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Background: Gastric cancer (GC), a malignant and highly proliferative disease, has

profoundly impacts a substantial global population and is associated with several

variables, including genetic, epigenetic, and environmental impacts. Global variance

is associated with Helicobacter pylori infection and dietary factors.

Objectives: The aim of the present study was to understand and identify key genes

significantly modulated by epigenetic changes that can serve as biomarkers and

therapeutic targets for gastric cancer.

Methods: This study employed an integrative multiomics approach to investigate

gut microbiome-mediated epigenetic modifications in gastric cancer by utilizing

publicly available transcriptomic and DNA methylation datasets, Quality control,

normalization and deferentially expressed gene analysis of sequencing data were

performed via standard bioinformatics pipelines. Functional enrichment analyses,

including GO and KEGG pathway mapping, were performed to elucidate the

biological pathways influenced by these interactions and network analysis was

conducted using Cytoscape to identify hub genes. We conducted in vitro assays

using the gastric adenocarcinoma cell lines AGS and MKN45, and the normal

gastric epithelial cell line GES-1. The expression of selected candidate genes was

evaluated using real-time PCR in these cell lines.

Results: The GEO2R and coexpression network analyses revealed that six genes

MAPK1, NOXO1, CUL1, CDK1, CDK2, and CCNB1 were significantly altered by

modified DNA methylation and mRNA expression in GC. Owing to their

identification across all epigenetic, transcriptomic, and miRNA datasets, we

have designated these genes as shared genes. The results showed that the

relative gene expression levels of MKN45 and AGS cell lines were higher than

those in the GES-1 cell line in the control., and the results were aligned with the in

silico findings.

Conclusions: CDK1, CDK2, NOXO1, CUL1, MAPK1, and CCNB1 play pivotal roles

in GC carcinogenesis and hold promise as early diagnostic biomarkers and

therapeutic targets for GC.
KEYWORDS

ep igene t i c s , gu t mic rob iome , gas t r i c cancer , hub genes , miRNAs ,
transcriptomics sequencing
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1 Introduction

Gastric cancer (GC) is characterized as the principal epithelial

malignancy originating from the stomach, and it represents a

complex and heterogeneous illness with various risk factors

(Smyth et al., 2020; Thrift and El-Serag, 2020). Despite its general

decline in incidence and mortality across several countries in recent

decades, GC is the fifth most prevalent malignancy and the fourth

foremost cause of cancer-related mortality worldwide (Daniyal

et al., 2015; Rawla and Barsouk, 2019). Despite a notable decline

in the global burden of gastric cancer, it continues to be severe in

specific regions, particularly Asia (Lordick et al., 2017). In recent

decades, the association between the gut microbiota and cancers has

been progressively elucidated, prompting investigations into the

molecular mechanisms of the microbiome in cancer and its

practical applications. Additionally, Manzoor et al. delineated

three tiers of interaction between the microbiome and cancer:

primary, secondary, and tertiary relationships, categorized by the

proximity of tumors to pertinent bacteria (Elinav et al., 2019;

Manzoor et al., 2020). While the majority of research has focused

on colorectal cancer (CRC), an increasing number of studies in the

past decade have indicated that intestinal microbes influence the

progression of gastric cancer (GC) by modulating metabolism and

immune signaling (Wang et al., 2023).

Recent studies have progressively emphasized the potential

relevance of bacteria, other than Helicobacter pylori, in gastric

cancer due to advancements in metagenomics, suggesting the

possible application of the gut microbiota in this context. The

composition of the gut microbiota in patients with GC can be

affected by factors such as origin, pathogenic type, phase, and

treatment (Liou et al., 2020). H. pylori infection is regarded as the

primary risk factor for GC, but additional risk factors include

Epstein–Barr virus (EBV) infection, a high-salt diet, tobacco use,

and genetic predisposition, which lead to complicated interactions

(Fakharian et al., 2022). In addition to these documented bacterial

sensing pathways, microbial signals influence host physiology via

epigenetic alterations that adjust gene expression without changing

the genetic code. These microbiota-sensitive epigenetic changes

include DNA and histone modifications, and their regulation by

noncovalent epigenetic mechanisms such as long-noncoding RNAs

and microRNAs(miRNA), also plays a role in initiating and

sustaining epigenetic modifications (Matson et al., 2021; So et al.,

2021). Epigenetic regulation is a powerful way by which the

microbiota impacts the physiology of the host, influencing

chemical donors for DNA or histone changes, modulating

enzyme expression, or activating fundamental host-cell activities

(Pepke et al., 2024). Additionally, comparative metagenomic

analyses in humans, along with the identification of species-

specific epigenetic alterations, indicate that the proliferation of

various microbial species can influence unique gene expression

profiles (Angers et al., 2020).

