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Trajectory of the systemic
immune-inflammation
index and in-hospital
mortality in patients with sepsis
Wanling Xu †, Shurui Ren †, Zheng Li and Li Pang*

Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
Background: Sepsis is a complex systemic inflammatory response syndrome

triggered by infection with high morbidity and mortality. The systemic immune-

inflammation index (SII) is a biomarker of inflammation and immune status. This

study investigated the relationship between the SII trajectory and in-hospital

mortality in patients with sepsis.

Methods: This retrospective study included 1015 adults who were admitted via

the emergency department of the First Hospital of Jilin University with a first

episode of sepsis between June 2018 and February 2025. Latent-class mixed

models (LCMM) were used to identify SII trajectory subgroups, and Cox

regression was used to analyze the relationship between subgroups and in-

hospital mortality. An eXtreme Gradient Boosting (XGBoost) machine learning

model was used to quantify the effect of each variable on the risk of in-hospital

mortality. Restricted cubic spline (RCS) analysis assessed the nonlinear

relationship between SII and in-hospital mortality.

Results: LCMM analysis identified five SII trajectory subgroups. Cox regression

analysis showed that Class 1 (the group with continuous increase in SII from a low

to medium level), Class 3 (the group with a stable decline in SII from a high level),

Class 4 (the group with a stable high SII level) and Class 5 (the group with a stable

medium SII level) all had higher risk of in-hospital mortality than Class 2 (the

group with a stable medium-high SII level). Class 1 and Class 4 had the highest

risk of in-hospital mortality (hazard ratio [HR] 15.14 and 6.31, respectively). The

XGBoost model confirmed that the SII trajectories were independent predictors

of in-hospital mortality. The RCS analysis revealed a U-shaped relationship

between the SII within 24 hours after admission and in-hospital mortality, with

both low and high SII levels associated with higher in-hospital mortality.

Conclusions: In patients with sepsis, the risk of in-hospital mortality differs

according to the SII within 24 hours of admission and the SII trajectory. The

risk of in-hospital mortality was greatest in patients whose SII increased

continuously and those whose SII stabilized at a high level, and was lowest in

patients with an SII stabilized at a medium-high level. The SII within 24 hours after

admission had a U-shaped relationship with in-hospital mortality.
KEYWORDS

sepsis, systemic immune-inflammation index, restricted cubic spline, predictive model,
in-hospital mortality
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1 Introduction

Sepsis is a complex systemic inflammatory response syndrome

triggered by infection, characterized by complex pathophysiological

processes, including immune imbalances, endothelial damage, and

metabolic disorders (Evans et al., 2021).Sepsis is one of the most

common life-threatening diseases among patients admitted to

emergency departments and intensive care units (ICUs), with a

mortality rate of up to 26%, and is associated with high medical

costs (Rudd et al., 2020).The Third International Consensus

Definition of Sepsis (Sepsis 3.0) guidelines emphasize the

importance of early risk screening and prognosis assessment in

patients with sepsis (Singer et al., 2016).

The systemic immune-inflammatory index (SII) is an

inflammatory indicator calculated based on the lymphocyte,

neutrophil, and platelet counts. As a derivative indicator based on

routine blood tests, SII has the advantages of cost-effectiveness and

clinical availability, and reflects both the inflammation and immune

status of patients (Jiang et al., 2023). SII plays an important role in

the diagnosis and treatment of a variety of diseases, and in

cardiovascular disease SII can predict the occurrence of adverse

cardiovascular events (Tang et al., 2021). In addition, SII is

significantly associated with the occurrence of rheumatoid

arthritis and other rheumatological diseases (Liu B. et al., 2023;

Ma et al., 2024), and chronic kidney disease prevalence and

mortality. In the field of oncology, SII is an independent

predictor of treatment response and survival (Kou et al., 2023).

SII is also a valuable indicator in the field of sepsis. SII combined

with the Systemic Organ Failure Assessment (SOFA) or quick

SOFA (qSOFA) score, or SII combined with procalcitonin are

superior to any single indicator for predicting the prognosis in

patients with sepsis (Liu C. et al., 2023; Mangalesh et al., 2023; Li

et al., 2024). Moreover, in patients with sepsis, SII is an independent

risk factor for in-hospital mortality, with both low and high SII

levels being associated with an increased risk of in-hospital

mortality (Liu C. et al., 2023).

