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Background: Gastric cancer (GC), a malignant and highly proliferative disease, has
profoundly impacts a substantial global population and is associated with several
variables, including genetic, epigenetic, and environmental impacts. Global variance
is associated with Helicobacter pylori infection and dietary factors.

Objectives: The aim of the present study was to understand and identify key genes
significantly modulated by epigenetic changes that can serve as biomarkers and
therapeutic targets for gastric cancer.

Methods: This study employed an integrative multiomics approach to investigate
gut microbiome-mediated epigenetic modifications in gastric cancer by utilizing
publicly available transcriptomic and DNA methylation datasets, Quality control,
normalization and deferentially expressed gene analysis of sequencing data were
performed via standard bioinformatics pipelines. Functional enrichment analyses,
including GO and KEGG pathway mapping, were performed to elucidate the
biological pathways influenced by these interactions and network analysis was
conducted using Cytoscape to identify hub genes. We conducted in vitro assays
using the gastric adenocarcinoma cell lines AGS and MKN45, and the normal
gastric epithelial cell line GES-1. The expression of selected candidate genes was
evaluated using real-time PCR in these cell lines.

Results: The GEO2R and coexpression network analyses revealed that six genes
MAPK1, NOXO1, CULL, CDK1, CDK2, and CCNB1 were significantly altered by
modified DNA methylation and mRNA expression in GC. Owing to their
identification across all epigenetic, transcriptomic, and miRNA datasets, we
have designated these genes as shared genes. The results showed that the
relative gene expression levels of MKN45 and AGS cell lines were higher than
those in the GES-1 cell line in the control., and the results were aligned with the in
silico findings.

Conclusions: CDK1, CDK2, NOXO1, CUL1, MAPK1, and CCNBI1 play pivotal roles
in GC carcinogenesis and hold promise as early diagnostic biomarkers and
therapeutic targets for GC.
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1 Introduction

Gastric cancer (GC) is characterized as the principal epithelial
malignancy originating from the stomach, and it represents a
complex and heterogeneous illness with various risk factors
(Smyth et al., 2020; Thrift and El-Serag, 2020). Despite its general
decline in incidence and mortality across several countries in recent
decades, GC is the fifth most prevalent malignancy and the fourth
foremost cause of cancer-related mortality worldwide (Daniyal
et al,, 2015; Rawla and Barsouk, 2019). Despite a notable decline
in the global burden of gastric cancer, it continues to be severe in
specific regions, particularly Asia (Lordick et al., 2017). In recent
decades, the association between the gut microbiota and cancers has
been progressively elucidated, prompting investigations into the
molecular mechanisms of the microbiome in cancer and its
practical applications. Additionally, Manzoor et al. delineated
three tiers of interaction between the microbiome and cancer:
primary, secondary, and tertiary relationships, categorized by the
proximity of tumors to pertinent bacteria (Elinav et al., 2019;
Manzoor et al,, 2020). While the majority of research has focused
on colorectal cancer (CRC), an increasing number of studies in the
past decade have indicated that intestinal microbes influence the
progression of gastric cancer (GC) by modulating metabolism and
immune signaling (Wang et al., 2023).

Recent studies have progressively emphasized the potential
relevance of bacteria, other than Helicobacter pylori, in gastric
cancer due to advancements in metagenomics, suggesting the
possible application of the gut microbiota in this context. The
composition of the gut microbiota in patients with GC can be
affected by factors such as origin, pathogenic type, phase, and
treatment (Liou et al., 2020). H. pylori infection is regarded as the
primary risk factor for GC, but additional risk factors include
Epstein-Barr virus (EBV) infection, a high-salt diet, tobacco use,
and genetic predisposition, which lead to complicated interactions
(Fakharian et al., 2022). In addition to these documented bacterial
sensing pathways, microbial signals influence host physiology via
epigenetic alterations that adjust gene expression without changing
the genetic code. These microbiota-sensitive epigenetic changes
include DNA and histone modifications, and their regulation by
noncovalent epigenetic mechanisms such as long-noncoding RNAs
and microRNAs(miRNA), also plays a role in initiating and
sustaining epigenetic modifications (Matson et al., 2021; So et al,,
2021). Epigenetic regulation is a powerful way by which the
microbiota impacts the physiology of the host, influencing
chemical donors for DNA or histone changes, modulating
enzyme expression, or activating fundamental host-cell activities
(Pepke et al., 2024). Additionally, comparative metagenomic
analyses in humans, along with the identification of species-
specific epigenetic alterations, indicate that the proliferation of
various microbial species can influence unique gene expression
profiles (Angers et al., 2020).

