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Enrichment of prevotella
melaninogenica in the

lower respiratory tract links to
checkpoint inhibitor pneumonitis
and radiation pneumonitis

Jiajun Chen*, Qiong Xu*, Liyan Zhang*, Donglei Zhang?
and Xueling Wu™
‘Department of Respiratory and Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University

School of Medicine, Shanghai, China, 2Department of Thoracic Surgery, Ren Ji Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai, China

Background: Checkpoint inhibitor pneumonitis (CIP) and radiation pneumonitis
(RP) lead to anti-cancer therapy discontinuation and poor diagnosis. The human
microbiome is related to various respiratory diseases. However, the role of the
lung microbiome in CIP and RP remains unknown. Our study aimed to explore
the lower respiratory tract (LRT) microbiome in CIP/RP patients.

Methods: The study enrolled 61 patients with pneumonitis or pneumonia,
including 23 with CIP/RP, and 38 with lung cancer with pneumonia (LC-P).
Metagenomic next-generation sequencing (MNGS) was performed to identify
the microbiota in bronchoalveolar lavage fluid (BALF), and bioinformatics
methods were used to compare the microbial differences between CIP/RP and
LC-P groups. Correlation analysis was conducted to explore the relationship
between LRT microbiota and clinical features.

Results: The Prevotella was the dominant genus in both groups. The Prevotella
melaninogenica, which belongs to the Prevotella genus, was the dominant
species in the CIP/RP group and the second most abundant species in the LC-
P group. Compared to the LC-P group, the CIP/RP group had significantly high
levels of Prevotella melaninogenica species and lymphocyte percentage in BALF
but significantly low levels of lymphocytes, eosinophils and albumin in peripheral
blood. In addition, the Prevotella melaninogenica species had a negative
correlation with peripheral blood lymphocytes.

Conclusion: The enrichment of Prevotella melaninogenica species in LRT and a
decreased level of peripheral blood lymphocytes are associated with CIP/RP.
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Introduction

Immune checkpoint inhibitors targeting PD-1/PD-L1 have
changed the treatment landscape for oncology, but their clinical
benefits are tempered by immune-related adverse events (Suresh
et al., 2018a; Shankar et al., 20205 Sun et al,, 2023). Among these,
checkpoint inhibitor pneumonitis (CIP) affects 2.49-19% of
patients, often leading to therapy discontinuation and poor
prognosis (Naidoo et al., 2017; Suresh et al., 2018b; Suresh et al.,
2019; Tiu et al, 2022; Yin et al, 2022). Similarly, radiation
pneumonitis (RP) occurs in 1-25% of thoracic radiotherapy
recipients, with shared features of dysregulated inflammation and
fibrosis complicating differential diagnosis (Hanania et al., 2019). In
addition, CIP is more common in patients receiving curative-intent
radiotherapy followed by anti-PD-1/PD-L1 agents (Shaverdian
et al, 2017; Voong et al, 2019). However, it turns out to be
difficult to distinguish CIP from RP (Rahi et al., 2021).

The human microbiome is related to various respiratory
diseases (Frayman et al., 2024; Ozg¢am and Lynch, 2024; Song
et al.,, 2024). For instance, the gut microbiota influences chronic
obstructive pulmonary disease (COPD) development and fecal
microbiota transplantation restores the pathogenesis of COPD
(Lai et al.,, 2022). The gut protist Tritrichomonas musculis induces
the migration of gut-derived lymphoid cells to the lung and further
promotes steady state eosinophilia, which exacerbates asthma and
hinders the systemic dissemination of pulmonary Mycobacterium
tuberculosis (Burrows et al., 2025). The gut microbiome shapes the
immune system and may play a protective role in respiratory
diseases, suggesting that managing the gut microbiome represents
a powerful way to prevent and treat respiratory diseases (Perdijk
et al., 2024). However, the role of the lung microbiome in cancer
treatment-related pneumonitis, particularly CIP and RP, remains
unknown. Exploring lung microbial dysbiosis is crucial to
understanding the occurrence of CIP/RP on microbial terms and
managing the microbial imbalance may be a potential therapy for
CIP/RP.

