.3 Nonlinear relationship between Sl|
within 24 hours after admission and in-
hospital mortality

The nonlinear association between SII within 24 hours of
admission and the risk of in-hospital mortality was statistically
significant. According to the RSC plot, the HR showed a U-shaped
curve, with patients with low or high SII levels within 24 hours after
admission having a higher risk of in-hospital mortality than
patients with intermediate SIT levels (Figure 4A). The HR reached
a minimum value at an SII of 7.67. For SII < 7.67, the HR decreased
significantly with increasing SII. Conversely, for SII > 7.67, the HR
showed a pronounced increase.

4 Discussion

This study explored the relationship between SII trajectories and
in-hospital mortality in patients with sepsis. The trajectory of SII
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changes in 1015 patients was analyzed using LCMM, and five distinct
SII trajectories with different characteristics were identified. Survival
analysis showed that the risk of in-hospital mortality differed among
the different SII trajectory subgroups, and was highest in the subgroup
with a continuous increase from low to moderate SII levels (Class 1)
and the subgroup with stable high SII levels (Class 4). The RCS
analysis further revealed a nonlinear relationship between SII within
24 hours of admission and the risk of in-hospital mortality, with both
low and high SII levels associated with an increased risk of in-hospital
mortality compared with that associated with moderate SII levels. The
sample size of Class 1 (n=7) was small. Although supported by
statistical model fit indices, this limited sample size renders
estimates of baseline characteristics and associated outcomes highly
susceptible to random variation. Validation in significantly larger
cohorts is warranted before drawing clinical implications.

The SII has shown utility in predicting the prognosis of a variety
of diseases and has the advantages of simplicity, low cost, and wide
availability. Previous studies have shown that SII is a significant
predictor of disease progression and adverse outcomes in the fields
of cardiovascular disease, cerebrovascular disease, rheumatology,
and immunology (Acar et al,, 2021; Weng et al.,, 2021; Zhang et al,,
2021). A study involving 2,543 patients with acute stroke showed
that high SIT levels were significantly associated with in-hospital
complications and poor short-term prognosis (Chu et al., 2020).
The 2023 National Health and Nutrition Examination Survey
(NHANES) data revealed that an elevated SII was associated with
an increased risk of all-cause mortality and cardiovascular mortality
in the general population (Xia et al., 2023).

Compared with the findings of previous single-point SII studies,
this study revealed differences in the risk of death among different
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TABLE 3 Univariable Cox regression analysis for different Sll logarithmic
trajectory groups and in-hospital mortality.

Groups HR 95%Cl P
Class2(reference group) 1
Classl 15.1424 6.0297 - 38.0270 0.000
Class3 2.4832 1.7170 - 3.5914 0.000
Class4 6.3096 3.4339 - 11.5934 0.000
Class5 2.3586 1.3528 - 4.1122 0.0025

SII trajectory subgroups through the LCMM, with Class 2 (the
stable medium-high level group) having the lowest risk. Cox
regression analysis confirmed that other subgroups had an in-
hospital mortality risk lower than that of Class 2. Similarly, Class
2 had the lowest RCS curve. Over-inhibition of the inflammatory
response (illustrated by low SII at the beginning of Class 1) and
over-activation of inflammatory response (illustrated by the high
SII at the end of Class 4 and the continuous increase of SII at the end
of Class 1) are associated with an increased death risk, whereas a
moderate inflammatory response (illustrated by Class 2) may help
the body to resist infection, reducing mortality risk (Thiery-Antier
et al., 2016).