Although significant attention has given to short-chain fatty
acids (SCFAs), multiomics methodologies have revealed that the
microbiota generates a variety of bioactive metabolites that can
affect epigenetic alterations and the influence on the host
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epigenome (Den Besten et al., 2013). The connections between
microbiota composition and epigenetic alterations in inflammatory
bowel disease (IBD), cancer, and obesity underscore the potential of
epigenetic patterns as diagnostic instruments, linking genetic
susceptibility and microbial dysbiosis to disease pathogenesis
(Woo and Alenghat, 2022). Ultimately, the genetic modification
of epigenetic-modifying bacteria or the management of microbe-
derived epigenetic substrates may provide tailored prebiotic or
probiotic therapy, providing localized control over epigenetic
enzyme activity in the intestine (Gago et al., 2008; Reva et al., 2023).

This study aims to investigate the impact of gut microbiome-
mediated epigenetic modifications in GC via a comprehensive
multiomics approach that focuses on characterizing microbiome
composition, identifying epigenetic changes, integrating multiomics
data, assessing correlations with clinical outcomes, and exploring
therapeutic prospects.

2 Materials and methods

A graphical representation of the overall experimental design is
shown in Figure 1.

2.1 Composition of the gut microbiome in
GC patients

Newer stomach microbial analysis techniques have improved
the understanding of the gastric microbiota and its composition.
However, most studies have focused on intestinal-type
adenocarcinoma, possibly because of the association of H. pylori
with intestinal-type gastric cancer. We have mined the data and
assembled the composition of the microbiota associated with GC
via various tools such as PubTator, LitSuggest, and TeamTat. The
key terms used for mining the data were microbiome, gastric cancer,
epigenetics, and oncology, and finally datasets reported in the
certain studies were selected specifically associated with GC,
epigenetics and the microbiome. PubTator is a text-mining
program designed for annotating all PubMed articles with
essential biological elements (Wei et al, 2024). LitSuggest is an
online platform for literature triage and document classification
that uses artificial intelligence and machine learning (Allot et al.,
2019, Allot et al., 2021). TeamTat is an online text annotation tool
for biological texts and other domains (Islamaj et al., 2020).

2.2 Acquisition of transcriptomic datasets
associated with GCs and the microbiome

The datasets associated with GC, epigenetics and the
microbiome were retrieved from the Gene Expression Omnibus
(GEO) and GEO2R was used to perform the gene expression
analysis of the microarray/RNA-seq datasets. GEO2R is an online
tool provided by NCBI GEO that allows users to compare gene
expression across different conditions in a dataset without requiring
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FIGURE 1
Graphical representation of the overall experimental design.

coding expertise. The raw gene expression data from the GEO
dataset (GSE30601 for methylation profiling, GSE39600 for H.
pylori-mediated epigenetic dysregulation, and GSE58004 for the
epigenetic associations during chronic H. pylori infection) were
downloaded in series matrix format via the GEOquery package
(v3.2) in R. Identifiers for genes were mapped to official gene
symbols bases of the platform annotation file, and identifiers
matching multiple genes were removed, while the average
expression value was calculated for genes represented by multiple
probes. Genes with low expression across all samples (expression
values below the 20th percentile) were filtered out to reduce noise.
Data normalization and differential gene expression analysis were
conducted via the limma empirical Bayes method, with p-values
adjusted for multiple testing via the Benjamini-Hochberg false
discovery rate (FDR) method. Genes with an adjusted p-value <
0.05 and an absolute log2 fold change (|log2FC|) > 2 were
considered statistically significant and biologically relevant
(Clough et al., 2023). GEO2R employs GEOquery and limma to
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conduct differential expression analysis via processed data tables
provided by the original submitter as input. Consistent DEGs were
identified across the three datasets.

