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Introduction: Acinetobacter pittii is increasingly recognized as a significant cause
of nosocomial infections. Bacteriophage-encoded depolymerases that degrade
capsular polysaccharides (CPS)—a major virulence factor of A. pittii—represent
promising therapeutic tools.

Methods: This study identified and characterized a novel depolymerase,
designated 31TSP, derived from the A. pittii bacteriophage 31Y. Its functional
stability across various pH levels (5-11) and temperatures (4 °C to 121 °C) was
assessed. The inhibitory effect of 31TSP on biofilm formation and its disruptive
activity against preformed biofilms were evaluated using crystal violet staining,
viable cell counts and scanning electron microscopy. Combinatorial treatments
with 31TSP and ampicillin were conducted. Furthermore, the enzyme's stability
under different ion concentrations (NaCl) and its ability to enhance serum
bactericidal activity were tested under experimental conditions.

Results: Characterization demonstrated that 31TSP exhibits a broad host range
against A. pittii, A. baumannii, and A. hosocomialis. The enzyme degraded the
CPS of host bacteria and displayed inhibition effects on sensitive hosts. 31TSP
retained functional stability across a wide pH range (5-11) and temperatures from
4 °C to 121 °C. Its inhibitory effect on biofilm formation and disruptive activity
against preformed biofilms were confirmed. Notably, combinatorial treatment
with 31TSP and ampicillin significantly enhanced biofilm inhibition and disruption
at 24 hours post-treatment. However, 31TSP did not maintain stability under
different ion concentrations (NaCl) and could not enhance serum bactericidal
activity under the experimental conditions.

Discussion: These findings support the potential of 31TSP as an antibacterial agent
against Acinetobacter infections. The observed synergy with conventional
antibiotics, such as ampicillin, suggests a promising combinatorial strategy for
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future therapeutics targeting Acinetobacter. The enzyme's stability under extreme
conditions of temperature and pH further underscores its therapeutic potential.
However, its instability in varying ionic environments and lack of serum bactericidal
enhancement highlight aspects requiring further investigation for clinical application.

KEYWORDS

Acinetobacter pittii, bacteriophage, depolymerase, antibacterial activity, biofilm,
antibiotic combination

1 Introduction

The Acinetobacter calcoaceticus-baumannii (ACB) complex has
emerged as a significant nosocomial pathogen (Lee et al.,, 2021; Liu
et al., 2015), causing diverse human infections including
pneumonia, bacteremia, wound infections, meningitis, and
urinary tract infections (Chusri et al., 2014). However, routine
clinical diagnostics lack specificity for distinguishing ACB
complex species (Vijayakumar et al., 2019). This limitation has
historically led to underestimation of non-baumannii species in
clinical settings (Pailhories et al., 2018).

Advances in molecular identification techniques (Teixeira et al.,
2017; Mari-Almirall et al., 2019) and increased clinical isolation
have established A. pittii as a prominent nosocomial pathogen
(Chusri et al., 2014). Notably, carbapenem-resistant A. pittii
(CRAP) strains have disseminated globally (Pailhories et al., 2018;
limura et al., 2020; Tian et al., 2022), with rising antibiotic resistance
rates (Zhu and Mathur, 2022). These trends necessitate urgent
development of novel therapeutic agents against A. pittii infections.

Bacteriophages (phages) are natural co-evolutionary partners of
bacteria, functioning as targeted antimicrobial agents through host-
specific infection (Chen et al., 2022). However, their narrow host range
—while advantageous for specificity—poses challenges for clinical
implementation, necessitating precise strain-matched selection for
therapeutic applications (Ringaci et al,, 2022). Consequently, phage-
derived enzymes (e.g., endolysins, depolymerases, and holins) have
emerged as promising antibacterial candidates (Pires et al., 2016; Yuan
et al,, 2021).

Depolymerases are of particular interest due to their ability to
degrade bacterial capsular polysaccharides (CPS), a major surface-
exposed virulence factor. CPS serves as a protective barrier that
facilitates bacterial adhesion, impedes antibiotic penetration, and
confers resistance to phagocytosis and opsonization by host
immune cells (Paczosa and Mecsas, 2016). CPS degradation
sensitizes bacteria to immune-mediated clearance (Chen et al,
2022). Genes encoding depolymerases are typically situated near
structural protein genes (e.g., tail fibers, tail sheath, baseplate, and
neck connector proteins) in phage genomes and may occasionally
share open reading frames (ORFs) with these genes (Cai et al,
2020). Bacteriophage-encoded depolymerases have been
demonstrated to attenuate bacterial virulence in multiple

Frontiers in Cellular and Infection Microbiology

pathogens, including Escherichia coli (Chen et al., 2020),
Klebsiella pneumoniae (Li et al, 2021; Cui et al.,, 2023), A.
baumannii (Liu et al, 2019a), and Proteus mirabilis (Rice et al.,
2021). However, research on depolymerase-mediated virulence
reduction remains limited for A. pittii (Domingues et al, 2021).
This gap underscores the need to identify and characterize
additional depolymerases targeting A. pittii strains.

In this study, we identified an enzyme, TSP, capable of
detaching A. pittii Ap31 CPS. We determined its activity under
different pH values, temperatures, and ion concentrations.
Additionally, we conducted research on the combined use of TSP
and antibiotics against biofilms, as well as serum sensitivity assays
mediated by TSP. Our findings indicate the applicability of
bacteriophage-encoded capsule depolymerases as a novel strategy
to control drug-resistant A. pittii infections.

2 Materials and methods

2.1 Acinetobacter pittii strain and the
isolation of bacteriophage

All Acinetobacter strains employed in this study were isolated from
the affiliated hospital of Changchun University of Chinese Medicine.
Routine cultivation of these strains was conducted at 37 °C in LB broth
or on LB agar (1.5% [wt/vol] agar).

