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Abdominal aortic aneurysm (AAA) is often asymptomatic in its early stages, and 
rupture poses a life threatening risk. Currently, no effective pharmacological 
therapies are available, underscoring the importance of mechanistic research. 
Metabolic reprogramming—an adaptive process encompassing glucose, lipid, 
and amino acid metabolism—has increasingly gained attention in the context 
of AAA. These metabolic shifts, which coordinate cellular energy supply, 
biosynthesis, and signaling, critically shape vascular smooth muscle cell (VSMC) 
behavior, macrophage polarization, extracellular matrix remodeling, oxidative 
stress responses, and immune activation. Importantly, growing evidence 
suggests that crosstalk among these metabolic pathways orchestrates complex 
pathophysiological networks driving AAA initiation and progression. Exploring 
AAA pathogenesis from an integrated metabolic perspective not only helps 
elucidate underlying mechanisms but also provides new insights and potential 
therapeutic targets.
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 1 Introduction

 Aneurysms, particularly abdominal aortic aneurysms (AAA), are common 
cardiovascular disorders characterized by localized dilation of the aortic wall. When 
persistent, they may progress to rupture, posing a life-threatening risk (Wanhainen et al., 
2019). AAAs are typically asymptomatic, yet rupture is frequently fatal if surgical repair 
cannot be achieved in time. It has been reported that, in 2017, AAA accounted for 
approximately 167,200 deaths worldwide, with an estimated 3 million disability-adjusted 
life years (DALYs) lost (Wei et al., 2021). Each year, rupture of AAA leads to about 8,000 
deaths in the United Kingdom and approximately 15,000 deaths in the United States. The 
disease is more prevalent in men, with an estimated prevalence of 1.3%–8.9%, compared 
to 1.0%–2.2% in women. The overall mortality of ruptured AAA ranges from 65% to 
85%, with nearly half of the deaths occurring before patients reach the operating room 
(Sakalihasan et al., 2005). Most AAAs are nonspecific, with no clearly defined cause 
(Johnston et al., 1991). A minority of aneurysms have established etiologies, secondary 
to conditions such as atherosclerotic disease, trauma, connective tissue disorders (e.g.,
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Marfan syndrome, Ehlers–Danlos syndrome type IV), infectious 
diseases (e.g., tuberculosis, syphilis, bacterial, or fungal infections), 
and inflammatory diseases (Sakalihasan et al., 2005). Although the 
mechanisms underlying aneurysm formation have been extensively 
investigated over the past decades, their exact pathophysiological 
processes remain incompletely understood.

Accumulating evidence suggests that metabolic reprogramming 
contributes to the onset and progression of cardiovascular diseases 
(Chiong et al., 2014; Hall et al., 2001). Metabolic reprogramming 
refers to the process by which cells alter their metabolic patterns 
to meet bioenergetic and biosynthetic demands, thereby promoting 
survival, proliferation, and growth. This encompasses glucose, lipid, 
and amino acid metabolism. Intracellular metabolic regulation 
of vascular smooth muscle cells (VSMCs) has been implicated 
in the pathogenesis of atherosclerosis, systemic hypertension, 
diabetes, pulmonary hypertension, vascular calcification, and 
aneurysm formation (Shi et al., 2020). In response to distinct stimuli, 
macrophages undergo a spectrum of transcriptional and proteomic 
changes that correspond to different phenotypic states. Classically 
activated macrophages (M1) exhibit a pro-inflammatory phenotype 
that accelerates AAA development by inducing inflammatory 
responses, secreting matrix metalloproteinases (MMPs) that 
promote extracellular matrix (ECM) degradation, upregulating 
peroxidase expression, and enhancing oxidative stress (Raffort et al., 
2017). Collectively, emerging studies indicate that these metabolic 
alterations, acting through multicellular and multipathway 
mechanisms, critically modulate AAA progression. This provides 
multiple potential therapeutic targets and novel strategies for clinical 
intervention. Accordingly, this review focuses on recent advances 
regarding the pathological roles of metabolic reprogramming in the 
initiation and progression of AAA. 