2.3 Functional and pathway enrichment
analysis

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, version 6.8) was used to perform Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis
as well as Gene Ontology (GO) analysis of the differentially
expressed genes (DEGs). A p-value of <0.05 was set as the
significance threshold. The DAVID is a widely used
bioinformatics tool for functional enrichment analysis of gene
lists and helps to identify the biological meaning behind DEGs by
providing GO and KEGG pathway analyses (Huang et al., 2008;
Huang et al, 2009).
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2.4 Protein-protein interaction network
and module analysis

A protein-protein interaction (PPI) network of the common
genes in the four datasets was constructed and examined via the
STRING database which is an online widely used resource for
exploring PPIs (Szklarczyk et al, 2021). The default parameter
values used were network edges, text mining, experiments,
databases, coexpression, neighborhood, gene fusion, and co-
occurrence as active interaction sources, and medium confidence
(0.4) as the minimal necessary interaction score were among the
default parameter values used. Cytoscape software was then used to
visualize the PPI network (Shannon et al., 2003). In a PPI network, a
node’s degree is defined as how many interactions it has with other
nodes. In the PPI network, key nodes (genes/proteins) were chosen
on the bases of degree > 15. With the use of the MCODE plugin and
cluster modules, the network’s primary components were built
(Bader and Hogue, 2003) following the import of the TSV data
files to Cytoscape. The KEGG signaling pathway was initially
utilized to annotate the core network modules, followed by in-
depth analysis via the R programming language to identify the genes
associated with these modules. Differences for which the p value was
<0.05 were considered to be statistically significant (Kwalk, 2023).

2.5 Screening of hub genes and analysis

Hub genes tend to have high connectivity within the network,
meaning that they interact with multiple other genes and may be
involved in key regulatory or signaling pathways (Bano et al., 2022).
The cytoHubba plugin under Cytoscape is a prevailing means for
categorizing important nodes and subnetworks in complex
biological networks. It offers a user-friendly interface for
examining important components in networks that depict gene
controls, biological pathways, signal transductions, and protein-
protein interactions. It carries involves a range of topological
analysis algorithms, such as degree, Euclidean maximum
neighborhood component (MNC), percolated component (EPC),
maximum neighborhood component density (DMNC), maximum
click centricity (MCC) and six centricity measures, including
bottleneck, eccentricity, entrainment, centricity, intermediacy, and
stress (Chin et al,, 2014). These algorithms play important roles in
elucidating the centrality of genes within biological networks.
Researchers have identified genes that are important for network
integrity and function.

2.6 Prediction and analysis of transcription
factor and miRNA networks

Transcription factors and miRNAs form a complex regulatory
network that finely controls gene expression in various biological
processes and responses (Martinez and Walhout, 2009). During
mammalian development and homeostasis in adult tissues TFs are
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invariably the primary factors involved in cell fate decision-making
processes and lead to disease (Lee et al., 2024). The center was built
by the TF gene interaction network analyzer for the gene. Network
analyst is a web domain that provides comprehensive networks for
gene expression visualization. TFs were obtained from the gene-
gene network. JASPAR consists of a networking platform that
analyses networks (Castro-Mondragon et al, 2022). TFs are
proteins that can actively promote DNA replication. They are
either sure that DNA replication is either started or suppressed
before starting. In other words, they ensure that the cell will begin or
not begin the process of making new copies of its DNA (Shiroma
et al,, 2020). On the other hand, miRNAs regulate gene expression
after transcription has already started. They can regulate protein
synthesis, usually by binding to miRNAs, preventing their
translation into proteins (O’brien et al., 2018). The network of
TF-miRNA regulators, which represent the hub genes, was
constructed via RegNetwork (Liu et al., 2015). For the hub genes,
the TF-miRNA regulatory network was constructed through the
Network Analyst platform via the Reg Network repository. The
network was cut off at 1°. Finally, the network was downloaded
from Network Analyst and visualized via Cytoscape software.

