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Genomic epidemiological
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Objectives: After coronavirus disease 2019 pandemic restrictions, Mycoplasma
pneumoniae (M. pneumoniae) re-surged widely across the world. This study
aimed to determine the genomic epidemiological characteristics of resurging M.
pneumoniae, which has dominated the respiratory infection outbreak in Beijing,
China, since mid-September 2023.

Methods: M. pneumoniae samples were collected from patients with acute
respiratory-tract infections in Beijing in 2018-2023. A total of 160 M.
pneumoniae genomes were sequenced via probe-capture-based approach.
The genetic features of M. pneumoniae were characterized by multilocus
sequence typing and comparative genomic analysis.

Results: In total, 160 patients with M. pneumoniae infections were enrolled. ST3
(n =93) and ST14 (n = 65) were the predominant sequence types. The macrolide-
resistant mutation rate of ST3 was maintained at 100%, whereas that of ST14
increased rapidly. Comparative genomic analysis revealed 99% to > 99% similarity
among the Beijing strains from 2023 when aligned to the reference M129
genome. The major variation occurs in the P1 gene. MAUVE indicated a lack of
rearrangement, yet it included four subtype-specific insertions and non-
conserved hsdS genes. The phylogenetic tree showed that strains from Asia
and other world regions clustered into distinct clades, with significant
evolutionary differences. Further genomic analyses identified some Asia-
dominant genetic variations in genes associated with genome stability,
pathogenesis, and drug resistance.
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Conclusions: The 2023 outbreak of M. pneumoniae was not attributable to a
novel variant but stemmed from the resurgence of the pre-existing strains. Our
genomic epidemiological findings demonstrated that the endemic strains in
different regions exhibit distinct genomic characteristics, associated with

genomic stability.
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mycoplasma pneumoniae, macrolide resistance, genomic epidemiological analysis,
genetic variation, comparative genomics

1 Introduction

Mpycoplasma pneumoniae (M. pneumoniae) was one of the
major pathogens responsible for respiratory infections before the
coronavirus disease 2019 (COVID-19) pandemic, with a worldwide
incidence of 8.61% in 2017-2020 (Meyer Sauteur et al., 2023). In the
COVID-19 pandemic era, nonpharmaceutical interventions against
COVID-19 dramatically reduced the transmission of M.
pneumoniae throughout the world (Meyer Sauteur et al., 2024b).
This low-level prevalence of M. pneumoniae persisted until an
epidemic spread across four continents from the latter half of
2023 (Chen et al., 2024; Gong et al., 2024; Meyer Sauteur et al.,
2024a). This round of M. pneumoniae epidemics occurred
about 4 years after the previous wave in 2019, with a delay of
approximately 1 year relative to the typical periodicity of
M. pneumoniae epidemics (Beeton et al., 2020). During a similar
period, Northern China also experienced a surge in childhood
pneumonia, beginning at mid-October 2023, which drew the
concern of the World Health Organization (WHO). Our previous
study based on epidemiological surveillance revealed that this
epidemic of pneumonia among children was mainly driven by
several common respiratory pathogens, particularly M.
pneumoniae, rather than by an emerging pathogen (Gong et al,
2024). Recently, Russia reported cases of respiratory disease with
hemoptysis and high fever caused by M. pneumoniae infections
between March and April 2025, causing renewed concern
(XINHUANET, 2025).