Using A. pittii Ap31 as the host, bacteriophages were isolated
from wastewater obtained from the First Hospital of Jilin
University. Initially, the wastewater was centrifuged at 10,000 rpm
for 10 minutes, and the supernatant was filtered through a 0.22 um
filter. The filtered supernatant was added to a 100 mL mixed
bacterial culture in a logarithmic phase, and the mixture was
incubated overnight at 160 rpm and 37 °C. The following day, the
culture was centrifuged at 10,000 rpm for 10 minutes, and the
supernatant was filtered through a 0.22 pm, 10 pL filter. A 10uL
aliquot was then spotted onto LB plates overlaid with the
corresponding bacterial strain to detect bacteriophage plaques.
The bacteriophage was purified by repeating the double agar
overlay method four times Bacteriophage titers were assessed
using the double-layer agar method as described previously
(Kropinski et al., 2009). The one step grow curve was tested
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according to standard protocol for therapeutic phage preparation
(Luong et al., 2020).

2.2 Observation of morphology through
transmission electron microscopy

Bacteriophage particles were diluted 20 times, and 30 pL of the
diluted solution was dropped onto a 400-mesh copper grid. After
adsorption for 15 minutes, the excess liquid was removed from the side.
The sample was prepared for transmission electron microscopy (TEM).
Negative staining was performed using 0.2% phosphotungstic acid for
30 seconds, excess liquid was removed, and the sample was air-dried
for 1 hour. The specimen was then placed on the observation stage of
the HT-7800 TEM (Hitachi, Japan) and bacteriophage morphology
was observed and photographed under a voltage of 100 kV.

2.3 Preparation and sequencing analysis of
bacteriophage genomes

As previously mentioned, bacteriophage genomic DNA was
extracted using the phenol-chloroform method with slight
modifications (Liu et al, 2013). Briefly, 500 puL of bacteriophage
particles were treated at 37°C with a final concentration of 1 ug/mL
DNase I and RNase A for 1 hour to remove bacterial nucleic acids.
Subsequently, 25 UL of 0.5 M EDTA (pH 8.0), 25 uL of 1 mg/mL
proteinase K, and 20 uL of 10% SDS were added, followed by
incubation at 56°C for 1 hour. After cooling to room temperature,
bacteriophage genomic DNA was extracted using the phenol-
chloroform method and then precipitated with ethanol. After
thorough air-drying at room temperature, the precipitate was
dissolved completely in 20-50 L nuclease-free water and stored
at -20°C.

The extracted bacteriophage genomic DNA was sent to Nanjing
Parsona Genomics Technology Co., Ltd. for genome sequencing
using the Illumina NovaSeq high-throughput sequencing platform.
GeneMarkS software was employed for the analysis and prediction
of open reading frames (ORFs) in the bacteriophage genome.
HHpred (Soding et al., 2005) was used for remote protein
homology detection and structure prediction of bacteriophage-
encoded depolymerase ORFs. AlphaFold 2.0 (Jumper et al., 2021)
was utilized for tertiary structure prediction with default settings,
and PyMOL 2.5 was used for visualization.

2.4 Plasmid construction

Plasmid construction was performed using standard cloning
methods. The ORF43 gene encoding the tail spike protein of
bacteriophage 31Y, designated as 31TSP, was synthesized by
Nanjing Parsona Genomics Technology Co., Ltd. It was then cloned
into the pET28a plasmid using BamHI and HindIII restriction sites.
The C-terminus of the protein was tagged with a 6xHis tag.
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2.5 Protein expression, purification, and
identification

The constructed plasmid was transformed into Escherichia coli
BL21 (DE3) cells. Recombinant plasmid-carrying E. coli BL21 cells
were induced with 1 mM isopropyl-B-d-thiogalactopyranoside
(IPTG) at 37 °C for 4 hours. Cells were harvested by
centrifugation for subsequent protein purification. Ni-Berpharose
FF (Beijing Borsodex Technology Co., Ltd.) was employed for nickel
affinity chromatography to purify the enzyme. Briefly, the harvested
cells were resuspended in sonication lysis buffer, and the cell
suspension was lysed by sonication (20 minutes, 1 second/2
seconds). After centrifugation, the supernatant was collected.
Then the supernatant was sequentially filtered through a 100 kDa
15 mL molecular weight cut-off (MWCO) centrifugal filter
(Millipore) by centrifugation at 5,000 x g for 8 min at 4 °C. The
filtrate was collected and subsequently processed through a 20 kDa
MWCO centrifugal filter (Millipore) under identical centrifugation
conditions. Following centrifugation, proteins retained on the
membrane were eluted. The eluted proteins were loaded onto Ni-
Berpharose FF. The bound proteins were eluted with an imidazole
gradient ranging from 10 to 500 mM. Proteins eluted with the
imidazole gradient were collected, and the molecular weight of the
depolymerase was assessed using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) (Chen et al,
2022). The concentration of the depolymerase was determined
using the BCA Protein Assay Kit (Beyotime) (Walmagh
et al,, 2013).

Depolymerase activity was determined by spot assay (Hsich
et al,, 2017). LB agar plates were inoculated with 200 pL of fresh
bacterial culture. After air-drying at room temperature, 5 UL of
purified depolymerase was spotted on the plates. Following
overnight incubation at 37°C, the formation of translucent spots
on the plates was observed. Based on the imidazole concentrations
present in the various depolymerase concentration experiments, we
examined the antibacterial effects of different concentrations of
imidazole on A. baumannii using the same methodology.

Additionally, antibacterial activity of depolymerase 31TSP was
assessed through viable cell counting. The depolymerase was added
to logarithmic-phase host bacterial cultures at final concentrations
of 100 pg/mL, 50 pg/mL, and 25 pg/mL. PBS of the same volume
was added as a control. After incubation at 37 °C for 1, 2, 3, 4, 5, and
6 hours, each group was serially diluted tenfold, and viable cell
counts were performed. The experiment was repeated three times,
and the data were presented as bacterial reduction counts (control
group - treatment group).