2.7 Validation of the hub genes

Cell culture, total RNA extraction and real-time PCR analysis
were carried out as described by Seo et al (Seo et al., 2023). To
experimentally validate the bioinformatically identified hub genes,
we conducted in vitro assays using the gastric adenocarcinoma cell
lines AGS and MKN45, and the normal gastric epithelial cell line
GES-1. H. pylori (strain NCTC11639, BNCC339501; BeNa Culture
Collection) was cultured microaerobically (10% CO2, 5% 02, 85%
N2) on Columbia blood agar plates for 3-4 days, followed by
expansion in brain heart infusion broth to the stationary phase.
Bacteria were harvested and resuspended in saline to a
concentration of 1x10® CFU/mL. The cells were maintained in
RPMI-1640 medium supplemented with 10% fetal bovine serum
and 1% penicillin-streptomycin. The cells were divided into three
treatment groups: (1) control (normal culture medium); (2) H.
pylori coculture (MOI = 100, 24 hours);and (3) 5- aza-2’-
deoxycytidine (5-Aza-dC; MedChemExpress, Cat. No. HY-10586)
pretreatment (10 UM, 24 hours) followed by H. pylor coculture.
Total RNA was extracted via TRIzol reagent (Invitrogen, Cat. No.
15596026) according to the manufacturer’s instructions. The RNA
concentration and purity were determined via a NanoDrop 2000
(Thermo Scientific). cDNA was synthesized via a RevertAid First
Strand cDNA Synthesis Kit (Thermo Scientific, Cat. No. K1622).
qPCR was performed via SYBR Green qPCR Mix (Biosharp, Cat.
No. BL698A) on a StepOne Plus Real-Time PCR System (Table 1).
The primer sequences were synthesized by Genewiz (China). Three
duplicate wells were performed for each group, and each test was
repeated three times. The average of the results was taken. Gene
expression was normalized to that of GAPDH and was analyzed via
the 2-AACt method.

frontiersin.org


https://doi.org/10.3389/fcimb.2025.1585881
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

Qian et al.

TABLE 1 List of primers used in this study.

Product
size

Name of

gene Sequence of primer

MAPK-1 F. TAGGTCTGGTGCTCAAAGGG 121
R. CGCTACACCAACCTCTCGTA

F. GCATCGAGAAGCTTTGGGAG
NOXO-1 R. GAGTTGGGACGAATTCAGGC 1ot

CUL1 F. CACAGTATCGAGCCAGCAAC 135
R. GCTTTGTGGCTGCTCTTGAT

CDK 1 F. TCAGTGCCATTTTGCCAGAA 125
R. AGCCTAGCATCCCATGTCAA

CCNB 1 F. CATGGTCTCCTGCAACAACC 140
R. TGAGGAAGAGCAAGCAGTCA

3 Results and discussion

3.1 Gut microbiome composition in GC
patients

The human microbiota contributes to sustaining physiological
conditions and is implicated in diseases such as diabetes, obesity,
allergies, atopic disorders, and cancer (Wang et al, 2023). The
composition of host microorganisms, their functions, and their
impact on illness progression, epigenetics and treatment are key
elements to investigate. Various tools, such as PubTator, LitSuggest,
and TeamTat, have revealed that the majority of the gut microbiota
associated with GCs and epigenetics consists of Helicobacter spp.,
Streptococcus anginosus, Proteobacteria spp., Prevotella
melaninogenica, Propionibacterium acnes, Neisseria spp.,
Enterococcus spp., Lactobacillus spp., Firmicutes(synonym
Bacillota) spp., Bacillus spp., Parasutterella spp., Fusobacterium
spp. Brevibacillus spp., Enterobacter spp., Cloacibacterium spp.
and Suterella spp. (Supplementary Table SI). The literature
reveals that the gut microbiome is related mostly to H. pylori
because of its crucial role in the development of GC. Nonetheless,
the enrichment and diversity of other bacteria that can influence the
tumor microenvironment are implicated in the course of GC and
the effectiveness of immunotherapy.