Our study aimed to explore the LRT microbiome in CIP/RP
patients, analyze the microbial composition and diversity, compare
the microbial differences, and further explore the relationship
between LRT microbiome and clinical features.

Methods
Recruitment of patients

This retrospective study was conducted at Renji Hospital,
Shanghai Jiao Tong University School of Medicine. A total of 61

Abbreviations: CIP, Checkpoint inhibitor pneumonitis; RP, radiation
pneumonitis; LC-P, lung cancer with pneumonia; LRT, lower respiratory tract;
mNGS, metagenomic next-generation sequencing; EOS, eosinophils; BALF,
bronchoalveolar lavage fluid; BALF-N, neutrophile percentage in BALF; BALF-
L, lymphocyte percentage in BALF; CRP, C-reactive protein; ESR, erythrocyte
sedimentation rate; KL-6, Krebs Von den Lungen-6; ALB, albumin.
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patients were enrolled from 20 June 2021 to 20 October 2024.
Among them, 23 were classified as CIP/RP group (of whom, 16 had
CIP and 7 had RP), and 38 patients were diagnosed with LC-P.
Inclusion criteria for CIP or RP included: (1) the cancer patients
had received immunotherapy or radiotherapy; (2) imaging studies
showed new pulmonary infiltrates (radiologic patterns of CIP
include cryptogenic organizing pneumonia, ground glass opacities
and interstitial pneumonia, while radiologic features of RP are
ground glass opacities or consolidation conforming precisely to
the shape of the radiation field.); (3) LRT infection or lung tumor
progression was excluded; and (4) the patients were not treated with
antibiotics or steroid within 2 weeks.

BALF collection

BALF samples were collected from all 61 patients according to
the standard procedures. The lung was lavaged with 100mL of
sterile saline solution and the BALF recovery rate was more than
35%. BALF samples for further mNGS were then transported to the
hospital laboratory under cold-chain conditions. Clinical
information and laboratory results were also collected when the
patients were sampled.

Nucleic acid extraction, library preparation,
sequencing, and bioinformatics analysis

The TTANamp Magnetic DNA Kit (Tiangen) was used to extract
DNA. Quantity and quality of DNA were assessed using the Qubit
and NanoDrop (Thermo Fisher Scientific), respectively. DNA
libraries were prepared using the Hieff NGS C130P2 OnePot II
DNA Library Prep Kit for MGI (Yeasen Biotechnology) according
to the manufacturer’s protocols. Agilent 2,100 was used for quality
control and DNA libraries were 50 bp single-end sequenced on
MGISEQ-200. Raw sequencing data were split by bc12fastq2 (version
2.20), and high-quality sequencing data were generated using
Trimmomatic (version 0.36) by removing low-quality reads,
adapter contamination, duplicated and shot (length, 36bp) reads.
Human host sequences were subtracted by mapping to human
reference genome (hs37d5) using bowtie2 (version 2.2.6). Reads
that could not be mapped to the human genome were retained and
aligned with the microorganism genome database for microbial
identification by Kraken (version 2.0.7), and species abundance
estimating by Bracken (version 2.5.0). The microorganism genome
database contained genomes or scaffolds of bacteria, fungi, viruses,
and parasites (download from GenBank release 238, ftp://

ftp.ncbi.nlm.nih.gov/genomes/genbank/).

Statistical analysis
We performed the microbial diversity analysis using R software

(version 4.0.1). The alpha-diversity was assessed by taxonomic
profiles, and the beta-diversity was estimated by Bray- Curtis
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distance. PERMANOVA (vegan) was used to analyze beta-diversity
differences. Differences of the relative genus abundances were tested
by the Kruskal-Wallis test (Kruskal.test package). Only genera with
greater than 1% mean abundance and 40% prevalence were
compared. Linear discriminant analysis (LDA) effect size (LEfSe)
was performed to assess the statistical differences of the relative
abundance of microorganisms between CIP/RP and LC-P patients.
Spearman’s correlations between clinical indicators and relative
genus abundances were determined by R package cor. test and
adjusted by false discovery rate. A random forest binary
classification model integrating key microbes and significantly
clinical indicators was assessed by Receiver Operating
Characteristic Curve.

