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Immunometabolic
reprogramming in diabetic
osteomyelitis: from mechanisms
to therapeutics

Hui Zhang™, Zi-Shan Fu', Ying Zhou, Song-Nan Wang,
Si-Ying Ye, An-Na Wang* and Jun-Tong Liu*

Liaoning University of Traditional Chinese Medicine, Shenyang, China

Diabetes mellitus (DM) is a globally prevalent metabolic disorder characterized by
impaired immune function due to poor glycaemia control, significantly
increasing the risk of osteomyelitis. The occurrence of bone infection not only
compromises patients’ quality of life but also poses substantial challenges in
clinical management. Recent studies have identified immunometabolic
reprogramming as a pivotal player in the pathogenesis and progression of
diabetic osteomyelitis. This reprogramming not only disrupts immune cell
functionality but also modulates the local microenvironment, thereby impairing
bone repair processes. Although preliminary research has explored the
underlying mechanisms, a comprehensive understanding of the precise role of
immunometabolic reprogramming and its potential therapeutic targeting in
diabetic osteomyelitis remains elusive. This review synthesizes current
advances in immunometabolic reprogramming within diabetic osteomyelitis,
elucidates its biological mechanisms, and proposes novel intervention
strategies to inform clinical practice and inspire future therapeutic development.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder affecting hundreds of millions
of people worldwide. Its prevalence continues to rise, making it a major global public health
challenge. Diabetic patients often develop various complications, among which bone
infections, such as osteomyelitis, are one of the most common and serious. Diabetic
osteomyelitis is a severe complication frequently encountered in diabetic patients. Its
pathogenesis is closely associated with immune dysfunction under hyperglycemic
conditions. Hyperglycemia not only impairs the function of immune cells but also leads
to persistent activation of inflammatory responses, thereby hindering the effective
resolution of inflammation and resulting in bone destruction and refractory infection
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(Frazee, 2024). The occurrence of osteomyelitis in diabetic patients
significantly impairs quality of life and may lead to serious
outcomes such as amputation. Therefore, a deeper understanding
of its underlying mechanisms and corresponding treatment
strategies is of great importance.

In recent years, increasing attention has been paid to the role of
immunometabolic reprogramming in diabetic osteomyelitis. The
metabolic state of immune cells directly influences their function,
thereby affecting anti-infective mechanisms and bone healing
processes. For example, under chronic hyperglycemia, immune cells
in diabetic patients often exhibit metabolic dysfunction, leading to
impaired immune responses and increased susceptibility to infection
(Favoino et al,, 2021; Zhang et al., 2021; Osorio et al., 2023). Studies
have shown that deep bone ulcers and inflammatory wounds in
diabetic patients are significant risk factors for osteomyelitis,
highlighting the crucial role of the local immunometabolic
microenvironment in the pathogenesis of infection.

Furthermore, research has revealed that diabetic patients
exhibit distinct immunometabolic reprogramming features during
infection. For instance, macrophages in diabetic patients may adapt
to the inflammatory environment by enhancing glycolysis and fatty
acid oxidation. This metabolic shift not only alters immune cell
behavior but may also promote chronic inflammation and bone
tissue damage (Roverato et al., 2021). Thus, investigating the

10.3389/fcimb.2025.1606317

mechanisms of immunometabolic reprogramming in diabetic
osteomyelitis may provide new avenues for treatment.
Conventional management of diabetic osteomyelitis primarily
includes antibiotic therapy and surgical intervention (Fountas et al.,
2024). However, with growing insights into immunometabolic
reprogramming, novel therapeutic strategies are emerging. These
advances underscore the importance of personalized treatment and
multidisciplinary collaboration in clinical practice.

2 Diabetic osteomyelitis

Foot infections in diabetic patients often present as chronic
ulcers and osteomyelitis, particularly in cases with restricted blood
flow. Studies indicate that the incidence of foot osteomyelitis in
diabetic patients can be as high as 30% (Zhan et al., 2023). Up to
25% of individuals with diabetes will develop a foot ulcer in their
lifetime, and untreated ulcers may progress to bone infection,
ultimately leading to amputation (Jaroenarpornwatana et al,
2023). The pathogenesis of diabetic osteomyelitis is complex,
involving multiple physiological and pathological factors—
including a diabetes-related low-grade inflammatory state,
abnormal bone metabolism, and bacterial infection—as illustrated

in Figure 1.
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FIGURE 1

The initiating factor in the pathogenesis of DO. Hyperglycemia exacerbates osteomyelitic progression by inducing a chronic low-grade inflammatory
state and releasing inflammatory factors, which alter the bone microenvironment to accelerate microbial proliferation and further amplify
pathological alterations in bone tissue, ultimately establishing a self-perpetuating vicious cycle.
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2.1 Chronic low-grade inflammation

A hyperglycemic environment impairs immune cell function,
particularly diminishing chemotaxis, oxidative burst, and
complement activation in neutrophils, thereby increasing
susceptibility to various infections in diabetic patients (Kim and
Choi, 2025). Under such conditions, immune cells are unable to
effectively recognize and eliminate invading pathogens, leading to
persistent bacterial infection in bone tissues. Diabetes is
fundamentally a metabolic disorder characterized by the
accumulation of excess sugars, lipids, and amino acids in the
blood and organs, placing patients in a chronic low-grade
inflammatory (CLGI) state. This condition resembles
“inflammaging” observed in aging and directly compromises
immune cell function (Urszula et al., 2024; Uthaya Kumar et al,
2024). CLGI not only affects glycemic control and induces immune
dysfunction, increasing the risk of infection, but also exacerbates
diabetes-related complications such as diabetic foot and diabetic
nephropathy. Clinically, diabetic foot infection (DFI) is one of the
most common complications among diabetic patients, and severe
infections including DFI-related osteomyelitis are major causes of
hospitalization and limb amputation (Frazee, 2024).

Immune cells in diabetic patients exhibit significant
impairments in proliferation and cytokine secretion, particularly
in macrophage and T-cell function. Under CLGI conditions, T cells
and B cells display features of cellular senescence (Wei et al., 2021;
Saadh et al., 2025). Macrophages show reduced ability to recognize
and clear pathogens, manifested by weakened phagocytosis and
dysregulated cytokine secretion (Pan et al.,, 2024; Saadh et al., 2025).
Consequently, diabetic patients are notably more susceptible to
infections, especially those caused by certain bacteria and viruses
(Alexander et al., 2024; Uthaya Kumar et al., 2024). Thus, CLGI can
be regarded as both the pathological basis and initiating factor in the
development of diabetic osteomyelitis.

2.2 Alterations in the bone tissue
microenvironment

In hyperglycemic mice infected with Staphylococcus aureus, the
bacterial load within the bone is significantly increased, and the
extent of bone destruction is more severe compared to
normoglycemic mice, indicating exacerbated osteomyelitis
symptoms (Butrico et al., 2023). This suggests that hyperglycemia
not only promotes bacterial proliferation but also aggravates
infection-induced bone damage. Within the context of chronic
low-grade inflammation (CLGI), an imbalance in inflammatory
mediators and cytokines disrupts the dynamic equilibrium between
bone resorption and bone formation. For instance, infiltrating
inflammatory cells such as macrophages secrete large quantities of
pro-inflammatory factors within the bone marrow. These factors
promote osteoclastogenesis, enhance bone resorption, and inhibit
osteoblast function, thereby exacerbating osteoporosis and
increasing the risk of fracture (Heng et al, 2023; Chen J. et al,
2025). Furthermore, such inflammatory cytokines may also induce
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osteoblast apoptosis, impairing the bone’s regenerative capacity
(Zhang F. et al., 2024; Hu et al,, 2025). For example, macrophages
in the bone marrow of diabetic patients often exhibit a pro-
inflammatory phenotype, secreting substantial amounts of tumor
necrosis factor-alpha (TNF-o) and interleukin-6 (IL-6). The release
of these cytokines promotes osteoclast activation, accelerating bone
resorption and impairing bone repair and regeneration (Yu et al,
2020; Hu et al., 2025).