2.6 Determination of the host range of the
phage and capsule depolymerase

A spot assay (Hsich., et al. 2017) was conducted by observing 100

strains of Acinetobacter bacteria stored in the laboratory to ascertain
the host range of Bacteriophage 31Y and Depolymerase 31TSP.
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2.7 Quantitative assay of depolymerase
activity

Depolymerase activity was quantitatively determined by
measuring the release of reducing sugars during the reaction with
3,5-dinitrosalicylic acid (DNS). Initially, bacterial capsular
polysaccharide (CPS) was extracted using the Bacterial
Polysaccharide Extraction Kit (Solarbio, EX1750). Strain Ap31
was cultured on LB agar plates supplemented with 0.5% glucose
at 37°C for 5 days. Cells were then scraped off with 2.5 mL of 0.9%
(w/v) NaCl solution, and the harvested cells were used for CPS
extraction according to the kit instructions (Oliveira et al., 2021).
The freeze-dried CPS powder was re-suspended in PBS to a final
concentration of 2 mg/mL and incubated with 100 pug/mL of 31TSP
at 37°C for 1 hour, with PBS serving as control in place of CPS or
31TSP. DNS reagent (Solarbio, D7800) was added immediately at
twice the volume in each reaction mixture, followed by a 5-minute
reaction at 100°C. Absorbance was measured at 540 nm (Liu et al.,
2019a). All experiments were independently conducted three times.

2.8 Hemolysis assay

The impact of 31TSP on human red blood cell (RBC) hemolysis
was assessed using a modified version of a previously described
method (Chen et al., 2022). Isolated RBCs were washed twice with
PBS (2,000 rpm, 10 min), diluted in PBS to a 5% (v/v) concentration,
and then incubated with 31TSP at 37°C for 1 hour, with PBS and
0.1% Triton X-100-treated RBCs serving as negative and positive
controls, respectively. After centrifugation at 8,000 rpm for 10 min,
100 pL of the supernatant was transferred to a 96-well microplate,
and 100 pL of PBS was added to each well, °Cresulting in a final
volume of 200 pL. Hemoglobin levels were measured at 540 nm. All
experiments were independently conducted three times.

2.9 Cytotoxicity analysis of 31TSP

HEK293 cells (human embryonic kidney cells) were cultured in
DMEM (Gibco) supplemented with 10% FBS (HyClone) at 37°C
under 5% CO, and 90% humidity for 2 days. Subsequently, the cells
were trypsinized and seeded into 96-well plates at a density of 10*
cells per well and incubated at 37°C for 24 h. Then, the medium was
replaced by 200 UL new medium containing 31 TSP (50 pg/mL). After
12 h incubation, 10 uL WST-8 solutions were added into each well for
another 2 h incubation at 37°C. The cell viability was evaluated by
absorbance at 450 nm using a microplate reader (Tecan). Three
independent experimental repeats were performed, each with
triplicate wells per group including PBS controls.

2.10 Depolymerase stability analysis

Stability analysis of the depolymerase was conducted following
a modified version of the method described in a previous study
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(Oliveira et al, 2019). To evaluate the pH stability of 31TSP,
phosphate-buffered saline (PBS) solutions were adjusted to pH
values ranging from 1 to 14 using HCl or NaOH. For each pH
condition, 31TSP (final concentration: 100 ug/mL) and 100 pL of
log-phase bacterial culture were added into 1.8 mL of the
corresponding PBS. The total reaction volume was adjusted to 2
mL using PBS at the same pH. Control groups contained only PBS
(at respective pH values) and an equivalent volume of bacterial
suspension. All samples were incubated at 37°C with shaking for 3
h. After incubation, serial dilutions were performed, followed by
overnight plating for colony counting. The antimicrobial activity of
31TSP at different pH levels was determined by calculating the
reduction in bacterial counts (CFU/mL) relative to the
corresponding pH-matched control (Alog reduction). A higher
reduction value indicates greater enzymatic stability and activity
under the tested pH conditions.

For temperature stability, 31TSP was respectively treated at
temperatures of 4, 25, 37, 50, 60, 70, 80, 90, 100, and 121°C for 30
minutes. After cooling to room temperature, 31TSP was mixed with
the host bacterial culture to achieve a final concentration of 100 pg/
mL. Same volume of PBS was added into bacteria culture as control.
All samples were incubated at 37°C with shaking for 3 h. Then the
living bacteria were cultured and counted as in pH stability test.

To assess the effect of ionic strength on 31TSP activity, log-
phase bacterial culture was mixed with 31TSP at a final
concentration of 100 pug/mL. The ion concentration of the
mixture was then adjusted by adding 1 M NaCl to achieve final
NaCl concentrations of 50 uM, 150 uM, 300 uM, and 500 uM.
Negative control was prepared by adding an equivalent volume of
sterile distilled water (ddH,O) instead of NaCl (0 uM). All samples
were incubated at 37°C with shaking for 3 h. Then the living
bacteria were cultured and counted as in pH stability test.

2.11 Serum Killing assay

The optimal volume ratio of serum to enzyme-treated bacteria
was determined as described previously (Liu et al, 2019b).
Overnight cultured host bacteria were co-incubated with or
without 100 pg/mL TSP at 37 °C for 3 hours. The enzyme-treated
host bacteria were added to healthy human serum at volume ratios
of 3:1, 1:1, or 1:3, with a final reaction volume of 200 uL. After
incubation at 37 °C for 3 hours, bacterial viability was determined
by colony counting. The experiment was independently conducted
three times.

To assess the role of serum complement in the serum
bactericidal assay, a strain sensitive to Bacteriophage 31Y and
31TSP (A. pittii Ap30) and a strain insensitive (A. baumannii
Ab5) to 31Y and 31TSP were also selected (Chen et al., 2022).
Bacteria were treated with enzyme for 3 hours at 37°C and then
mixed with active or heat-inactivated serum (56°C, 30 minutes) at a
3:1 volume ratio. After incubation at 37°C for 3 hours, bacterial
viability was determined by colony counting. Untreated bacteria,
along with equal volumes of PBS, 31TSP, active and heat-
inactivated serum, were cultured as controls, and bacterial
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viability was determined after 6 hours of incubation at 37°C. All
experiments were independently conducted three times.