Macrolide-resistant M. pneumoniae (MRMP) poses a severe
public health challenge. The Western Pacific region currently
exhibits the highest global prevalence of macrolide-resistant
MRMP, with rates exceeding 90% in China and 78.5% in South
Korea (Hsieh et al.,, 2022; Lee et al., 2022a; Wang and Luo, 2022).
This drug resistance probably led to the epidemic spread of M.
pneumoniae by prolonging the duration of the illness and
eliminating period. By contrast, the proportion of MRMP has
been maintained at very low levels in Europe and the Americas
(Kim et al., 2022). The rationale behind this difference in the rates of
MRMP has yet not been fully clarified, although one widely
acknowledged explanation attributes it to the overuse of
macrolides in some Asian countries. This perspective seems
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confirmed in Japan. The proportion of MRMP in Japan peaked at
81.8% in 2012 and has fluctuated and decreased since then, falling
to 14.3% in 2018 (Nakamura et al., 2021), which was probably
attributed to introducing tosufloxacin in clinical guidelines for
treating MRMP, the reduction in antibiotic consumption under
the National Action Plan on Antimicrobial Resistance and genotype
shift (Ishiguro et al., 2021; Nakamura et al., 2021; Kenri et al., 2023).
Even so, the proportion of MRMP is still higher in Japan than in
European countries. Notably, the proportion of MRMP in China is
increasing, despite the stricter regulation of antibiotic use in recent
years (Ministry of Health, 2012; Medical Administration Hospital
Authority, 2015) and the National Action Plan for Curbing
Bacterial Resistance (Medical Administration Hospital Authority,
2016, 2022). These data indicate that the overuse of macrolides is
probably not the only reason for the high proportion of MRMP in
Asia. A comparison of the genetic characteristics of M. pneumoniae
strains in high- and low-MRMP-prevalence regions should extend
our understanding of the mechanism underlying this discrepancy.

In this study, 160 M. pneumoniae strains identified by the
Beijing Respiratory Pathogen Surveillance System in Beijing
between 2018 and 2023 were collected and subjected to whole-
genome sequencing (WGS). Combining these genomes with a
global collection of 430 M. pneumoniae genomes available from a
public database, we conducted a genomic epidemiological analysis
in an attempt to identify whether potential new variants are
associated with the resurgence of M. pneumoniae in Beijing and
to investigate the genomic drivers of the regional differences in the
rates of MRMP infections.

2 Materials and methods

2.1 Samples and publicly available M.
pneumoniae genomes

Based on the Beijing Respiratory Pathogen Surveillance System,
160 M. pneumoniae-positive samples, identified with PCR, were
collected from January 2018 to November 2023 (Supplementary
Table 1). We also downloaded 430 publicly available datasets
(accessed on 10/03/2024) from the National Center for
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Biotechnology Information (NCBI) repository (Supplementary
Table 2). The M129 (accession: NC_000912.1, P1-typel) and FH
(accession: NZ_CP010546.1, P1-type2) were representative of type
1 and type 2 strains, respectively. The M129 was used as the
reference genome in our bioinformatic analysis.

2.2 M. pneumoniae culture

Six representative samples collected in 2023 were cultured
individually in 2 ml of Mycoplasma color-changing liquid
medium (OXOID) at 37°C. Upon observing a color change from
red to yellow, 0.1 ml of each suspension was transferred to solid agar
plates. M. pneumoniae isolates were then purified using dilution
techniques. Nucleotide identification for each purified isolate was
performed by the real time PCR method, as previously described
(Dumke et al., 2007).

2.3 Whole-genome sequencing and
genome assembly

We obtained the M. pneumoniae genome data from 160 clinical
specimens. Genomic DNA was extracted from each isolate with the
Wizard Genomic DNA Purification Kit (Promega, Madison, WI,
USA), according to the manufacturer’s protocol. To enrich the
nucleic acids, we used an M. pneumoniae-specific hybridization
capture probe designed in our laboratory. Library preparation for
next-generation sequencing (NGS) was performed using the Enzyme
Plus Library Prep Kit (iGeneTech, BJ, BJ, China) and the TargetSeq
One Kit (iGeneTech). The libraries were sequenced on the NovaSeq
6000 platform (Illumina, San Diego, CA, USA), generating paired-
end reads of 150 bp in length. The sequencing depth for the M.
pneumoniae strains averaged approximately 1062 X.

6 Beijing representative strains from November 2023 were further
selected for long-read sequencing using the Nanopore GridION X5
(Oxford Nanopore). Short-reads were assembled de novo using the
Geneious prime software (version 2023.2.1; Biomatters Ltd.,
Auckland, New Zealand). The number of contigs generated ranged
from 5 to 14 per strain. Overlapping and joining of the contigs were
performed with long-reads. The initial short-reads were aligned to the
de novo assembled genome for the correction of errors.