Thus, within the setting of diabetic osteomyelitis, alterations in
the bone microenvironment constitute a complex and multifactorial
process. Firstly, imbalanced bone metabolism—a common
pathological feature in diabetes—is characterized by enhanced
bone resorption and impaired bone formation (Bakhtiyari et al.,
2023; Perera Molligoda Arachchige and Verma, 2024). This
ultimately leads to aggravated bone destruction and reduced bone
density, compromising bone structural integrity (Heng et al., 2023).
Additionally, diabetic patients often exhibit microangiopathy in
bone tissue, resulting in local ischemia that exacerbates tissue
damage and increases infection risk. Impaired blood supply due
to microvascular complications places bone tissue at a disadvantage
during repair and regeneration, making infections more likely to
occur and worsen (Perera Molligoda Arachchige and Verma, 2024).
Therefore, from a pathological perspective, changes in the bone
microenvironment can be viewed as an extension of CLGI,
representing its structural impact on bone. The destruction of
bone structure allows pathogenic microorganisms to directly
enter the bone marrow through damaged sites, triggering the
onset of diabetic osteomyelitis.

2.3 Characteristics of pathogenic
microorganism infection

Common pathogenic microorganisms responsible for
osteomyelitis include Staphylococcus aureus, Pseudomonas
aeruginosa, and Escherichia coli. Among these, Staphylococcus
aureus is considered the most prevalent and virulent pathogen.
The persistence of its infection is closely linked to its metabolic
characteristics. S. aureus facilitates its survival and proliferation
through the production of various toxins and enzymes. For
instance, it can secrete [-lactamase, which confers resistance to
penicillin-based antibiotics, thereby contributing to persistent
infection (Urish and Cassat, 2020). Polymicrobial infections are
highly common in osteomyelitis, especially in patients with
prolonged antibiotic use or compromised immune function. For
example, the proportion of Gram-negative bacteria such as
Pseudomonas aeruginosa and Escherichia coli in mixed infections
is gradually increasing, and the drug resistance of these bacteria is
continuously strengthening, posing significant challenges to
conventional treatment strategies (Ruiz Holgado et al, 2023;
Zhang et al., 2023).

Moreover, the formation of microbial biofilms is a critical factor
contributing to the persistence of osteomyelitis infections. Biofilms
are structures formed by bacterial self-produced polymers on
surfaces, which confer strong drug resistance and immune
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evasion capabilities. Bacteria within biofilms can adapt their
metabolic patterns to evade host immune responses and
antibiotic treatments, thereby enhancing their survival (Yu et al,
2025). For instance, S. aureus in a biofilm environment can
modulate its metabolic pathways to establish a persistent
infectious niche within bone and surrounding tissues, protecting
itself from host immune attacks while increasing tolerance to
antibiotics, leading to reduced efficacy of conventional therapies.
Furthermore, biofilm formation not only influences pathogen
resistance but also significantly exacerbates bone destruction.
Bacteria within biofilms secrete various enzymes and toxins that
directly contribute to bone degradation and intensify inflammatory
responses, thereby worsening the condition of osteomyelitis
(Unsworth et al., 2024; Al Ghaithi et al., 2025).

3 Immunometabolic reprogramming

The immune system comprises various cell populations, including
lymphocytes (T cells and B cells), monocytes, macrophages, and
neutrophils, each playing distinct roles in host defense. T cells
mediate cellular immunity, while B cells contribute to humoral
immunity through antibody production. Macrophages and
monocytes act as professional phagocytic cells, and neutrophils form
the primary defense against bacterial infections (Alexander et al., 2024).
The metabolic state of immune cells is closely linked to their functions,
as summarized in Table 1 (Pearce and Pearce, 2013), which lists the
metabolic profiles of major immune cells and their corresponding
purposes and functions. In a resting state, immune cells primarily rely
on oxidative phosphorylation for energy production. However, upon
activation, they rapidly shift to glycolysis to meet the energy and
biosynthetic demands required for proliferation and effector functions
(Hu et al, 2022). This metabolic reprogramming is a critical
mechanism by which immune cells adapt to environmental changes
and regulate their biological functions.

In infection and tumor microenvironments, activated T cells
upregulate glycolysis to rapidly acquire ATP and precursor
molecules necessary for biosynthesis, thereby enhancing their

10.3389/fcimb.2025.1606317

effector functions (Bittman, 2022). This metabolic reprogramming
not only affects the energy metabolism of immune cells but also
directly regulates their cytokine secretion. For instance, the
glycolytic byproduct lactate has been found to modulate immune
cell functions, influencing T cell differentiation and activity
(Fortuny and Sebastian, 2021). In the tumor microenvironment,
the acidic and nutrient-deprived conditions resulting from tumor
cell metabolism suppress oxidative phosphorylation in immune
cells, further promoting glycolysis and leading to an
immunosuppressive state (Talty and Olino, 2021). In addition to
glucose metabolism dysregulation, patients with diabetes often
exhibit alterations in lipid metabolism (Talty and Olino, 2021)
and amino acid metabolism pathways (Mark and Tansey, 2025).
For example, M1 macrophages in inflammatory environments
enhance fatty acid synthesis and oxidation, which promotes the
secretion of pro-inflammatory cytokines (Shanley et al., 2022). In
adipose tissue, interleukin-1f (IL-1B) and interleukin-18 (IL-18)
are abnormally activated and excessively released (Alghamdi et al.,
2023; Yan, 2024), thereby exacerbating inflammatory responses.

In fact, beyond directly mediating inflammatory responses,
metabolic dysregulation is itself a key trigger of immune cell
metabolic reprogramming, with the two processes often being
mutually causal. Inflammatory cytokines, such as tumor necrosis
factor-o. (TNF-a) and interleukin-6 (IL-6), can regulate the
metabolic state of immune cells by activating specific signaling
pathways (Khandelwal et al., 2022). Conversely, inflammation-
induced insulin resistance impairs cellular glucose utilization and
exacerbates metabolic dysregulation. Under inflammatory
conditions, cells typically upregulate glycolytic flux to meet
increased energy demands—a phenomenon known as the
“Warburg effect.” For instance, activated macrophages
significantly enhance glucose uptake and glycolytic activity during
inflammatory responses to support rapid proliferation and effector
functions (Balic et al., 2020). However, this metabolic
reprogramming not only disrupts energy homeostasis but also
leads to the accumulation of potentially harmful metabolites, such
as lactate, forming a pathological positive feedback loop that
perpetuates cellular dysfunction (Deng et al., 2025).

TABLE 1 Main metabolic pathways of immune cells and changes in function after reprogramming.

Main metabolic

Immune Cells
pathways

Purpose and function

Resting T Cells/Naive T Cells Oxidative Phosphorylation

Activated Effector T Cells Aerobic Glycolysis

Memory T Cells Fatty Acid Oxidation
M1 Macrophages Aerobic Glycolysis

M2 Macrophages Oxidative Phosphorylation

Highly efficient, utilizing minimal nutrients to maintain basic survival and surveillance functions

Rapidly produces ATP and biosynthetic precursors to support rapid proliferation and cytokine
production (e.g., IFN-y, TNF-o).

Highly efficient, relies on mitochondrial metabolism to provide sustained energy for long-term survival
and rapid reactivation capacity.

Pro-inflammatory state, rapidly produces energy and intermediates to support antibacterial activity and
nitric oxide (NO) production.

Anti-inflammatory/repair state, utilizes fatty acid and glucose oxidation to support tissue repair and
arginine metabolism.

