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Immunometabolic
reprogramming in diabetic
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Hui Zhang †*, Zi-Shan Fu †, Ying Zhou, Song-Nan Wang,
Si-Ying Ye, An-Na Wang* and Jun-Tong Liu*

Liaoning University of Traditional Chinese Medicine, Shenyang, China
Diabetes mellitus (DM) is a globally prevalent metabolic disorder characterized by

impaired immune function due to poor glycaemia control, significantly

increasing the risk of osteomyelitis. The occurrence of bone infection not only

compromises patients’ quality of life but also poses substantial challenges in

clinical management. Recent studies have identified immunometabolic

reprogramming as a pivotal player in the pathogenesis and progression of

diabetic osteomyelitis. This reprogramming not only disrupts immune cell

functionality but also modulates the local microenvironment, thereby impairing

bone repair processes. Although preliminary research has explored the

underlying mechanisms, a comprehensive understanding of the precise role of

immunometabolic reprogramming and its potential therapeutic targeting in

diabetic osteomyelitis remains elusive. This review synthesizes current

advances in immunometabolic reprogramming within diabetic osteomyelitis,

elucidates its biological mechanisms, and proposes novel intervention

strategies to inform clinical practice and inspire future therapeutic development.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder affecting hundreds of millions

of people worldwide. Its prevalence continues to rise, making it a major global public health

challenge. Diabetic patients often develop various complications, among which bone

infections, such as osteomyelitis, are one of the most common and serious. Diabetic

osteomyelitis is a severe complication frequently encountered in diabetic patients. Its

pathogenesis is closely associated with immune dysfunction under hyperglycemic

conditions. Hyperglycemia not only impairs the function of immune cells but also leads

to persistent activation of inflammatory responses, thereby hindering the effective

resolution of inflammation and resulting in bone destruction and refractory infection
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(Frazee, 2024). The occurrence of osteomyelitis in diabetic patients

significantly impairs quality of life and may lead to serious

outcomes such as amputation. Therefore, a deeper understanding

of its underlying mechanisms and corresponding treatment

strategies is of great importance.

In recent years, increasing attention has been paid to the role of

immunometabolic reprogramming in diabetic osteomyelitis. The

metabolic state of immune cells directly influences their function,

thereby affecting anti-infective mechanisms and bone healing

processes. For example, under chronic hyperglycemia, immune cells

in diabetic patients often exhibit metabolic dysfunction, leading to

impaired immune responses and increased susceptibility to infection

(Favoino et al., 2021; Zhang et al., 2021; Osório et al., 2023). Studies

have shown that deep bone ulcers and inflammatory wounds in

diabetic patients are significant risk factors for osteomyelitis,

highlighting the crucial role of the local immunometabolic

microenvironment in the pathogenesis of infection.

Furthermore, research has revealed that diabetic patients

exhibit distinct immunometabolic reprogramming features during

infection. For instance, macrophages in diabetic patients may adapt

to the inflammatory environment by enhancing glycolysis and fatty

acid oxidation. This metabolic shift not only alters immune cell

behavior but may also promote chronic inflammation and bone

tissue damage (Roverato et al., 2021). Thus, investigating the
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mechanisms of immunometabolic reprogramming in diabetic

osteomyelitis may provide new avenues for treatment.

Conventional management of diabetic osteomyelitis primarily

includes antibiotic therapy and surgical intervention (Fountas et al.,

2024). However, with growing insights into immunometabolic

reprogramming, novel therapeutic strategies are emerging. These

advances underscore the importance of personalized treatment and

multidisciplinary collaboration in clinical practice.
2 Diabetic osteomyelitis

Foot infections in diabetic patients often present as chronic

ulcers and osteomyelitis, particularly in cases with restricted blood

flow. Studies indicate that the incidence of foot osteomyelitis in

diabetic patients can be as high as 30% (Zhan et al., 2023). Up to

25% of individuals with diabetes will develop a foot ulcer in their

lifetime, and untreated ulcers may progress to bone infection,

ultimately leading to amputation (Jaroenarpornwatana et al.,

2023). The pathogenesis of diabetic osteomyelitis is complex,

involving multiple physiological and pathological factors—

including a diabetes-related low-grade inflammatory state,

abnormal bone metabolism, and bacterial infection—as illustrated

in Figure 1.
FIGURE 1

The initiating factor in the pathogenesis of DO. Hyperglycemia exacerbates osteomyelitic progression by inducing a chronic low-grade inflammatory
state and releasing inflammatory factors, which alter the bone microenvironment to accelerate microbial proliferation and further amplify
pathological alterations in bone tissue, ultimately establishing a self-perpetuating vicious cycle.
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2.1 Chronic low-grade inflammation

A hyperglycemic environment impairs immune cell function,

particularly diminishing chemotaxis, oxidative burst, and

complement activation in neutrophils, thereby increasing

susceptibility to various infections in diabetic patients (Kim and

Choi, 2025). Under such conditions, immune cells are unable to

effectively recognize and eliminate invading pathogens, leading to

persistent bacterial infection in bone tissues. Diabetes is

fundamentally a metabolic disorder characterized by the

accumulation of excess sugars, lipids, and amino acids in the

blood and organs, placing patients in a chronic low-grade

inflammatory (CLGI) state. This condition resembles

“inflammaging” observed in aging and directly compromises

immune cell function (Urszula et al., 2024; Uthaya Kumar et al.,

2024). CLGI not only affects glycemic control and induces immune

dysfunction, increasing the risk of infection, but also exacerbates

diabetes-related complications such as diabetic foot and diabetic

nephropathy. Clinically, diabetic foot infection (DFI) is one of the

most common complications among diabetic patients, and severe

infections including DFI-related osteomyelitis are major causes of

hospitalization and limb amputation (Frazee, 2024).

Immune cells in diabetic patients exhibit significant

impairments in proliferation and cytokine secretion, particularly

in macrophage and T-cell function. Under CLGI conditions, T cells

and B cells display features of cellular senescence (Wei et al., 2021;

Saadh et al., 2025). Macrophages show reduced ability to recognize

and clear pathogens, manifested by weakened phagocytosis and

dysregulated cytokine secretion (Pan et al., 2024; Saadh et al., 2025).

Consequently, diabetic patients are notably more susceptible to

infections, especially those caused by certain bacteria and viruses

(Alexander et al., 2024; Uthaya Kumar et al., 2024). Thus, CLGI can

be regarded as both the pathological basis and initiating factor in the

development of diabetic osteomyelitis.
2.2 Alterations in the bone tissue
microenvironment

In hyperglycemic mice infected with Staphylococcus aureus, the

bacterial load within the bone is significantly increased, and the

extent of bone destruction is more severe compared to

normoglycemic mice, indicating exacerbated osteomyelitis

symptoms (Butrico et al., 2023). This suggests that hyperglycemia

not only promotes bacterial proliferation but also aggravates

infection-induced bone damage. Within the context of chronic

low-grade inflammation (CLGI), an imbalance in inflammatory

mediators and cytokines disrupts the dynamic equilibrium between

bone resorption and bone formation. For instance, infiltrating

inflammatory cells such as macrophages secrete large quantities of

pro-inflammatory factors within the bone marrow. These factors

promote osteoclastogenesis, enhance bone resorption, and inhibit

osteoblast function, thereby exacerbating osteoporosis and

increasing the risk of fracture (Heng et al., 2023; Chen J. et al.,

2025). Furthermore, such inflammatory cytokines may also induce
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osteoblast apoptosis, impairing the bone’s regenerative capacity

(Zhang F. et al., 2024; Hu et al., 2025). For example, macrophages

in the bone marrow of diabetic patients often exhibit a pro-

inflammatory phenotype, secreting substantial amounts of tumor

necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6). The release

of these cytokines promotes osteoclast activation, accelerating bone

resorption and impairing bone repair and regeneration (Yu et al.,

2020; Hu et al., 2025).