However, most previous studies used SII data measured at a single

time-point, without considering the dynamic nature of sepsis (Rabb

et al., 2016), which is characterized by excessive inflammation in the

early stage and changes in immunosuppression in the later stage

(Bernsmeier et al., 2020; Liu et al., 2022). Failure to consider changes

in the SII level may lead to the loss of key pathophysiological

information. In contrast, latent-class mixed models (LCMM) are

statistical models that analyze longitudinal data to reveal

heterogeneity in the data by introducing latent classes and

constructing mixed-effect models for each class separately to map

out the unique trajectory pattern for each subgroup (Herle et al.,

2020). This approach enables differences in disease progression to be
Abbreviations: SII, systemic immune-inflammation index; RCS, restricted cubic

spline; LCMM, latent-class mixed model; HR, hazard ratio; ICU, intensive care

unit; SOFA, Systemic Organ Failure Assessment; qSOFA, quick Systemic Organ

Failure Assessment; Cr, creatinine; BIC, Bayesian information criteria; SABIC,

sample-adjusted BIC.
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identified in different subgroups based on differences in

their trajectories.

Therefore, in order to better understand the dynamic trajectory

of SII in patients with sepsis and its association with adverse

outcomes, we conducted a retrospective cohort study to identify

the relationship between SII trajectory and in-hospital mortality in

patients with sepsis, and provide a scientific basis for

personalized treatment.
2 Materials and methods

2.1 Study population

This study included adult patients with a first episode of

sepsis, who were hospitalized in the emergency department of the

First Hospital of Jilin University between June 2018 and

February 2025. Sepsis was defined according to the Sepsis-3

criteria as follows (Singer et al., 2016): (i) confirmed or suspected

infection; (ii) an increase of ≥ 2 points in the baseline SOFA score.

The exclusion criteria included: (i) duration of hospitalization <48

hours; or (ii) <3 days of complete blood count data within the

first 5 days after admission. The Medical Ethics Committee of the

First Hospital of Jilin University approved this study (approval no.

2023-723), and we conducted the study following the ethical

standards of the Declaration of Helsinki. The requirement for

informed consent was waived owing to the retrospective

study design.
2.2 Data collection and outcomes

We collected detailed data on the demographic and clinical

characteristics of patients, including age, sex, comorbidities

(including hypertension, diabetes, coronary atherosclerotic heart

disease, chronic obstructive pulmonary disease, cerebrovascular

disease, hematological diseases, malignancies, liver diseases

[including cirrhosis, primary or secondary liver cancer], kidney

diseases, and immune system diseases). In addition, data were

collected on patients’ most abnormal complete blood counts

(including white blood cell count, neutrophil count, lymphocyte

count, platelet count, hemoglobin); C-reactive protein, prolactin,

fibrinogen and alanine aminotransferase levels; activated partial

prothrombin time, prothrombin time, International Normalized

Ratio, within 24 hours of admission. Data were also collected on

patients’ aspartate aminotransferase, lactic acid, albumin, total

bilirubin, direct bilirubin, creatinine (Cr), potassium, sodium,

chloride, calcium, N-terminal prohormone of brain natriuretic

peptide, and troponin I levels; pH in blood gas analysis, oxygen

partial pressure, carbon dioxide partial pressure, Sequential Organ

Failure Assessment (SOFA) score, and whole blood cell counts for 5

consecutive days after admission. The primary outcome of this

study was in-hospital mortality, and secondary outcomes were the

need for mechanical ventilation and continuous renal replacement

therapy, length of ICU stay, and total length of hospital stay.
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2.3 Data processing

2.3.1 Missing value processing
We excluded variables with a proportion of missing values

greater than 20% (namely, prolactin, lactic acid, N-terminal

prohormone of brain natriuretic peptide levels; pH in blood gas

analysis, partial pressure of oxygen, and partial pressure of carbon

dioxide). For the other missing data, we used the Multivariate

Imputation by Chained Equations method, a predictive mean-

matching technique based on the Multivariate Imputation by

Chained Equations function in R language using five different

interpolation modalities to impute the missing data.

2.3.2 SII calculation
The SII was calculated daily for 5 consecutive days using the

formula:

SII   =   P  �  N=L

where P, N and L are the platelet, neutrophil, and lymphocyte

counts, respectively. As the original SII values were large, we used

the logarithm-transformed values (Ln-SII) in the analysis to ensure

statistical stability.
2.4 Statistical analysis

2.4.1 Latent-class mixed model
All statistical analyses were performed using R software (v4.2.3).

We used LCMM to analyze and classify the trajectory of SII changes

in the patients with sepsis (Eriksson et al., 2021). LCMM is a robust

statistical method designed to identify subgroups of patients with

similar longitudinal trajectories. Using linear mixed models, the

method captures trends at the individual level through random

effects and uses latent category analysis to group patients according

to common trajectories of change, effectively identifying patient

subgroups with different characteristics. To select the optimal

number of potential categories, we built LCMM models with 2 to 6

different categories in the cohort. We used the Akaike Information

criteria, Bayesian information criteria (BIC), sample-adjusted BIC

(SABIC), and entropy to evaluate the goodness-of-fit of the LCMM.