Student’s t-test or Mann-Whitney U test was used to compare
the continuous variables. For categorical variables, Chi-square test
or Fisher’s exact test was used to explore the association. All
significance tests were two-tailed and a P value < 0.05 was
considered statistically significant.

Ethical approval

This study was conducted in accordance with the Declaration of
Helsinki and was approved by the Ethics Committee of Renji
Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China (KY2021-102-B). Informed consent was obtained
from all patients.

Results
Demographic information of participants

The study included 61 patients. Among these patients, 23 were
classified as grade1-2 CIP/RP (of whom, 16 had CIP and 7 had RP),
while 38 were confirmed to have LC-P. The demographic and
clinical characteristics of the patients are detailed in Table 1. The
patients in the CIP/RP group were younger than those in the LC-P
group. Comorbidities comprised chronic obstructive pulmonary
disease (COPD, 17.4%), hypertension (13%) and diabetes (13%) in
the CIP/RP group. The CIP/RP group had lower levels of
lymphocytes (P = 0.001), EOS (P = 0.008), and ALB (P = 0.006)
in peripheral blood than those in the LC-P group. In BALF, the
percentage of lymphocyte was significantly high in the CIP/RP
group (P = 0.010). The CIP/RP group also had higher levels of C-
reactive protein (CRP), erythrocyte sedimentation rate (ESR), Krebs
Von den Lungen-6 (KL-6), and D-dimer, but no significant
differences were observed in these clinical indicators.

Lung microbial diversity and composition
At species level, alpha-diversity was based on ACE, Chaol,

Shannon, and Simpson indexes (Supplementary Figure 1A).
However, there were no significant differences in ACE (P = 0.63),
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Chaol (P = 0.63), Shannon (P = 0.8), and Simpson (P = 0.92)
indexes. Additionally, PCoA and PC analysis based on the Bray-
Curtis distances also showed that no difference was observed in
beta-diversity (P = 0.481 and P = 0.477, respectively)
(Supplementary Figure 1B). We then analyzed the lung microbial
composition in CIP/RP and LC-P groups. In the CIP/RP group, the
top five phyla were Pseudomonadota (27.0%), Bacteroidota (26.1%),
Bacillota (19.4%), Actinomycetota(19.0%) and Peploviricota (3.0%)
(Figure 1A). The top five genera included Prevotella (22.7%), Rothia
(8.7%), Pseudomonas (7.8%), Streptococcus (7.7%), and Veillonella
(6.7%) (Figure 1B). The top five species were Prevotella
melaninogenica (11.6%), Rothia mucilaginosa (9.7%),
Pseudomonas aeruginosa (6.0%), Prevotella jejuni (5.6%) and
Haemophilus parainfluenzae (4.1%) (Figure 1C). In the LC-P
group, the top five phyla included Bacteroidota (27.2%),
Pseudomonadota (22.2%), Bacillota (21.6%), Actinomycetota
(17.4%) and Ascomycota (4.2%) (Figure 1A). The top five genera
were Prevotella (19.4%), Rothia (9.2%), Streptococcus (6.9%),
Veillonella (6.6%) and Haemophilus (4.8%) (Figure 1B). The top
five species included Rothia mucilaginosa (6.9%), Prevotella
melaninogenica (5.4%), Prevotella jejuni (4.7%), Prevotella pallens
(4.1%) and Haemophilus parainfluenzae (3.7%) (Figure 1C).