Thus, within the setting of diabetic osteomyelitis, alterations in

the bone microenvironment constitute a complex and multifactorial

process. Firstly, imbalanced bone metabolism—a common

pathological feature in diabetes—is characterized by enhanced

bone resorption and impaired bone formation (Bakhtiyari et al.,

2023; Perera Molligoda Arachchige and Verma, 2024). This

ultimately leads to aggravated bone destruction and reduced bone

density, compromising bone structural integrity (Heng et al., 2023).

Additionally, diabetic patients often exhibit microangiopathy in

bone tissue, resulting in local ischemia that exacerbates tissue

damage and increases infection risk. Impaired blood supply due

to microvascular complications places bone tissue at a disadvantage

during repair and regeneration, making infections more likely to

occur and worsen (Perera Molligoda Arachchige and Verma, 2024).

Therefore, from a pathological perspective, changes in the bone

microenvironment can be viewed as an extension of CLGI,

representing its structural impact on bone. The destruction of

bone structure allows pathogenic microorganisms to directly

enter the bone marrow through damaged sites, triggering the

onset of diabetic osteomyelitis.
2.3 Characteristics of pathogenic
microorganism infection

Common pathogenic microorganisms responsible for

osteomyelitis include Staphylococcus aureus, Pseudomonas

aeruginosa, and Escherichia coli. Among these, Staphylococcus

aureus is considered the most prevalent and virulent pathogen.

The persistence of its infection is closely linked to its metabolic

characteristics. S. aureus facilitates its survival and proliferation

through the production of various toxins and enzymes. For

instance, it can secrete b-lactamase, which confers resistance to

penicillin-based antibiotics, thereby contributing to persistent

infection (Urish and Cassat, 2020). Polymicrobial infections are

highly common in osteomyelitis, especially in patients with

prolonged antibiotic use or compromised immune function. For

example, the proportion of Gram-negative bacteria such as

Pseudomonas aeruginosa and Escherichia coli in mixed infections

is gradually increasing, and the drug resistance of these bacteria is

continuously strengthening, posing significant challenges to

conventional treatment strategies (Ruiz Holgado et al., 2023;

Zhang et al., 2023).

Moreover, the formation of microbial biofilms is a critical factor

contributing to the persistence of osteomyelitis infections. Biofilms

are structures formed by bacterial self-produced polymers on

surfaces, which confer strong drug resistance and immune
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evasion capabilities. Bacteria within biofilms can adapt their

metabolic patterns to evade host immune responses and

antibiotic treatments, thereby enhancing their survival (Yu et al.,

2025). For instance, S. aureus in a biofilm environment can

modulate its metabolic pathways to establish a persistent

infectious niche within bone and surrounding tissues, protecting

itself from host immune attacks while increasing tolerance to

antibiotics, leading to reduced efficacy of conventional therapies.

Furthermore, biofilm formation not only influences pathogen

resistance but also significantly exacerbates bone destruction.

Bacteria within biofilms secrete various enzymes and toxins that

directly contribute to bone degradation and intensify inflammatory

responses, thereby worsening the condition of osteomyelitis

(Unsworth et al., 2024; Al Ghaithi et al., 2025).
3 Immunometabolic reprogramming

The immune system comprises various cell populations, including

lymphocytes (T cells and B cells), monocytes, macrophages, and

neutrophils, each playing distinct roles in host defense. T cells

mediate cellular immunity, while B cells contribute to humoral

immunity through antibody production. Macrophages and

monocytes act as professional phagocytic cells, and neutrophils form

the primary defense against bacterial infections (Alexander et al., 2024).

The metabolic state of immune cells is closely linked to their functions,

as summarized in Table 1 (Pearce and Pearce, 2013), which lists the

metabolic profiles of major immune cells and their corresponding

purposes and functions. In a resting state, immune cells primarily rely

on oxidative phosphorylation for energy production. However, upon

activation, they rapidly shift to glycolysis to meet the energy and

biosynthetic demands required for proliferation and effector functions

(Hu et al., 2022). This metabolic reprogramming is a critical

mechanism by which immune cells adapt to environmental changes

and regulate their biological functions.

In infection and tumor microenvironments, activated T cells

upregulate glycolysis to rapidly acquire ATP and precursor

molecules necessary for biosynthesis, thereby enhancing their
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effector functions (Bittman, 2022). This metabolic reprogramming

not only affects the energy metabolism of immune cells but also

directly regulates their cytokine secretion. For instance, the

glycolytic byproduct lactate has been found to modulate immune

cell functions, influencing T cell differentiation and activity

(Fortuny and Sebastián, 2021). In the tumor microenvironment,

the acidic and nutrient-deprived conditions resulting from tumor

cell metabolism suppress oxidative phosphorylation in immune

cel ls , further promoting glycolysis and leading to an

immunosuppressive state (Talty and Olino, 2021). In addition to

glucose metabolism dysregulation, patients with diabetes often

exhibit alterations in lipid metabolism (Talty and Olino, 2021)

and amino acid metabolism pathways (Mark and Tansey, 2025).

For example, M1 macrophages in inflammatory environments

enhance fatty acid synthesis and oxidation, which promotes the

secretion of pro-inflammatory cytokines (Shanley et al., 2022). In

adipose tissue, interleukin-1b (IL-1b) and interleukin-18 (IL-18)

are abnormally activated and excessively released (Alghamdi et al.,

2023; Yan, 2024), thereby exacerbating inflammatory responses.

In fact, beyond directly mediating inflammatory responses,

metabolic dysregulation is itself a key trigger of immune cell

metabolic reprogramming, with the two processes often being

mutually causal. Inflammatory cytokines, such as tumor necrosis

factor-a (TNF-a) and interleukin-6 (IL-6), can regulate the

metabolic state of immune cells by activating specific signaling

pathways (Khandelwal et al., 2022). Conversely, inflammation-

induced insulin resistance impairs cellular glucose utilization and

exacerbates metabolic dysregulation. Under inflammatory

conditions, cells typically upregulate glycolytic flux to meet

increased energy demands—a phenomenon known as the

“Warburg effect.” For instance, activated macrophages

significantly enhance glucose uptake and glycolytic activity during

inflammatory responses to support rapid proliferation and effector

functions (Balic et al., 2020). However, this metabolic

reprogramming not only disrupts energy homeostasis but also

leads to the accumulation of potentially harmful metabolites, such

as lactate, forming a pathological positive feedback loop that

perpetuates cellular dysfunction (Deng et al., 2025).
TABLE 1 Main metabolic pathways of immune cells and changes in function after reprogramming.

Immune Cells
Main metabolic
pathways

Purpose and function

Resting T Cells/Naive T Cells Oxidative Phosphorylation Highly efficient, utilizing minimal nutrients to maintain basic survival and surveillance functions

Activated Effector T Cells Aerobic Glycolysis
Rapidly produces ATP and biosynthetic precursors to support rapid proliferation and cytokine
production (e.g., IFN-g, TNF-a).

Memory T Cells Fatty Acid Oxidation
Highly efficient, relies on mitochondrial metabolism to provide sustained energy for long-term survival
and rapid reactivation capacity.

M1 Macrophages Aerobic Glycolysis
Pro-inflammatory state, rapidly produces energy and intermediates to support antibacterial activity and
nitric oxide (NO) production.

M2 Macrophages Oxidative Phosphorylation
Anti-inflammatory/repair state, utilizes fatty acid and glucose oxidation to support tissue repair and
arginine metabolism.

Regulatory T Cells Fatty Acid Oxidation Supports their suppressive function and self-stability.
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4 Immunometabolic reprogramming
in diabetic osteomyelitis

4.1 Cytokines involved in the formation of
diabetic osteomyelitis

As previously described, the formation of diabetic osteomyelitis

is a complex process involving vascular endothelial dysfunction,

abnormal bone metabolism, and bacterial infections. However, its

core mechanism can be summarized as the excessive activation of

the immune system under a chronic low-grade inflammatory state.