The higher the entropy and the lower the Akaike Information criteria,

BIC and SABIC, the better the model fit. We used entropy ≥0.80 as a

selection criterion. In addition, in order to ensure the stability of the

model, we set the sample size of each category to be >0.1% of the total

study population, and confirmed the goodness-of-fit of the model by

ensuring an average posterior probability of ≥70% for all categories.

2.4.2 Comparison of the clinical features and
results between subgroups

Continuous variables with a normal distribution were reported

as the mean ± standard deviation, and the statistical significance of

differences between subgroups was tested using analysis of variance.

Continuous variables with a non-normal distribution were reported

as the median and interquartile range (IQR), and the Kruskal-

Wallis test was used to assess the statistical significance of
Frontiers in Cellular and Infection Microbiology 03
differences between groups. Categorical variables were reported as

frequencies and percentages, and the Chi-square test or Fisher’s

exact test was used to assess the statistical significance of differences

between groups. Two-tailed P values <0.05 were considered

statistically significant.

2.4.3 Survival analysis and machine learning
model to evaluate the effect of the SII trajectory
on in-hospital mortality in patients with sepsis

Kaplan-Meier survival curves were plotted to show the survival of

subgroups with different SII trajectories, and the log-rank test was used

to assess the significance of differences in survival between subgroups.

In addition, an unadjusted Cox regression model was used to calculate

the hazard ratio (HR) for in-hospital mortality among SII trajectory

subgroups. To investigate the independent predictive value of SII

trajectory subgroups for in-hospital mortality in patients with sepsis,

forward stepwise Cox regression was used to screen variables. Age,

kidney disease, platelet count, PT, International Normalized Ratio, and

fibrinogen, were included in the multivariable Cox regression model.

Subsequently, septic shock was forcibly incorporated into the model,

and the multivariate Cox regression was repeated.

We used the eXtreme Gradient Boosting (XGBoost) machine-

learning algorithm to quantify the effect of each risk factors on in-

hospital mortality. The contribution of each variable to an

individual’s predicted outcome was quantified using the Shapley

additive explanation (SHAP) value, which visually depicted the

relative importance of each variable to the risk of in-hospital

mortality. In addition, we evaluated the sensitivity and specificity

of the XGBoost model using receiver operating characteristic curve

analysis, and the area under the curve was used to confirm the

predictive value of the model.

2.4.4 Restricted cubic spline analysis to
characterize the nonlinear relationship between
SII and in-hospital mortality in patients with
sepsis

RCS plots were used to explore the potential nonlinear

relationship between the mean SII within 24 hours of admission

and the mean SII within 5 days of admission and in-hospital

mortality in patients with sepsis. The corresponding HR and 95%

confidence interval (CI) were calculated, and an RCS with four

nodes was used to capture the nonlinear effect of SII on mortality,

with the selection of nodes determined based on the criteria

recommended in previous studies (Elhakeem et al., 2022) or by

maximizing the goodness-of-fit of the model.
3 Results

3.1 SII trajectories and baseline features

A total of 1015 patients were included in the analysis (Figure 1).

The goodness-of-fit of the LCMMs are shown in Supplementary Table

S1. The SABIC values decreased and the entropy increased from

Model 1 to Model 6. The entropy of Model 5 and Model 6 was >0.8,
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but the average posterior probability of Class 2, Class 3, Class 4, Class

5, and Class 6 in Model 6 was <70%; therefore, we chose Model 5.

The SII trajectories in Model 5 are shown in Figure 2. The

specific characteristics of the five subgroups were as follows:
Fron
• Class 1 (continuous increase from a low to medium SII level

group): accounting for 0.69% of the total sample,

characterized by a continuing rapid increase in the SII

from a low to medium level;

• Class 2 (stable medium-high SII level group): accounting

for 65.32% of the total sample, with SII levels showing a

slight decrease but remaining stable at medium-high levels.

• Class 3 (stable decline from high SII level group):

accounting for 23.35% of the total sample, the SII in this

group gradually decreased from a high level to a medium-

high level.

• Class 4 (stable high-level SII group): accounting for 2.46%

of the total sample, the SII of this group remained at a high

level, with a slight increase but generally stable.