Regulatory T Cells Fatty Acid Oxidation

Supports their suppressive function and self-stability.
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4 Immunometabolic reprogramming
in diabetic osteomyelitis

4.1 Cytokines involved in the formation of
diabetic osteomyelitis

As previously described, the formation of diabetic osteomyelitis
is a complex process involving vascular endothelial dysfunction,
abnormal bone metabolism, and bacterial infections. However, its
core mechanism can be summarized as the excessive activation of
the immune system under a chronic low-grade inflammatory state.
In this chronic low-grade inflammatory state, the cytokines that
induce diabetic osteomyelitis can be categorized as follows:

4.1.1 Pro-inflammatory cytokines

Pro-inflammatory cytokines are the most critical cytokines in
inducing diabetic osteomyelitis, with their upregulation being a
hallmark of its pathological process. In a persistent inflammatory
state, bone cell energy metabolism shifts from oxidative
phosphorylation to glycolysis to meet cellular energy demands.
This metabolic reprogramming alters the energy supply pathways of
bone cells, subsequently affecting their downstream functions, such

10.3389/fcimb.2025.1606317

as increased bone resorption and decreased bone formation.
Consequently, metabolic reprogramming in bone cells increases
the risk of osteoporosis and bone infections. For instance, IL-1f3 and
TNF-o. influence bone cell energy metabolism by regulating glucose
uptake and utilization. TNF-ou directly activates NF-xB and
mitogen-activated protein kinase (MAPK) pathways (e.g., p38,
JNK) through TNFR, driving osteoclast differentiation even under
low RANKL conditions. IL-1f activates NF-kB and MAPK via IL-
1R1, synergizing with TNF-o. to promote osteoclastogenesis. IL-13
also mediates TNF-o-induced osteoclast formation (BaudHuin
et al, 2010; O’Brien et al, 2016). IL-6 induces IFN-y-dependent
endothelial cell damage and subsequent IgG loss, ultimately
exacerbating bone infections following bone marrow
transplantation. Furthermore, IL-6 may aggravate the pathological
progression of bone infections by affecting bone metabolism (Li
et al, 2022; Luo et al,, 2024). In summary, these cytokines can alter
the activity and differentiation state of bone cells by influencing
glucose and lipid metabolism (Figure 2).

4.1.2 Anti-inflammatory cytokines
Compared to pro-inflammatory cytokines, anti-inflammatory
cytokines play a more significant important role in diabetic
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FIGURE 2

Changes of cytokines, signaling pathways and related immune factors in the pathophysiology of diabetic osteomyelitis. Cytokines and inflammatory
factors inhibit bone formation, promote bone resorption and bone infection through glycolysis and fat metabolism, and aggravate the occurrence of

diabetic osteomyelitis.
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osteomyelitis. In a hyperglycemic state, the accumulation of
advanced glycation end products (AGEs) promotes the synthesis
of pro-inflammatory cytokines while inhibiting the production of
anti-inflammatory cytokines such as IL-10, thereby exacerbating
the inflammatory response (Zhao et al., 2024). In a chronic low-
grade inflammatory (CLGI) state, the expression of pro-
inflammatory cytokines gradually increases, while that of anti-
inflammatory cytokines, such as IL-10 and TIPE2, decreases.
These anti-inflammatory cytokines are critical for alleviating the
progression of diabetic osteomyelitis and accelerating disease
recovery. For example, significant downregulation of TIPE2 is
closely associated with the progression of diabetic retinopathy
(Suo et al., 2021).

As a key anti-inflammatory cytokine in diabetic osteomyelitis,
IL-10 inhibits the activity of T cells and macrophages, reducing the
production of pro-inflammatory cytokines and thereby mitigating
tissue inflammation. In diabetic patients, IL-10 levels are typically
low, which may lead to more severe inflammatory and infectious
responses, thus impairing the healing process of osteomyelitis (Bui
et al., 2022). TGE-B is another critical anti-inflammatory cytokine,
widely involved in regulating cell proliferation, differentiation, and
immune responses. Studies show that TGF-B promotes fibroblast
activation and proliferation, facilitating wound healing, and reduces
inflammatory cell infiltration to restore the function of damaged
tissues. In diabetic patients, TGF-f regulates the local
microenvironment, reducing inflammatory cell infiltration and
destructive responses in osteomyelitis (Dormer and Gkotsoulias,
2022). Anti-inflammatory cytokines, such as IL-10 and
transforming growth factor-B (TGF-B), can directly induce
macrophage polarization toward the M2 phenotype, thereby
altering the immune microenvironment. In chronic inflammatory
conditions like diabetic osteomyelitis, the generation and function
of M2 macrophages are considered important factors in improving
disease outcomes. Notably, the functions of anti-inflammatory
cytokines extend beyond suppressing inflammation to include
participation in tissue remodeling and healing processes (Xie
et al, 2020). Insufficient anti-inflammatory cytokines lead to
persistent chronic inflammation, impairing wound healing and
increasing the risk of osteomyelitis.

4.1.3 Pro-resolving mediators

Specialized pro-resolving mediators (SPMs) are important
bioactive lipids, including resolvins, maresins, and lipoxins,
primarily derived from the metabolism of polyunsaturated fatty
acids (PUFAs), particularly ®-3 and -6 fatty acids. Unlike anti-
inflammatory cytokines, which directly suppress inflammatory
cytokines to regulate the immune microenvironment, SPMs
promote inflammation resolution in a more systematic and multi-
level manner. In addition to regulating inflammatory responses,
SPMs also facilitate tissue repair and suppress excessive immune
responses (Rasquel-Oliveira et al., 2023; Liu et al., 2024). Resolvins
are divided into E-series and D-series, with E-series resolvins
primarily derived from eicosapentaenoic acid (EPA) and D-series
resolvins from docosahexaenoic acid (DHA). The synthesis of
resolvins requires regulation by specific enzymes, with
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lipoxygenase and cyclooxygenase being key enzymes in their
production (Cebrian-Prats et al., 2022). Additionally, maresins,
another important SPM derived from DHA, play a significant
role in regulating inflammation and promoting tissue repair.
Studies have shown that maresins not only suppress
inflammatory responses but also enhance macrophage functions,
improving their pathogen clearance capabilities (Rasquel-Oliveira
et al., 2023). Furthermore, SPMs reduce the production of pro-
inflammatory cytokines and inhibit the activity of pro-
inflammatory signaling pathways such as NF-«B, which is crucial
for maintaining immune homeostasis and reducing chronic
inflammation (Peh and Chen, 2025).

In the context of diabetic osteomyelitis, the lack of effective
inflammation resolution mechanisms leads to persistent chronic
inflammation, exacerbating disease progression. Thus, promoting
inflammation resolution is of significant importance in diabetic
osteomyelitis (Zhao et al., 2023; Leuti et al., 2024). For example,
SPMs significantly enhance the clearance rate of inflammatory cells
and improve tissue healing in diabetic mouse models
(Albuquerque-Souza and Dalli, 2025). Diabetic osteomyelitis often
involves tissue damage, and SPMs enhance tissue regeneration by
promoting cell proliferation and migration, thereby accelerating
wound healing and tissue repair (Serhan et al,, 2024).

One of the mechanisms by which SPMs ameliorate diabetic
osteomyelitis is through modulation of the immune landscape.
Resolvins and protectins, as key regulators of macrophage
polarization, effectively promote the shift to the M2 phenotype.
These M2 macrophages not only secrete anti-inflammatory
cytokines but also contribute to repair processes by clearing
cellular debris and promoting tissue regeneration (Videla et al,
2023). SPMs also enhance macrophage efferocytosis (the clearance
of apoptotic cells), facilitating inflammation resolution and tissue
regeneration (Vetter and Saas, 2024). By inducing neutrophil
apoptosis, SPMs effectively reduce the release of inflammatory
mediators, thereby alleviating inflammation. This process not
only aids in tissue repair and reconstruction but also restores
normal immune function (Baker and Cantley, 2025). Pro-
resolving mediators promote the transition of neutrophils to an
anti-inflammatory phenotype, enhancing their clearance functions
and suppressing inflammatory responses by altering their metabolic
pathways (Psarras and Clarke, 2023). Additionally, certain SPMs
reduce tissue damage by inhibiting neutrophil activation, thereby
decreasing the production of reactive oxygen species (ROS) and
inflammatory cytokines (Albiero and Baragetti, 2025). This multi-
level regulation of neutrophils effectively ameliorates the
inflammatory state in diabetic osteomyelitis, accelerating the
recovery of damaged tissues.