In this chronic low-grade inflammatory state, the cytokines that

induce diabetic osteomyelitis can be categorized as follows:

4.1.1 Pro-inflammatory cytokines
Pro-inflammatory cytokines are the most critical cytokines in

inducing diabetic osteomyelitis, with their upregulation being a

hallmark of its pathological process. In a persistent inflammatory

state, bone cell energy metabolism shifts from oxidative

phosphorylation to glycolysis to meet cellular energy demands.

This metabolic reprogramming alters the energy supply pathways of

bone cells, subsequently affecting their downstream functions, such
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as increased bone resorption and decreased bone formation.

Consequently, metabolic reprogramming in bone cells increases

the risk of osteoporosis and bone infections. For instance, IL-1b and

TNF-a influence bone cell energy metabolism by regulating glucose

uptake and utilization. TNF-a directly activates NF-kB and

mitogen-activated protein kinase (MAPK) pathways (e.g., p38,

JNK) through TNFR, driving osteoclast differentiation even under

low RANKL conditions. IL-1b activates NF-kB and MAPK via IL-

1R1, synergizing with TNF-a to promote osteoclastogenesis. IL-1b
also mediates TNF-a-induced osteoclast formation (Baud’Huin

et al., 2010; O’Brien et al., 2016). IL-6 induces IFN-g-dependent
endothelial cell damage and subsequent IgG loss, ultimately

exacerbating bone infections fol lowing bone marrow

transplantation. Furthermore, IL-6 may aggravate the pathological

progression of bone infections by affecting bone metabolism (Li

et al., 2022; Luo et al., 2024). In summary, these cytokines can alter

the activity and differentiation state of bone cells by influencing

glucose and lipid metabolism (Figure 2).
4.1.2 Anti-inflammatory cytokines
Compared to pro-inflammatory cytokines, anti-inflammatory

cytokines play a more significant important role in diabetic
FIGURE 2

Changes of cytokines, signaling pathways and related immune factors in the pathophysiology of diabetic osteomyelitis. Cytokines and inflammatory
factors inhibit bone formation, promote bone resorption and bone infection through glycolysis and fat metabolism, and aggravate the occurrence of
diabetic osteomyelitis.
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osteomyelitis. In a hyperglycemic state, the accumulation of

advanced glycation end products (AGEs) promotes the synthesis

of pro-inflammatory cytokines while inhibiting the production of

anti-inflammatory cytokines such as IL-10, thereby exacerbating

the inflammatory response (Zhao et al., 2024). In a chronic low-

grade inflammatory (CLGI) state, the expression of pro-

inflammatory cytokines gradually increases, while that of anti-

inflammatory cytokines, such as IL-10 and TIPE2, decreases.

These anti-inflammatory cytokines are critical for alleviating the

progression of diabetic osteomyelitis and accelerating disease

recovery. For example, significant downregulation of TIPE2 is

closely associated with the progression of diabetic retinopathy

(Suo et al., 2021).

As a key anti-inflammatory cytokine in diabetic osteomyelitis,

IL-10 inhibits the activity of T cells and macrophages, reducing the

production of pro-inflammatory cytokines and thereby mitigating

tissue inflammation. In diabetic patients, IL-10 levels are typically

low, which may lead to more severe inflammatory and infectious

responses, thus impairing the healing process of osteomyelitis (Bui

et al., 2022). TGF-b is another critical anti-inflammatory cytokine,

widely involved in regulating cell proliferation, differentiation, and

immune responses. Studies show that TGF-b promotes fibroblast

activation and proliferation, facilitating wound healing, and reduces

inflammatory cell infiltration to restore the function of damaged

tissues. In diabetic patients, TGF-b regulates the local

microenvironment, reducing inflammatory cell infiltration and

destructive responses in osteomyelitis (Dormer and Gkotsoulias,

2022). Anti-inflammatory cytokines, such as IL-10 and

transforming growth factor-b (TGF-b), can directly induce

macrophage polarization toward the M2 phenotype, thereby

altering the immune microenvironment. In chronic inflammatory

conditions like diabetic osteomyelitis, the generation and function

of M2 macrophages are considered important factors in improving

disease outcomes. Notably, the functions of anti-inflammatory

cytokines extend beyond suppressing inflammation to include

participation in tissue remodeling and healing processes (Xie

et al., 2020). Insufficient anti-inflammatory cytokines lead to

persistent chronic inflammation, impairing wound healing and

increasing the risk of osteomyelitis.

4.1.3 Pro-resolving mediators
Specialized pro-resolving mediators (SPMs) are important

bioactive lipids, including resolvins, maresins, and lipoxins,

primarily derived from the metabolism of polyunsaturated fatty

acids (PUFAs), particularly w-3 and w-6 fatty acids. Unlike anti-

inflammatory cytokines, which directly suppress inflammatory

cytokines to regulate the immune microenvironment, SPMs

promote inflammation resolution in a more systematic and multi-

level manner. In addition to regulating inflammatory responses,

SPMs also facilitate tissue repair and suppress excessive immune

responses (Rasquel-Oliveira et al., 2023; Liu et al., 2024). Resolvins

are divided into E-series and D-series, with E-series resolvins

primarily derived from eicosapentaenoic acid (EPA) and D-series

resolvins from docosahexaenoic acid (DHA). The synthesis of

resolvins requires regulation by specific enzymes, with
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lipoxygenase and cyclooxygenase being key enzymes in their

production (Cebrián-Prats et al., 2022). Additionally, maresins,

another important SPM derived from DHA, play a significant

role in regulating inflammation and promoting tissue repair.

Studies have shown that maresins not only suppress

inflammatory responses but also enhance macrophage functions,

improving their pathogen clearance capabilities (Rasquel-Oliveira

et al., 2023). Furthermore, SPMs reduce the production of pro-

inflammatory cytokines and inhibit the activity of pro-

inflammatory signaling pathways such as NF-kB, which is crucial

for maintaining immune homeostasis and reducing chronic

inflammation (Peh and Chen, 2025).

In the context of diabetic osteomyelitis, the lack of effective

inflammation resolution mechanisms leads to persistent chronic

inflammation, exacerbating disease progression. Thus, promoting

inflammation resolution is of significant importance in diabetic

osteomyelitis (Zhao et al., 2023; Leuti et al., 2024). For example,

SPMs significantly enhance the clearance rate of inflammatory cells

and improve tissue healing in diabetic mouse models

(Albuquerque-Souza and Dalli, 2025). Diabetic osteomyelitis often

involves tissue damage, and SPMs enhance tissue regeneration by

promoting cell proliferation and migration, thereby accelerating

wound healing and tissue repair (Serhan et al., 2024).

One of the mechanisms by which SPMs ameliorate diabetic

osteomyelitis is through modulation of the immune landscape.

Resolvins and protectins, as key regulators of macrophage

polarization, effectively promote the shift to the M2 phenotype.

These M2 macrophages not only secrete anti-inflammatory

cytokines but also contribute to repair processes by clearing

cellular debris and promoting tissue regeneration (Videla et al.,

2023). SPMs also enhance macrophage efferocytosis (the clearance

of apoptotic cells), facilitating inflammation resolution and tissue

regeneration (Vetter and Saas, 2024). By inducing neutrophil

apoptosis, SPMs effectively reduce the release of inflammatory

mediators, thereby alleviating inflammation. This process not

only aids in tissue repair and reconstruction but also restores

normal immune function (Baker and Cantley, 2025). Pro-

resolving mediators promote the transition of neutrophils to an

anti-inflammatory phenotype, enhancing their clearance functions

and suppressing inflammatory responses by altering their metabolic

pathways (Psarras and Clarke, 2023). Additionally, certain SPMs

reduce tissue damage by inhibiting neutrophil activation, thereby

decreasing the production of reactive oxygen species (ROS) and

inflammatory cytokines (Albiero and Baragetti, 2025). This multi-

level regulation of neutrophils effectively ameliorates the

inflammatory state in diabetic osteomyelitis, accelerating the

recovery of damaged tissues.