2.12 Biofilm inhibition assay

As previously described, we investigated the inhibitory effects of
31TSP and antibiotics on biofilm, with slight modifications (Chen
et al, 2022). The host bacterium Ap31 was cultured to the
logarithmic phase, treated with 0.IM PBS (control group), 31TSP
(100 pg/mL), ampicillin (16 pg/mL, MIC), or their combination
(31TSP + ampicillin) at a final volume of 100 pL/well in a 96-well
plate, and incubated at 37°C for 3h, 6h, 9h, 12h, and 24h,
respectively. After incubation, all culture media were removed,
and the wells were washed three times with 100 uL of 0.1M PBS.
The plate was air-dried at room temperature, stained with 100 uL of
0.1% (w/v) crystal violet for 10 min, and then destained with 100 uL
of 95% ethanol for 10 min. The remaining biofilm biomass was
quantitatively measured at 570 nm wavelength using a microplate
reader (BioTek). The anti-biofilm activity was assessed by counting
planktonic live bacteria (Wilson et al., 2017). All experiments were
independently conducted three times.

2.13 Biofilm removal assay

The host bacterium Ap31 was cultured to the logarithmic phase
and dispensed into a 96-well plate at 100 uL/well. Based on the
growth matrix curve of the host bacterium (Supplementary
Figure 1), the maximum biofilm biomass formation was
determined at 9h, and the plate was incubated at 37°C for 9h.
The biofilm was washed twice with 0.1M PBS and then treated with
0.IM PBS (control), 31TSP (100 ug/mL), ampicillin (16 pg/mL,
MIC), or their combination (31TSP + ampicillin) at a final volume
of 100 puL/well, followed by incubation at 37°C for 3h. At the end of
the incubation period, quantification of the remaining biomass was
performed using crystal violet as described in the inhibition assay
(Chen et al, 2022). Additionally, the anti-biofilm activity was
assessed by counting live bacteria within the biofilm (Wilson
et al,, 2017). After treating the biofilm as described above, wells
were washed three times with 0.IM PBS. Subsequently, a pipette
device was used to thoroughly mix wells containing the biofilm,
converting biofilm cells into planktonic cells. Each sample was
serially diluted and subjected to live bacterial counting. All
experiments were independently conducted three times.

2.14 Scanning electron microscopy
observation

Detection of the Impact of 31TSP and Antibiotics on Biofilm
Formation and Eradication in A. pittii: (1) Biofilm Inhibition
Observation: High-pressure sterilized cover slips were placed in a
24-well plate. The host bacterium at the logarithmic phase was treated
with 0.1M PBS (control), 31'TSP (100 pg/mL), ampicillin (16 pg/mL,
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MIC), or their combination (31TSP + ampicillin) at a final volume of
1 mL/well. The mixtures were cultured at 37 °C until 9h (maximum
biofilm biomass formation). After incubation, all mixtures were
removed, and the coverslips were washed three times with 1 mL of
0.1M PBS. Samples treated with depolymerase for varying durations
were arranged in reverse chronological order (longest to shortest
treatment time) according to the scheduled electron microscopy time
slot. The coverlips from all treatment groups were harvested
simultaneously and processed for electron microscopy observation.
The coverslips were air-dried at room temperature and subjected to
gold coating. The impact of 31TSP and antibiotics on biofilm
formation in A. pittii was observed using a scanning electron
microscope (JSM-7900F). (2) Biofilm Eradication Observation:
High-pressure sterilized coverslips were placed in a 24-well plate.
The host bacterium at the logarithmic phase was dispensed into each
well at 1 mL/well and cultured at 37 °C until 9h. After washing twice
with 0.1M PBS, the coverslips were treated with 0.1M PBS (control),
31TSP (100 pg/mL), ampicillin (16 pg/mL, MIC), or their
combination (31TSP + ampicillin) at a final volume of 1 mL/well.
The mixtures were incubated at 37 °C for 3h. After incubation, all
mixtures were removed, and the coverslips were washed three times
with 1 mL of 0.IM PBS. The coverslips were air-dried at room
temperature and subjected to gold coating. The impact of 31TSP and
antibiotics on biofilm eradication in A. pittii was observed using a
scanning electron microscope (JSM-7900F).

2.15 Statistical analysis

All data represent the average of three independent
experiments, and the results are expressed as the mean *
standard deviation. Statistical significance was analyzed using
SPSS Statistics 25.0 software, with p < 0.05 considered statistically
significant. Graphs were created using Prism 7.

3 Results

3.1 Morphology and one-step growth
curve of phage

When the isolated was inoculated onto a double-layer agar plate
containing the host bacterium Ap31 (antibiotic resistance spectrum
detailed in Supplementary Table 1), transparent plaques
surrounded by a semi-transparent halo were formed (diameter
approximately 2.5 mm) (Figures 1A, B). As the cultivation time
increased, the halo area gradually enlarged, with the diameter
expanding from approximately 4 mm (cultivation for 7 hours) to
about 9 mm (cultivation for 20 hours). Transmission electron
microscopy images revealed that the bacteriophage 31Y had an
icosahedral head (diameter of about 60 nm) and a non-contractile
short tail (about 15 nm) (1C).

After propagation, concentration, and purification, the final titter
of bacteriophage 31Y was determined to be 2 x 10'° PFU/mL.
Infection of the Ap31 strain with bacteriophage 31Y at a multiplicity
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Transparent plaques and halos produced by bacteriophage 31Y. (A) Transparent plaques and halos were observed after 7 hours of cultivation. (B)Transparent
plaques and halos were observed after 20 hours of cultivation. A semi-transparent halo expanded with prolonged incubation time. (C) Transmission electron
micrograph of bacteriophage 31Y. (D) One-step growth curve of bacteriophage 31Y.

of infection (MOI) of 0.001 was conducted for a one-step growth curve
analysis. As shown in Figure 1D, the latent period of bacteriophage
31Y was approximately 25 minutes, the burst period was 45 minutes,
and it reached stability after 70 minutes. The burst size of
bacteriophage 31Y was approximately 48 PFU/cell.