Differential microbiota analysis

We further analyzed the differential relative abundance of top
10 phyla, top 20 genera, and top 20 species between CIP/RP and
LC-P groups. At the phyla level, no significant differences were
observed in the relative abundance of the top 10 phyla. At the
genera level (Figure 2A), the relative abundance of Porphyromonas
(P =0.028) and Neisseria (P = 0.010) were significantly lower in the
CIP/RP group than those in the LC-P group. No significant
differences were observed in the relative abundance of the other
genera between the two groups. At the species level (Figure 2B), the
relative abundance of Prevotella melaninogenica (P = 0.018) and
Cytomegalovirus humanbeta5 (P = 0.010) were significantly higher
in the CIP/RP group than those in the LC-P group. However, the
relative abundance of Neisseria subflava (P = 0.024) and
Porphyromonas pasteri (P = 0.045) were significantly lower in the
CIP/RP group than those in the LC-P group. No significant
differences were observed in the relative abundance of the other
species between the two groups. 22 discriminative features were
identified by LEfSe. Among them, 13 taxa were discriminative for
the CIP/RP group and 9 taxa were discriminative for the LC-P
group (Figure 2C). At the genera level, the Cytomegalovirus (LDA
scores >4, P = 0.010) was significantly higher in the CIP/RP group
while Porphyromonas (LDA scores >4, P = 0.028) and Neisseria
(LDA scores >4, P = 0.010) were abundant in the LC-P group. At
the species level, Prevotella melaninogenica (LDA scores >4, P =
0.018) and Cytomegalovirus_humanbeta5 (LDA scores >4, P =
0.010) were significantly higher in the CIP/RP group while
Neisseria_subflava (LDA scores >2, P = 0.024) and
Porphyromonas pasteri (LDA scores >2, P = 0.045) were
significantly more abundant in the LC-P group.
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TABLE 1 Characteristics of the patients.

10.3389/fcimb.2025.1594460

Items CIP/RP (n=23) LC-P (n=38) P value
Female, n (%) 3 (13%) 7 (18.4%) 0.847
Age (years) 64.91 (7.09) 68.30 (5.67) 0.046
Comorbidities

COPD 4(174) 11 (28.9) 0.310
Hypertension (%) 3 (13) 16 (42.1) 0.018
Diabetes (%) 3(13) 3(7.9) 0.513
Laboratory findings

WBC (10°/L) 5.92 (4.65-8.52) 6.53 (5.28-8.10) 0.400
Neutrophils (10°/L) 4.06 (3.47-6.40) 4.53 (3.53-5.69) 0.732
Lymphocytes (10°/L) 0.67 (0.52-1.16) 1.26 (0.95-1.66) 0.001
NLR 5.58 (4.39-8.27) 3.61 (2.92-4.19) 0.001
EOS (10°/L) 0.04 (0.01-0.11) 0.13 (0.08-0.18) 0.008
BALE-N (%) 67.50 (30.00-80.75) 44.00 (14.75-72.00) 0.206
BALF-L (%) 6.00 (3.00-15.75) 3.50 (0.75-5.25) 0.010
CRP (mg/L) 23.68 (2.20-48.93) 4.78 (0.66-26.05) 0.107
PCT (ng/mL) 0.07 (0.05-0.22) 0.05 (0.02-0.08) 0.094
ESR (mm/h) 67.00 (10.00-76.00) 30.00 (9.00-65.00) 0.440
KL-6 (U/mL) 453.00 (251.25-866.50) 274.00 (188.25-516.25) 0.096
B lymphocytes (cells/uL) 50.10 (28.20-86.18) 143.50 (86.60-226.21) 0.008
T lymphocytes (cells/uL) 504.70 (410.50-659.93) 753.30 (588.51-1080.40) 0.004
Th (cells/uL) 218.00 (151.60-308.48) 461.50 (299.44-638.59) 0.001
Ts (cells/uL) 243.50 (147.95-342.98) 275.10 (174.86-416.95) 0.384
NK (cells/uL) 106.40 (49.15-277.70) 252.80 (136.29-351.77) 0.001
D-dimer (mg/L) 0.39 (0.21-1.07) 0.22 (0.16-0.51) 0.082
FDP (mg/L) 4.47 (3.10-6.10) 4.17 (2.91-5.50) 0.524
SCR (umol/L) 72.00 (20.11) 73.43 (16.88) 0.768
GLU (mmol/L) 6.50 (5.70-9.30) 6.60 (5.55-8.75) 0.994
ALB (g/L) 35.01 (5.47) 39.04 (3.86) 0.006
CAR 0.87 (0.06-1.82) 0.09 (0.02-0.54) 0.062
LDH (U/L) 208.00 (170.00-271.80) 207.00 (178.00-235.50) 0.520
ALT (U/L) 14.00 (11.00-41.00) 18.00 (13.75-33.50) 0.367
AST (U/L) 26.00 (20.00-33.00) 22.50 (20.00-28.00) 0.267