However, the synthesis of SPMs in diabetic patients is

suppressed by hyperglycemia (Brennan et al., 2021). Impaired

pro-resolving signaling pathways are also a significant cause of

defective inflammation resolution in diabetic environments. For

instance, macrophages lacking PRMT2 exhibit enhanced

inflammatory responses, further exacerbating atherosclerosis

development (Vurusaner et al., 2022). Similarly, SIRT6 deficiency

has been found to impair macrophage efferocytosis, thereby
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aggravating persistent inflammation (Ontoria-Oviedo et al., 2022).

These findings indicate that the combined effects of impaired SPM

synthesis and defective signaling pathways in diabetic environments

hinder effective inflammation resolution, ultimately affecting bone

tissue health and healing capacity.
4.2 Immunometabolic reprogramming of
immune cells in diabetic osteomyelitis

As mentioned above, diabetic osteomyelitis is often a more

severe form of diabetic bone infection, accompanied by immune cell

metabolic reprogramming, immune system dysfunction, and

impaired pathogen clearance, leading to abnormal proliferation of

external bacteria at the infection site (Bermejo Olano et al., 2024).

Therefore, aside from the microbial infection factors inherent to

osteomyelitis, the core factor contributing to the disease is immune

system dysfunction, which involves changes in the phenotypes of

multiple immune cells (see Figure 3).
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4.2.1 M1/M2 polarization of macrophages
Macrophages in the immune system exhibit high plasticity,

differentiating into pro-inflammatory M1 or anti-inflammatory M2

macrophages under the mediation of various cytokines in the

immune microenvironment (Davis et al., 2013). Glycolysis is

critical for M1 activation and serves as the core pathway for the

antibacterial and antitumor functions of M1 macrophages (Corrado

et al., 2020). Under hyperglycemic conditions, bone marrow-

derived macrophages and monocytes exhibit enhanced glycolysis

and oxidative responses, with altered oxidative phosphorylation

(OXPHOS) and modified hexokinase II (HK2) activity in M1

macrophages. Although M1 polarization contributes to microbial

killing, excessive M1 activation exacerbates bone destruction in

diabetic osteomyelitis. Additionally, bacterial infections in diabetic

osteomyelitis may further stimulate these pathways by activating

nuclear factor kB (NF-kB) in B cells. Persistent inflammation at the

infection site recruits more macrophages and promotes M1

polarization (Case et al., 2021; Liu H. et al., 2023), forming a

vicious cycle. Given that the primary feature of M1 polarization is
FIGURE 3

The immune mechanisms underlying diabetic osteomyelitis and the dysregulation of key immune cells. Hyperglycemia initiates the process by
promoting the formation of a bone inflammatory injury microenvironment. This leads to aberrant T cell activation, resulting in dysfunctional T cells
that exacerbate the bone microenvironment instead of resolving inflammation. Concurrently, metabolic reprogramming alters immune responses:
M1 macrophages drive pro-inflammatory reactions, while M2 macrophages contribute to anti-inflammatory and bone tissue repair. Neutrophils
exhibit impaired function, with reduced phagocytic activity, aberrant NETS formation, and disrupted migration and chemotaxis (mediated by CXCL1
and CXCL2), alongside enhanced cytokine secretion and ROS production. Collectively, these immune perturbations amplify tissue damage and
hinder resolution of infection in diabetic osteomyelitis.
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the upregu l a t i on o f g l y co l y t i c enzymes , inc lud ing

phosphofructokinase (PFK1 and PFK2) isoforms, PFK-catalyzed

reactions are irreversible key steps in glycolysis. Inhibiting PFK2

can reduce the expression of inducible nitric oxide synthase (iNOS)

and cyclooxygenase-2 (COX2), ultimately suppressing M1

macrophage polarization. Phosphofructokinase-2/fructose-2,6-

bisphosphatase 3 (PFKFB3) is also an important regulatory target,

and its inhibition significantly suppresses downstream glycolytic

reactions and M1 macrophage activation (Cui et al., 2015; De Rosa

et al., 2015).

In contrast, M2 macrophages preferentially utilize oxidative

phosphorylation to maintain their anti-inflammatory and

reparative functions (Li et al., 2021). Studies indicate that M2

polarization enhances collagen deposition, angiogenesis, and

wound healing. For example, M2 macrophage-derived exosomes

(M2D-Exos) promote osteogenic differentiation both in vitro and in

vivo. M2D-Exos containing miR-5106 may inhibit salt-inducible

kinase 2 (SIK2) expression via the cAMP response element-binding

protein (CREB) signaling pathway to stimulate angiogenesis (Chen

et al., 2023). It has also been reported that M2D-Exos reduce

adipogenic differentiation of bone marrow stromal cells (BMSCs)

via the miR-690/IRS-1/TAZ axis (Li et al., 2021), suggesting that

M2D-Exos promote bone repair through metabolic reprogramming

pathways (MacKenna et al., 2022). However, in diabetic

osteomyelitis, M2 macrophages are not predominant, leading to a

significant reduction in their ability to clear apoptotic cells and

suppress inflammatory damage induced by IL-4, IL-10, IL-13, and

TGF-b. This manifests in the body as T lymphocyte recruitment

and granuloma formation in bone marrow tissue (Lawrence and

Gilroy, 2007; Murray et al., 2014), further activating downstream

chronic innate immune activation and low-grade inflammation

(Hotamisligil, 2006; Alghamdi et al., 2023), accelerating the

progression of diabetic osteomyelitis.

4.2.2 Neutrophil chemotaxis
Neutrophils are the most abundant white blood cells in the

immune system and possess multiple critical immune functions.

During infection and inflammation, neutrophils participate in host

defense through mechanisms such as chemotaxis, phagocytosis (Liu

J. et al., 2023), oxidative bursts (Guo et al., 2024), and neutrophil

extracellular trap (NET) formation (Abuaita et al., 2021). The

multifaceted roles of neutrophils in infection defense and their

importance in maintaining immune homeostasis make them key

targets for studying immune-related diseases. Studies indicate that

neutrophil dysfunction may contribute to the development of

various diseases, such as autoimmune disorders and chronic

inflammation (Simmons et al., 2025). Chemotaxis is a critical

mechanism by which neutrophils respond to infections, as they

are attracted to infection sites by chemical signals (e.g., bacterial

compounds or inflammatory mediators), enabling rapid

aggregation and function (Trivedi et al., 2021). During this

process, neutrophil surface receptors recognize pathogens and

their products, initiating intracellular signaling pathways that

enhance antibacterial capabilities.
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As the first line of defense in the immune system, neutrophils

rely heavily on metabolic pathways during immune responses.

Regarding glycolysis, studies show that activated neutrophils

primarily depend on glycolysis to generate energy to meet the

demands of rapid responses. Activated neutrophils increase glucose

uptake and metabolism, promoting energy production and reactive

oxygen species (ROS) generation, thereby enhancing their

bactericidal capacity (Toller-Kawahisa and O’Neill, 2022).

Additionally, glycolysis not only provides energy but also

enhances antibacterial effects by promoting NET formation (Calo

et al., 2025). In terms of oxidative phosphorylation, although

neutrophils are traditionally considered reliant on glycolysis,

recent studies have found that they can also utilize oxidative

phosphorylation under specific conditions. This shift plays a

critical role in neutrophil differentiation and functional

regulation. For example, mature neutrophils switch to oxidative

phosphorylation-dominated metabolism under hypoxic conditions

to adapt to the tumor microenvironment (Huang et al., 2025). This

metabolic adaptability affects not only neutrophil energy

metabolism but also their role in tumor progression. Fatty acid

oxidation is another critical component of neutrophil metabolism,

p a r t i c u l a r l y i n c h r on i c i nfl amma t i on and t umo r

microenvironments. Neutrophils can rely on fatty acid oxidation

to support energy supply, especially in nutrient-limited conditions

(Calo et al., 2025). Moreover, fatty acid oxidation is closely

associated with neutrophil antibacterial activity, chemotaxis, and

NET formation, and these functions may be altered in different

pathological states.