2.4 SNP and indel calling

We evaluated the quality of the Illumina sequencing reads for
the 160 M. pneumoniae genomes and trimmed adapter sequences
using Trimmomatic v0.3 (Bolger et al., 2014). Clean Valid data were
then aligned to the M129 reference genome sequence using the
Burrows—-Wheeler algorithm, implemented in BWA with the
default parameters (Li and Durbin, 2010). After deduplication, we
confirmed that the coverage of all genomic sites with a sequencing
depth greater than 10 exceeded 95% for all samples. Single-
nucleotide polymorphisms (SNPs) and insertions and deletions
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(indels) were called with a consensus quality score of 30 using the
HaplotypeCaller program in GATK v4.1.7 with the local de novo
assembly of haplotypes in an active region (McKenna et al,, 2010).
The VariantFiltration program in GATK was used to hard-filter
variant calls based on the criteria recommended by the GATK team
to generate high-confidence SNPs and indels. The SNPs and indels
in the 141 previously published M. pneumoniae raw sequence
datasets, together with artificial short-read datasets of the 289
published genomes generated by the ART-Illumina (Said
Mohammed et al., 2018) read simulation tool, were also called
with the aforementioned method. In the analysis of different
subtypes in this study, SNPs and indels shared by more than 60%
of strains in Asia and by less than 40% of strains in other regions of
the world were identified as Asia-dominant SNPs and indels.

2.5 Phylogenetic analysis

ICEfinder (Liu et al,, 2019) was used to detect integrative and
conjugative elements (ICEs) and integrative and mobilizable
elements (IMEs), and PHASTER (Arndt et al., 2016) was used to
identify prophages. SNPs located within these regions and those in
repetitive regions of M. pneumoniae M129 were excluded. To avoid
the potential homoplasy effects of drug-resistance-associated
mutations on phylogeny, SNPs were also excluded from the
dataset used for phylogenetic tree construction when they were
located in known drug-resistance-related genes, including
MPN_r02 (Lucier et al., 1995), MPN_166 (Ou et al., 2015), and
MPN_170 (Pereyre et al., 2016). A concatenated superset of SNPs
relative to M129 reference genome was generated across all 160
sequenced strains and all 430 published datasets. SNP sites with
missing data in any of the strains within the dataset were removed.
The refined SNP set was used to construct a maximum-likelihood
phylogeny with RAXML (Stamatakis, 2014), using the GTRgamma
substitution model. Node reliability was assessed with a bootstrap
analysis of 100 resampled datasets. The iTOL server (Letunic and
Bork, 2024) was used for the manipulation and presentation of the
phylogenetic trees.

2.6 Molecular typing

Multilocus sequence typing (MLST) was performed with the
MLST scheme specific for M. pneumoniae available at the
PubMLST database (Jolley et al., 2018). Eight housekeeping genes
were analyzed by aligning their sequences against the references on
PubMLST, and sequence types (STs) were assigned based on the
allele profiles of these genes.

2.7 Comparative genomics
Completed genomes were aligned to the reference M129

genome using BRIG (Alikhan et al, 2011) to visualize overall
sequence similarity between the strains. MAUVE was used to
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detect large chromosomal rearrangements, deletions, and
duplications (Darling et al., 2004). M129 and FH were used as
typical strains for type 1 and type 2.

2.8 Statistical analysis

Median values and interquartile ranges were calculated for
continuous variables, and percentages were used for categorical
variables. Comparisons of different groups were analyzed with the
X2 test or Fisher’s exact test. Significance testing was performed by
redistributing the mutation events in each gene in different groups
and deriving an empirical p value. The q values for the discovery
rates were then calculated to account for multiple hypothesis
testing, using the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995).