Although significant attention has given to short-chain fatty

acids (SCFAs), multiomics methodologies have revealed that the

microbiota generates a variety of bioactive metabolites that can

affect epigenetic alterations and the influence on the host
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epigenome (Den Besten et al., 2013). The connections between

microbiota composition and epigenetic alterations in inflammatory

bowel disease (IBD), cancer, and obesity underscore the potential of

epigenetic patterns as diagnostic instruments, linking genetic

susceptibility and microbial dysbiosis to disease pathogenesis

(Woo and Alenghat, 2022). Ultimately, the genetic modification

of epigenetic-modifying bacteria or the management of microbe-

derived epigenetic substrates may provide tailored prebiotic or

probiotic therapy, providing localized control over epigenetic

enzyme activity in the intestine (Gago et al., 2008; Reva et al., 2023).

This study aims to investigate the impact of gut microbiome-

mediated epigenetic modifications in GC via a comprehensive

multiomics approach that focuses on characterizing microbiome

composition, identifying epigenetic changes, integrating multiomics

data, assessing correlations with clinical outcomes, and exploring

therapeutic prospects.
2 Materials and methods

A graphical representation of the overall experimental design is

shown in Figure 1.
2.1 Composition of the gut microbiome in
GC patients

Newer stomach microbial analysis techniques have improved

the understanding of the gastric microbiota and its composition.

However, most studies have focused on intestinal-type

adenocarcinoma, possibly because of the association of H. pylori

with intestinal-type gastric cancer. We have mined the data and

assembled the composition of the microbiota associated with GC

via various tools such as PubTator, LitSuggest, and TeamTat. The

key terms used for mining the data were microbiome, gastric cancer,

epigenetics, and oncology, and finally datasets reported in the

certain studies were selected specifically associated with GC,

epigenetics and the microbiome. PubTator is a text-mining

program designed for annotating all PubMed articles with

essential biological elements (Wei et al., 2024). LitSuggest is an

online platform for literature triage and document classification

that uses artificial intelligence and machine learning (Allot et al.,

2019, Allot et al., 2021). TeamTat is an online text annotation tool

for biological texts and other domains (Islamaj et al., 2020).
2.2 Acquisition of transcriptomic datasets
associated with GCs and the microbiome

The datasets associated with GC, epigenetics and the

microbiome were retrieved from the Gene Expression Omnibus

(GEO) and GEO2R was used to perform the gene expression

analysis of the microarray/RNA-seq datasets. GEO2R is an online

tool provided by NCBI GEO that allows users to compare gene

expression across different conditions in a dataset without requiring
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coding expertise. The raw gene expression data from the GEO

dataset (GSE30601 for methylation profiling, GSE39600 for H.

pylori-mediated epigenetic dysregulation, and GSE58004 for the

epigenetic associations during chronic H. pylori infection) were

downloaded in series matrix format via the GEOquery package

(v3.2) in R. Identifiers for genes were mapped to official gene

symbols bases of the platform annotation file, and identifiers

matching multiple genes were removed, while the average

expression value was calculated for genes represented by multiple

probes. Genes with low expression across all samples (expression

values below the 20th percentile) were filtered out to reduce noise.