However, the synthesis of SPMs in diabetic patients is
suppressed by hyperglycemia (Brennan et al., 2021). Impaired
pro-resolving signaling pathways are also a significant cause of
defective inflammation resolution in diabetic environments. For
instance, macrophages lacking PRMT2 exhibit enhanced
inflammatory responses, further exacerbating atherosclerosis
development (Vurusaner et al., 2022). Similarly, SIRT6 deficiency
has been found to impair macrophage efferocytosis, thereby
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aggravating persistent inflammation (Ontoria-Oviedo et al., 2022).
These findings indicate that the combined effects of impaired SPM
synthesis and defective signaling pathways in diabetic environments
hinder effective inflammation resolution, ultimately affecting bone
tissue health and healing capacity.

4.2 Immunometabolic reprogramming of
immune cells in diabetic osteomyelitis

As mentioned above, diabetic osteomyelitis is often a more
severe form of diabetic bone infection, accompanied by immune cell
metabolic reprogramming, immune system dysfunction, and
impaired pathogen clearance, leading to abnormal proliferation of
external bacteria at the infection site (Bermejo Olano et al., 2024).
Therefore, aside from the microbial infection factors inherent to
osteomyelitis, the core factor contributing to the disease is immune
system dysfunction, which involves changes in the phenotypes of
multiple immune cells (see Figure 3).

10.3389/fcimb.2025.1606317

4.2.1 M1/M2 polarization of macrophages
Macrophages in the immune system exhibit high plasticity,
differentiating into pro-inflammatory M1 or anti-inflammatory M2
macrophages under the mediation of various cytokines in the
immune microenvironment (Davis et al., 2013). Glycolysis is
critical for M1 activation and serves as the core pathway for the
antibacterial and antitumor functions of M1 macrophages (Corrado
et al., 2020). Under hyperglycemic conditions, bone marrow-
derived macrophages and monocytes exhibit enhanced glycolysis
and oxidative responses, with altered oxidative phosphorylation
(OXPHOS) and modified hexokinase II (HK2) activity in M1
macrophages. Although MI polarization contributes to microbial
killing, excessive M1 activation exacerbates bone destruction in
diabetic osteomyelitis. Additionally, bacterial infections in diabetic
osteomyelitis may further stimulate these pathways by activating
nuclear factor kB (NF-kB) in B cells. Persistent inflammation at the
infection site recruits more macrophages and promotes M1
polarization (Case et al, 2021; Liu H. et al, 2023), forming a
vicious cycle. Given that the primary feature of M1 polarization is
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The immune mechanisms underlying diabetic osteomyelitis and the dysregulation of key immune cells. Hyperglycemia initiates the process by
promoting the formation of a bone inflammatory injury microenvironment. This leads to aberrant T cell activation, resulting in dysfunctional T cells
that exacerbate the bone microenvironment instead of resolving inflammation. Concurrently, metabolic reprogramming alters immune responses:
M1 macrophages drive pro-inflammatory reactions, while M2 macrophages contribute to anti-inflammatory and bone tissue repair. Neutrophils
exhibit impaired function, with reduced phagocytic activity, aberrant NETS formation, and disrupted migration and chemotaxis (mediated by CXCL1
and CXCL2), alongside enhanced cytokine secretion and ROS production. Collectively, these immune perturbations amplify tissue damage and
hinder resolution of infection in diabetic osteomyelitis.
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the upregulation of glycolytic enzymes, including
phosphofructokinase (PFK1 and PFK2) isoforms, PFK-catalyzed
reactions are irreversible key steps in glycolysis. Inhibiting PFK2
can reduce the expression of inducible nitric oxide synthase (iNOS)
and cyclooxygenase-2 (COX2), ultimately suppressing M1
macrophage polarization. Phosphofructokinase-2/fructose-2,6-
bisphosphatase 3 (PFKFB3) is also an important regulatory target,
and its inhibition significantly suppresses downstream glycolytic
reactions and M1 macrophage activation (Cui et al., 2015; De Rosa
et al., 2015).

In contrast, M2 macrophages preferentially utilize oxidative
phosphorylation to maintain their anti-inflammatory and
reparative functions (Li et al, 2021). Studies indicate that M2
polarization enhances collagen deposition, angiogenesis, and
wound healing. For example, M2 macrophage-derived exosomes
(M2D-Exos) promote osteogenic differentiation both in vitro and in
vivo. M2D-Exos containing miR-5106 may inhibit salt-inducible
kinase 2 (SIK2) expression via the cAMP response element-binding
protein (CREB) signaling pathway to stimulate angiogenesis (Chen
et al, 2023). It has also been reported that M2D-Exos reduce
adipogenic differentiation of bone marrow stromal cells (BMSCs)
via the miR-690/IRS-1/TAZ axis (Li et al., 2021), suggesting that
M2D-Exos promote bone repair through metabolic reprogramming
pathways (MacKenna et al., 2022). However, in diabetic
osteomyelitis, M2 macrophages are not predominant, leading to a
significant reduction in their ability to clear apoptotic cells and
suppress inflammatory damage induced by IL-4, IL-10, IL-13, and
TGF-B. This manifests in the body as T lymphocyte recruitment
and granuloma formation in bone marrow tissue (Lawrence and
Gilroy, 2007; Murray et al.,, 2014), further activating downstream
chronic innate immune activation and low-grade inflammation
(Hotamisligil, 2006; Alghamdi et al., 2023), accelerating the
progression of diabetic osteomyelitis.

4.2.2 Neutrophil chemotaxis

Neutrophils are the most abundant white blood cells in the
immune system and possess multiple critical immune functions.
During infection and inflammation, neutrophils participate in host
defense through mechanisms such as chemotaxis, phagocytosis (Liu
J. et al., 2023), oxidative bursts (Guo et al., 2024), and neutrophil
extracellular trap (NET) formation (Abuaita et al, 2021). The
multifaceted roles of neutrophils in infection defense and their
importance in maintaining immune homeostasis make them key
targets for studying immune-related diseases. Studies indicate that
neutrophil dysfunction may contribute to the development of
various diseases, such as autoimmune disorders and chronic
inflammation (Simmons et al., 2025). Chemotaxis is a critical
mechanism by which neutrophils respond to infections, as they
are attracted to infection sites by chemical signals (e.g., bacterial
compounds or inflammatory mediators), enabling rapid
aggregation and function (Trivedi et al., 2021). During this
process, neutrophil surface receptors recognize pathogens and
their products, initiating intracellular signaling pathways that
enhance antibacterial capabilities.
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As the first line of defense in the immune system, neutrophils
rely heavily on metabolic pathways during immune responses.
Regarding glycolysis, studies show that activated neutrophils
primarily depend on glycolysis to generate energy to meet the
demands of rapid responses. Activated neutrophils increase glucose
uptake and metabolism, promoting energy production and reactive
oxygen species (ROS) generation, thereby enhancing their
bactericidal capacity (Toller-Kawahisa and O’Neill, 2022).
Additionally, glycolysis not only provides energy but also
enhances antibacterial effects by promoting NET formation (Calo
et al, 2025). In terms of oxidative phosphorylation, although
neutrophils are traditionally considered reliant on glycolysis,
recent studies have found that they can also utilize oxidative
phosphorylation under specific conditions. This shift plays a
critical role in neutrophil differentiation and functional
regulation. For example, mature neutrophils switch to oxidative
phosphorylation-dominated metabolism under hypoxic conditions
to adapt to the tumor microenvironment (Huang et al., 2025). This
metabolic adaptability affects not only neutrophil energy
metabolism but also their role in tumor progression. Fatty acid
oxidation is another critical component of neutrophil metabolism,
particularly in chronic inflammation and tumor
microenvironments. Neutrophils can rely on fatty acid oxidation
to support energy supply, especially in nutrient-limited conditions
(Calo et al,, 2025). Moreover, fatty acid oxidation is closely
associated with neutrophil antibacterial activity, chemotaxis, and
NET formation, and these functions may be altered in different
pathological states.