3.2 ldentification of DEGs

On the basis of the composition, the following datasets were
selected: the dataset GSE30601 which represents, methylation
profiling via an array with 94 matched nonmalignant gastric and
204 gastric tumor samples; the GSE39600 dataset, which represents
H. pylori mediated FOXD3 tumor-suppressive cascade epigenetic
dysregulation; and the GSE58004 dataset, which represents
epigenetic associations during chronic H. pylori infection.
Significantly, DEGs were selected according to the following
criteria: pvalue < 0.05 and [log2FC] > 0.5 (Figure 2). The DEGs
identified were as follows: 312 differentially methylated genes in
GSE30601, which represent the methylation profiling of GC; 293 in
GSE39600; and 431 in GSE58004. The aggregate counts of
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FIGURE 2

Venn diagram of the DEGs in the three datasets (DNA methylation
datasets GSE58004, and GSE3900, representing epigenetic
dysregulation by H. pylori and mRNA GSE58004 representing
miRNA GC methylation).

downregulated and upregulated genes in each dataset are
presented in Table 2. A comprehensive analysis of the three
datasets revealed that six shared genes (CDK1, CDK2, NOXO1,
CUL1, MAPKI, and CCNB1) were linked to GC (Figure 2).

Integrative bioinformatics analyses are evolving as the most
obvious technique to illuminate the activities of the tumor
microenvironment and uncover the critical genes and signaling
pathways underlying disease pathogenesis. This method is
extensively employed to identify significant biomarkers and
treatment targets for different malignancies. Our study integrates
the expression profiles of three key datasets of gastric cancer,
microbiota and epigenetic modifications across healthy and GC
samples by utilizing individual microarray datasets from NCBI-
GEO (Zhang et al,, 2019; Jin and Qin, 2020). The objective is to
thoroughly elucidate the epigenetic modifications of GC and to
identify pivotal hubs and common genes that significantly
contribute to the development and progression of GC tumors.
Overall, these results reinforce the complexity of the gut
microbiome in GC beyond H. pylori, suggesting that a broader
range of microbial species could be involved in modulating the
tumor microenvironment.

3.3 Gene ontology and pathway
enrichment analyses

The results retrieved from the Gene Ontology (GO) analysis
revealed comprehensive functional enrichment. For example,
upregulated genes associated with biological processes were mostly
associated with the cell cycle, p53 pathway, apoptosis, and
inflammatory pathways, which are prevalent (Figure 3A). The
antimicrobial humoral response, extracellular structure organization,
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TABLE 2 Summary of the microarray datasets and differentially expressed genes associated with the microbiota and gastric cancer in each dataset.

Accession no. Datasets Upregulated genes Downregulated genes Total DEGs
1 GSE30601 Methylation Profiling of GC 217 129 346
2 GSE39600 Epigenetic Dysregulation by Hp = 251 84 335
3 GSE58004 miRNA GC Methylation 363 97 460

humoral immune response, extracellular matrix organization,
chemokine response, and cellular response to chemokines. The gene
set is highly enriched in immune-related pathways, suggesting that
genes play roles in host defense, antibody-mediated responses, and
chemokine signaling (Cui et al., 2014).The cellular components
included the cell projection membrane, mainly plasma membrane,
Golgi lumen, and zymogen granules (Figure 3B). The gene products
function as signaling molecules (chemokines/cytokines) or receptors
that mediate immune communication (Su et al., 2024). The majority
of those enriched in molecular functions, however, were enriched in
cytokine activity, chemokine receptor binding, receptor-ligand
activity, CXCR, signaling activator, and glygamenchose activity
(Figure 3C). The presence of apoptosis and p53 pathway
involvement may indicate a cellular response to stress, potentially

linking these findings to cancer or immune-related conditions
(Pflaum et al,, 2014). The extracellular matrix and structural
organization findings suggest possible tissue remodeling, which
could be relevant in fibrosis, tumor metastasis, or immune cell
infiltration (Yuan et al,, 2023). The functional enrichment suggested
a strong immune-inflammatory response, which could be relevant to
disease progression, the infection response, or cancer immunology.
Similarly, enrichment analysis of the KEGG pathway revealed
correlations between the enriched pathways and interactions
among gut microbiome and epigenetic modifications, such as the
key pathways reported are IL-17 signaling pathway, the chemokine,
cytokine—cytokine receptor interactions, cytokine receptors, the
TNF, and pertussis associated pathways (Figure 4). The
involvement of TNF and IL-17 signaling further emphasizes the