Data normalization and differential gene expression analysis were

conducted via the limma empirical Bayes method, with p-values

adjusted for multiple testing via the Benjamini–Hochberg false

discovery rate (FDR) method. Genes with an adjusted p-value <

0.05 and an absolute log2 fold change (|log2FC|) ≥ 2 were

considered statistically significant and biologically relevant

(Clough et al., 2023). GEO2R employs GEOquery and limma to
Frontiers in Cellular and Infection Microbiology 03
conduct differential expression analysis via processed data tables

provided by the original submitter as input. Consistent DEGs were

identified across the three datasets.
2.3 Functional and pathway enrichment
analysis

The Database for Annotation, Visualization, and Integrated

Discovery (DAVID, version 6.8) was used to perform Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

as well as Gene Ontology (GO) analysis of the differentially

expressed genes (DEGs). A p-value of <0.05 was set as the

significance threshold. The DAVID is a widely used

bioinformatics tool for functional enrichment analysis of gene

lists and helps to identify the biological meaning behind DEGs by

providing GO and KEGG pathway analyses (Huang et al., 2008;

Huang et al, 2009).
FIGURE 1

Graphical representation of the overall experimental design.
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2.4 Protein-protein interaction network
and module analysis

A protein-protein interaction (PPI) network of the common

genes in the four datasets was constructed and examined via the

STRING database which is an online widely used resource for

exploring PPIs (Szklarczyk et al., 2021). The default parameter

values used were network edges, text mining, experiments,

databases, coexpression, neighborhood, gene fusion, and co-

occurrence as active interaction sources, and medium confidence

(0.4) as the minimal necessary interaction score were among the

default parameter values used. Cytoscape software was then used to

visualize the PPI network (Shannon et al., 2003). In a PPI network, a

node’s degree is defined as how many interactions it has with other

nodes. In the PPI network, key nodes (genes/proteins) were chosen

on the bases of degree > 15. With the use of the MCODE plugin and

cluster modules, the network’s primary components were built

(Bader and Hogue, 2003) following the import of the TSV data

files to Cytoscape. The KEGG signaling pathway was initially

utilized to annotate the core network modules, followed by in-

depth analysis via the R programming language to identify the genes

associated with these modules. Differences for which the p value was

<0.05 were considered to be statistically significant (Kwak, 2023).
2.5 Screening of hub genes and analysis

Hub genes tend to have high connectivity within the network,

meaning that they interact with multiple other genes and may be

involved in key regulatory or signaling pathways (Bano et al., 2022).

The cytoHubba plugin under Cytoscape is a prevailing means for

categorizing important nodes and subnetworks in complex

biological networks. It offers a user-friendly interface for

examining important components in networks that depict gene

controls, biological pathways, signal transductions, and protein–

protein interactions. It carries involves a range of topological

analysis algorithms, such as degree, Euclidean maximum

neighborhood component (MNC), percolated component (EPC),

maximum neighborhood component density (DMNC), maximum

click centricity (MCC) and six centricity measures, including

bottleneck, eccentricity, entrainment, centricity, intermediacy, and

stress (Chin et al., 2014). These algorithms play important roles in

elucidating the centrality of genes within biological networks.

Researchers have identified genes that are important for network

integrity and function.
2.6 Prediction and analysis of transcription
factor and miRNA networks

Transcription factors and miRNAs form a complex regulatory

network that finely controls gene expression in various biological

processes and responses (Martinez and Walhout, 2009). During

mammalian development and homeostasis in adult tissues TFs are
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invariably the primary factors involved in cell fate decision-making

processes and lead to disease (Lee et al., 2024). The center was built

by the TF gene interaction network analyzer for the gene. Network

analyst is a web domain that provides comprehensive networks for

gene expression visualization. TFs were obtained from the gene–

gene network. JASPAR consists of a networking platform that

analyses networks (Castro-Mondragon et al., 2022). TFs are

proteins that can actively promote DNA replication. They are

either sure that DNA replication is either started or suppressed

before starting. In other words, they ensure that the cell will begin or

not begin the process of making new copies of its DNA (Shiroma

et al., 2020). On the other hand, miRNAs regulate gene expression

after transcription has already started. They can regulate protein

synthesis, usually by binding to miRNAs, preventing their

translation into proteins (O’brien et al., 2018). The network of

TF-miRNA regulators, which represent the hub genes, was

constructed via RegNetwork (Liu et al., 2015). For the hub genes,

the TF–miRNA regulatory network was constructed through the

Network Analyst platform via the Reg Network repository. The

network was cut off at 1°. Finally, the network was downloaded

from Network Analyst and visualized via Cytoscape software.
2.7 Validation of the hub genes