• Class 5 (stable medium-level SII group): accounting for

8.18% of the total sample, the SII of this group remained at a

moderate level, with a slight decline but generally stable.
tiers in Cellular and Infection Microbiology 04
The sex, age, comorbidities, SOFA score, laboratory test results,

and outcomes were compared among the five subgroups, and

significant differences were found in age and length of ICU stay.

There were no statistically significant differences by sex. Except for

the lymphocyte count and C-reactive protein level, most of the

laboratory test results varied significantly between subgroups,.

Among the comorbidities, the prevalence of hypertension,

diabetes, coronary atherosclerotic heart disease, cerebrovascular

disease, and hematological diseases varied significantly between

subgroups, but no statistically significant differences were found

among the other comorbidities considered. The SOFA score

differed significantly between subgroups. The in-hospital

mortality differed significantly between subgroups (Table 1), but

the length of hospital stay did not differ significantly between

subgroups (Table 2).
3.2 Relationship between SII trajectory and
in-hospital mortality

Patients in Class 1 accounted for the highest proportion (71.4%)

of in-hospital mortality, whereas patients in Class 2 accounted for
FIGURE 1

Flow chart of the study.
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the lowest proportion (8.5%) (Table 2). Kaplan-Meier survival

analysis revealed statistically significant differences in survival

between subgroups with different trajectories (Figure 3). Class 1

(continuous increase from low to medium SII level) had the highest

in-hospital mortality and the fastest decline in survival probability.

Class 2 (stable medium-high SII level) had the highest and most

stable probability of survival. Class 4 (stable high-level SII) had a

survival curve similar to that of Class 1. Class 3 (stable decline from

high SII level) and Class 5 (stable medium-level SII) had similar

survival curves with higher survival than those of Classes 1 and 4,

but lower survival than that of Class 2.

Unadjusted Cox regression analysis confirmed these findings

(Table 3). Compared with Class 2 as the reference group, the Class

1, Class 3, Class 4, and Class 5 subgroups had a significantly higher

risk of in-hospital mortality, with HRs of 15.14 (95% CI: 6.03–

38.03) and 2.48 (95% CI: 1.72–3.59), 6.31 (95% CI: 3.43–11.59), and

2.36 (95% CI: 1.35–4.11), respectively. There was no significant

difference in mortality risk between Class 3 and Class 5 (HR: 0.95,

95% CI: 0.55–1.65, P =0.856) (Supplementary Table S2).

These findings were confirmed using multivariable Cox

regression analysis, which included the variables selected through

the stepwise regression process (Supplementary Table S3).

Compared with Class 2 as the reference group, the Class 1, Class

3, Class 4, and Class 5 subgroups had had a significantly higher risk
Frontiers in Cellular and Infection Microbiology 05
of in-hospital mortality, with HRs of 15.03 (95% CI: 5.79–39.05),

2.13 (95% CI: 1.42–3.19), 5.41 (95% CI: 2.79–10.47), and 2.49 (95%

CI: 1.38–4.46), respectively (Table 4). After forcibly incorporating

septic shock into the multivariate Cox regression model, the

association between different trajectory subgroups and increased

mortality remained significant. For example, Class 4 exhibited the

following: (unadjusted HR: 5.41, P=0.000; adjusted HR: 5.28,

p=0.000) (Supplementary Table S4).

Using the mean SII within 24 hours after admission and the mean

SII at 5 days after admission as dependent variables, RCS plots were

plotted for in-hospital mortality (Figures 4A, B). The variation ranges

of SII corresponding to the five subgroups were analyzed using a

trajectory chart, and the corresponding RCS curve segments of the

variation ranges of SII corresponding to different subgroups were

marked on the RCS curve with the 5-day mean SII as the dependent

variable. The location of the RCS segments corresponding to these

subgroups revealed the differences in the risk of in-hospital mortality

among the subgroups. The curves for Class 1, Class 3, Class 4, and

Class 5 were all above Class 2, consistent with the results of the

Kaplan-Meier and Cox regression analyses, showing that, compared

with Class 2, Class 1, Class 4, and Class 5 subgroups had a higher risk

of in-hospital mortality (Figure 4B).

An XGBoost model was used to analyze the degree of influence

of each variable on the risk of mortality in patients with sepsis. This
FIGURE 2

SII logarithmic trajectories of patients with sepsis.
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TABLE 1 Baseline characteristics of the sepsis patients with different SII logarithmic trajectory groups at admission.