Neutrophil function is largely regulated by their metabolic state.

Metabolic reprogramming enables these cells to adjust energy

production and functional performance in response to

microenvironmental changes, addressing various physiological

and pathological challenges. For instance, during acute infections,

neutrophils rapidly generate ATP and ROS through glycolysis to

enhance pathogen clearance (Jiang et al., 2022). These metabolic

changes affect not only energy supply but also cellular signaling and

function execution. In chronic inflammation or tumor

microenvironments, neutrophil metabolism undergoes significant

changes. For example, tumor-associated neutrophils (TANs) often

exhibit metabolic reprogramming, relying primarily on enhanced

glycolysis and fatty acid oxidation, leading to immunosuppressive

functions (Lee et al., 2024). This reprogramming enables

neutrophils to protect tumor cells and suppress anti-tumor

immune responses, promoting tumor growth and metastasis.

Additionally, metabolic state is closely linked to neutrophil

survival and death. Different metabolic pathways regulate

neutrophil lifespan through mechanisms such as apoptosis and

autophagy. For example, studies suggest that enhanced glycolysis

can prolong neutrophil lifespan by delaying apoptosis, a regulation

particularly significant in infection and inflammation contexts

(Leblanc et al., 2024). In hyperglycemic conditions, neutrophil

metabol ism undergoes s ignificant changes , pr imari ly

characterized by enhanced glycolysis and increased oxidative

stress. Elevated intracellular glucose concentrations in
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hyperglycemia stimulate neutrophils to enhance energy production

via glycolysis, a process closely linked to NADPH oxidase activation

(Joshi et al., 2020). Studies indicate that hyperglycemia-induced

glucose metabolism alterations lead to excessive ROS production by

neutrophils, triggering oxidative stress responses that impair

neutrophil survival and function (Cázares-Preciado et al., 2024).

Metabolic abnormalities extend beyond enhanced glycolysis to

include changes in fatty acid metabolism. In hyperglycemia,

neutrophil energy metabolism shifts from primarily glycolysis to

fatty acid oxidation, which sustains cellular activity to some extent

but may also lead to functional dysregulation. For example, in

diabetic patients, metabolic reprogramming significantly weakens

neutrophil antibacterial capacity, manifesting as reduced

phagocytosis and NET formation (Li et al., 2023; Jolibois et al.,

2024). This metabolic reprogramming increases the persistence and

severity of inflammatory responses in diabetic patients, making

them more susceptible to infections (Sun et al., 2025).

Metabolic abnormalities may also lead to neutrophil

dysfunction, characterized by reduced migration, chemotaxis, and

cytokine secretion, accelerating the progression of diabetic

osteomyelitis. For instance, in hyperglycemia, the expression of

chemokines CXCL1 and CXCL2 is suppressed, impairing

neutrophil recruitment and the effectiveness of inflammatory

responses (Thimmappa et al., 2023). Additionally, reduced ROS

production capacity in diabetic neutrophils further weakens their

bacterial clearance ability, a phenomenon termed “diabetes-

associated immunosuppression” (Darwitz et al., 2024).

4.2.3 T lymphocyte activation
In the resting state, T cells primarily rely on oxidative

phosphorylation (OXPHOS) for energy production, a process

occurring in mitochondria to support basic physiological

functions and maintain metabolic homeostasis. However, upon

activation, T cells undergo significant metabolic reprogramming.

Studies show that activated T cells enhance glycolysis to meet the

energy demands of rapid proliferation and effector functions,

favoring glycolysis even under aerobic conditions, a phenomenon

known as the Warburg effect (Romero-Carramiñana et al., 2024).

This metabolic shift not only supports cell activation but also

provides the energy and biosynthetic precursors necessary for

cytokine synthesis and proliferation. Through glycolysis, T cells

rapidly produce ATP and lactate, with lactate accumulation further

influencing the microenvironment and immune responses (Liu

et al., 2022). Additionally, the balance between oxidative

phosphorylation and glycolysis is critical for T cell function, and

its disruption may lead to T cell exhaustion and dysfunction,

particularly pronounced in metabolic diseases like diabetes (Cao

et al., 2024).

In the diabetic state, hyperglycemia and metabolic

dysregulation cause T cell metabolic abnormalities, significantly

impairing their activation and effector functions. Studies indicate

that T cells in diabetic patients exhibit defective metabolic

reprogramming, leading to suppressed functions and reduced

anti-infection capabilities (Cao et al., 2024; Romero-Carramiñana

et al., 2024). Metabolic abnormalities may cause T cell exhaustion
Frontiers in Cellular and Infection Microbiology 09
and dysfunction, closely linked to chronic inflammation and

autoimmune diseases. Notably, lactate accumulation can

modulate the immune microenvironment, suppressing effector T

cell functions while promoting regulatory T cell activity, thus

influencing inflammation progression (Moraly et al., 2024).

Activated T cells play a critical role in the pathogenesis of

diabetic osteomyelitis. Studies show that these cells secrete various

pro-inflammatory cytokines, such as interferon-g (IFN-g) and

interleukin-17 (IL-17), which promote local inflammatory

responses in osteomyelitis, leading to bone tissue destruction. For

example, IFN-g enhances macrophage activity, exacerbating local

inflammation, while IL-17 stimulates fibroblast and osteoclast

proliferation and activation, accelerating bone resorption (Leney-

Greene et al., 2020; Schwager et al., 2021). As pro-inflammatory

cytokines increase, osteoclast activity is significantly enhanced,

leading to further bone destruction and lesion expansion.

Meanwhile, interactions between immune cells and bone cells

exacerbate this pathological progression, forming a vicious cycle

that aggravates diabetic osteomyelitis (Waugh et al., 2023; Szabó

et al., 2024).

Additionally, metabolic abnormalities in diabetic patients may

impair T cell function, reducing their response to infections. The

hyperglycemic environment induces T cel l metabolic

reprogramming, affecting proliferation and effector functions,

thereby weakening immune responses and increasing the risk of

osteomyelitis recurrence (Yang et al., 2023; Reed et al., 2025). This

chronic inflammatory state not only sustains T cell activation but

also forms a self-reinforcing cycle, further aggravating the

pathological state of osteomyelitis.
4.3 Role of immune cell metabolic
reprogramming in bacterial infections of
diabetic osteomyelitis

The occurrence and progression of diabetic osteomyelitis

extend beyond simple bacterial infections, fundamentally

representing a complex interaction between pathogens and the

host immune system in a unique environment of metabolic

dysregulation. The diabetic metabolic microenvironment,

characterized by hyperglycemia, insulin resistance, and chronic

inflammation, profoundly reprograms the metabolic homeostasis

and functional states of various immune cells. This intrinsic cellular

metabolic dysregulation, combined with bacterial strategies to

actively manipulate host metabolism for survival, collectively

leads to immune response failure and the onset of infections.

4.3.1 Bacterial immune adaptation features
As previously described, diabetic osteomyelitis is accompanied

by immune cell metabolic reprogramming, which limits their

function in responding to infections and inflammation. On the

other hand, bacteria, as a factor in osteomyelitis infections,

influence host immune cell function and alter immune responses

by releasing metabolic products. For instance, bacterial exogenous

metabolites (e.g., the bacterial “exometabolome”) have been found
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to suppress host immune responses to some extent, thereby

promoting bacterial survival and pathogenicity (Chugh et al.,

2025). For example, short-chain fatty acids (SCFAs) and other

metabolites can promote immune tolerance and anti-inflammatory

responses by activating specific host immune pathways (Fang et al.,

2025). Bacteria manipulate host cell metabolism to enhance their

adaptability and survival in the host immune environment, such as

by promoting glycolysis and inhibiting oxidative phosphorylation

to regulate macrophage metabolism (Quan et al., 2023), thereby

favoring bacterial growth rather than eliciting effective immune

responses (Ahator et al., 2024). These findings suggest that bacterial

metabolites are critical signaling molecules in regulating host

immune metabolism. This immune adaptation mechanism not

only enhances bacterial survival but also enables their long-term

persistence in the host, leading to chronic infections.