Cell culture, total RNA extraction and real-time PCR analysis

were carried out as described by Seo et al (Seo et al., 2023). To

experimentally validate the bioinformatically identified hub genes,

we conducted in vitro assays using the gastric adenocarcinoma cell

lines AGS and MKN45, and the normal gastric epithelial cell line

GES-1. H. pylori (strain NCTC11639, BNCC339501; BeNa Culture

Collection) was cultured microaerobically (10% CO2, 5% O2, 85%

N2) on Columbia blood agar plates for 3–4 days, followed by

expansion in brain heart infusion broth to the stationary phase.

Bacteria were harvested and resuspended in saline to a

concentration of 1×108 CFU/mL. The cells were maintained in

RPMI-1640 medium supplemented with 10% fetal bovine serum

and 1% penicillin–streptomycin. The cells were divided into three

treatment groups: (1) control (normal culture medium); (2) H.

pylori coculture (MOI = 100, 24 hours);and (3) 5- aza-2’-

deoxycytidine (5-Aza-dC; MedChemExpress, Cat. No. HY-10586)

pretreatment (10 mM, 24 hours) followed by H. pylor coculture.

Total RNA was extracted via TRIzol reagent (Invitrogen, Cat. No.

15596026) according to the manufacturer’s instructions. The RNA

concentration and purity were determined via a NanoDrop 2000

(Thermo Scientific). cDNA was synthesized via a RevertAid First

Strand cDNA Synthesis Kit (Thermo Scientific, Cat. No. K1622).

qPCR was performed via SYBR Green qPCR Mix (Biosharp, Cat.

No. BL698A) on a StepOne Plus Real-Time PCR System (Table 1).

The primer sequences were synthesized by Genewiz (China). Three

duplicate wells were performed for each group, and each test was

repeated three times. The average of the results was taken. Gene

expression was normalized to that of GAPDH and was analyzed via

the 2–DDCt method.
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3 Results and discussion

3.1 Gut microbiome composition in GC
patients

The human microbiota contributes to sustaining physiological

conditions and is implicated in diseases such as diabetes, obesity,

allergies, atopic disorders, and cancer (Wang et al., 2023). The

composition of host microorganisms, their functions, and their

impact on illness progression, epigenetics and treatment are key

elements to investigate. Various tools, such as PubTator, LitSuggest,

and TeamTat, have revealed that the majority of the gut microbiota

associated with GCs and epigenetics consists of Helicobacter spp.,

Streptococcus anginosus , Proteobacteria spp., Prevotella

melaninogenica, Propionibacterium acnes, Neisseria spp.,

Enterococcus spp., Lactobacillus spp., Firmicutes(synonym

Bacillota) spp., Bacillus spp., Parasutterella spp., Fusobacterium

spp., Brevibacillus spp., Enterobacter spp., Cloacibacterium spp.

and Suterella spp. (Supplementary Table S1). The literature

reveals that the gut microbiome is related mostly to H. pylori

because of its crucial role in the development of GC. Nonetheless,

the enrichment and diversity of other bacteria that can influence the

tumor microenvironment are implicated in the course of GC and

the effectiveness of immunotherapy.
3.2 Identification of DEGs

On the basis of the composition, the following datasets were

selected: the dataset GSE30601 which represents, methylation

profiling via an array with 94 matched nonmalignant gastric and

204 gastric tumor samples; the GSE39600 dataset, which represents

H. pylori mediated FOXD3 tumor-suppressive cascade epigenetic

dysregulation; and the GSE58004 dataset, which represents

epigenetic associations during chronic H. pylori infection.

Significantly, DEGs were selected according to the following

criteria: pvalue ≤ 0.05 and [log2FC] ≥ 0.5 (Figure 2). The DEGs

identified were as follows: 312 differentially methylated genes in

GSE30601, which represent the methylation profiling of GC; 293 in

GSE39600; and 431 in GSE58004. The aggregate counts of
Frontiers in Cellular and Infection Microbiology 05
downregulated and upregulated genes in each dataset are

presented in Table 2. A comprehensive analysis of the three

datasets revealed that six shared genes (CDK1, CDK2, NOXO1,

CUL1, MAPK1, and CCNB1) were linked to GC (Figure 2).