The SII is a composite inflammatory indicator that
comprehensively reflects the inflammatory-immune status
through the ratio of neutrophil and platelet counts to lymphocyte
count (SII = neutrophil x platelet/lymphocyte) (Wang et al., 2016).
Compared with a single blood cell or immune cell count, the
different subgroups in the SII trajectory model in our study may
reflect the potential immune and inflammatory status of sepsis
(Islam et al., 2024). The increased and decreased SII reflect different
states of the body. An increase in SII indicates a relative increase in
platelet and neutrophil counts or a relative decrease in lymphocytes,
which is primarily related to enhanced inflammatory response and
weakened immune response (Vincent et al., 2002). The release of
pro-inflammatory cytokines (such as IL-6, TNF-a, and C-reactive
protein) promotes the activation and proliferation of neutrophils
and platelets while inhibiting the proliferation of T lymphocytes,
inducing lymphocytopenia (Jiang et al., 2022). In sepsis, over-
activated neutrophils release inflammatory mediators, which
aggravate tissue damage, while platelet activation exacerbates
organ failure by promoting vascular endothelial damage and
thrombosis. These factors worsen the condition and increase
mortality risk in patients (Hurley et al, 2016; Peerapornratana
et al,, 2019). The subgroup with persistently high SII (Class 4) may
represent sustained excessive inflammation, similar to the “cytokine
storm phase.” The cytokine storm produced by immune cells
somewhat blocks infections; however, it also induces severe tissue
damage and organ failure (Chousterman et al., 2017), explaining
why this subgroup had a high mortality. This subgroup may need to
strengthen the monitoring and prevention of complications caused
by excessive inflammatory immune responses and adopt targeted
immune regulation strategies to suppress excessive inflammatory
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TABLE 4 Multivariable Cox regression analysis for different Sll
logarithmic trajectory groups and in-hospital mortality.

Variables HR 95%ClI P
Class 2 1 Reference
Classl 15.03 5.79-39.05 0.000
Class3 213 1.42-3.19 0.000
Class4 5.41 2.79-10.47 0.000
Class5 2.49 1.38-4.46 0.002
Age 1.04 1.02-1.05 0.000
Kidney disease 1.68 0.95-2.97 0.077
Platelet count 1.00 1.00-1.00 0.361
Prothrombin time 1.01 1.00-1.02 0.014
International normalized ratio 1.04 1.02-1.06 0.000
Fibrinogen 0.86 0.79-0.93 0.000

responses. Some specific antibodies against inflammatory
mediators, such as the IL-1 receptor antagonist (anakinra/rhIL-
1ra) found by Knaus et al., prolong the survival time of patients with
sepsis (Knaus et al, 1996). Anti-TNF-o. monoclonal antibodies
effectively prevent shock and organ damage in animal models
(Reinhart et al., 2001; Rice et al, 2006). Similarly, anti-IL-3
antibodies reduce neutrophils and inflammatory factors, reduce
organ damage, and improve survival rates (Weber et al., 2015). A
decrease in SII is primarily related to immune paralysis and bone
marrow dysfunction (Claushuis et al., 2016; Li et al, 2019).
Persistent inflammatory states trigger bone marrow suppression,
manifesting as progressive neutropenia (Jang and Rabb, 2015;
White and Ybarra, 2017), thrombocytopenia (Greco et al., 2017),
T cell exhaustion, and ultimately developing into an immune
paralysis state. This immune paralysis state leads to impaired
pathogen clearance and high susceptibility to secondary infections
(Torres et al., 2022). For example, in the subgroup with the highest
mortality (Class 1), the early stage with a significantly low SII level
may be followed by an inflammation rebound owing to secondary
infections, resulting in a sustained increase in SII. Such cases may
require immune-enhancing therapy in the early stage. For example,
granulocyte colony-stimulating factor(G-CSF)/granulocyte-
macrophage colony-stimulating factor (GM-CSF)enhances
monocyte function and human leukocyte antigen - DR isotype
(HLA-DR) expression (Wessendarp et al, 2022), reducing the
mortality of premature infants with sepsis; thymosin alfa 1
improves prognosis by regulating immune disorders and reduces
the 28-day mortality rate in patients with sepsis (Feng et al., 2016);
interferon 7y reverses monocyte inactivation during immune
paralysis (Payen et al., 2019); IL-7 reverses T cell exhaustion and
improves survival rates (Bidar et al., 2022).