4.3.2 Macrophage metabolic reprogramming and
bacterial clearance

M1 macrophages generate energy and metabolic intermediates

through enhanced glycolysis to support rapid proliferation,

inflammatory responses, and bacterial killing, a hallmark feature

of their role as innate immune cells (Malla et al., 2025). For instance,

enhanced glycolysis is closely associated with bacterial phagocytosis

and subsequent killing, particularly in managing infections like

Escherichia coli, where glycolytic metabolites are critical for

macrophage antibacterial activity (Yang et al., 2021). In contrast,

M2 macrophages primarily promote tissue healing and reduce

excessive inflammation through anti-inflammatory cytokine

secretion post-infection (Zhang Z. et al., 2024). Additionally, M2

macrophage metabolic activity is linked to bacterial clearance

efficiency, particularly in chronic infection scenarios, where their

metabolic reprogramming influences responses to pathogens (Lane

et al., 2023). However, in diabetic patients, hyperglycemia-induced

oxidative stress and inflammation disrupt the balance between M1

and M2 macrophage functions. Macrophages exhibit enhanced M1

characteristics while M2 functions are suppressed, leading to

reduced anti-infection capacity (Hegde et al., 2024). This

metabolic imbalance impairs macrophage antibacterial activity,

increasing the risk of diabetes-related complications (Xu

et al., 2025).

4.3.3 T cell metabolic reprogramming and
immune response

Unlike macrophages, T cells do not directly participate in

bacterial killing but clear virus- or bacteria-infected cells through

cellular immunity, with their activation and function heavily

dependent on their metabolic state. Upon antigen stimulation, T

cell metabolic pathways shift from glycolysis to oxidative

phosphorylation. Specifically, effector T cells typically rely on

glycolysis to meet the energy demands of rapid proliferation,

while memory T cel ls preferential ly uti l ize oxidative

phosphorylation to maintain longevity and functionality (Levine

et al., 2021).

In the pathological environment of diabetes, T cell metabolic

abnormalities significantly impair their immune response capacity.
Frontiers in Cellular and Infection Microbiology 10
Factors such as hyperglycemia, chronic inflammation, and

metabolic syndrome may lead to T cell dysfunction, manifesting

as reduced proliferation and cytokine production (Gao et al., 2024;

Qiu et al., 2025). For instance, in diabetic mouse models, T cell

metabolic reprogramming is inhibited, significantly weakening their

anti-infection capacity, likely due to imbalanced metabolic

competition and insufficient energy supply (Ricci, 2025).

Additionally, metabolic regulation impacts the balance between

regulatory T cells (Tregs) and effector T cells (Teffs). Tregs

primarily rely on oxidative phosphorylation and fatty acid

oxidation to maintain their suppressive functions, while Teffs

enhance activity through activated glycolytic pathways (He et al.,

2021; Noble et al., 2024). For example, Treg function and

proliferation are influenced by their metabolic state, and excessive

glycolysis may suppress Treg function, promoting autoimmune

disease development (Röring et al., 2024). Diabetic osteomyelitis

involves immune dysregulation, and changes in T cell metabolic

reprogramming further exacerbate inflammatory responses and

bone tissue damage.

4.3.4 Neutrophil metabolic reprogramming and
inflammatory response

Neutrophils, a critical component of the innate immune system,

play key roles in combating infections and inflammatory responses.

Their metabolic state directly affects chemotaxis, phagocytosis, and

bactericidal capacity. Recent studies indicate that neutrophils

exhibit diverse metabolic adaptability beyond traditional

glycolysis. In inflammatory microenvironments, where oxygen

and nutrients are limited, neutrophils must adjust their metabolic

pathways to maintain function. Studies have found that neutrophils

at inflammatory sites reprogram their metabolic pathways to

generate energy and support antibacterial functions (Morrison

et al., 2023). For instance, mitochondrial metabolism plays a

significant role in supporting neutrophil migration, neutrophil

extracellular trap (NET) formation, and bacterial killing

(Maldarelli and Noto, 2024). Upon activation, neutrophils rapidly

reprogram their metabolic pathways to enhance pathogen

responses. This metabolic reprogramming not only affects energy

production but also alters the nature of their inflammatory

responses, enabling task execution in diverse microenvironments.

In chronic disease states like diabetes, neutrophil glycolysis and

oxidative phosphorylation are impaired, suppressing their

metabolic functions, reducing antibacterial capacity, and inducing

infections (Holder et al., 2025). Concurrently, neutrophil metabolic

abnormalities not only weaken their function but also exacerbate

chronic inflammation, forming a vicious cycle.

4.3.4 Potential significance of the microbiome–
metabolism–immunity axis in the treatment of
DO

In recent years, studies have gradually revealed the relationship

between the gut microbiota and bone metabolism, referred to as the

“gut–bone axis.” Evidence indicates that microorganisms and their

metabolites not only affect the local intestinal environment but also

regulate immune responses and metabolic balance in bone tissue
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through immune, endocrine, and metabolic pathways, thereby

influencing bone health and disease progression (Grüner et al.,

2023; Chen Y. et al., 2025). For example, postmenopausal

osteoporosis (PMOP), which is closely associated with estrogen

deficiency, is also characterized by dysbiosis of the gut microbiota

and imbalance in Th17/Treg ratios. Short-chain fatty acids (SCFAs)

regulate T-cell differentiation through specific receptors, suggesting

that modulation of the microbiota and its metabolites may provide

novel strategies for PMOP therapy (Chen Y. et al., 2025). Moreover,

gut microbial diversity and functional status directly affect bone

mineral density and remodeling, and in patients with inflammatory

bowel disease (IBD), dysbiosis is strongly associated with bone-

related complications such as osteoporosis and arthritis (Grüner

et al., 2023).

Microbial metabolites such as SCFAs, bile acids, and tryptophan

derivatives can reshape immune cell metabolism and regulate their

functions (Michaudel and Sokol, 2020; Wang et al., 2023).

Specifically, SCFAs promote Treg differentiation while

suppressing pro-inflammatory cells; bile acid metabolites (e.g.,

GLCA) enhance Treg proliferation via nuclear receptors and

induce osteogenic differentiation of bone marrow mesenchymal

stem cells (Cai et al., 2024); tryptophan derivatives act through the

aryl hydrocarbon receptor (AHR) to improve gut barrier function

and modulate immune responses (Fu et al., 2023). In addition, both

gut and oral microbiota can regulate the local bone immune

environment via the “gut–bone axis.” Their metabolites may

translocate to bone tissue, leading to aberrant immune cell

activation, bone resorption, and inflammation (Jia et al., 2021;

Han et al., 2023).

More recently, increasing attention has been paid to the presence

and characteristics of local bone microbiota. Although bone was

traditionally considered a sterile environment, accumulating evidence

suggests otherwise. The bone microbiota displays considerable

diversity, including major bacterial phyla such as Proteobacteria,

Actinobacteria, Firmicutes, and Bacteroidetes (Emmons et al., 2020).

These microbes may contribute to the maintenance of the local bone

environment and, through their metabolites, regulate the bone

immune microenvironment. Metabolic activities within bone

generate bioactive molecules—such as SCFAs, bile acid derivatives,

and tryptophan metabolites—that influence local immune cell

function and bone metabolic processes (Hansdah and Lui, 2024;

Qiao et al., 2025).