2 Pathophysiological basis of 
abdominal aortic aneurysm

The development of abdominal aortic aneurysm (AAA) is 
closely associated with alterations in the connective tissue of 
the aortic wall, in which elastic fibers and fibrillar collagens 
are the principal determinants of aortic mechanical properties 
(Melrose et al., 1998). Elastin and its associated proteins form an 
elastic fiber network that imparts viscoelasticity to the arterial wall; 
while intermolecular cross-links maintain structural stability, these 
fibers are simultaneously susceptible to degradation by elastolytic 
proteases. Elastic fibers are predominantly localized within the 
medial layer of the aorta, closely integrated with vascular smooth 
muscle cells (VSMCs), whereas collagens are abundantly distributed 
in both the medial and adventitial layers. Type I and type III 
collagens constitute the major components, conferring tensile 
strength and preserving vascular structural integrity. A hallmark 
pathological feature of AAA tissue is the fragmentation of elastic 
fibers and the depletion of elastin, a process that typically arises 
during the early stages of aneurysm expansion and continues up to 
rupture (Baxter et al., 1992; Sakalihasan et al., 1993). Loss of elastin 
represents an early event in aneurysm formation, while collagen 
degradation is a critical factor contributing to rupture. Matrix 
metalloproteinases (MMPs) play a central role in AAA progression; 
their excessive activation, combined with an imbalance against 

antiproteases, markedly accelerates vascular wall degradation, 
thereby promoting aneurysmal enlargement and rupture (Rao et al., 
1996; Eriksson et al., 2004). In parallel, VSMCs exert dual functions 
during vascular remodeling: they not only synthesize various 
extracellular matrix proteins but also secrete proteases, thereby 
participating in the dynamic regulation of aortic structure (Lopez-
Candales et al., 1997). Moreover, aneurysm progression is closely 
linked to intraluminal thrombus (ILT) formation. The processes 
of thrombus development and resolution can induce local hypoxia 
and trigger inflammatory responses, further driving aneurysm 
progression (Wang et al., 2014). Collectively, degradation of elastin 
and collagen, alterations in VSMC function, and the formation 
and remodeling of intraluminal thrombus represent the core 
mechanisms underlying the initiation and progression of abdominal 
aortic aneurysm. 

3 Overview of metabolic 
reprogramming

Metabolic reprogramming refers to the process by which 
cells adapt to varying physiological or pathological conditions 
by altering their metabolic pathways to meet new demands. For 
example, in tumor cells, glucose metabolism is often shifted 
toward aerobic glycolysis—known as the Warburg effect—to 
support rapid proliferation (Wang et al., 2014). Similarly, 
immune cells, endothelial cells, and vascular smooth muscle 
cells undergo comparable metabolic reprogramming in response 
to different environmental stresses. Metabolic reprogramming 
not only influences cellular energy supply but also regulates 
cell function. Alterations in fatty acid metabolism, amino 
acid metabolism, and redox balance are closely associated 
with biological processes such as proliferation, migration, 
inflammatory responses, and apoptosis (Chen et al., 2024). 
Increasing evidence indicates that metabolic reprogramming plays a 
critical role in cardiovascular diseases, including atherosclerosis and
heart failure. 