Integrative bioinformatics analyses are evolving as the most

obvious technique to illuminate the activities of the tumor

microenvironment and uncover the critical genes and signaling

pathways underlying disease pathogenesis. This method is

extensively employed to identify significant biomarkers and

treatment targets for different malignancies. Our study integrates

the expression profiles of three key datasets of gastric cancer,

microbiota and epigenetic modifications across healthy and GC

samples by utilizing individual microarray datasets from NCBI-

GEO (Zhang et al., 2019; Jin and Qin, 2020). The objective is to

thoroughly elucidate the epigenetic modifications of GC and to

identify pivotal hubs and common genes that significantly

contribute to the development and progression of GC tumors.

Overall, these results reinforce the complexity of the gut

microbiome in GC beyond H. pylori, suggesting that a broader

range of microbial species could be involved in modulating the

tumor microenvironment.
3.3 Gene ontology and pathway
enrichment analyses

The results retrieved from the Gene Ontology (GO) analysis

revealed comprehensive functional enrichment. For example,

upregulated genes associated with biological processes were mostly

associated with the cell cycle, p53 pathway, apoptosis, and

inflammatory pathways, which are prevalent (Figure 3A). The

antimicrobial humoral response, extracellular structure organization,
FIGURE 2

Venn diagram of the DEGs in the three datasets (DNA methylation
datasets GSE58004, and GSE3900, representing epigenetic
dysregulation by H. pylori and mRNA GSE58004 representing
miRNA GC methylation).
TABLE 1 List of primers used in this study.

Name of
gene

Sequence of primer
Product
size

MAPK-1
F. TAGGTCTGGTGCTCAAAGGG
R. CGCTACACCAACCTCTCGTA

121

NOXO-1
F. GCATCGAGAAGCTTTGGGAG
R. GAGTTGGGACGAATTCAGGC

101

CUL1
F. CACAGTATCGAGCCAGCAAC
R. GCTTTGTGGCTGCTCTTGAT

135

CDK 1
F. TCAGTGCCATTTTGCCAGAA
R. AGCCTAGCATCCCATGTCAA

125

CCNB 1
F. CATGGTCTCCTGCAACAACC
R. TGAGGAAGAGCAAGCAGTCA

140
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humoral immune response, extracellular matrix organization,

chemokine response, and cellular response to chemokines. The gene

set is highly enriched in immune-related pathways, suggesting that

genes play roles in host defense, antibody-mediated responses, and

chemokine signaling (Cui et al., 2014).The cellular components

included the cell projection membrane, mainly plasma membrane,

Golgi lumen, and zymogen granules (Figure 3B). The gene products

function as signaling molecules (chemokines/cytokines) or receptors

that mediate immune communication (Su et al., 2024). The majority

of those enriched in molecular functions, however, were enriched in

cytokine activity, chemokine receptor binding, receptor-ligand

activity, CXCR, signaling activator, and glygamenchose activity

(Figure 3C). The presence of apoptosis and p53 pathway

involvement may indicate a cellular response to stress, potentially
Frontiers in Cellular and Infection Microbiology 06
linking these findings to cancer or immune-related conditions

(Pflaum et al., 2014). The extracellular matrix and structural

organization findings suggest possible tissue remodeling, which

could be relevant in fibrosis, tumor metastasis, or immune cell

infiltration (Yuan et al., 2023). The functional enrichment suggested

a strong immune–inflammatory response, which could be relevant to

disease progression, the infection response, or cancer immunology.

Similarly, enrichment analysis of the KEGG pathway revealed

correlations between the enriched pathways and interactions

among gut microbiome and epigenetic modifications, such as the

key pathways reported are IL-17 signaling pathway, the chemokine,

cytokine–cytokine receptor interactions, cytokine receptors, the

TNF, and pertussis associated pathways (Figure 4). The

involvement of TNF and IL-17 signaling further emphasizes the
TABLE 2 Summary of the microarray datasets and differentially expressed genes associated with the microbiota and gastric cancer in each dataset.