Bone microbial metabolites modulate the activity of immune

cells such as T cells, macrophages, and bone marrow mesenchymal

stem cells (BM-MSCs), thereby shaping the bone immune

microenvironment. For example, butyrate promotes Treg

expansion and suppresses inflammation, protecting bone tissue

from excessive inflammatory damage (Kermgard et al., 2021; He

et al., 2025). Certain microbial metabolites, such as deoxycholic

acid, regulate hematopoietic progenitors in the bone marrow,

enhancing monocyte numbers and function to support immune

homeostasis (Burgess et al., 2020). Conversely, dysbiosis of the local

bone microbiota may create a pro-inflammatory milieu, promoting

bone resorption and contributing to bone metabolic disorders and
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inflammatory bone diseases (Han et al., 2023; Dmytrenko

et al., 2024).

The interactions between the bone microbiota, metabolism, and

inflammation underscore the complexity of the microbiota–

immune–bone metabolism axis. Microorganisms and their

metabolites within bone tissue regulate local immune responses,

thereby influencing the balance between bone formation and

resorption. For instance, gut microbiota-derived metabolites can

indirectly affect bone mineral density and strength (Castaneda et al.,

2020; Luna et al., 2021). Meanwhile, bone-resident microbiota may

activate immune cells to release pro- or anti-inflammatory factors,

modulating bone matrix remodeling (Pianko and Golob, 2022). In

pathological states such as osteoporosis, bone metastases, and bone

marrow disorders, changes in the composition and function of the

bone microbiota are closely linked to immune dysregulation,

suggesting a potential regulatory role in the pathogenesis of bone

diseases (Lian et al., 2022; Sevcikova et al., 2024).

In summary, gut and bone microbiota, together with their

metabolites, regulate immune cell metabolic reprogramming

through complex signaling and metabolic networks. They are

critical for maintaining immune homeostasis, modulating

inflammation, and controlling bone metabolism. Elucidating these

mechanisms not only highlights the role of the “gut–bone axis” in

health and disease but also provides a theoretical basis for

developing therapeutic strategies targeting microbiota and their

metabolites (Grüner et al., 2023; Chen Y. et al., 2025).
5 Immunomodulatory perspective on
the treatment and outlook for diabetic
osteomyelitis

5.1 Current treatment strategies and their
limitations

Given that the core pathogenesis of diabetic foot osteomyelitis

(DFO) involves immunosuppression and bacterial infections

induced by hyperglycemia, clinical management of DFO

primarily focuses on glycemic control, antibiotic therapy, and

surgical debridement, with antibiotic therapy being the most

critical. DFO is typically caused by mixed infections involving

multiple pathogens, commonly including Staphylococcus aureus

and other Gram-positive and Gram-negative bacteria, making the

antimicrobial spectrum of antibiotics a cornerstone of treatment

(Aicale et al., 2020). Beyond traditional antibiotic combinations, the

use of anti-biofilm antibiotics, such as rifampin, significantly

improves healing outcomes and reduces the risk of infection

recurrence (Senneville et al., 2023). Antibiotic-impregnated bone

cement can also be used during tissue reconstruction, effectively

shortening healing time, hospital stays, and infection recurrence

rates (Mendame Ehya et al., 2021). Some clinical cases demonstrate

that combining these novel therapies with traditional antibiotics can

effectively reduce hospitalization time and amputation rates

(Hassanin et al., 2025). The widespread use of novel drugs like
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dalbavancin effectively controls multidrug-resistant bacterial

infections and reduces hospitalization duration (Loupa et al.,

2020). Additionally, studies have found that rifampin, as an

adjuvant therapy, significantly improves healing rates in diabetic

foot osteomyelitis and offers better efficacy than traditional

treatments (Bessesen et al., 2020). However, drug interactions and

patient comorbidities limit its clinical application, necessitating

further research to explore safer alternatives, such as rifabutin

(Mallarino-Haeger et al., 2024). Notably, the lack of high-quality

clinical trial data for medical and surgical treatments of diabetic foot

osteomyelitis poses challenges in selecting optimal treatment

strategies (Tardáguila-Garcıá et al., 2021).

The pathogenesis of DO is rooted in hyperglycemia, and the

chronic low-grade inflammatory (CLGI) state in patients

continuously increases infection risk and delays wound healing.

Therefore, glycemic control is essential during DO treatment to

prevent complications (Gramberg et al., 2024). Poor glycemic

control exacerbates DO clinical symptoms (Nilesh et al., 2022).

Interventions targeting the metabolic state of diabetic patients can

reduce inflammation in osteomyelitis, thereby promoting healing

(Pakkiyaretnam and Chong, 2023). Compared to general infections,

DO often accelerates gangrene development, necessitating surgical

debridement in severe cases to remove infected bone tissue, prevent

infection spread, and promote healing (Jing et al., 2025). Early

surgical intervention significantly improves DO prognosis

(Venkatesan and Rangasamy, 2023). Among patients undergoing

surgical debridement, approximately 93.6% achieve complete

healing, with only a minority requiring amputation (Moosa

et al., 2023).

Overall, traditional antibiotic therapy and surgical debridement

remain the primary methods for DO management, but

immunomodulatory and metabolic regulation approaches offer
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new perspectives and possibilities for improving patient

outcomes. These approaches demonstrate potential to enhance

efficacy when combined with traditional treatments (Meyer-

Schwickerath et al., 2023), representing a critical entry point for

future DO therapies.
5.2 Immunomodulatory therapies for
diabetic osteomyelitis

As previously described, although DFO manifests as bacterial

infections, its core pathology stems from immune system

dy s f un c t i on c au s e d b y t h e CLGI s t a t e . F r om an

immunomodulatory perspect ive , suppress ing chronic

inflammatory damage and enhancing immune responses can

potentially improve DFO prognosis. Existing studies show that

glucocorticoids reduce inflammation by suppressing immune cell

activity, thereby lowering infection susceptibility (Lipsky et al.,

2012). Biologics achieve immunomodulation by neutralizing

specific pro-inflammatory cytokines (Mens et al., 2023). A

retrospective study reported that diabetic foot osteomyelitis

patients treated with bioactive glass (S53P4) achieved significantly

higher healing rates than those receiving conventional treatment

(90% vs. 61.9%) (De Giglio et al., 2021). Patients treated with small-

molecule immunomodulatory agents exhibited better infection

control and faster healing compared to controls (Zhang et al.,

2021), highlighting their value in managing refractory infections.

Notably, current immunomodulatory agents for diabetes primarily

target type 1 diabetes (T1D) [summarized in Table 2 (Ajmal et al.,

2024)]. Few immunomodulatory agents are available for type 2

diabetes mellitus (T2DM), significantly limiting their application in

DFO treatment. This is because T1D is an autoimmune disease
TABLE 2 Investigational new drugs with immunomodulatory properties.

Drug name(s) Target Side effects NCT number(s) Published results

Teplizumab (Tzield) Anti-CD3 monoclonal
antibody

• Headache
• Gastrointestinal issues
• Lymphopenia
• Mild cytokine release
syndrome (CRS)

NCT00385697
NCT04598893
NCT03875729
NCT05757713

Hagopian et al., 2013

Otelixizumab (TRX4) Anti-CD3 monoclonal
antibody

• Headache
• Gastrointestinal issues
• Arthralgia
• Myalgia

NCT00678886
NCT01123083

Aronson et al., 2014
Keymeulen et al., 2005

Daclizumab (Zinbryta,
Zenapax)

Anti-CD25 monoclonal
antibody

•Gastrointestinal infections
•Neutropenia and leukopenia
• Elevated liver enzymes
• Hypoglycemia

NCT00064714
NCT00468117

Rother et al., 2009

Ladarixin Inhibitor of IL-8 receptors
(CXCR1 and CXCR2)

Gastrointestinal infections
Dyspepsia
• Headache

NCT04628481 None

Antithymocyte globulin (ATG)
(Thymoglobulin, Atgam)

T lymphocyte depletion • Fever
• Headache
• Nausea
• Lymphopenia
• Serum sickness

NCT01106157
NCT02215200
NCT00434811
NCT00468117

Haller et al., 2015
Foster et al., 2018
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characterized by T-cell-mediated specific attacks on pancreatic b-
cells, allowing precise interventions like anti-CD3 monoclonal

antibodies or antigen vaccines to delay or prevent onset (Mauvais

and van Endert, 2025). In contrast, T2DM is driven by metabolic

syndrome, with insulin resistance and b-cell failure, where

inflammation is a chronic, low-grade, multi-cytokine “background

noise” without a single immune target or clear biomarkers like

autoantibodies. As described earlier, the CLGI state in T2DM

creates a complex interplay of excessive inflammation and

immunosuppression, which cannot be simply managed with

immune agonists or suppressors. Moreover, immunomodulation

carries risks of increased infections, tumors, and cardiovascular

events, particularly in chronic conditions like DFO requiring long-

term intervention, further limiting the clinical application and

development of immunomodulatory therapies. Nevertheless, their

potential therapeutic benefits have prompted numerous

research efforts.