Variables Class 1 (n = 7) Class 2 (n = 663) Class 3 (n = 237) Class 4 (n = 25) Class 5 (n = 83) P

,77.00) 57.00 (48.00,64.00) <.001

46 (55.42) 0.713

00) 8.00 (5.00,12.00) <.001

22 (26.51) 0.018

21 (25.30) 0.046

5 (6.02) 0.039

0 (0.00) 0.515

8 (9.64) 0.011

2 (2.41) <0.001

6 (7.23) 0.795

4 (4.82) 0.170

3 (3.61) 0.083

4 (4.82) 0.816

,21.63) 9.38 (4.00,16.09) <0.001

,18.83) 7.49 (2.89,14.40) <0.001

04) 0.63 (0.28,1.42) 0.210

,128.00) 118.00 (97.50,139.00) <0.001

00,359.00) 42.00 (20.50,91.00) <0.001

9,253.04) 175.97 (93.29,274.97) 0.643

,30.30) 36.30 (29.55,45.40) <0.001

,15.20) 14.10 (12.95,16.15) 0.004

30) 1.25 (1.11,1.44) 0.022

89) 3.55 (1.96,5.49) <0.001

,70.60) 70.10 (42.00,134.65) <0.001

(Continued)
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Demographic data

Age [Median (IQR), year] 63.00 (58.00,64.50) 63.00 (53.00,71.00) 66.00 (55.00,75.00) 69.00 (61.0

Male, n(%) 3 (42.86) 344 (51.89) 128 (54.01) 16 (64.00)

SOFA score (points) 6.00 (4.50,11.00) 6.00 (3.00,8.00) 5.00 (3.00,8.00) 5.00 (4.00,7

Comorbidities,n(%)

Hypertension, n(%) 1 (14.29) 273 (41.18) 106 (44.73) 13 (52.00)

Diabetes, n(%) 2 (28.57) 267 (40.27) 105 (44.30) 10 (40.00)

Coronary atherosclerotic heart disease, n(%) 0 (0.00) 106 (15.99) 47 (19.83) 4 (16.00)

COPD, n(%) 0 (0.00) 20 (3.02) 8 (3.38) 0 (0.00)

Cerebrovascular disease, n(%) 0 (0.00) 94 (14.18) 53 (22.36) 3 (12.00)

Hematologic disease, n(%) 2 (28.57) 7 (1.06) 2 (0.84) 2 (8.00)

Malignancies, n(%) 1 (14.29) 47 (7.09) 15 (6.33) 3 (12.00)

Liver disease, n(%) 0 (0.00) 21 (3.17) 2 (0.84) 0 (0.00)

Kidney disease, n(%) 2 (28.57) 27 (4.07) 10 (4.22) 2 (8.00)

Immune system diseases, n(%) 0 (0.00) 30 (4.52) 11 (4.64) 2 (8.00)

Laboratory test (Median, IQR)

White blood cell count (×109/L) 0.41 (0.38,1.64) 12.57 (8.20,18.50) 15.55 (10.39,21.21) 17.27 (13.4

Neutrophil count (×10 9/L) 0.06 (0.01,0.23) 11.26 (6.69,16.38) 13.68 (8.85,19.23) 15.35 (12.5

Lymphocyte count (×10 9/L) 0.33 (0.30,1.06) 0.65 (0.39,1.08) 0.84 (0.41,1.15) 0.68 (0.37,1

Hemoglobin (g/L) 78.00 (72.50,103.00) 122.00 (104.00,138.00) 111.00 (94.00,127.00) 96.00 (77.0

Platelet count (×10 9/L) 13.00 (12.00,72.00) 108.00 (63.50,162.00) 211.00 (150.00,295.00) 251.00 (206

C-reactive protein (mg/L) 175.43 (144.99,233.15) 178.90 (100.53,259.94) 195.34 (92.99,274.84) 120.69 (62.

Activated partial thromboplastin time (seconds) 28.90 (25.10,32.15) 30.00 (26.90,33.75) 28.90 (26.00,33.20) 28.10 (26.5

Prothrombin time (seconds) 13.90 (12.55,14.00) 13.40 (12.40,15.00) 13.10 (12.30,14.20) 13.90 (13.0

International normalized ratio 1.20 (1.08,1.23) 1.17 (1.08,1.31) 1.15 (1.07,1.25) 1.19 (1.10,1

Fibrinogen (g/L) 5.46 (4.27,6.37) 5.16 (3.74,6.58) 6.33 (4.35,7.84) 4.70 (3.83,6

Aspartate aminotransferase (U/L) 35.20 (17.95,44.60) 41.90 (25.10,87.55) 30.10 (18.70,58.60) 30.60 (16.4
0

.
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TABLE 1 Continued

Variables Class 1 (n = 7) Class 2 (n = 663) Class 3 (n = 237) Class 4 (n = 25) Class 5 (n = 83) P