4 Role of metabolic reprogramming in 
abdominal aortic aneurysm

4.1 Glucose metabolism

Genomic analyses have revealed that a prominent feature 
in patients with abdominal aortic aneurysm (AAA) as well as 
in the angiotensin II (Ang II) experimental model is metabolic 
reprogramming, characterized by enhanced glycolysis and 
suppressed glucose oxidative phosphorylation. Imaging studies 
have further demonstrated increased GLUT-mediated ^18F-
fluorodeoxyglucose (^18F-FDG) uptake in AAA tissues, indicating 
elevated glucose metabolic activity within the lesions. Subsequent 
investigations showed that the glycolytic inhibitor 2-deoxy-D-
glucose (2-DG) attenuates CaCl2-induced aortic dilation and 
reduces aneurysm formation in the Ang II model. This metabolic 
shift promotes the initiation and progression of AAA primarily by 
modulating the physiological and pathological functions of vascular 
smooth muscle cells and macrophages (Tsuruda et al., 2012). 
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4.1.1 Vascular smooth muscle cells
In the pathogenesis and progression of abdominal aortic aneurysm 

(AAA), glucose metabolic reprogramming is recognized as one of 
the key molecular features. Vascular smooth muscle cells (VSMCs) 
represent the principal effector cells of this process, with glucose 
uptake primarily dependent on GLUT1 (Hruz and Mueckler, 2001) and 
regulated by signaling pathways such as Akt/mTOR (Lin et al., 2013). 
By promoting glycolysis and the tricarboxylic acid (TCA) cycle, this 
reprogramming accelerates glucose flux, thereby enhancing cellular 
proliferation and resistance to apoptosis. A phenomenon analogous 
to the Warburg effect in cancer cells has also been observed in VSMCs, 
wherein aerobic glycolysis is favored even under normoxic conditions 
(Warburg, 1956; Chen et al., 2018). Although energetically less efficient, 
this metabolic mode provides rapid ATP generation and abundant 
biosynthetic intermediates, thereby supporting cell proliferation, 
migration, and phenotypic switching (Yang et al., 2010; Pfeiffer et al., 
2001). Within this context, key glycolytic enzymes (Jia et al., 2022; 
Jain et al., 2021) and lactate metabolism (Perez et al., 2010; Zhao et al., 
2020) play central roles. Enhanced glycolysis mediated by pyruvate 
kinase isoform M2 (PKM2), together with lactate accumulation and 
altered transport, reshapes the intra- and extracellular metabolic milieu 
and further modulates VSMC phenotypic transformation and matrix 
remodeling via signaling pathways (Zhou et al., 2019; Zhang et al., 
2022). Simultaneously, alterations in the pyruvate dehydrogenase 
kinase (PDK)/pyruvate dehydrogenase (PDH) balance redistribute 
glucose utilization between oxidative phosphorylation and glycolysis 
(Roche et al., 2001). In particular, upregulation of PDK4 has been 
linked not only to metabolic dysregulation (Zhu et al., 2018) but also 
to vascular calcification and impaired autophagy. Moreover, TCA cycle 
intermediates such as α-ketoglutarate (α-KG) have been proposed to 
exert protective effects through their antioxidant (Tian et al., 2020) 
and anti-inflammatory (Asadi Shahmirzadi et al., 2020) properties, 
mitigating AAA progression by reducing reactive oxygen species 
generation (Liu et al., 2022). In addition, diversion of glucose 
into the pentose phosphate pathway (PPP) supplies NADPH and 
nucleotides that support anabolic biosynthesis and antioxidative 
defense, thereby contributing to the survival and functional stability 
of VSMCs (Alamri et al., 2018; Ruiz-Ramírez et al., 2014; Dong et al., 
2015). Overall, from glucose uptake to glycolysis, lactate metabolism, 
PDK/PDH regulation, PPP flux, and TCA cycle intermediates, glucose 
metabolic reprogramming shapes the functional state of VSMCs 
through multilayered mechanisms. These metabolic alterations not 
only drive the pathology of AAA but also highlight new directions for 
metabolic interventions and potential therapeutic targets. 