Sr. no. Accession no. Datasets Upregulated genes Downregulated genes Total DEGs

1 GSE30601 Methylation Profiling of GC 217 129 346

2 GSE39600 Epigenetic Dysregulation by Hp 251 84 335

3 GSE58004 miRNA GC Methylation 363 97 460
FIGURE 3

Functional enriched terms for biological processes, cellular components, and molecular functions across the three datasets were retrieved: (A) GO
biological process, (B) cellular components and (C) molecular functions and.
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importance of proinflammatory mediators, which are critical in

driving immune cell recruitment, tissue inflammation and

activation (Ruiz De Morales et al., 2020). Taken together, these

results demonstrate that the gene set under study is strongly

associated with immune regulatory networks, bridging innate and

adaptive responses, and may provide insights into therapeutic

targets for gut microbiome mediated epigenetic modifications in

gastric cancer. Moreover, enriched pathways and functional terms

support a model in which upregulated genes seem to be pivotal in

structural maintenance, cell signaling, and immune response

regulation, potentially contributing to the disease processes

observed in GCs and the microbiota.

Several studies have revealed that TNF-a signaling is closely

associated with inflammatory responses in tumor tissues.

Proinflammatorycytokines such as CXCL12, TNF-a, and IL-6 are

simultaneously induced within the tumor microenvironment,

forming an interconnected cytokine network that amplifies

inflammatory signaling. This network plays a crucial role in

tumor progression, as some inflammatory mediators have been

implicated in promoting tumorigenesis through mechanisms such

as immune modulation, enhanced cell proliferation, and metastasis

(Oshima et al., 2011, Oshima et al., 2014).
3.4 Module analysis and interpretation of
the PPI network

The retrieved network has 35 nodes connected by 61 edges,

resulting in an average node degree of approximately 3.49. One

node is connected to an average of 3.49 additional nodes within the

network. It is also thought to be 0. The limiting clustering coefficient

is 503, which is the ratio of nodes that are close together in the

network. The coefficient of betweenness centrality measures the
Frontiers in Cellular and Infection Microbiology 07
moderate- to high-level clustering of the network, which means that

nodes are more likely to belong to communities or clusters close to

their surrounding nodes. Usually, the metrics provide meaningful

data about the network’s connectivity and structure. This network

shows a significant enrichment in PPIs that surpasses that expected

by random chance. This finding potentially indicates a high

probability that the observed interactions between proteins within

the network are of significant biological or functional relevance.

Moreover, the number of connections between nodes, similar to a

random model with the same characteristics, is approximately 7,

which confirms the organized nature of the network. A PPI

enrichment p-value less than 1.0 e-16 further indicates the

apparent nonrandom nature of protein interactions within the

network and suggests complex biological or functional

interrelationships between its components, as shown in Figure 5.
3.5 Identification of potential common hub
genes associated with the three datasets

PPI networks were used to identify key nodes via topological

analysis techniques such as DMNC, degree, MCC, EPC, MNC,

bottleneck, eccentricity, radiality, closeness, stress, and betweenness,

which were included in the CytoHubba plugin of Cytoscape. As a

result, six hub genes were identified MAPK1, NOXO1, CUL1,

CDK1, CDK2, and CCNB1. These genes were provided

simultaneously with their aliases and primary functions, as shown

in Figure 6.

Among the various functions and pathways, key elements, such

as MAPK1, are strongly associated with GC and the microbiota.

The interaction of TNFa with receptors on the cell surface initiates

numerous signal transduction pathways, including those involving

extracellular-signal-regulated kinases, three classes of mitogen-
FIGURE 4

KEGG analysis was used to evaluate the ten most significant pathway enrichment terms for common genes across the three datasets.
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activated protein (MAP) kinases, p38 MAP kinases and cJun NH2-

terminal kinases (JNKs). The signaling pathways associated with

MAP kinase elicit a secondary response by increasing the

expression of other inflammatory cytokines, including TNFa,
which increases the biological activity of TNFa (Sabio and Davis,

2014; Bahar et al., 2023). Nicotinamide adenine dinucleotide

phosphate (NADPH) oxidases (a NOX family enzyme) are often

dysregulated in various human cancers, including gastric cancer

(GC). Reactive oxygen species produced from NOX have been

shown to play a role in gastric carcinogenesis and the progression of

cancer (You et al., 2018). H. pylori infection induces chronic

inflammation that contributes to GC, and researchers have

reported that TNF-a signaling through TNFR1 is crucial for

GCdevelopment and within the tumor microenvironment, it

enables GC progression by inducing NOXO1 and Gna14, hence

preserving tumor cells in an undifferentiated state (El-Omar et al.,

2003; Mccoll et al., 2007).