A B
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4
) i ®: o
extracellular structure organization -« . zymogen granule o

. . valu
response to chemokine L J pvalue invadopodium . P Oeoa
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Functional enriched terms for biological processes, cellular components, and molecular functions across the three datasets were retrieved: (A) GO
biological process, (B) cellular components and (C) molecular functions and.
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KEGG analysis was used to evaluate the ten most significant pathway enrichment terms for common genes across the three datasets.

importance of proinflammatory mediators, which are critical in
driving immune cell recruitment, tissue inflammation and
activation (Ruiz De Morales et al., 2020). Taken together, these
results demonstrate that the gene set under study is strongly
associated with immune regulatory networks, bridging innate and
adaptive responses, and may provide insights into therapeutic
targets for gut microbiome mediated epigenetic modifications in
gastric cancer. Moreover, enriched pathways and functional terms
support a model in which upregulated genes seem to be pivotal in
structural maintenance, cell signaling, and immune response
regulation, potentially contributing to the disease processes
observed in GCs and the microbiota.

Several studies have revealed that TNF-o signaling is closely
associated with inflammatory responses in tumor tissues.
Proinflammatorycytokines such as CXCL12, TNF-o, and IL-6 are
simultaneously induced within the tumor microenvironment,
forming an interconnected cytokine network that amplifies
inflammatory signaling. This network plays a crucial role in
tumor progression, as some inflammatory mediators have been
implicated in promoting tumorigenesis through mechanisms such
as immune modulation, enhanced cell proliferation, and metastasis
(Oshima et al., 2011, Oshima et al., 2014).

3.4 Module analysis and interpretation of
the PPl network

The retrieved network has 35 nodes connected by 61 edges,
resulting in an average node degree of approximately 3.49. One
node is connected to an average of 3.49 additional nodes within the
network. It is also thought to be 0. The limiting clustering coefficient
is 503, which is the ratio of nodes that are close together in the
network. The coefficient of betweenness centrality measures the
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moderate- to high-level clustering of the network, which means that
nodes are more likely to belong to communities or clusters close to
their surrounding nodes. Usually, the metrics provide meaningful
data about the network’s connectivity and structure. This network
shows a significant enrichment in PPIs that surpasses that expected
by random chance. This finding potentially indicates a high
probability that the observed interactions between proteins within
the network are of significant biological or functional relevance.
Moreover, the number of connections between nodes, similar to a
random model with the same characteristics, is approximately 7,
which confirms the organized nature of the network. A PPI
enrichment p-value less than 1.0 e'® further indicates the
apparent nonrandom nature of protein interactions within the
network and suggests complex biological or functional
interrelationships between its components, as shown in Figure 5.

3.5 Identification of potential common hub
genes associated with the three datasets

PPI networks were used to identify key nodes via topological
analysis techniques such as DMNC, degree, MCC, EPC, MNC,
bottleneck, eccentricity, radiality, closeness, stress, and betweenness,
which were included in the CytoHubba plugin of Cytoscape. As a
result, six hub genes were identified MAPK1, NOXO1, CULL,
CDK1, CDK2, and CCNBI1. These genes were provided
simultaneously with their aliases and primary functions, as shown
in Figure 6.