3.2 Whole genome sequencing analysis
and structural analysis of depolymerase

The whole genome sequencing results revealed that the size of
bacteriophage 31Y genome was 41, 254 bp, arranged as a linear
double-stranded genome with a G+C content of 39.26%. The
nucleotide composition was 31.15% A, 17.13% C, 22.14% G, and
29.58% T. The annotated genomic sequence reregistration number
for bacteriophage 31Y is currently pending and will be provided upon
final registration, the sequence is available as supplementary data.
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Gene prediction using the GeneMarksS tool identified 49 open reading
frames (ORFs) within the bacteriophage 31Y genome, covering
37,992 bp with an average length of 775.35 bp. The accession
number of bacteriophage 31Y genome in NCBI is PV467367
(Acinetobacter phage A31Y, complete genome - Nucleotide -
NCBI). According to BlastN analysis and the document of
International Committee on Taxonomy of Viruses, Acinetobacter
phage A31Y belongs to Autographiviriles, Autoscriptoviridae.
Among these ORFs, ORF43 with a size of 678 amino acids, was
identified as the gene encoding the tail spike protein as it showed
high homology with tail spike proteins of several Acinetobacter
phages, such as Acinetobacter phages Paty (QQM15083),
Acinetobacter phage vB_AbaP_ABW311 (CAL1776920) and
Acinetobacter phage Pipo (QQ092973). These proteins are
classified as structural depolymerases originating from these
bacteriophages. Although no conserved domains could be found
by NCBI Conserved Domain Search, HHpred analysis indicated
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high structural similarity between the N-terminal region of 31TSP
to the N-terminal region of tail fiber/spike protein of the T7 phage
( ) and A. baumannii
bacteriophage AB6 ( ).

The predicted structure of the monomer of the depolymerase
encoded by bacteriophage 31Y, as determined by AlphaFold 2,
). The first part
exhibited an N-terminal domain with an antiparallel B-sheet

revealed three distinct domains ( ,

structure followed by o-helices, responsible for the attachment of
these proteins to the bacteriophage particles, playing a role in the
initial interaction with the bacterial host ( ).
The second part constituted a cone-shaped interlocking pyramid
domain mainly composed of parallel short 3 structures, commonly
involved in host recognition and exhibiting depolymerase activity
( ). The simulated third part
represented the C-terminal domain, consisting of an antiparallel
[B-sheet region composed of approximately 100 amino acids.

10.3389/fcimb.2025.1608526

3.3 Expression, purification, and
identification of depolymerase

The gene ORF43, encoding the tail spike protein, was cloned
into an expression vector and purified through Ni-NTA affinity
chromatography, yielding a recombinant product at 223 ug/mL
concentration. SDS-PAGE analysis confirmed the presence of a
recombinant protein, 31TSP, with an approximate molecular
weight of 75 kDa (
acids in the protein sequence was 678, the purified protein band

). As the total number of amino

observed on the gel corresponds to a depolymerase monomer. To
validate the enzyme’s activity post-purification, a plaque assay was
conducted. For every test, 5 pL depolymerase in different
concentration were dropped on bacteria lawn. The results
demonstrated that purified 31TSP formed a semi-transparent halo
on the lawn of host strain Ap31 ( ). The area of the semi-

transparent halo decreased with decreasing concentrations of

429aa
678aa

Part3

A
laa
Acinetobacter baumannii bacteriophage Phi AB6 tailspike protein(5JS4)
. Acinetobacter phage
Esch.enchla phagg vB_ApiP_P1 tailspike protein
T7 tail fiber protein (6EIR)
(7EY9)
laa 115aa
B
Partl Part2
central pyramidal domain
C
FIGURE 2

Structural Analysis of 31TSP. (A) HHpred analysis identified structural similarity between 31TSP and proteins in the Protein Data Bank (PDB). (B) Schematic
representation of the structure of 31TSP. (C) The predicted spatial structure of monomer 31TSP by AlphaFold 2. The N-terminal domain is represented in
green, the central cone-shaped domain in yellow, and the C-terminal domain in red
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Identification and characterization of 31TSP depolymerase. (A) Analysis of purified 31TSP and molecular weight standards by SDS-PAGE. (B) Spot
assay of Ap31 strain with varying final doses of 31TSP (0.002 ~ 2 ug). (C) Living bacterial counts after 31TSP treatment in different concentrations.

31TSP, disappearing when the total amount of the enzyme spotted
onto the bacterial lawn was reduced to 0.02 pg (4 pg/mL).
Antibacterial activity experiments indicated a proportional
relationship between 31TSP concentration and antibacterial
efficacy. The most significant reduction in bacterial count was
observed at a concentration of 100 ug/mL (Figure 3C). Thus,
31TSP exhibited robust depolymerase activity. However, the
group treated with imidazole at the same concentration as the
experimental groups showed no antibacterial effect. Please refer to
Supplementary Figure 1 for the results.

3.4 Host range of bacteriophage and
depolymerase

The depolymerizing capability of 31TSP and the host range of
bacteriophage 31Y were assessed using a collection of 98 strains of
Acinetobacter stored in our laboratory (Supplementary Table 2).
Overall, among these Acinetobacter strains 38 (38/98, 38.8%) were
susceptible to depolymerization by 31TSP, while only 5 (5/98, 5.1%)
strains were susceptible to lysis by bacteriophage 31Y. Notably, all 5
strains susceptible to bacteriophage 31Y belonged to A. pittii. In
contrast, among the 38 strains susceptible to 31TSP
depolymerization, aside from the 5 A. pittii strains lysed by
bacteriophage 31Y, an additional 1 A. pittii, 1 A. nosocomialis,
and 31 A. baumannii strains were susceptible, significantly having a
broader host range than bacteriophage 31Y.

3.5 Quantification of depolymerase activity

The activity of 31TSP was quantified by measuring the release of
reducing sugars from bacterial surface polysaccharides. The ODsyq
values for CPS and 31TSP in PBS were 0.064 + 0.005 and 0.105 +
0.002, respectively. In contrast, the ODsyo for CPS treated with
31TSP was 0.157 £ 0.002 (Figure 4A). The increase in ODsy, for
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31TSP-treated CPS indicates the production of reducing sugars,
suggesting that surface polysaccharides extracted from the host
bacteria were degraded by the depolymerase.