Cullin1 (CUL1) another hub gene is the primary and most

meticulously examined member of the cullin family. CUL1, a

prominent scaffolding protein. It is also a crucial element of the

SCF E3 ubiquitin ligase complex. Consequently, CUL1 governs the

selective ubiquitination of certain proteins, facilitating several

cellular activities, including cell cycle regulation and early

embryonic development (Huang et al., 2018). CUL1 is
Frontiers in Cellular and Infection Microbiology 08
upregulated in various cancers and linked to lymphatic and

distant metastasis, and its degradation can induce epigenetic

reprogramming, impacting tumorigenesis and cellular

differentiation (Chen and Dent, 2014). CDKs and cyclins are key

cell cycle regulators that regulate gastric cell growth, modifying the

cell’s life cycle sequentially (Javed et al., 2023). Their dysregulation

often leads to uncontrolled cell proliferation, a hallmark of cancer.

Emerging evidence suggests that cyclins and CDKs interact with

epigenetic modification systems, influencing gene expression,

chromatin structure, and tumor progression (Suski et al., 2021),

and the identification of CDK1 and CDK2 the distinct example of

epigenetic modification associated with GC. Another important

gene identified as a hub gene in this study was cyclin B1 (CCNB1).

CCNB1 is a key regulator of the G2/M transition in the cell cycle

and primarily interacts with CDK1 to drive mitosis. Aberrant

expression of CCNB1 is frequently observed in various cancers,

and accumulating evidence suggests that epigenetic modifications

play crucial roles in its dysregulation (Wang et al., 2014; Javed et al.,

2023). Moreover, it has also been reported as a potential biomarker

for various cancer types, such as pancreatic ductal adenocarcinoma

(PDAC) (Zeng and Fan, 2022).

These findings emphasize the potential shared molecular

pathways between GC, GC linked with Hp and epigenetic

modifications and provide a deeper understanding of the interplay
FIGURE 5

Diagram of the PPI network. Proteins are designated nodes in the PPI network analysis graph; a thicker connection denotes a higher score, and a
thicker line denotes greater protein interaction.
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FIGURE 6

Hub gene identity. The intersection of 40 genes from 10 algorithms led to the identification of hub genes.
FIGURE 7

Transcription factor–hub gene regulatory network.
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between infectious diseases and cancer. Overall, the literature validates

that RNA - seq data and hub gene functionalities potentially offer

promising avenues for both GC and microbiota prognostic

applications and the development of novel anticancer therapies.
3.6 TF and TF–miRNA regulatory network
analysis of the hub genes

A transcription factor (TF) regulatory network was constructed

for the hub genes via the NetworkAnalyst platform. A transcription

factor (TF) regulatory network was constructed for the hub genes

via the NetworkAnalyst platform. These findings indicate that key

hub genes, CCNB1, CDK1, CDK2, and MAPK1, are under the

control of multiple TFs. For example, CCNB1 exhibited the greatest

number of TF interactions with BRCA1, FOXM1, RELA, NFKB1,

and E2F family members, emphasizing its importance in

proliferation and cell cycle regulation. CDK1 is regulated by TFs

such as RB1, SMAD7, TP73, and E2F1/E2F2, and CDK2 which are

known to have regulatory associations with MYC, GLI1, MITF, and
Frontiers in Cellular and Infection Microbiology 10
KAT2B. The findings are consistent with their role in mediating

genetic networks implicated in the progression of various cancers,

particularly gastric cancer (Pellarin et al., 2025). Although MAPK1

was targeted by fewer TFs (e.g., SPI1, TWIST1, and ARNT), its role

as a signaling hub suggests that transcriptional modulation could

exert broad downstream effects across multiple cellular pathways

(Kubatka et al., 2025) (Figure 7).