Among the various functions and pathways, key elements, such
as MAPKI1, are strongly associated with GC and the microbiota.
The interaction of TNFo with receptors on the cell surface initiates
numerous signal transduction pathways, including those involving
extracellular-signal-regulated kinases, three classes of mitogen-
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Diagram of the PPl network. Proteins are designated nodes in the PPl network analysis graph; a thicker connection denotes a higher score, and a

thicker line denotes greater protein interaction.

activated protein (MAP) kinases, p38 MAP kinases and cJun NH2-
terminal kinases (JNKs). The signaling pathways associated with
MAP kinase elicit a secondary response by increasing the
expression of other inflammatory cytokines, including TNFa,
which increases the biological activity of TNFo (Sabio and Davis,
2014; Bahar et al., 2023). Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases (a NOX family enzyme) are often
dysregulated in various human cancers, including gastric cancer
(GC). Reactive oxygen species produced from NOX have been
shown to play a role in gastric carcinogenesis and the progression of
cancer (You et al, 2018). H. pylori infection induces chronic
inflammation that contributes to GC, and researchers have
reported that TNF-o. signaling through TNFRI is crucial for
GCdevelopment and within the tumor microenvironment, it
enables GC progression by inducing NOXO1 and Gnal4, hence
preserving tumor cells in an undifferentiated state (El-Omar et al,,
2003; Mccoll et al., 2007).

Cullinl (CUL1) another hub gene is the primary and most
meticulously examined member of the cullin family. CULL, a
prominent scaffolding protein. It is also a crucial element of the
SCF E3 ubiquitin ligase complex. Consequently, CUL1 governs the
selective ubiquitination of certain proteins, facilitating several
cellular activities, including cell cycle regulation and early
embryonic development (Huang et al, 2018). CUL1 is
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upregulated in various cancers and linked to lymphatic and
distant metastasis, and its degradation can induce epigenetic
reprogramming, impacting tumorigenesis and cellular
differentiation (Chen and Dent, 2014). CDKs and cyclins are key
cell cycle regulators that regulate gastric cell growth, modifying the
cell’s life cycle sequentially (Javed et al., 2023). Their dysregulation
often leads to uncontrolled cell proliferation, a hallmark of cancer.
Emerging evidence suggests that cyclins and CDKs interact with
epigenetic modification systems, influencing gene expression,
chromatin structure, and tumor progression (Suski et al., 2021),
and the identification of CDK1 and CDK?2 the distinct example of
epigenetic modification associated with GC. Another important
gene identified as a hub gene in this study was cyclin B1 (CCNB1).
CCNBI is a key regulator of the G2/M transition in the cell cycle
and primarily interacts with CDKI1 to drive mitosis. Aberrant
expression of CCNBI is frequently observed in various cancers,
and accumulating evidence suggests that epigenetic modifications
play crucial roles in its dysregulation (Wang et al., 2014; Javed et al.,
2023). Moreover, it has also been reported as a potential biomarker
for various cancer types, such as pancreatic ductal adenocarcinoma
(PDAC) (Zeng and Fan, 2022).

These findings emphasize the potential shared molecular
pathways between GC, GC linked with Hp and epigenetic
modifications and provide a deeper understanding of the interplay
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FIGURE 6
Hub gene identity. The intersection of 40 genes from 10 algorithms led to the identification of hub genes.

FIGURE 7
Transcription factor—hub gene regulatory network.
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between infectious diseases and cancer. Overall, the literature validates
that RNA - seq data and hub gene functionalities potentially offer
promising avenues for both GC and microbiota prognostic
applications and the development of novel anticancer therapies.

3.6 TF and TF—miRNA regulatory network
analysis of the hub genes

A transcription factor (TF) regulatory network was constructed
for the hub genes via the NetworkAnalyst platform. A transcription
factor (TF) regulatory network was constructed for the hub genes
via the NetworkAnalyst platform. These findings indicate that key
hub genes, CCNB1, CDK1, CDK2, and MAPKI, are under the
control of multiple TFs. For example, CCNBI exhibited the greatest
number of TF interactions with BRCA1, FOXM1, RELA, NFKBI,
and E2F family members, emphasizing its importance in
proliferation and cell cycle regulation. CDK1 is regulated by TFs
such as RB1, SMAD7, TP73, and E2F1/E2F2, and CDK2 which are
known to have regulatory associations with MYC, GLI1, MITF, and

Frontiers in Cellular and Infection Microbiology

KAT2B. The findings are consistent with their role in mediating
genetic networks implicated in the progression of various cancers,
particularly gastric cancer (Pellarin et al., 2025). Although MAPK1
was targeted by fewer TFs (e.g., SPI1, TWIST1, and ARNT), its role
as a signaling hub suggests that transcriptional modulation could
exert broad downstream effects across multiple cellular pathways
(Kubatka et al., 2025) (Figure 7).