3.20,32 .90 (14.10,46.50) 21.00 (12.60,41.30) 41.80 (26.80,98.40) <0.001

7.50,32 .20 (25.20,33.30) 26.40 (24.80,32.30) 28.80 (25.65,32.55) 0.007

4.85,30 .10 (10.90,29.10) 16.60 (9.30,42.80) 27.00 (17.30,52.65) <0.001

70,17.0 90 (3.60,11.80) 6.60 (2.50,14.90) 11.30 (5.55,28.85) <0.001

84.10,3 4.70 (63.20,191.30) 116.60 (72.60,186.10) 139.30 (75.70,260.35) 0.049
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Laboratory test (Median, IQR)
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SOFA score, sequential organ failure assessment score; COPD, chronic obstruc

TABLE 2 Clinical outcomes of the study patients with different

Variables Class 1

In-hospital mortality, n(%) 5 (71.43)

Length of hospital stay, (days) 7.00 (5.50
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Continuous renal replacement therapy, n(%) 1 (14.29)
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confirmed the independent predictive value of SII trajectory. A

SHAP value graph was used to quantify the contribution of each

variable to in-hospital mortality (Figure 5A). Of the variables

considered, age had the highest SHAP value (0.316), followed by

Class (0.302), indicating that the different trajectory subgroups were

key determinants of the risk of in-hospital mortality. The area under

the curve of the XGBoost model was 0.984 (Figure 5B), indicating

that the model had high sensitivity and specificity in distinguishing

the contribution of each variable to the risk of in-hospital mortality.
3.3 Nonlinear relationship between SII
within 24 hours after admission and in-
hospital mortality

The nonlinear association between SII within 24 hours of

admission and the risk of in-hospital mortality was statistically

significant. According to the RSC plot, the HR showed a U-shaped

curve, with patients with low or high SII levels within 24 hours after

admission having a higher risk of in-hospital mortality than

patients with intermediate SII levels (Figure 4A). The HR reached

a minimum value at an SII of 7.67. For SII < 7.67, the HR decreased

significantly with increasing SII. Conversely, for SII > 7.67, the HR

showed a pronounced increase.
4 Discussion

This study explored the relationship between SII trajectories and

in-hospital mortality in patients with sepsis. The trajectory of SII
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changes in 1015 patients was analyzed using LCMM, and five distinct

SII trajectories with different characteristics were identified. Survival

analysis showed that the risk of in-hospital mortality differed among

the different SII trajectory subgroups, and was highest in the subgroup

with a continuous increase from low to moderate SII levels (Class 1)

and the subgroup with stable high SII levels (Class 4). The RCS

analysis further revealed a nonlinear relationship between SII within

24 hours of admission and the risk of in-hospital mortality, with both

low and high SII levels associated with an increased risk of in-hospital

mortality compared with that associated with moderate SII levels. The

sample size of Class 1 (n=7) was small. Although supported by

statistical model fit indices, this limited sample size renders

estimates of baseline characteristics and associated outcomes highly

susceptible to random variation. Validation in significantly larger

cohorts is warranted before drawing clinical implications.

The SII has shown utility in predicting the prognosis of a variety

of diseases and has the advantages of simplicity, low cost, and wide

availability. Previous studies have shown that SII is a significant

predictor of disease progression and adverse outcomes in the fields

of cardiovascular disease, cerebrovascular disease, rheumatology,

and immunology (Acar et al., 2021; Weng et al., 2021; Zhang et al.,

2021). A study involving 2,543 patients with acute stroke showed

that high SII levels were significantly associated with in-hospital

complications and poor short-term prognosis (Chu et al., 2020).

The 2023 National Health and Nutrition Examination Survey

(NHANES) data revealed that an elevated SII was associated with

an increased risk of all-cause mortality and cardiovascular mortality

in the general population (Xia et al., 2023).

Compared with the findings of previous single-point SII studies,

this study revealed differences in the risk of death among different
FIGURE 3

Kaplan–Meier curves for survival, stratified by five classes.
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SII trajectory subgroups through the LCMM, with Class 2 (the

stable medium-high level group) having the lowest risk. Cox

regression analysis confirmed that other subgroups had an in-

hospital mortality risk lower than that of Class 2. Similarly, Class

2 had the lowest RCS curve. Over-inhibition of the inflammatory

response (illustrated by low SII at the beginning of Class 1) and

over-activation of inflammatory response (illustrated by the high

SII at the end of Class 4 and the continuous increase of SII at the end

of Class 1) are associated with an increased death risk, whereas a

moderate inflammatory response (illustrated by Class 2) may help

the body to resist infection, reducing mortality risk (Thiery-Antier

et al., 2016).