Neutrophil function is largely regulated by their metabolic state.
Metabolic reprogramming enables these cells to adjust energy
production and functional performance in response to
microenvironmental changes, addressing various physiological
and pathological challenges. For instance, during acute infections,
neutrophils rapidly generate ATP and ROS through glycolysis to
enhance pathogen clearance (Jiang et al., 2022). These metabolic
changes affect not only energy supply but also cellular signaling and
function execution. In chronic inflammation or tumor
microenvironments, neutrophil metabolism undergoes significant
changes. For example, tumor-associated neutrophils (TANs) often
exhibit metabolic reprogramming, relying primarily on enhanced
glycolysis and fatty acid oxidation, leading to immunosuppressive
functions (Lee et al., 2024). This reprogramming enables
neutrophils to protect tumor cells and suppress anti-tumor
immune responses, promoting tumor growth and metastasis.

Additionally, metabolic state is closely linked to neutrophil
survival and death. Different metabolic pathways regulate
neutrophil lifespan through mechanisms such as apoptosis and
autophagy. For example, studies suggest that enhanced glycolysis
can prolong neutrophil lifespan by delaying apoptosis, a regulation
particularly significant in infection and inflammation contexts
(Leblanc et al., 2024). In hyperglycemic conditions, neutrophil
metabolism undergoes significant changes, primarily
characterized by enhanced glycolysis and increased oxidative
stress. Elevated intracellular glucose concentrations in
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hyperglycemia stimulate neutrophils to enhance energy production
via glycolysis, a process closely linked to NADPH oxidase activation
(Joshi et al., 2020). Studies indicate that hyperglycemia-induced
glucose metabolism alterations lead to excessive ROS production by
neutrophils, triggering oxidative stress responses that impair
neutrophil survival and function (Cazares-Preciado et al., 2024).

Metabolic abnormalities extend beyond enhanced glycolysis to
include changes in fatty acid metabolism. In hyperglycemia,
neutrophil energy metabolism shifts from primarily glycolysis to
fatty acid oxidation, which sustains cellular activity to some extent
but may also lead to functional dysregulation. For example, in
diabetic patients, metabolic reprogramming significantly weakens
neutrophil antibacterial capacity, manifesting as reduced
phagocytosis and NET formation (Li et al., 2023; Jolibois et al.,
2024). This metabolic reprogramming increases the persistence and
severity of inflammatory responses in diabetic patients, making
them more susceptible to infections (Sun et al., 2025).

Metabolic abnormalities may also lead to neutrophil
dysfunction, characterized by reduced migration, chemotaxis, and
cytokine secretion, accelerating the progression of diabetic
osteomyelitis. For instance, in hyperglycemia, the expression of
chemokines CXCL1 and CXCL2 is suppressed, impairing
neutrophil recruitment and the effectiveness of inflammatory
responses (Thimmappa et al, 2023). Additionally, reduced ROS
production capacity in diabetic neutrophils further weakens their
bacterial clearance ability, a phenomenon termed “diabetes-
associated immunosuppression” (Darwitz et al., 2024).

4.2.3 T lymphocyte activation

In the resting state, T cells primarily rely on oxidative
phosphorylation (OXPHOS) for energy production, a process
occurring in mitochondria to support basic physiological
functions and maintain metabolic homeostasis. However, upon
activation, T cells undergo significant metabolic reprogramming.
Studies show that activated T cells enhance glycolysis to meet the
energy demands of rapid proliferation and effector functions,
favoring glycolysis even under aerobic conditions, a phenomenon
known as the Warburg effect (Romero-Carramifana et al., 2024).
This metabolic shift not only supports cell activation but also
provides the energy and biosynthetic precursors necessary for
cytokine synthesis and proliferation. Through glycolysis, T cells
rapidly produce ATP and lactate, with lactate accumulation further
influencing the microenvironment and immune responses (Liu
et al., 2022). Additionally, the balance between oxidative
phosphorylation and glycolysis is critical for T cell function, and
its disruption may lead to T cell exhaustion and dysfunction,
particularly pronounced in metabolic diseases like diabetes (Cao
et al., 2024).

In the diabetic state, hyperglycemia and metabolic
dysregulation cause T cell metabolic abnormalities, significantly
impairing their activation and effector functions. Studies indicate
that T cells in diabetic patients exhibit defective metabolic
reprogramming, leading to suppressed functions and reduced
anti-infection capabilities (Cao et al., 2024; Romero-Carramifnana

et al., 2024). Metabolic abnormalities may cause T cell exhaustion
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and dysfunction, closely linked to chronic inflammation and
autoimmune diseases. Notably, lactate accumulation can
modulate the immune microenvironment, suppressing effector T
cell functions while promoting regulatory T cell activity, thus
influencing inflammation progression (Moraly et al., 2024).

Activated T cells play a critical role in the pathogenesis of
diabetic osteomyelitis. Studies show that these cells secrete various
pro-inflammatory cytokines, such as interferon-y (IFN-y) and
interleukin-17 (IL-17), which promote local inflammatory
responses in osteomyelitis, leading to bone tissue destruction. For
example, IFN-y enhances macrophage activity, exacerbating local
inflammation, while IL-17 stimulates fibroblast and osteoclast
proliferation and activation, accelerating bone resorption (Leney-
Greene et al.,, 2020; Schwager et al, 2021). As pro-inflammatory
cytokines increase, osteoclast activity is significantly enhanced,
leading to further bone destruction and lesion expansion.
Meanwhile, interactions between immune cells and bone cells
exacerbate this pathological progression, forming a vicious cycle
that aggravates diabetic osteomyelitis (Waugh et al., 2023; Szabo
et al., 2024).

Additionally, metabolic abnormalities in diabetic patients may
impair T cell function, reducing their response to infections. The
hyperglycemic environment induces T cell metabolic
reprogramming, affecting proliferation and effector functions,
thereby weakening immune responses and increasing the risk of
osteomyelitis recurrence (Yang et al., 2023; Reed et al., 2025). This
chronic inflammatory state not only sustains T cell activation but
also forms a self-reinforcing cycle, further aggravating the
pathological state of osteomyelitis.

4.3 Role of immune cell metabolic
reprogramming in bacterial infections of
diabetic osteomyelitis

The occurrence and progression of diabetic osteomyelitis
extend beyond simple bacterial infections, fundamentally
representing a complex interaction between pathogens and the
host immune system in a unique environment of metabolic
dysregulation. The diabetic metabolic microenvironment,
characterized by hyperglycemia, insulin resistance, and chronic
inflammation, profoundly reprograms the metabolic homeostasis
and functional states of various immune cells. This intrinsic cellular
metabolic dysregulation, combined with bacterial strategies to
actively manipulate host metabolism for survival, collectively
leads to immune response failure and the onset of infections.

4.3.1 Bacterial immune adaptation features

As previously described, diabetic osteomyelitis is accompanied
by immune cell metabolic reprogramming, which limits their
function in responding to infections and inflammation. On the
other hand, bacteria, as a factor in osteomyelitis infections,
influence host immune cell function and alter immune responses
by releasing metabolic products. For instance, bacterial exogenous
metabolites (e.g., the bacterial “exometabolome”) have been found
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to suppress host immune responses to some extent, thereby
promoting bacterial survival and pathogenicity (Chugh et al,
2025). For example, short-chain fatty acids (SCFAs) and other
metabolites can promote immune tolerance and anti-inflammatory
responses by activating specific host immune pathways (Fang et al.,
2025). Bacteria manipulate host cell metabolism to enhance their
adaptability and survival in the host immune environment, such as
by promoting glycolysis and inhibiting oxidative phosphorylation
to regulate macrophage metabolism (Quan et al., 2023), thereby
favoring bacterial growth rather than eliciting effective immune
responses (Ahator et al., 2024). These findings suggest that bacterial
metabolites are critical signaling molecules in regulating host
immune metabolism. This immune adaptation mechanism not
only enhances bacterial survival but also enables their long-term
persistence in the host, leading to chronic infections.