The RCS analysis revealed a U-shaped relationship between SII
and in-hospital mortality: Ln-SII = 7.67 was the inflection point of
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FIGURE 4

(A) Restricted cubic spline of SI logarithmic transformation within 24 hours and in-hospital mortality. (B) Restricted cubic spline analysis of the
association between 5-day mean log-transformed Sl and in-hospital mortality.

risk. At a lower value, the risk of in-hospital mortality decreased  relationship has been reported between SII and 28-day mortality in
with the SII increase; however, at a higher value, the mortality risk  patients with sepsis (Jiang et al., 2023). Low and high SII values are
increased with the increase in SII. The mortality risk was high when  associated with increased short-term mortality risk, and the SII level
SIT was low (immune paralysis) and high (excessive inflammation);  corresponding to the lowest 28-day mortality risk is 774.46x10°/L.
it reached its lowest when Ln-SII was controlled at 7.67. A J-shaped =~ We adopted a similar method, and the trends of the impact of SII
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(A) SHAP model performance for class. (B) Represented the ROC curve for the classifier model.

changes on mortality risk are the same; however, the SII
values corresponding to the final inflection point differ. Both
studies are retrospective observational studies, and the accurate
threshold may require extensive verification in prospective
interventional studies.

The condition of patients with sepsis is complex and varies, and
patients with septic shock belong to a high-risk group and have a
significantly worse prognosis. However, our sensitivity analysis after
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adjustment for shock status showed that the associations between
the trajectory subgroups and mortality remained robust. This
suggests that the SII trajectory pattern provides prognostic
information beyond the presence of shock. Nevertheless, in the
investigation, the inherent pathophysiological and prognostic
differences between septic shock and non-shock sepsis were
substantial. Therefore, studies specifically examining SII dynamics
within the septic shock subgroup are warranted.
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This study included patients with sepsis complicated by
hematologic diseases because the SII, as a comprehensive
indicator of inflammation and immune status, may have
prognostic value for such patients (Kochanek et al., 2019).
Although patients with hematologic diseases may have aberrant
baseline blood cell counts, there were only 15 such patients (1.5%)
in this study, constituting a small proportion. Moreover, there were
no significant differences in blood cell counts, SII values, or clinical
outcomes between the hematologic and non-hematologic disease
groups (Supplementary Table S5). However, owing to the relatively
small sample size, the heterogeneity of the patient population (those
with hematologic disease) may not have been fully revealed. Future
studies are recommended to be multi-center and large-scale,
specifically targeting this special population, to further explore
their immune-inflammatory characteristics and prognostic value
in sepsis.

A strength of this study is its in-depth analysis of the dynamic
changes of SII in patients with sepsis. Most previous studies have
focused on the SII measured at a single timepoint and have not
considered the dynamic characteristics of sepsis. The LCMM not only
identified subgroups of patients with similar longitudinal trajectories,
but also enabled the identification of the characteristics of disease
progression in different subgroups of patients, providing a targeted
basis for personalized treatment. In addition, the use of XGBoost,
enabled us to quantify the contribution of each variable to the
mortality risk more precisely, improving the interpretability and
practicality of the model.

However, this study also has some limitations. First, as a
retrospective study, there is potential for selection bias and
information bias. Reliance on past medical records may
compromise the accuracy and integrity of the data. Secondly, the
patients were treated at a single hospital, which may limit the
generalizability of the results. In addition, although we controlled
for multiple factors that may influence prognosis in the analysis, the
possibility of residual confounding cannot be ruled out.

5 Conclusion

In this study, the dynamic trajectory of SII in patients with sepsis
was analyzed using LCMM, which divided the patients into 5 SII
trajectory subgroups. The risk of in-hospital mortality in patients with
sepsis differed according to their SII trajectory. The risk of in-hospital
mortality increased significantly when SII continued to rise and SII
stabilized at a high level, whereas the risk of in-hospital mortality was
low when SII stabilized at a medium-high level. RCS analysis revealed
a U-shaped relationship between SII within 24 hours of admission and
in-hospital mortality, with both low and high SII levels associated with
increased risk of in-hospital mortality. The risk of in-hospital
mortality was lowest when Ln-SII = 7.67. In this study, the
consideration of longitudinal SII trajectories was used to overcome
the limitation of traditional single time point measurement. These
results provide a dynamic basis for personalized treatment and risk
stratification in patients with sepsis.
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