4.1.2 Macrophages
In the pathophysiology of abdominal aortic aneurysm (AAA), 

macrophage infiltration and polarization are considered pivotal 
events (Song et al., 2022; Dale et al., 2016; Batra et al., 2018). 
Classically activated M1 macrophages predominantly rely on 
glycolytic metabolism (Odegaard and Chawla, 2011). By enhancing 
glucose uptake, increasing lactate production, and elevating 
reactive oxygen species (ROS) generation (Fukuzumi et al., 
1996), they drive inflammatory responses (Freemerman et al., 
2014), extracellular matrix degradation, and oxidative stress, 
thereby accelerating structural injury of the aortic wall. In 
contrast, alternatively activated M2 macrophages preferentially 
utilize oxidative metabolism and exhibit anti-inflammatory and 

tissue-reparative properties. Their upregulation is regarded as a 
compensatory mechanism that helps restrain AAA expansion and 
rupture (Rateri et al., 2011). Metabolic reprogramming plays a 
central role in macrophage polarization. Upregulation of GLUT1 
and regulation of the glycolytic enzyme pyruvate kinase isoform 
M2 (PKM2) (Gao et al., 2012) not only fuel proinflammatory 
cytokine production but also sustain the M1 phenotype through 
signaling pathways such as HIF-1 and STAT3. Conversely, 
downregulation of lactate dehydrogenase A (LDHA) can reduce 
lactate levels and attenuate inflammatory responses (Song et al., 
2019). Tricarboxylic acid (TCA) cycle intermediates also exert 
bidirectional regulatory effects: for instance, succinate promotes 
proinflammatory cytokine expression, whereas α-ketoglutarate 
(α-KG) supports M2 polarization and anti-inflammatory gene 
expression through epigenetic remodeling (Liu et al., 2017). 
Although current pharmacological studies targeting glucose 
metabolism are primarily focused on oncology (Yang et al., 2021; 
Pelicano et al., 2006; Anderson et al., 2018), accumulating preclinical 
evidence suggests that targeting glycolysis, the TCA cycle, and 
oxidative phosphorylation may represent promising strategies for 
AAA intervention. Advancing this area of research will not only 
help elucidate the crosstalk between metabolism and immunity but 
also provide novel therapeutic avenues and potential targets for the 
prevention and treatment of AAA.

Recent studies further emphasize that macrophage polarization 
is not solely determined by single metabolic cues but by the 
integrated influence of glucose, fatty acid, and amino acid 
metabolism. For instance, succinate and α-ketoglutarate jointly 
regulate pro- and anti-inflammatory transcriptional programs, 
while fatty acid oxidation modulates HIF-1α activity and ROS 
production, creating a metabolic–immune feedback loop that 
sustains inflammatory microenvironments. 