3.6 Hemolysis assay and cytotoxicity
analysis

Human blood cells and human embryonic kidney cells
(HEK293) were used to evaluate the toxicity of 31TSP to
mammalian cells. The results of the hemolysis assay (Figure 4B)
showed no significant difference between 31TSP and the negative
control group (PBS group) after 1 hour of incubation with red blood
cells, and no hemolysis was observed. Figure 4C showed 31TSP has
no cytotoxicity against HEK293. These results suggest 31TSP may
be a safe therapeutic approach.

3.7 Stability of depolymerase

The activity of 31TSP was assessed under various environmental
conditions, including temperature, pH, and ion strength (Figure 5).
Encouragingly, the enzyme demonstrated remarkable temperature
stability, maintaining high activity after 30 minutes of treatment
across a range of 4 °C to 121 °C (Figures 5A, B). The maximum
reduction in viable bacterial count occurred at 37 °C, reaching 3.104 +
0.016 log, indicating the highest activity. Even after treatment at 100 °
C and 121 °C for 30 minutes, the enzyme still caused reductions of
1.484 + 0.055 and 1.762 + 0.053 log, respectively. Furthermore, the
enzyme remained active over a broad pH range from 5 to 11
(Figure 5C), and even at pH 4 some depolymerase keep weak activity.

Ton concentration significantly decreased the activity of 31TSP,
with a notable impact even at 50 mM ion concentration, resulting in
a reduction of 0.525 + 0.050 log compared to the control group
(Figure 5D). The influence of ion concentration on depolymerase
activity appeared unrelated to a dose-dependent effect.
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FIGURE 4

Activity and Safety of 31TSP. (A) Quantification of 31TSP activity. Bacterial CPS was co-incubated with 31TSP at 37°C for 1h, with PBS used as controls
replacing CPS or 31TSP. The amount of released reducing sugars from EPS was quantified optical density at 540 nm through a reaction with DNS. (B)
Hemolysis assay of 31TSP. PBS and 0.1% Triton X-100 served as negative and positive controls, respectively. The optical density at 540 nm is presented as
mean + SD (n = 3). (C) Cytotoxicity of 31TSP against human embryonic kidney cells (HEK293). Statistical analysis was performed using one-way ANOVA.
Groups sharing the same letter are not significantly different, while groups with different letters are significantly different (p < 0.05).

3.8 The effect of depolymerase on serum
bactericidal activity

Compared to 31TSP untreated bacteria, the number of host
bacteria (Ap31) treated with 31TSP decreased when mixed with
varying volumes of serum (P < 0.05), but the differences were not
observed among different serum proportion groups (Figure 6A). In
subsequent experiments, a serum proportion of 25% was used.

To assess the role of serum, we chose A. pittii Ap30, Ap31 and
A. baumannii Ab5, as the target bacteria. Ap31 and Ap30 are
sensitive to phage 31Y and 31TSP, but Ab5, is insensitive to phage
31Y and 31TSP. These three test strains exhibited resistance to
serum killing, continuing to grow in human serum in the absence of
31TSP. Conversely, after treatment with 31TSP and subsequent
incubation with active serum or inactive serum for 3 hours, the
bacterial count of host strain Ap31 and Ap30 are higher than TSP
treated groups (P < 0.05). While the insensitive strain Ab5, all
experimental groups exhibited almost no reduction in bacterial
count than PBS control (Figure 6B). Therefore, the experimental
Acinetobacter strains are resistant to serum killing, and serum and
inactivated serum showed inhibitory effect on 31TSP.

Frontiers in Cellular and Infection Microbiology

3.9 Anti-biofilm activity

We first evaluated the inhibitory effects of 31TSP on biofilm
formation using crystal violet staining. Quantitative analysis
demonstrated that while ampicillin alone (16 pg/mL, MIC)
showed partial inhibition of biofilm formation compared to PBS
controls at both 6 and 24 hours (p < 0.05), 31TSP alone exhibited
significantly stronger inhibitory effects (p < 0.05). The combination
of 31TSP and ampicillin showed the most pronounced biofilm
inhibition, particularly at the 24-hour time point (Figure 7A).
However, at earlier points (6 hours), no significant difference in
biofilm inhibition was observed between 31TSP alone and the
combination treatment (p > 0.05).

Viable cell counting results demonstrated that, with prolonged
incubation time, the planktonic bacterial count in the PBS control
group tended to stabilize. In comparison to the PBS control group,
the exclusive use of 31TSP resulted in a reduction of planktonic
bacterial counts by 1.280, 2.825, 3.940, 1.306, and 0.675 log at 3, 6, 9,
12, and 24 hours, respectively. Furthermore, the combination with
ampicillin further enhanced this inhibitory effect, leading to
reductions of 0.027, 0.964, 1.360, 3.319, and 2.379 log at the
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Stability of 31TSP. (A) Effect of temperature on 31TSP activity. (B) Spot test of 31TSP against Ap31 strain under different temperature treatment
conditions. (C) Effect of pH on 31TSP activity. (D) Effect of ion concentration on 31TSP activity. The values are presented as the log reduction in
bacterial count (means + SD; n = 3), and the statistical analysis was assayed by one-way ANOVA. Groups sharing the same letter are not significantly
different, while groups with different letters are significantly different (p < 0.05).

respective time points (Figure 7B). Although the inhibitory effect of
sole 31TSP application on planktonic bacterial growth diminished
significantly at 12 and 24 hours, the combined treatment with
ampicillin effectively suppressed planktonic bacterial growth. SEM
further validated the results (Figure 7C). Our findings
unequivocally confirm the efficacy of both sole 31TSP application
and its combination with ampicillin in preventing A. pittii
biofilm formation.

Subsequently, we assessed whether 31TSP alone or in
combination with ampicillin could disrupt pre-formed biofilms.
Crystal violet staining results indicated that, compared to the PBS
control group, the sole administration of ampicillin failed to disrupt
pre-formed biofilms. In contrast, the exclusive use of 31TSP and its
combination with ampicillin effectively disrupted the pre-formed
biofilms (p < 0.05). However, there were no significant differences
between the sole use of 31TSP and its combination with ampicillin
(p > 0.05) (Figure 8A).