The miRNA–mRNA network revea l ed ex t en s i ve

posttranscriptional regulatory interactions, with hub genes such as

CDK2, CCNB1, CUL1, CDK1, and MAPK1 exhibiting high

connectivity to numerous miRNAs. Among these, CDK2 and CUL1

were targeted by the largest number of miRNAs, suggesting their roles

as major regulatory nodes. Several miRNAs, including hsa-miR-16,

hsa-miR-330, hsa-miR-17, hsa-miR-200 family members, and hsa-

miR-520 family members, displayed multi targeting properties,

indicating their potential function as master regulators in the studied

biological context. The dense connectivity of these miRNAs with

multiple hub genes suggests a coordinated post-transcriptional

control mechanism influencing key cellular pathways Figure 8.

Integration of both networks revealed that the hub genes are subject
FIGURE 8

Transcriptionfactor (TF) and miRNA regulatory network analysis via NetworkAnalyst.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1585881
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Qian et al. 10.3389/fcimb.2025.1585881
to dual-layer regulation at the transcriptional level via TFs and at the

posttranscriptional level via miRNAs. This combined regulatory

framework points to a tightly controlled gene expression system,

where worries at either regulatory layer could significantly impact

disease-associated pathways. This integrated network analysis provides

a comprehensive view of the molecular control architecture,

identifying candidate miRNAs and TFs that could serve as potential

therapeutic or diagnostic targets alongside the hub genes themselves.
3.7 Validation of the hub genes and
common genes

Changes in the transcription of the of hub genes MAPK1, NOXO1,

CUL1, CDK1, and CCNB1 were detected in cell lines, i.e., AGS, which

are well-differentiated human gastric adenocarcinoma cells, and the
Frontiers in Cellular and Infection Microbiology 11
normal gastric epithelial cell line GES-1 via quantitative RT–PCR. The

results demonstrated that the relative gene expression levels of MKN45

and AGS cell lines were greater than those in the GES-1 cell line in the

control. Compared with the control group, H. pylori infection

significantly increased the mRNA expression levels of core genes in

AGS and MKN45 cells (Figure 9). In contrast, minimal changes were

observed in GES-1 cells. Pretreatment with 5-Aza-dC markedly

attenuated H. pylori-induced upregulation in cancer cells, reducing

the expression levels of genes. The experimental validation conducted

in this study provides functional support for our bioinformatic

predictions, demonstrating that H. pylori infection significantly

upregulates the expression of identified hub genes in gastric cancer

cells. The markedly attenuated effect observed following 5-Aza-dC

pretreatment indicates that DNA methylation plays a crucial role in

mediating H. pylori-induced transcriptional activation which is in line

with previous studies (Valenzuela et al., 2015). These findings not only
FIGURE 9

Validation of gene expression via qRT–PCR via the DDCt method. *p < 0.05, **p < 0.01.
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confirm the reliability of our multiomics analysis but also highlight the

importance of epigenetic mechanisms, particularly DNA methylation,

in H. pylori-associated gastric carcinogenesis. The differential response

between gastric cancer cells and normal gastric epithelial cells suggests

that these genes may represent promising targets for the development of

epigenetic-based therapeutic strategies against H. pylori-related

gastric cancer.
4 Conclusions

An integrated bioinformatics study revealed six hub genes—

MAPK1, NOXO1, CUL1, CDK1, CDK1 and CCNB1 and the same

genes were common to GC and gut microbiome. The identification of

hub genes in our study elucidated the roles of inflammation, cell

adhesion, and cell proliferation. These findings emphasize the shared

molecular pathways between GC, H. pylori-associated GC, and

epigenetic modifications, offering insights into the infection–cancer

link. While, the integrated network analysis identifies hub genes,

miRNAs, and TFs as potential diagnostic and therapeutic targets,

supporting the use of RNA-seq data for prognostic applications and

novel anticancer strategies. Moreover, findings of this study

necessitate comprehensive analysis utilizing animal models and

clinical samples to elucidate the molecular mechanisms of GC

pathogenesis; clarify the roles of CDK1, CDK1, MAPK1, NOXO1,

CUL1 and CCNB1 in GC; and identify innovative and promising

targets for the early diagnosis and treatment of GC.
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