3 Results
3.1 Strain characteristics

A total of 160 M. pneumoniae genomes of patients with M.
pneumoniae infection in Beijing in 2018-2023 were included in the
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current genomic study (Figure 1A; Supplementary Table 1). Strains
from patients with community-acquired pneumonia accounted for
95.6% (Figure 1B), including 28 patients with severe CAP. Male
patients accounted for 50.6%, demonstrating a balanced sex ratio in
the cohort. The median age was 8 years (P25, 6 years; P75, 27.5
years). An analysis identified four sequence types (STs):
predominantly ST3 (n = 93; 58.2%) and ST14 (n = 65; 40.6%),
with ST2 (n = 1; 0.6%) and ST17 (n = 1; 0.6%) as minor types.
Interestingly, the ST distributions were significantly different (y2 =
9.243, P < 0.01) among the age groups in this study, with ST3
predominant in children and ST14 prevalent in adults (Figure 1C).

Based on our genomic analysis, the total proportion of MRMP
in Beijing from 2018-2023 was 88.8% (142 of 160; Supplementary
Table 1), all of which possessed the A2063G resistance mutation in
domain V of 23S rRNA gene. However, the rate of macrolide-
resistance mutation varied in the major ST groups. The macrolide-
resistant mutation rate in the ST3 strains was maintained at 100%,
whereas the overall mutation rate among the ST14 strains was
75.4% (Supplementary Table 1), showing a rapidly rising trend in
recent years (Figure 1D). Specifically, within the ST14 strains,
MRMP accounted for 43.5% before 2020, increased significantly
t0 89.3% in 2020-2022, and then reached a surprising 100% in 2023.
But no ST2 or ST17 strain exhibited resistance to macrolides in
this study.
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3.2 Phylogenetic associations

Based on the 5707 SNPs present in the core genomes, we
constructed a genome-wide phylogenetic tree of the 590 M.
pneumoniae strains, including 160 strains from this study and
430 global genomes available from public database (Figure 2;
Supplementary Figure S1). As expected, the phylogeny of M.
pneumoniae formed two major clades in accordance with the P1
typing and could be further divided into six subclades, consistent
with previous results (Hsich et al., 2022; Kenri et al., 2023; Kubota
et al, 2025). The pl-type 1 clade was divided into four subclades
T1-1, T1-2, T1-3 and T1-3R, and the p1-type 2 clade into subclades
T2-1 and T2-2. In general, the STs of the 590 strains were
consistent with the phylogenetic groups. Subclades T1-1, T1-2
and T1-3R consisted solely of ST1, ST17 and ST3 strains,
respectively. However, the large subclades always included
multiple STs. Major ST of Subclade T1-3 was ST3 with ST5, ST9,
ST19, ST20, and ST30. Subclade T2-1 consisted of ST2, ST6, ST7,
ST8, and ST16. Subclade T2-2 showed a high proportion of ST14
strains followed by ST2, ST15, and ST33.

A phylogenetic analysis showed that 160 M. pneumoniae strains
from Beijing largely grouped into subclades T1-3R and T2-2, two
major Asia-prevalent subclades within the tree (Figure 2). Among
the two subclades, the 160 Beijing strains and those isolated from
Asia have relatively close genetic locations. Moreover, no
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correlation between the phylogenetic groups and the year of
isolation was observed in Beijing strains.

A spatial analysis revealed that the subclades T1-2, T1-3R and
T2-2 were predominantly consisted of strains from Asian countries.
On the contrary, strains from other regions of the world (e.g.,
Europe, America, and Africa) generally formed distinct groups
distant from the Asian strains. Specifically, subclades T2-1 and
T1-3 were dominated by M. pneumoniae strains collected from
regions outside Asia, with only a few exceptions of Japan
strains (Figure 2).

3.3 Genome comparison

The 6 completed genomes of Beijing representative strains were
aligned using a variety of methods. To determine their overall
similarity, the genomes were aligned to the reference M129 genome
using BRIG, a BLAST-based alignment method. Overall, the
genomes were 99% to > 99% identical. The similarity dropped to
approximately 95% in the type 2 strains, where the pI gene
(MPN141) and the orf6 gene (MPN142) harbored (Figure 3).