For instance, N-acetylcysteine (NAC), an immunometabolic

regulator, significantly reduces inflammation in DFO patients and

accelerates antibiotic treatment responses (Hooshmand Gharabagh

et al., 2025). Other metabolism-related biomarkers, such as serum

lipids and amino acids, can serve as monitoring indicators to guide

clinical decision-making and improve DFO management (Boucher

et al., 2024; Roh et al., 2024). Clinical trials have also explored

personalized immunomodulatory therapies for DFO. For example,

a diabetic cohort study showed that patients receiving small-

molecule immunomodulatory agents had superior infection

control and healing rates compared to controls (Osório et al.,

2023). However, the complex immune characteristics of T2DM

significantly increase the difficulty of DFO immunotherapy, making

“risk-benefit” assessments critical for clinical decision-making.

Notably, leveraging the immune characteristics of DFO,

potential treatment approaches are being explored and optimized.

Nanodrug delivery systems enhance targeting and biocompatibility,

with nanoparticle carriers enabling localized delivery of

immunomodulatory agents to infection sites while minimizing

systemic exposure. Gene-editing tools like CRISPR show promise

in correcting diabetes-related immune defects, with preclinical

studies indicating improved antibacterial responses and reduced

osteomyelitis incidence (Tubin et al., 2023). Cell therapies also hold

translational potential. Transplantation of umbilical cord blood or

bone marrow-derived mesenchymal stem cells (MSCs) reshapes the

immune microenvironment and enhances anti-infection capacity

by secreting trophic factors, thereby improving osteogenesis in

diabetic patients (Yan, 2024; Freitas et al., 2025). However, these

approaches require extensive preclinical validation before clinical

use, and systemic immunotherapies for DFO remain largely

conceptual. In contrast, interventions targeting metabolic

reprogramming are relatively simple and controllable. Modulating

the metabolic characteristics of the DFO environment to influence

downstream immune cell functions represents a promising

approach to address the complex immune background of DFO.
Frontiers in Cellular and Infection Microbiology 13
5.3 Metabolic interventions for diabetic
osteomyelitis

The core pathogenesis of DFO is the CLGI state under a

hyperglycemic background, making glycemic stability a primary

goal in treating diabetic patients, particularly those with

osteomyelitis. Studies indicate that good glycemic control reduces

bone infection risk and promotes healing in diabetic patients

(Khandelwal et al., 2022; Jaroenarpornwatana et al., 2023).

Additionally, maintaining glycemic stability reduces postoperative

complications, enhances recovery, and lowers infection rates.

Beyond direct pharmacological interventions, auxiliary metabolic

regulation therapies, such as diet, exercise, and hyperbaric oxygen

therapy, are critical for alleviating DFO clinical symptoms.

Balanced diets improve the metabolic state of diabetic patients,

reducing bone infection risk. High-fiber, low-sugar, low-fat dietary

patterns are foundational for maintaining healthy blood glucose

levels. For instance, the Mediterranean diet, characterized by

abundant fruits, vegetables, whole grains, and healthy fats, has

been shown to improve metabolic markers in diabetic patients,

reducing cardiovascular disease and bone infection risks (Szymczak

et al., 2023). Nutritional interventions, such as vitamin D and

calcium supplementation, effectively promote bone healing—

vitamin D not only aids calcium absorption but also enhances

osteoblast function. Thus, personalized dietary plans tailored to the

specific needs of diabetic patients are critical strategies for

preventing bone infections (Iles et al., 2021). Additionally,

moderate exercise effectively improves metabolic markers in

diabetic patients (Silva et al., 2024), enhances blood circulation,

and boosts immune function (Seidu et al., 2021). Exercise also

stimulates bone cell proliferation and differentiation, increasing

bone mechanical strength (Chang et al., 2022), which is beneficial

for accelerating DFO healing. Furthermore, exercise reduces

chronic inflammation levels, mitigating diabetes-related

osteoporosis and bone infection risks. For example, studies show

that diabetic patients engaging in regular weight-bearing exercise

exhibit significantly higher bone density and strength than non-

exercisers, highlighting exercise’s critical role in bone health

(Kawanishi et al., 2022; D’Haese et al., 2024). Blood oxygen

metabolism is another key approach for improving DO. Diabetic

patients often experience microvascular complications, leading to

poor blood circulation and impaired bone tissue blood supply and

nutrient delivery. Local treatments using bioactive materials like

bioactive glass enhance local blood circulation, improve

oxygenation, and accelerate bone healing (De Giglio et al., 2021;

Zhang et al., 2021). The classic oxygen metabolism regulation

method is hyperbaric oxygen therapy (HBOT), where high-

concentration oxygen improves tissue oxygenation and promotes

angiogenesis. In diabetic patients, HBOT effectively increases local

oxygen partial pressure, improves microcirculation, and reduces

infection occurrence and progression. Despite its lower

applicability, higher costs, and significant individual variability,
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HBOT remains an important method for regulating blood oxygen

metabolism (Huang et al., 2021).
6 Conclusion

As our understanding of the mechanisms behind

immunometabolic reprogramming deepens, researchers have

increasingly recognized that immune cells in diabetic patients often

exhibit metabolic dysfunction when confronted with infections. This

dysfunction not only impairs the immune system’s ability to combat

pathogens but also hinders the regeneration of bone tissue. This

understanding is crucial in diabetic osteomyelitis, as the metabolic

state of immune cells directly influences the inflammatory response,

infection resolution, and bone healing. Current research has

highlighted the involvement of multiple signaling pathways and

metabolic routes in this process. Key factors such as inflammatory

cytokines, oxidative stress, and nutritional status influence

immunometabolic reprogramming, leading to chronic inflammation

and impaired immune cell function. In clinical practice, these factors

must be considered to develop more effective treatment strategies.

While traditional therapies, such as antibiotics and surgical

debridement, continue to play a pivotal role, they often fall short in

addressing the underlying immune and metabolic dysfunctions that

exacerbate diabetic osteomyelitis. Emerging treatments that target

specific immunometabolic pathways offer significant promise. For

example, immunomodulatory therapies that regulate immune

responses and metabolic interventions aimed at restoring normal

immune cell function may complement traditional therapies. These

strategies represent a promising direction for future clinical

approaches, which could improve patient outcomes by addressing

both the infection and the underlying immune-metabolic disturbances.

However, the complexity of type 2 diabetes mellitus (T2DM) and its

associated chronic low-grade inflammation pose challenges in

developing and implementing these novel therapies. The

immunosuppressive environment in diabetic patients complicates the

identification of specific therapeutic targets and increases the difficulty

of achieving long-term efficacy. Thus, future clinical research should

focus on personalized treatment strategies that integrate bothmetabolic

and immunomodulatory approaches. Multidisciplinary collaboration

and large-scale, randomized clinical trials will be critical in validating

these new treatments and translating laboratory findings into effective

clinical practices. By bridging the gap between basic research and

clinical applications, we can enhance our ability to manage and treat

diabetic osteomyelitis, improving both the quality of life and clinical

outcomes for patients.
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