The SII is a composite inflammatory indicator that

comprehensively reflects the inflammatory-immune status

through the ratio of neutrophil and platelet counts to lymphocyte

count (SII = neutrophil × platelet/lymphocyte) (Wang et al., 2016).

Compared with a single blood cell or immune cell count, the

different subgroups in the SII trajectory model in our study may

reflect the potential immune and inflammatory status of sepsis

(Islam et al., 2024). The increased and decreased SII reflect different

states of the body. An increase in SII indicates a relative increase in

platelet and neutrophil counts or a relative decrease in lymphocytes,

which is primarily related to enhanced inflammatory response and

weakened immune response (Vincent et al., 2002). The release of

pro-inflammatory cytokines (such as IL-6, TNF-a, and C-reactive

protein) promotes the activation and proliferation of neutrophils

and platelets while inhibiting the proliferation of T lymphocytes,

inducing lymphocytopenia (Jiang et al., 2022). In sepsis, over-

activated neutrophils release inflammatory mediators, which

aggravate tissue damage, while platelet activation exacerbates

organ failure by promoting vascular endothelial damage and

thrombosis. These factors worsen the condition and increase

mortality risk in patients (Hurley et al., 2016; Peerapornratana

et al., 2019). The subgroup with persistently high SII (Class 4) may

represent sustained excessive inflammation, similar to the “cytokine

storm phase.” The cytokine storm produced by immune cells

somewhat blocks infections; however, it also induces severe tissue

damage and organ failure (Chousterman et al., 2017), explaining

why this subgroup had a high mortality. This subgroup may need to

strengthen the monitoring and prevention of complications caused

by excessive inflammatory immune responses and adopt targeted

immune regulation strategies to suppress excessive inflammatory
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responses. Some specific antibodies against inflammatory

mediators, such as the IL-1 receptor antagonist (anakinra/rhIL-

1ra) found by Knaus et al., prolong the survival time of patients with

sepsis (Knaus et al., 1996). Anti-TNF-a monoclonal antibodies

effectively prevent shock and organ damage in animal models

(Reinhart et al., 2001; Rice et al., 2006). Similarly, anti-IL-3

antibodies reduce neutrophils and inflammatory factors, reduce

organ damage, and improve survival rates (Weber et al., 2015). A

decrease in SII is primarily related to immune paralysis and bone

marrow dysfunction (Claushuis et al., 2016; Li et al., 2019).

Persistent inflammatory states trigger bone marrow suppression,

manifesting as progressive neutropenia (Jang and Rabb, 2015;

White and Ybarra, 2017), thrombocytopenia (Greco et al., 2017),

T cell exhaustion, and ultimately developing into an immune

paralysis state. This immune paralysis state leads to impaired

pathogen clearance and high susceptibility to secondary infections

(Torres et al., 2022). For example, in the subgroup with the highest

mortality (Class 1), the early stage with a significantly low SII level

may be followed by an inflammation rebound owing to secondary

infections, resulting in a sustained increase in SII. Such cases may

require immune-enhancing therapy in the early stage. For example,

granulocyte colony-stimulating factor(G-CSF)/granulocyte-

macrophage colony-stimulating factor (GM-CSF)enhances

monocyte function and human leukocyte antigen - DR isotype

(HLA-DR) expression (Wessendarp et al., 2022), reducing the

mortality of premature infants with sepsis; thymosin alfa 1

improves prognosis by regulating immune disorders and reduces

the 28-day mortality rate in patients with sepsis (Feng et al., 2016);

interferon g reverses monocyte inactivation during immune

paralysis (Payen et al., 2019); IL-7 reverses T cell exhaustion and

improves survival rates (Bidar et al., 2022).

The RCS analysis revealed a U-shaped relationship between SII

and in-hospital mortality: Ln-SII = 7.67 was the inflection point of
TABLE 3 Univariable Cox regression analysis for different SII logarithmic
trajectory groups and in-hospital mortality.

Groups HR 95%CI P

Class2(reference group) 1

Class1 15.1424 6.0297 - 38.0270 0.000

Class3 2.4832 1.7170 - 3.5914 0.000

Class4 6.3096 3.4339 - 11.5934 0.000

Class5 2.3586 1.3528 - 4.1122 0.0025
TABLE 4 Multivariable Cox regression analysis for different SII
logarithmic trajectory groups and in-hospital mortality.