We also aligned the genomes using MAUVE to detect large
chromosomal rearrangements, deletions, and duplications. All
genomes fell into three conserved locally collinear blocks (LCBs),
which were in the same order without any rearrangement. MAUVE
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detected four subtype-specific insertions according to M129
numbering: three type 1-specific insertions (169-170 kb, 178-179
kb, and 558-560 kb) and a type 2-specific insertion (located at 708
kb). HsdS genes (encoding a type I restriction-enzyme-like protein S
subunit) were considered to be associated with non-conserved
structural regions (Figure 4).

3.4 Asia-dominant genetic variations

To establish the genetic basis of these distinct phylogenetic
features of the Asian M. pneumoniae strains, we screened for
potential Asia-dominant SNPs and indels based on our dataset
(Figure 5). The Asia-dominant variations of the pl-type 1 strains
were distributed in 29 genes and four intergenic regions.
Nonsynonymous sequence variations were found in 22 protein-
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coding genes. Among these, dnaA (encoding the chromosomal
replication initiator protein DnaA, MPN686) is associated with
genome stability. Moreover, three protein-coding genes were
annotated as potential virulence factors: rpoE (encoding a DNA-
directed RNA polymerase delta subunit, MPN024), P116 gene
(encoding the adhesion protein P116, MPN213), and rpoB
(encoding an RNA polymerase beta subunit, MPN516). The Asia-
dominant variations in the pl-type 2 strains were distributed in 78
genes and 21 intergenic regions. Nonsynonymous sequence
variations were found in 46 protein-coding genes. Six genes were
associated with genome stability: polC (encoding a DNA
polymerase III alpha chain, MPN034), topA (encoding a DNA
topoisomerase, MPN261), lig (encoding a DNA ligase, MPN357),
recA (encoding a recombination protein RecA, MPN490), dnaX
(encoding a complex ATPase, MPN618), and hsdR (encoding a type
I restriction-enzyme-like protein R subunit, MPN345). Three genes
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were potentially involved in virulence: rpoE, alaS (encoding an
alanyl-tRNA synthetase, MPN419), and hmwl (encoding a
cytadherence accessory protein HMW1, MPN447). A full list of
the Asia-dominant SNPs and indels identified are shown in
Supplementary Table 3.

4 Discussion

This study revealed different distributions of STs across age
groups in patients with M. pneumoniae infections and disparities in
the drug-resistance rates among the ST's prevalent in Beijing. Of the
two main STs of the Beijing M. pneumoniae strains, adult patients
were more commonly infected with ST14 strains, whereas ST3
strains were predominant in children. This is consistent with a
previous study in Taiwan (Hung et al., 2021). ST3 (93/94) and ST14
(65/66) were the predominant types of p1-type 1 and 2, respectively.
The correlation between the pI types of M. pneumoniae infections
and age group implies that the older population may have pre-
existing immunity to the p1-type 1 strains. In this study, the Beijing
strains showed a high prevalence of MRMP (88.8%) in 2018-2023,
with varying resistance rates among different STs. Strikingly, 100%
of the ST3 strains showed MRMP, whereas the proportion of
MRMP in the ST14 strains increased dramatically from 43.5% to
100% during the last 6 years. In contrast to other regions of Asia, the
shift in prevalent ST's occurred between 2002-2016 (ST3 and ST14)
and 2018-2019 (ST7 and ST33) in Japan, resulting in a rapid drop
in the resistance rate to 11.3% in 2018-2019 (Morozumi et al.,
2020). However, some researchers have questioned the validity of
ST33. The ST33 and ST14 strains exhibit only a single SNP
difference in the adk marker of the MLST scheme, which notably
occurs within the primer sequence of the original MLST method.
Caution is needed when interpreting MLST differences in the
phylogenetic classification of M. pneumoniae strains. Otherwise,
slight genetic variations may overestimate the phylogenetic
relationship between strains (Kubota et al., 2025). Therefore, we
hypothesize that there is a correlation between the dominant ST
groups and the macrolide-resistance rate. The driving force behind
the shift in prevalent ST's requires further investigation.