Statistically significant P < 0.05 values are in bold. COPD, chronic obstructive pulmonary disease; WBC, white blood cells; NLR, neutrophils to lymphocytes ratio; EOS, eosinophils; BALF,
bronchoalveolar lavage fluid; BALF-N, neutrophile percentage in BALF; BALF-L, lymphocyte percentage in BALF; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; PCT,
procalcitonin; KL-6, Krebs Von den Lungen-6; FDP, fibrin degradation products; SCR, serum creatine; GLU, glucose; ALB, albumin; CAR CRP to ALB ratio; LDH, lactate dehydrogenase; ALT,

alanine aminotransferase; AST, aspartate aminotransferase.

Correlation between differential microbial
taxa and clinical indicators

A Spearman correlation analysis was used to further explore the

relationship between top 20 genera (or species) and clinical indicators.
A two-dimensional heatmap showed the results (Figures 3A, C).

Frontiers in Cellular and Infection Microbiology

We mainly focused on differential microbiota and clinical indicators
with significant difference. At the genera level, the Porphyromonas had
no correlation with all clinical indicators. The Neisseria showed a
positive correlation with ALB. At the species level, the Prevotella
melaninogenica had a negative correlation with B lymphocytes, NK,
and lymphocytes in peripheral blood. The Cytomegalovirus
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FIGURE 1

Comparison of the lung microbial profile between CIP/RP and LC-P groups. (A) Dominant phyla. (B) Dominant genera. (C) Dominant species.

LC-P

humanbeta5 showed a negative correlation with B lymphocytes and
ALB in peripheral blood. The Neisseria subflava and Porphyromonas
pasteri had no correlation with significantly different clinical indicators.
Furthermore, a CCA analysis showed that the levels of peripheral blood
EOS, ALB, and BALF-L were found to have a strong relation with the
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top 20 genera or species (Figures 3B, D). In addition, a random forest
binary classification model was constructed. The model integrated
Prevotella melaninogenica and significantly clinical indicators including
peripheral blood lymphocyte, EOS, ALB and BALF-L, yielding an AUC
of 0.755 (Figure 3E).
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Differential relative abundances between CIP/RP and LC-P groups. (A) Differential relative abundance (logyo) of top 20 genera. (B) Differential relative
abundance (log) of top 20 species. (C). Linear discriminant analysis (LDA) effect size (LEfSe) analysis of the differential microbiota between CIP/RP

and LC-P groups.

Discussion

In this study, we explored the LRT microbiome in the CIP/RP
patients, analyzed microbial composition and diversity, compared the
differences between CIP/RP and LC-P groups, and further explored the
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relationship between LRT microbiome and clinical features. We found
that the CIP/RP group had higher levels of Prevotella melaninogenica
species and BALF-L but lower levels of lymphocytes, EOS, and ALB in
peripheral blood. In addition, the Prevotella melaninogenica species had
a negative correlation with the peripheral blood lymphocytes.
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between top 20 species and clinical indicators. (D) CCA analysis showing the relationship between species and clinical indicators. (E) Receiver

Operating Characteristic Curve for random forest binary classification model. *, p < 0.05; **, p < 0.01; ***, p < 0.001. WBC, white blood cells; NLR,
neutrophils to lymphocytes ratio; EOS, eosinophils; BALF, bronchoalveolar lavage fluid; BALF-N, neutrophil percentage in BALF; BALF-L, lymphocyte
percentage in BALF; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; PCT, procalcitonin; KL-6, Krebs Von den Lungen-6; FDP, fibrin

degradation products; SCR, serum creatine; GLU, glucose; ALB, albumin; CAR CRP to ALB ratio; LDH, lactate dehydrogenase; ALT, alanine

aminotransferase; AST, aspartate aminotransferase.