Variables HR 95%CI P

Class 2 1 Reference

Class1 15.03 5.79-39.05 0.000

Class3 2.13 1.42-3.19 0.000

Class4 5.41 2.79-10.47 0.000

Class5 2.49 1.38-4.46 0.002

Age 1.04 1.02-1.05 0.000

Kidney disease 1.68 0.95-2.97 0.077

Platelet count 1.00 1.00-1.00 0.361

Prothrombin time 1.01 1.00-1.02 0.014

International normalized ratio 1.04 1.02-1.06 0.000

Fibrinogen 0.86 0.79-0.93 0.000
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risk. At a lower value, the risk of in-hospital mortality decreased

with the SII increase; however, at a higher value, the mortality risk

increased with the increase in SII. The mortality risk was high when

SII was low (immune paralysis) and high (excessive inflammation);

it reached its lowest when Ln-SII was controlled at 7.67. A J-shaped
Frontiers in Cellular and Infection Microbiology 10
relationship has been reported between SII and 28-day mortality in

patients with sepsis (Jiang et al., 2023). Low and high SII values are

associated with increased short-term mortality risk, and the SII level

corresponding to the lowest 28-day mortality risk is 774.46×109/L.

We adopted a similar method, and the trends of the impact of SII
FIGURE 4

(A) Restricted cubic spline of SII logarithmic transformation within 24 hours and in-hospital mortality. (B) Restricted cubic spline analysis of the
association between 5-day mean log-transformed SII and in-hospital mortality.
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changes on mortality risk are the same; however, the SII

values corresponding to the final inflection point differ. Both

studies are retrospective observational studies, and the accurate

threshold may require extensive verification in prospective

interventional studies.

The condition of patients with sepsis is complex and varies, and

patients with septic shock belong to a high-risk group and have a

significantly worse prognosis. However, our sensitivity analysis after
Frontiers in Cellular and Infection Microbiology 11
adjustment for shock status showed that the associations between

the trajectory subgroups and mortality remained robust. This

suggests that the SII trajectory pattern provides prognostic

information beyond the presence of shock. Nevertheless, in the

investigation, the inherent pathophysiological and prognostic

differences between septic shock and non-shock sepsis were

substantial. Therefore, studies specifically examining SII dynamics

within the septic shock subgroup are warranted.
FIGURE 5

(A) SHAP model performance for class. (B) Represented the ROC curve for the classifier model.
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This study included patients with sepsis complicated by

hematologic diseases because the SII, as a comprehensive

indicator of inflammation and immune status, may have

prognostic value for such patients (Kochanek et al., 2019).

Although patients with hematologic diseases may have aberrant

baseline blood cell counts, there were only 15 such patients (1.5%)

in this study, constituting a small proportion. Moreover, there were

no significant differences in blood cell counts, SII values, or clinical

outcomes between the hematologic and non-hematologic disease

groups (Supplementary Table S5). However, owing to the relatively

small sample size, the heterogeneity of the patient population (those

with hematologic disease) may not have been fully revealed. Future

studies are recommended to be multi-center and large-scale,

specifically targeting this special population, to further explore

their immune-inflammatory characteristics and prognostic value

in sepsis.

A strength of this study is its in-depth analysis of the dynamic

changes of SII in patients with sepsis. Most previous studies have

focused on the SII measured at a single timepoint and have not

considered the dynamic characteristics of sepsis. The LCMM not only

identified subgroups of patients with similar longitudinal trajectories,

but also enabled the identification of the characteristics of disease

progression in different subgroups of patients, providing a targeted

basis for personalized treatment. In addition, the use of XGBoost,

enabled us to quantify the contribution of each variable to the

mortality risk more precisely, improving the interpretability and

practicality of the model.

However, this study also has some limitations. First, as a

retrospective study, there is potential for selection bias and

information bias. Reliance on past medical records may

compromise the accuracy and integrity of the data. Secondly, the

patients were treated at a single hospital, which may limit the

generalizability of the results. In addition, although we controlled

for multiple factors that may influence prognosis in the analysis, the

possibility of residual confounding cannot be ruled out.
5 Conclusion

In this study, the dynamic trajectory of SII in patients with sepsis

was analyzed using LCMM, which divided the patients into 5 SII

trajectory subgroups. The risk of in-hospital mortality in patients with

sepsis differed according to their SII trajectory. The risk of in-hospital

mortality increased significantly when SII continued to rise and SII

stabilized at a high level, whereas the risk of in-hospital mortality was

low when SII stabilized at a medium-high level. RCS analysis revealed

a U-shaped relationship between SII within 24 hours of admission and

in-hospital mortality, with both low and high SII levels associated with

increased risk of in-hospital mortality. The risk of in-hospital

mortality was lowest when Ln-SII = 7.67. In this study, the

consideration of longitudinal SII trajectories was used to overcome

the limitation of traditional single time point measurement. These

results provide a dynamic basis for personalized treatment and risk

stratification in patients with sepsis.
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