Based on viable cell counting results, sole treatment with 31 TSP
could disrupt the host bacteria, reducing the residual host bacteria
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by 3.104 log compared to the PBS control group. The combination
treatment further decreased the remaining host bacteria by 0.095
log, with no significant differences observed between the sole use of
31TSP and its combination with ampicillin (p > 0.05). In the
absence of 31TSP, ampicillin exhibited inefficient killing of
bacteria embedded in the biofilm, resulting in a modest reduction
0f 0.095 log (Figure 8B). SEM observations were consistent with the
aforementioned results (Figure 8C). These data suggest that 31TSP
can effectively eradicate pre-formed biofilms and enhance the anti-
biofilm activity of ampicillin.

4 Discussion

A. pittii, as a member of the ACB complex, often faces
misidentification due to its phenotypic similarity to A.
baumannii, exacerbated by technical limitations in clinical
laboratory identification methods (Pailhories et al., 2018; Molina
etal., 2010; Chen et al,, 2018). However, with an increasing number
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Serum killing experiments. (A) Determination of the optimal volume content of 31TSP-treated bacteria to serum. 31TSP pre-treated Ap31 was
incubated with human serum at a volume ratio of 3:1, 1:1 or 1:3 for 3 hours and viable bacteria were counted. (B) A. pittii Ap30 and A. pitti Ap3lare
sensitive to 31TSP and bacteriophage 31Y, A. baumannii Ab5 was insensitive to 31TSP and bacteriophage 31Y. These strains were used as target
bacteria to test the combination of 31TSP with serum or inactivated serum. 31TSP-treated bacteria were incubated with serum or inactivated serum
at a 3:1 volume content. Then the living bacteria were cultured and counted. Data is expressed as mean + SD (n = 3), and statistical analysis was
performed by one-way ANOVA. Groups sharing the same letter are not significantly different, while groups with different letters are significantly

different (p < 0.05).

of clinical isolates and advancements in molecular identification
techniques (Teixeira et al., 2017; Mari-Almirall et al., 2019; La Scola
et al., 2006), the relevance of the A. pittii species is growing. A
research report from a French hospital indicates that A. pittii is
more frequently isolated from blood cultures compared to A.
baumannii, underscoring its clinical significance (Pailhories et al.,
2018). Studies also suggest a 17% mortality rate within 28 days for
A. pittii-induced bacteremia (Liu et al., 2017). Recent multicenter
surveys in Japan reveal A. pittii as the most common species causing
invasive Acinetobacter infections (Kiyasu et al., 2020). Moreover, in
vitro and in vivo models highlight the higher pathogenicity of A.
seifertii and A. pittii compared to A. baumannii and A. nosocomialis
(Cosgaya et al., 2019; Kuo et al., 2013). With increasing attention on
A. pittii, cases of A. pittii carrying carbapenemase NDM-1 have
been frequently reported, contributing to increased carbapenem
resistance and alterations in resistance mechanisms (Bogaerts et al.,

Frontiers in Cellular and Infection Microbiology

11

2013; Chen et al,, 2019; Pailhories et al., 2017). A recent study
reported a severe pneumonia case associated with a pan-drug-
resistant A. pittii infection in a patient with chronic obstructive
pulmonary disease three years post-double lung transplant (Yang
et al,, 2021).

In response to the growing resistance of A. pittii, this study
investigates the potential of bacteriophage-encoded depolymerases
as a novel therapeutic strategy. Understanding of the pathogenic
mechanisms of A. pittii is currently limited. However, it is known
that A. pittii possesses a thick capsular polysaccharide (CPS) layer
surrounding its cells, considered a crucial virulence factor,
hindering the penetration of certain peptide antibiotics and
shielding the bacterium from host immune system attacks
(Drobiazko et al., 2022). Importantly, bacteriophage-encoded
depolymerases have the capability to degrade bacterial CPS,
rendering the bacteria more susceptible to host immune system
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Inhibition of Biofilm Formation by 31TSP and Ampicillin. (A) Crystal violet staining of biofilms. (B) Living planktonic bacterial counting assay.

(C) Scanning electron microscopy observation at 24 hours. Ap31 bacterial cultures were treated with PBS (control group), 31TSP (100 ug/mL),
ampicillin (16 pg/mL, MIC), or their combination (31TSP + ampicillin), followed by crystal violet staining, planktonic bacterial counting, and scanning
electron microscopy observation. Data are presented as mean + SD (n = 3), and statistical analysis was conducted using one-way ANOVA. Different

letters (a-c) indicate significant differences (p < 0.05).

mediated killing (Chen et al., 2022; Liu et al., 2020; Majkowska-
Skrobek et al., 2018).

According to HHpred analysis, the depolymerase 31TSP
exhibits structural similarity to tail spikes from various
bacteriophages. Its N-terminal portion shares a structural
resemblance with the N-terminal segment of the T7
bacteriophage tail fiber protein, participating in the initial steps of
bacteriophage interaction with the bacterial host (Hsich et al., 2017;
Lin et al., 2017). Predictions of the TSP domain structure by
AlphaFold 2 reveal three regions: N-terminal, central pyramid,
and C-terminal, consistent with recently reported depolymerase
structures derived from A. baumannii bacteriophages Drobiazko
et al,, 2022). After the expression and purification of 31TSP, it was
discovered that the host range of depolymerase is wider than that of
phage 31Y. Sensitive host of phage 31Y is limited to five strains of A.
pittii, but sensitive host of 31 TSP includes seven strains of A. pittii,
one strain of A. nosocomialis, and 31 strains of A. baumannii. We
also tested the sensitivity of some Gram-negative bacilli, such as
Pseudomonas aeruginosa, Klebsiellas pneumoniae, E. coli and
Enterobacter hormaechei, but no sensitive strains were found. As
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31TSP showed a wider host range than original phage, methods on
the T7 phage research could be used to investigate the mechanisms
underlying host range alteration in future studies (Avramucz et al.,
2021., Holtzman et al., 2024).