The prevotella is one of the most common genera among the
bacteriome of healthy lung microbiome (Li et al., 2024). As the
commensal bacterial microbiota colonized in healthy human
airway, the gram-negative prevotella spp. are found to have weak
inflammatory properties and be intrinsically tolerated by the
respiratory immune system (Larsen et al, 2015). However, the
alteration of the prevotella is related to occurrence and development
of various diseases (Rofael et al., 2019; De Martin et al., 2021; Wang
et al,, 2022). De Martin et al. found that the relative abundance of
Prevotella melaninogenica was increased in tonsil cancer (De
Martin et al., 2021). Sylvia A.D. Rofael et al. used 16S rRNA gene
sequencing to detect the respiratory pathogen in induced sputum
collected from young adults born extremely preterm and found that
the relative abundance of prevotella, particularly prevotella
melaninogenica was significantly decreased (Rofael et al., 2019).
Once colonizing the stomach, the Prevotella melaninogenica was
associated with gastric inflammation or carcinogenesis (Xia et al.,
2025). The relative abundance of Prevotella melaninogenica showed
a significantly high level in the gastric juice of patients with gastric
cancer and bile reflux gastritis and the Prevotella melaninogenica
was found to induce gastric inflammation in mice, suggesting that
the Prevotella melaninogenica may be associated with the gastric
carcinogenesis (Wang et al., 2022).
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The role of Prevotella in respiratory diseases is intricate (Larsen
et al, 2015; Horn et al,, 2022; Lu et al, 2024). Lung dysbiosis with
decreased prevotella spp. and increased pathogenic proteobacteria in
chronic airway diseases suggests that prevotella spp. play a protective
role in chronic airway diseases (Larsen et al., 2015). Kadi J. Horn et al.
showed that the Prevotella melaninogenica induced an innate immune
response and reinforced protection against bacterial pathogen
Streptococcus pneumoniae in a mouse lung co-infection model,
highlighting airway Prevotella as a protective role in respiratory tract
health (Horn et al, 2022). However, Fan Lu et al. reported that the
Prevotella melaninogenica as an opportunistic pathogen may lead to
immune dysregulation in immunocompromised patients with sepsis-
induced acute lung injury (Lu et al,, 2024). In this study, the Prevotella
was the dominant genus in both groups, but no significant difference
was observed between the two groups. The Prevotella melaninogenica,
which belongs to the Prevotella genus, was the dominant species in the
CIP/RP group and the second most abundant species in the LC-P
group. Compared to the LC-P group, the CIP/RP group had
significantly high levels of the Prevotella melaninogenica species. The
enrichment of Prevotella melaninogenica may represent its
pathogenicity in CIP/RP.

The CIP/RP patients have unique clinical features that consist
of an increased lymphocyte percentage in BALF and a decreased
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level of lymphocytes in peripheral blood (Roberts et al., 1993; Zhou
et al, 2020; Lin et al., 2021; Chen et al,, 2024). In addition, the
reduction of EOS and ALB in peripheral blood is related to the
occurrence of CIP (Lin et al., 2021; Li et al., 2022). In this study,
the CIP/RP group had a significantly high level of BALF-L but low
levels of lymphocytes, EOS, and ALB in peripheral blood, which is
consistent with previous studies. We also found that the Prevotella
melaninogenica species had a negative correlation with peripheral
blood lymphocytes, suggesting the interplay between LRT
microbiota and clinical features.

This study has several limitations. First, the number of CIP/RP
was small. A future study with large samples would be valuable to
validate these findings. Second, the role of the other species, which
were not abundant but significantly different, was not well
understood. Finally, this study didn’t collect BALF and clinical
features from healthy group and patients after the recovery of CIP/
RP. Future research is needed to elucidate the interplay between
LRT microbiota and clinical features in CIP/RP.

Conclusion

The CIP/RP patients had an increased relative abundance of
Prevotella melaninogenica species that showed a negative
correlation with peripheral blood lymphocytes, suggesting that
the enrichment of Prevotella melaninogenica species in LRT
associated with a decreased level of peripheral blood lymphocytes
may be a potential biomarker of diagnosis and treatment for
CIP/RP.
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