Analysis of spatial genomic epidemiology reveals clear
differences between M. pneumoniae genomes in Asia and those
from other world regions. In this study, endemic strains from Asia
and other world regions clustered in distinct clades on a
phylogenetic tree. The differences in geographic distributions may
indicate ongoing divergence within the species or imply possible
variations in the patterns of transmission. The varying proportions
of MRMP in different geographical regions also provides strong
evidence of spatial genomic differences. The highest proportion of
MRMP infections was 53.4% in the western Pacific region, followed
by 9.8% in Southeast Asia, 8.4% in the Americas, and 5.1% in
Europe from 2000 to 2019 (Kim et al., 2022).

It is widely accepted that variations in antibiotic resistance rates
across regions are associated with local strategies for drug treatment
(Morozumi et al., 2020; Nakamura et al., 2021). Nevertheless, it is
also possible that the genomes of the Asian endemic M. pneumoniae
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strains have an inherently higher propensity for mutations than
those in other regions. This could be an overlooked genetic factor
contributing to drug resistance. Our data show that the Asia-
dominant mutations were associated with multiple genes involved
in bacterial replication. It is reasonable to infer that mutations in
dnaA (Washington et al., 2017) may affect genome integrity and
regulation of DNA damage. The M1376I mutation in PolC (Sanders
et al, 2010) may lead to changes in the fidelity of replication,
thereby increasing the probability of genetic mutations. Mutations
in genes encoding replication enzymes, such as topA, lig and dnaX
imply potential changes in both the bacterial growth rate and
genetic mutation rates in the group of Asian-endemic strains.
RecA repairs broken chromosomes by homologous
recombination to maintain the integrity of the genome (Singh
et al,, 2010). The insertion in hsdR, which protects bacteria from
invasion by exogenous DNA (Obarska-Kosinska et al., 2008), causes
a frameshift mutation, although the phenotypic impact of this
genetic mutation remains unclear. Taken together, genetic
variations in M. pneumoniae genes associated with replication
could lead to changes in replicase fidelity, gene repair, and gene
recombination, which may contribute to the increased genomic
mutation rate in the Asian-endemic strains. The Asia-dominant
mutations were also closely related to changes in the drug resistance
and virulence of M. pneumoniae. The changes of rpoE (Flannagan
and Valvano, 2008), rpoB (Ishikawa et al, 2006) and alaS
(Jovanovic et al., 1999) may affect the drug-induced stress
response mechanism, rifampin resistance and novobiocin
resistance in M. pneumoniae, respectively. Furthermore,
mutations in known virulence factors, such as P116 (Sprankel
et al, 2023) and HMWI1 (Krause et al, 2018), may affect the
virulence and adhesion of M. pneumoniae. Whether the Asia-
dominant mutations in this study impose potential fitness on M.
pneumoniae circulating in Asia, would be an interesting focus for
future studies.

The upsurge in respiratory illnesses among children in northern
China in 2023 has attracted global attention. Our previous results
demonstrated that the increase in the incidence of respiratory
infections in Beijing was mainly attributable to the circulation of
multiple known pathogens, primarily M. pneumoniae (Gong et al.,
2024). However, the role of any potential new variants in the
current M. pneumoniae outbreak remains unclear. Our temporal
genomic epidemiological analysis of the Beijing strains collected
from 2018 to 2023 revealed their dispersal across the phylogenetic
tree without forming year-related clustering branches. This
indicated the extraordinary stability of the Beijing M. pneumoniae
genome over time, which showed limited divergence. Our findings
are largely consistent with a recent report from southern China
(Suzhou), which identified two primary epidemic clones, EC1 (in
P1-1) and EC2 (in P1-2) (Li et al.,, 2024). In our cohort, all ST3
genomes and the majority of ST14 genomes clustered within EC1
and EC2, respectively. The observation of this consistent molecular
epidemic pattern across southern and northern China suggests a
nationwide dissemination of the EC1 and EC2 clonal groups.
However, our study provides further nuance regarding the
composition of EC2. Whereas Li et al (Li et al., 2024). considered
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EC2 to be universally macrolide-resistant due to the A2063G
mutation in 23S rRNA, our temporal analysis revealed a more
complex dynamic. We found that numerous ST14 strains isolated
between 2018 and 2020 lacked macrolide-resistance mutations and
did not cluster with EC2. In contrast, those from 2021 to 2023 did
carry the mutation and belong to EC2. This indicates that EC2 is a
specific, macrolide-resistant subset of the broader ST14 population,
and its expansion is likely the primary driver of the increased
frequency of MRMP in pl-type 2 strains reported in China since
2020 (Jiang et al., 2023; Chen et al., 2024; Gong et al., 2024).