4.3.2 Macrophage metabolic reprogramming and
bacterial clearance

M1 macrophages generate energy and metabolic intermediates
through enhanced glycolysis to support rapid proliferation,
inflammatory responses, and bacterial killing, a hallmark feature
of their role as innate immune cells (Malla et al., 2025). For instance,
enhanced glycolysis is closely associated with bacterial phagocytosis
and subsequent killing, particularly in managing infections like
Escherichia coli, where glycolytic metabolites are critical for
macrophage antibacterial activity (Yang et al., 2021). In contrast,
M2 macrophages primarily promote tissue healing and reduce
excessive inflammation through anti-inflammatory cytokine
secretion post-infection (Zhang Z. et al.,, 2024). Additionally, M2
macrophage metabolic activity is linked to bacterial clearance
efficiency, particularly in chronic infection scenarios, where their
metabolic reprogramming influences responses to pathogens (Lane
et al., 2023). However, in diabetic patients, hyperglycemia-induced
oxidative stress and inflammation disrupt the balance between M1
and M2 macrophage functions. Macrophages exhibit enhanced M1
characteristics while M2 functions are suppressed, leading to
reduced anti-infection capacity (Hegde et al., 2024). This
metabolic imbalance impairs macrophage antibacterial activity,
increasing the risk of diabetes-related complications (Xu
et al., 2025).

4.3.3 T cell metabolic reprogramming and
immune response

Unlike macrophages, T cells do not directly participate in
bacterial killing but clear virus- or bacteria-infected cells through
cellular immunity, with their activation and function heavily
dependent on their metabolic state. Upon antigen stimulation, T
cell metabolic pathways shift from glycolysis to oxidative
phosphorylation. Specifically, effector T cells typically rely on
glycolysis to meet the energy demands of rapid proliferation,
while memory T cells preferentially utilize oxidative
phosphorylation to maintain longevity and functionality (Levine
et al., 2021).

In the pathological environment of diabetes, T cell metabolic
abnormalities significantly impair their immune response capacity.
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Factors such as hyperglycemia, chronic inflammation, and
metabolic syndrome may lead to T cell dysfunction, manifesting
as reduced proliferation and cytokine production (Gao et al., 2024;
Qiu et al, 2025). For instance, in diabetic mouse models, T cell
metabolic reprogramming is inhibited, significantly weakening their
anti-infection capacity, likely due to imbalanced metabolic
competition and insufficient energy supply (Ricci, 2025).
Additionally, metabolic regulation impacts the balance between
regulatory T cells (Tregs) and effector T cells (Teffs). Tregs
primarily rely on oxidative phosphorylation and fatty acid
oxidation to maintain their suppressive functions, while Teffs
enhance activity through activated glycolytic pathways (He et al,
2021; Noble et al., 2024). For example, Treg function and
proliferation are influenced by their metabolic state, and excessive
glycolysis may suppress Treg function, promoting autoimmune
disease development (Roring et al., 2024). Diabetic osteomyelitis
involves immune dysregulation, and changes in T cell metabolic
reprogramming further exacerbate inflammatory responses and
bone tissue damage.

4.3.4 Neutrophil metabolic reprogramming and
inflammatory response

Neutrophils, a critical component of the innate immune system,
play key roles in combating infections and inflammatory responses.
Their metabolic state directly affects chemotaxis, phagocytosis, and
bactericidal capacity. Recent studies indicate that neutrophils
exhibit diverse metabolic adaptability beyond traditional
glycolysis. In inflammatory microenvironments, where oxygen
and nutrients are limited, neutrophils must adjust their metabolic
pathways to maintain function. Studies have found that neutrophils
at inflammatory sites reprogram their metabolic pathways to
generate energy and support antibacterial functions (Morrison
et al, 2023). For instance, mitochondrial metabolism plays a
significant role in supporting neutrophil migration, neutrophil
extracellular trap (NET) formation, and bacterial killing
(Maldarelli and Noto, 2024). Upon activation, neutrophils rapidly
reprogram their metabolic pathways to enhance pathogen
responses. This metabolic reprogramming not only affects energy
production but also alters the nature of their inflammatory
responses, enabling task execution in diverse microenvironments.
In chronic disease states like diabetes, neutrophil glycolysis and
oxidative phosphorylation are impaired, suppressing their
metabolic functions, reducing antibacterial capacity, and inducing
infections (Holder et al.,, 2025). Concurrently, neutrophil metabolic
abnormalities not only weaken their function but also exacerbate
chronic inflammation, forming a vicious cycle.

4.3.4 Potential significance of the microbiome-
metabolism—-immunity axis in the treatment of
DO

In recent years, studies have gradually revealed the relationship
between the gut microbiota and bone metabolism, referred to as the
“gut-bone axis.” Evidence indicates that microorganisms and their
metabolites not only affect the local intestinal environment but also
regulate immune responses and metabolic balance in bone tissue
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through immune, endocrine, and metabolic pathways, thereby
influencing bone health and disease progression (Griiner et al,
2023; Chen Y. et al,, 2025). For example, postmenopausal
osteoporosis (PMOP), which is closely associated with estrogen
deficiency, is also characterized by dysbiosis of the gut microbiota
and imbalance in Th17/Treg ratios. Short-chain fatty acids (SCFAs)
regulate T-cell differentiation through specific receptors, suggesting
that modulation of the microbiota and its metabolites may provide
novel strategies for PMOP therapy (Chen Y. et al., 2025). Moreover,
gut microbial diversity and functional status directly affect bone
mineral density and remodeling, and in patients with inflammatory
bowel disease (IBD), dysbiosis is strongly associated with bone-
related complications such as osteoporosis and arthritis (Griiner
et al., 2023).

Microbial metabolites such as SCFAs, bile acids, and tryptophan
derivatives can reshape immune cell metabolism and regulate their
functions (Michaudel and Sokol, 2020; Wang et al., 2023).
Specifically, SCFAs promote Treg differentiation while
suppressing pro-inflammatory cells; bile acid metabolites (e.g.,
GLCA) enhance Treg proliferation via nuclear receptors and
induce osteogenic differentiation of bone marrow mesenchymal
stem cells (Cai et al., 2024); tryptophan derivatives act through the
aryl hydrocarbon receptor (AHR) to improve gut barrier function
and modulate immune responses (Fu et al., 2023). In addition, both
gut and oral microbiota can regulate the local bone immune
environment via the “gut-bone axis.” Their metabolites may
translocate to bone tissue, leading to aberrant immune cell
activation, bone resorption, and inflammation (Jia et al, 2021;
Han et al., 2023).

More recently, increasing attention has been paid to the presence
and characteristics of local bone microbiota. Although bone was
traditionally considered a sterile environment, accumulating evidence
suggests otherwise. The bone microbiota displays considerable
diversity, including major bacterial phyla such as Proteobacteria,
Actinobacteria, Firmicutes, and Bacteroidetes (Emmons et al., 2020).
These microbes may contribute to the maintenance of the local bone
environment and, through their metabolites, regulate the bone
immune microenvironment. Metabolic activities within bone
generate bioactive molecules—such as SCFAs, bile acid derivatives,
and tryptophan metabolites—that influence local immune cell
function and bone metabolic processes (Hansdah and Lui, 2024;
Qiao et al., 2025).