The miRNA-mRNA network revealed extensive
posttranscriptional regulatory interactions, with hub genes such as
CDK2, CCNBI1, CULL, CDKI1, and MAPKI1 exhibiting high
connectivity to numerous miRNAs. Among these, CDK2 and CULLI
were targeted by the largest number of miRNAs, suggesting their roles
as major regulatory nodes. Several miRNAs, including hsa-miR-16,
hsa-miR-330, hsa-miR-17, hsa-miR-200 family members, and hsa-
miR-520 family members, displayed multi targeting properties,
indicating their potential function as master regulators in the studied
biological context. The dense connectivity of these miRNAs with
multiple hub genes suggests a coordinated post-transcriptional
control mechanism influencing key cellular pathways Figure 8.
Integration of both networks revealed that the hub genes are subject
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Validation of gene expression via qRT—PCR via the AACt method. *p < 0.05, **p < 0.01.

to dual-layer regulation at the transcriptional level via TFs and at the
posttranscriptional level via miRNAs. This combined regulatory
framework points to a tightly controlled gene expression system,
where worries at either regulatory layer could significantly impact
disease-associated pathways. This integrated network analysis provides
a comprehensive view of the molecular control architecture,
identifying candidate miRNAs and TFs that could serve as potential
therapeutic or diagnostic targets alongside the hub genes themselves.

3.7 Validation of the hub genes and
common genes
Changes in the transcription of the of hub genes MAPK1, NOXO1,

CUL1, CDK1, and CCNB1 were detected in cell lines, i.e., AGS, which
are well-differentiated human gastric adenocarcinoma cells, and the
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normal gastric epithelial cell line GES-1 via quantitative RT-PCR. The
results demonstrated that the relative gene expression levels of MKN45
and AGS cell lines were greater than those in the GES-1 cell line in the
control. Compared with the control group, H. pylori infection
significantly increased the mRNA expression levels of core genes in
AGS and MKN45 cells (Figure 9). In contrast, minimal changes were
observed in GES-1 cells. Pretreatment with 5-Aza-dC markedly
attenuated H. pylori-induced upregulation in cancer cells, reducing
the expression levels of genes. The experimental validation conducted
in this study provides functional support for our bioinformatic
predictions, demonstrating that H. pylori infection significantly
upregulates the expression of identified hub genes in gastric cancer
cells. The markedly attenuated effect observed following 5-Aza-dC
pretreatment indicates that DNA methylation plays a crucial role in
mediating H. pylori-induced transcriptional activation which is in line
with previous studies (Valenzuela et al,, 2015). These findings not only
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confirm the reliability of our multiomics analysis but also highlight the
importance of epigenetic mechanisms, particularly DNA methylation,
in H. pylori-associated gastric carcinogenesis. The differential response
between gastric cancer cells and normal gastric epithelial cells suggests
that these genes may represent promising targets for the development of
epigenetic-based therapeutic strategies against H. pylori-related
gastric cancer.

4 Conclusions

An integrated bioinformatics study revealed six hub genes—
MAPKI1, NOXO1, CUL1, CDK1, CDK1 and CCNBI1 and the same
genes were common to GC and gut microbiome. The identification of
hub genes in our study elucidated the roles of inflammation, cell
adhesion, and cell proliferation. These findings emphasize the shared
molecular pathways between GC, H. pylori-associated GC, and
epigenetic modifications, offering insights into the infection-cancer
link. While, the integrated network analysis identifies hub genes,
miRNAs, and TFs as potential diagnostic and therapeutic targets,
supporting the use of RNA-seq data for prognostic applications and
novel anticancer strategies. Moreover, findings of this study
necessitate comprehensive analysis utilizing animal models and
clinical samples to elucidate the molecular mechanisms of GC
pathogenesis; clarify the roles of CDK1, CDK1, MAPK]1, NOXOlI,
CULI and CCNBI in GGC; and identify innovative and promising
targets for the early diagnosis and treatment of GC.
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