All 6 Beijing representative strains isolated from the 2023
epidemic season were selected for comparative genome analysis.
An overall high degree of sequence similarity was found among the
strains (99% to > 99% identical to M129 reference genome). BRIG
clearly distinguished P1 types 1 and 2. The differences between two
subtypes were concentrated to specific areas of the genome, rather
than being evenly distributed. This indicates that specific genes
encoding proteins involved in host cell interaction, such as the P1
adhesin, are subject to positive selection pressure. MAUVE
demonstrated that no large-scale rearrangements were observed
among M. pneumoniae isolates. The four subtype-specific insertions
were consistent with previous reports by Lee et al. Consistent with
previous reports (Xiao et al., 2015; Diaz et al., 2017; Lee et al., 2019),
we identified subtype-specific insertions that were unique to either
type 1 or type 2 isolates. However, discrepancies were noted among
these studies regarding the size of subtype-specific insertions and
the detection of small insertions. These differences are likely due to
genomic variance among M. pneumoniae strains isolated across
distinct geographic locations and time periods. The non-conserved
regions within hsdS have been described in this study. The M129
genome had 10 copies of hsdS scattered throughout the genome,
encoding the DNA sequence specificity (S) subunit of the type I
restriction and modification (R-M) enzymes which protect bacteria
from invading foreign DNA. Multiple hsdS genes with variable
tandem repeat (TR) numbers were found in a previous study (Xiao
et al, 2015). The gain or loss of TR units change the target
specificity. Hence, the presence of variable hsdS genes within the
genome implies potential epigenetic mechanisms governing gene
regulation. (Lee et al., 2022b). described the association of TR
number variabilities in hsdS with macrolide resistance in M.
pneumoniae. These results indicate that the current outbreak in
Beijing is probably attributable to the local circulation of the
original strains, rather than to any new variant(s) of
M. pneumoniae.

This study has several limitations. First, potential biases may
have been introduced by the composition of the genomic dataset
used for phylogenetic analysis. The dataset was imbalanced, with
fewer non-Asian (n=151) than Asian strains (n=439). Furthermore,
a significant temporal discrepancy existed, as the non-Asian strains
were collected over an earlier period (1954-2014) compared to the
more recent Asian strains. This disparity in sample size and
collection timeline may confound the identification of Asian-
specific genetic features in real world. Second, our analysis was
restricted to genotypic screening for mutations associated with
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macrolide resistance, without accompanying phenotypic
susceptibility testing to confirm the resistance status. However,
these limitations did not change the major findings of this study.

In summary, based on a comprehensive genomic
epidemiological analysis, our results indicate that the genomes of
M. pneumoniae strains circulating in Beijing show a high degree of
stability. Theoretically, the current high prevalence of M.
pneumoniae, which began in autumn of 2023, is probably not due
to new emerging variants, and is likely to persist over forthcoming
years. Compared with regions of low MRMP prevalence, strains
from Beijing and other high-MRMP-prevalence regions carried
Asia-dominant mutations in genes associated with genome
replication and repair, which probably led to higher mutation
probability against selection pressure exerted by antibiotics use.
Our data provides a baseline for assessing the impact of future
interventions and highlight the need for monitoring M. pneumoniae
variants to reduce the pressure on healthcare resources.
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