Bone microbial metabolites modulate the activity of immune
cells such as T cells, macrophages, and bone marrow mesenchymal
stem cells (BM-MSCs), thereby shaping the bone immune
microenvironment. For example, butyrate promotes Treg
expansion and suppresses inflammation, protecting bone tissue
from excessive inflammatory damage (Kermgard et al., 2021; He
et al., 2025). Certain microbial metabolites, such as deoxycholic
acid, regulate hematopoietic progenitors in the bone marrow,
enhancing monocyte numbers and function to support immune
homeostasis (Burgess et al., 2020). Conversely, dysbiosis of the local
bone microbiota may create a pro-inflammatory milieu, promoting
bone resorption and contributing to bone metabolic disorders and
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inflammatory bone diseases (Han et al, 2023; Dmytrenko
et al., 2024).

The interactions between the bone microbiota, metabolism, and
inflammation underscore the complexity of the microbiota-
immune-bone metabolism axis. Microorganisms and their
metabolites within bone tissue regulate local immune responses,
thereby influencing the balance between bone formation and
resorption. For instance, gut microbiota-derived metabolites can
indirectly affect bone mineral density and strength (Castaneda et al.,
2020; Luna et al,, 2021). Meanwhile, bone-resident microbiota may
activate immune cells to release pro- or anti-inflammatory factors,
modulating bone matrix remodeling (Pianko and Golob, 2022). In
pathological states such as osteoporosis, bone metastases, and bone
marrow disorders, changes in the composition and function of the
bone microbiota are closely linked to immune dysregulation,
suggesting a potential regulatory role in the pathogenesis of bone
diseases (Lian et al., 2022; Sevcikova et al., 2024).

In summary, gut and bone microbiota, together with their
metabolites, regulate immune cell metabolic reprogramming
through complex signaling and metabolic networks. They are
critical for maintaining immune homeostasis, modulating
inflammation, and controlling bone metabolism. Elucidating these
mechanisms not only highlights the role of the “gut-bone axis” in
health and disease but also provides a theoretical basis for
developing therapeutic strategies targeting microbiota and their
metabolites (Griiner et al., 2023; Chen Y. et al., 2025).

5 Immunomodulatory perspective on
the treatment and outlook for diabetic
osteomyelitis

5.1 Current treatment strategies and their
limitations

Given that the core pathogenesis of diabetic foot osteomyelitis
(DFO) involves immunosuppression and bacterial infections
induced by hyperglycemia, clinical management of DFO
primarily focuses on glycemic control, antibiotic therapy, and
surgical debridement, with antibiotic therapy being the most
critical. DFO is typically caused by mixed infections involving
multiple pathogens, commonly including Staphylococcus aureus
and other Gram-positive and Gram-negative bacteria, making the
antimicrobial spectrum of antibiotics a cornerstone of treatment
(Aicale et al., 2020). Beyond traditional antibiotic combinations, the
use of anti-biofilm antibiotics, such as rifampin, significantly
improves healing outcomes and reduces the risk of infection
recurrence (Senneville et al., 2023). Antibiotic-impregnated bone
cement can also be used during tissue reconstruction, effectively
shortening healing time, hospital stays, and infection recurrence
rates (Mendame Ehya et al., 2021). Some clinical cases demonstrate
that combining these novel therapies with traditional antibiotics can
effectively reduce hospitalization time and amputation rates
(Hassanin et al., 2025). The widespread use of novel drugs like
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dalbavancin effectively controls multidrug-resistant bacterial
infections and reduces hospitalization duration (Loupa et al,
2020). Additionally, studies have found that rifampin, as an
adjuvant therapy, significantly improves healing rates in diabetic
foot osteomyelitis and offers better efficacy than traditional
treatments (Bessesen et al., 2020). However, drug interactions and
patient comorbidities limit its clinical application, necessitating
further research to explore safer alternatives, such as rifabutin
(Mallarino-Haeger et al., 2024). Notably, the lack of high-quality
clinical trial data for medical and surgical treatments of diabetic foot
osteomyelitis poses challenges in selecting optimal treatment
strategies (Tardaguila-Garcia et al,, 2021).

The pathogenesis of DO is rooted in hyperglycemia, and the
chronic low-grade inflammatory (CLGI) state in patients
continuously increases infection risk and delays wound healing.
Therefore, glycemic control is essential during DO treatment to
prevent complications (Gramberg et al., 2024). Poor glycemic
control exacerbates DO clinical symptoms (Nilesh et al., 2022).
Interventions targeting the metabolic state of diabetic patients can
reduce inflammation in osteomyelitis, thereby promoting healing
(Pakkiyaretnam and Chong, 2023). Compared to general infections,
DO often accelerates gangrene development, necessitating surgical
debridement in severe cases to remove infected bone tissue, prevent
infection spread, and promote healing (Jing et al., 2025). Early
surgical intervention significantly improves DO prognosis
(Venkatesan and Rangasamy, 2023). Among patients undergoing
surgical debridement, approximately 93.6% achieve complete
healing, with only a minority requiring amputation (Moosa
et al., 2023).

Overall, traditional antibiotic therapy and surgical debridement
remain the primary methods for DO management, but
immunomodulatory and metabolic regulation approaches offer

TABLE 2 Investigational new drugs with immunomodulatory properties.
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new perspectives and possibilities for improving patient
outcomes. These approaches demonstrate potential to enhance
efficacy when combined with traditional treatments (Meyer-
Schwickerath et al., 2023), representing a critical entry point for
future DO therapies.

5.2 Immunomodulatory therapies for
diabetic osteomyelitis

As previously described, although DFO manifests as bacterial
infections, its core pathology stems from immune system
dysfunction caused by the CLGI state. From an
immunomodulatory perspective, suppressing chronic
inflammatory damage and enhancing immune responses can
potentially improve DFO prognosis. Existing studies show that
glucocorticoids reduce inflammation by suppressing immune cell
activity, thereby lowering infection susceptibility (Lipsky et al,
2012). Biologics achieve immunomodulation by neutralizing
specific pro-inflammatory cytokines (Mens et al, 2023). A
retrospective study reported that diabetic foot osteomyelitis
patients treated with bioactive glass (S53P4) achieved significantly
higher healing rates than those receiving conventional treatment
(90% vs. 61.9%) (De Giglio et al., 2021). Patients treated with small-
molecule immunomodulatory agents exhibited better infection
control and faster healing compared to controls (Zhang et al,
2021), highlighting their value in managing refractory infections.
Notably, current immunomodulatory agents for diabetes primarily
target type 1 diabetes (T1D) [summarized in Table 2 (Ajmal et al.,
2024)]. Few immunomodulatory agents are available for type 2
diabetes mellitus (T2DM), significantly limiting their application in
DFO treatment. This is because T1D is an autoimmune disease

Drug name(s) Target Side effects NCT number(s) Published results
Teplizumab (Tzield) Anti-CD3 monoclonal « Headache NCT00385697 Hagopian et al.,, 2013
antibody « Gastrointestinal issues NCT04598893
« Lymphopenia NCT03875729
« Mild cytokine release NCT05757713
syndrome (CRS)
Otelixizumab (TRX4) Anti-CD3 monoclonal « Headache NCT00678886 Aronson et al., 2014
antibody « Gastrointestinal issues NCT01123083 Keymeulen et al., 2005
« Arthralgia
« Myalgia
Daclizumab (Zinbryta, Anti-CD25 monoclonal «Gastrointestinal infections NCT00064714 Rother et al., 2009
Zenapax) antibody «Neutropenia and leukopenia NCT00468117
« Elevated liver enzymes
« Hypoglycemia
Ladarixin Inhibitor of IL-8 receptors Gastrointestinal infections NCT04628481 None
(CXCRI and CXCR2) Dyspepsia
« Headache
Antithymocyte globulin (ATG) | T lymphocyte depletion « Fever NCT01106157 Haller et al., 2015
(Thymoglobulin, Atgam) « Headache NCT02215200 Foster et al., 2018
« Nausea NCT00434811
« Lymphopenia NCT00468117
« Serum sickness
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characterized by T-cell-mediated specific attacks on pancreatic f3-
cells, allowing precise interventions like anti-CD3 monoclonal
antibodies or antigen vaccines to delay or prevent onset (Mauvais
and van Endert, 2025). In contrast, T2DM is driven by metabolic
syndrome, with insulin resistance and B-cell failure, where
inflammation is a chronic, low-grade, multi-cytokine “background
noise” without a single immune target or clear biomarkers like
autoantibodies. As described earlier, the CLGI state in T2DM
creates a complex interplay of excessive inflammation and
immunosuppression, which cannot be simply managed with
immune agonists or suppressors. Moreover, immunomodulation
carries risks of increased infections, tumors, and cardiovascular
events, particularly in chronic conditions like DFO requiring long-
term intervention, further limiting the clinical application and
development of immunomodulatory therapies. Nevertheless, their
potential therapeutic benefits have prompted numerous
research efforts.