According previous notion (Chen et al., 2022; Liu et al., 2019a; Lin
et al,, 2017), the depolymerases generally do not directly kill bacteria
during antibacterial therapy. But in this study, according to viable cell
counting on bacteria treated with 31 TSP, it was found that the number
of bacteria in the depolymerase-treated group was significantly lower
than that in the untreated group (Figure 3C). Furthermore, it has been
demonstrated in many phage depolymerases exert their antibacterial
effects in a trimeric form. For example, in Acinetobacter, the
depolymerase Dpo71 from an A. baumannii phage exerts its
antibacterial activity as a trimer (Abdelkader et al., 2022). However,
in recent years, studies have also confirmed that some depolymerases
exert their antibacterial function independently of trimer formation,
such as the depolymerase from Klebsiella pneumoniae phage KP34
and the depolymerase that degrades the K2 serotype capsular
polysaccharide of K. pneumoniae (Maciejewska et al., 2023; Ye et al,
2024). In this study, the structure of 31TSP was not verified by size
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Disruption of Pre-formed Biofilms by 31TSP and Ampicillin. (A) Crystal violet staining. (B) Ap31 counting assay. (C) Scanning electron microscopy
observation. Ap31 biofilms were initially cultured for 9 hours, followed by treatment with PBS (control), 31TSP (100 ug/mL), ampicillin (16 pg/mL,
MIC), or their combination (31TSP + ampicillin) for 3 hours. Subsequently, crystal violet staining, bacterial counting, and scanning electron
microscopy observation were performed. Data are presented as mean + SD (n = 3), and statistical analysis was conducted using one-way ANOVA.
Groups sharing the same letter are not significantly different, while groups with different letters are significantly different (p < 0.05).

exclusion chromatography or circular dichroism analysis as in
research of Dpo71. However, when we subjected the nickel-column
purified depolymerase to low-temperature ultrafiltration using filters
of different molecular weight cut-offs (MWCOs), we found that not
only the flow-through fraction from the >100 kDa filter retained the
ability to inhibit the growth of susceptible bacteria, but the <100 kDa
fraction also contained material capable of inhibiting susceptible
bacterial growth. Notably, the monomeric molecular weight of
31TSP is approximately 70 kDa. Therefore, further investigation is
warranted regarding whether 31TSP’s antibacterial function is
dependent on trimer formation.

31TSP demonstrates remarkable stability in a wide range of
physicochemical conditions, maintaining its activity between
temperatures of 4°C to 121°C and within a pH range of 5-11.
This impressive tolerance to extreme conditions suggests a
correlation with the structural properties of bacteriophage
depolymerases. These enzymes have evolved to endure harsh
external environments during the course of evolution, ensuring
the infectivity of bacteriophages (Oliveira et al., 2019). The observed
heat resistance of 31TSP, even after exposure to high-pressure
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treatment at 121°C for 30 minutes, appears to be reported for the
first time. The stability of 31TSP across such a broad range of
temperatures and pH levels makes it particularly promising for use
in clinical settings or food industry.

In previous research, depolymerase contributing to enhanced
susceptibility of bacteria to serum complement-mediated killing
(Liu et al., 2020; Majkowska-Skrobek et al., 2018). However, in our
serum bactericidal assay, target bacteria showed resistant to serum
killing. In 31'TSP sensitive strains, serum or inactivated serum even
showed slightly inhibit effects to TSP (Figure 6). The reasons for this
difference lie in the mechanism of action of TSP, a mechanism that
remains elusive to date (Chen et al., 2022). Further studies are
needed to elucidate the exact molecular mechanisms behind
31TSP’s activity, as this could provide deeper insights into its
clinical potential.

The formation of biofilms is a major factor contributing to the
chronicity of bacterial infections and the increased antibiotic
resistance (Sharma et al.,, 2019; Costerton et al., 1999).
Depolymerases have proven valuable in inhibiting and/or
eradicating biofilms formed by Klebsiella (Li et al., 2022; Wu et
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al., 2019), Shiga toxin-producing Escherichia coli (Chen et al., 2020),
and A. baumannii (Shahed-Al-Mahmud et al., 2021). The
persistence and antibiotic resistance of A. pittii infections are
strongly associated with biofilm formation. 31TSP demonstrates
dual antibiofilm activity, exhibiting both preventive effects on
biofilm formation and disruptive effects to mature biofilm. These
properties suggest its potential as an adjunctive therapeutic agent to
enhance the effectiveness of conventional antibiotics against
biofilm-associated infections.

In this study, 31TSP alone demonstrated significant anti-
biofilm activity, effectively preventing biofilm formation and
disrupting mature biofilms. We also tested the combination of
31TSP and ampicillin, which showed enhanced biofilm inhibition
during prolonged treatment (24 h), but no significant improvement
over 31TSP monotherapy was observed in disrupting pre-formed
biofilms. As the ampicillin is not the first choice for treatment for
clinical Acinetobacter infections, the combination test should
choose carbapenem as test antibiotics, but all strains sensitive to
31TSP in our lab are also sensitive to carbapenem. Notably, beyond
its activity against A. pittii, 31TSP demonstrated cross-species
inhibitory effects against clinically isolated A. nosocomialis and A.
baumannii strains. This broad host range not only enhances its
potential clinical applicability but also provides valuable insights for
future investigations into its host recognition mechanisms.

5 Conclusion

The depolymerase 31TSP demonstrates a broad host range to A.
pittii, A. baumannii, and A. nosocomialis, maintaining functional
stability across extensive pH (5-11) and temperature (4-121 °C)
ranges. As a safe and effective antimicrobial agent, 31TSP exhibits
dual functionality: (1) enzymatic degradation of bacterial capsular
polysaccharides (CPS) and (2) direct bactericidal activity. While 31 TSP
alone significantly inhibits biofilm formation and disrupts mature
biofilms (p < 0.05), its combination with ampicillin shows synergistic
enhancement in biofilm prevention during prolonged exposure (24 h).
These findings position phage-derived depolymerases, particularly
31TSP, as promising therapeutic candidates for combating
Acinetobacter infections, especially in biofilm-associated cases.
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