For instance, N-acetylcysteine (NAC), an immunometabolic
regulator, significantly reduces inflammation in DFO patients and
accelerates antibiotic treatment responses (Hooshmand Gharabagh
et al., 2025). Other metabolism-related biomarkers, such as serum
lipids and amino acids, can serve as monitoring indicators to guide
clinical decision-making and improve DFO management (Boucher
et al., 2024; Roh et al,, 2024). Clinical trials have also explored
personalized immunomodulatory therapies for DFO. For example,
a diabetic cohort study showed that patients receiving small-
molecule immunomodulatory agents had superior infection
control and healing rates compared to controls (Osorio et al,
2023). However, the complex immune characteristics of T2DM
significantly increase the difficulty of DFO immunotherapy, making
“risk-benefit” assessments critical for clinical decision-making.

Notably, leveraging the immune characteristics of DFO,
potential treatment approaches are being explored and optimized.
Nanodrug delivery systems enhance targeting and biocompatibility,
with nanoparticle carriers enabling localized delivery of
immunomodulatory agents to infection sites while minimizing
systemic exposure. Gene-editing tools like CRISPR show promise
in correcting diabetes-related immune defects, with preclinical
studies indicating improved antibacterial responses and reduced
osteomyelitis incidence (Tubin et al., 2023). Cell therapies also hold
translational potential. Transplantation of umbilical cord blood or
bone marrow-derived mesenchymal stem cells (MSCs) reshapes the
immune microenvironment and enhances anti-infection capacity
by secreting trophic factors, thereby improving osteogenesis in
diabetic patients (Yan, 2024; Freitas et al., 2025). However, these
approaches require extensive preclinical validation before clinical
use, and systemic immunotherapies for DFO remain largely
conceptual. In contrast, interventions targeting metabolic
reprogramming are relatively simple and controllable. Modulating
the metabolic characteristics of the DFO environment to influence
downstream immune cell functions represents a promising
approach to address the complex immune background of DFO.
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5.3 Metabolic interventions for diabetic
osteomyelitis

The core pathogenesis of DFO is the CLGI state under a
hyperglycemic background, making glycemic stability a primary
goal in treating diabetic patients, particularly those with
osteomyelitis. Studies indicate that good glycemic control reduces
bone infection risk and promotes healing in diabetic patients
(Khandelwal et al., 2022; Jaroenarpornwatana et al., 2023).
Additionally, maintaining glycemic stability reduces postoperative
complications, enhances recovery, and lowers infection rates.
Beyond direct pharmacological interventions, auxiliary metabolic
regulation therapies, such as diet, exercise, and hyperbaric oxygen
therapy, are critical for alleviating DFO clinical symptoms.

Balanced diets improve the metabolic state of diabetic patients,
reducing bone infection risk. High-fiber, low-sugar, low-fat dietary
patterns are foundational for maintaining healthy blood glucose
levels. For instance, the Mediterranean diet, characterized by
abundant fruits, vegetables, whole grains, and healthy fats, has
been shown to improve metabolic markers in diabetic patients,
reducing cardiovascular disease and bone infection risks (Szymczak
et al., 2023). Nutritional interventions, such as vitamin D and
calcium supplementation, effectively promote bone healing—
vitamin D not only aids calcium absorption but also enhances
osteoblast function. Thus, personalized dietary plans tailored to the
specific needs of diabetic patients are critical strategies for
preventing bone infections (Iles et al., 2021). Additionally,
moderate exercise effectively improves metabolic markers in
diabetic patients (Silva et al., 2024), enhances blood circulation,
and boosts immune function (Seidu et al, 2021). Exercise also
stimulates bone cell proliferation and differentiation, increasing
bone mechanical strength (Chang et al., 2022), which is beneficial
for accelerating DFO healing. Furthermore, exercise reduces
chronic inflammation levels, mitigating diabetes-related
osteoporosis and bone infection risks. For example, studies show
that diabetic patients engaging in regular weight-bearing exercise
exhibit significantly higher bone density and strength than non-
exercisers, highlighting exercise’s critical role in bone health
(Kawanishi et al., 2022; D'Haese et al., 2024). Blood oxygen
metabolism is another key approach for improving DO. Diabetic
patients often experience microvascular complications, leading to
poor blood circulation and impaired bone tissue blood supply and
nutrient delivery. Local treatments using bioactive materials like
bioactive glass enhance local blood circulation, improve
oxygenation, and accelerate bone healing (De Giglio et al., 2021;
Zhang et al, 2021). The classic oxygen metabolism regulation
method is hyperbaric oxygen therapy (HBOT), where high-
concentration oxygen improves tissue oxygenation and promotes
angiogenesis. In diabetic patients, HBOT effectively increases local
oxygen partial pressure, improves microcirculation, and reduces
infection occurrence and progression. Despite its lower
applicability, higher costs, and significant individual variability,
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HBOT remains an important method for regulating blood oxygen
metabolism (Huang et al., 2021).

6 Conclusion

As our understanding of the mechanisms behind
immunometabolic reprogramming deepens, researchers have
increasingly recognized that immune cells in diabetic patients often
exhibit metabolic dysfunction when confronted with infections. This
dysfunction not only impairs the immune system’s ability to combat
pathogens but also hinders the regeneration of bone tissue. This
understanding is crucial in diabetic osteomyelitis, as the metabolic
state of immune cells directly influences the inflammatory response,
infection resolution, and bone healing. Current research has
highlighted the involvement of multiple signaling pathways and
metabolic routes in this process. Key factors such as inflammatory
cytokines, oxidative stress, and nutritional status influence
immunometabolic reprogramming, leading to chronic inflammation
and impaired immune cell function. In clinical practice, these factors
must be considered to develop more effective treatment strategies.
While traditional therapies, such as antibiotics and surgical
debridement, continue to play a pivotal role, they often fall short in
addressing the underlying immune and metabolic dysfunctions that
exacerbate diabetic osteomyelitis. Emerging treatments that target
specific immunometabolic pathways offer significant promise. For
example, immunomodulatory therapies that regulate immune
responses and metabolic interventions aimed at restoring normal
immune cell function may complement traditional therapies. These
strategies represent a promising direction for future clinical
approaches, which could improve patient outcomes by addressing
both the infection and the underlying immune-metabolic disturbances.
However, the complexity of type 2 diabetes mellitus (T2DM) and its
associated chronic low-grade inflammation pose challenges in
developing and implementing these novel therapies. The
immunosuppressive environment in diabetic patients complicates the
identification of specific therapeutic targets and increases the difficulty
of achieving long-term efficacy. Thus, future clinical research should
focus on personalized treatment strategies that integrate both metabolic
and immunomodulatory approaches. Multidisciplinary collaboration
and large-scale, randomized clinical trials will be critical in validating
these new treatments and translating laboratory findings into effective
clinical practices. By bridging the gap between basic research and
clinical applications, we can enhance our ability to manage and treat
diabetic osteomyelitis, improving both the quality of life and clinical
outcomes for patients.
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