4.2 Lipid metabolism

Recent studies have demonstrated that long-chain 
polyunsaturated fatty acids (LCPUFAs), particularly ω-3 fatty 
acids such as eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA), are closely associated with the development and 
progression of abdominal aortic aneurysm (AAA) (Meital et al., 
2019). Since humans cannot synthesize polyunsaturated fatty 
acids, their levels primarily depend on dietary intake. Clinical and 
randomized controlled trials have reported reduced EPA levels 
in patients with AAA, with both absolute EPA concentration 
and the EPA/arachidonic acid (ARA) ratio showing significant 
inverse correlations with aneurysm diameter and growth rate 
(Aikawa et al., 2017). Mechanistically, dietary supplementation with 
EPA and DHA enriches cell membrane phospholipids with ω-3 
fatty acids, reduces the generation of ARA and its pro-inflammatory 
metabolites (e.g., PGE2, TXA2, LTB4), and suppresses macrophage-
mediated inflammatory responses, thereby exerting protective 
effects against AAA progression (Yoshihara et al., 2015). Conversely, 
ARA, as an ω-6 fatty acid, aggravates disease through its pro-
inflammatory actions (Ricciotti and FitzGerald, 2011; Soto et al., 
2018). Animal studies further show that inhibition of the COX 
pathway improves the structural integrity of vascular elastin 
and downregulates matrix metalloproteinase (MMP) expression 
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(Guo et al., 2013). Observational studies suggest that low-dose 
aspirin may slow the growth of medium-sized AAAs; however, 
no randomized controlled trials have yet confirmed the efficacy 
of any pharmacological agent in stabilizing or halting AAA 
expansion (Lindholt et al., 2008). Overall, the anti-inflammatory 
and immunomodulatory properties of LCPUFAs provide novel 
insights into the prevention and treatment of AAA, though further 
high-quality evidence is required to support clinical application. 
At present, the role of fatty acid metabolism in AAA pathogenesis 
remains incompletely understood. Metabolomic analyses indicate 
aberrant lipid metabolism in AAA tissues (Xie et al., 2023; 
Zhang et al., 2023), and elevated serum platelet-derived growth 
factor (PDGF) levels in patients can promote fatty acid oxidation 
in vascular smooth muscle cells (VSMCs) by upregulating carnitine 
palmitoyl transferase 1 (CPT1). This enhances cell proliferation 
and inhibits apoptosis-related pathways, suggesting that fatty acid 
oxidation may contribute to vascular remodeling (Yuwen et al., 
2019). In macrophages, however, the role of fatty acid oxidation is 
controversial: some studies suggest that it suppresses inflammation 
and lipid accumulation (Malandrino et al., 2015; Namgaladze et al., 
2014), while others indicate that CPT deficiency may confer anti-
inflammatory and anti-atherogenic effects (Nomura et al., 2019). 
In addition, fatty acid biosynthesis has attracted attention in the 
context of VSMC phenotypic switching. In synthetic VSMCs, 
fatty acid synthase is upregulated, and altered activity of stearoyl-
CoA desaturase 1 (SCD1) affects lipid composition and vascular 
metabolic homeostasis. 

4.3 Amino acid metabolism

4.3.1 Sulfur-containing amino acids
Cysteine (Cys), methionine (Met), and their metabolic 

derivative homocysteine (Hcy) play important roles in the 
context of abdominal aortic aneurysm (AAA) (Zaric et al., 2019). 
Hyperhomocysteinemia accelerates vascular wall degradation 
and aneurysmal expansion by increasing reactive oxygen species 
(ROS) generation, depleting nitric oxide (NO), upregulating 
matrix metalloproteinase (MMP) activity, and promoting the 
phenotypic transition of vascular smooth muscle cells (VSMCs) 
from a contractile to a synthetic state (Steed and Tyagi, 2011). 
Clinically, folate, vitamins B6/B12, and methionine-restricted diets 
have been shown to reduce Hcy levels, suggesting their potential for 
therapeutic intervention (Warsi et al., 2004). In addition, novel 
agents such as cystathionine β-synthase (CBS) modifiers (e.g., 
OT-58) hold promise as future targeted strategies (Bublil and 
Majtan, 2020). 

4.3.2 Tryptophan
Tryptophan (Trp) metabolism through the kynurenine 

pathway (KP) is upregulated in abdominal aortic aneurysm 
(AAA) tissues, with increased expression of key enzymes and 
metabolites (Nishimura et al., 2021). Indoleamine 2,3-dioxygenase 
(IDO)-mediated Trp metabolism promotes inflammation, matrix 
metalloproteinase (MMP) expression (Wang et al., 2017), and 
apoptosis, whereas its metabolite 5-methoxytryptophan (5-MTP) 
exhibits vasoprotective and anti-inflammatory effects (Wu et al., 
2020; Yang et al., 2015). Animal studies have demonstrated that 

inhibition of the KP can delay AAA formation, and IDO inhibitors 
have already been applied in other diseases (Watanabe et al., 2018); 
however, clinical validation in vascular disorders remains lacking 
(Song et al., 2017; Ramprasath et al., 2021). Notably, KP metabolism 
is closely associated with the aging process, which aligns with 
the strong age dependence of AAA, underscoring its potential 
significance for future research. 

4.3.3 Taurine
Taurine (Tau) exerts significant vasoprotective effects through 

its antioxidant activity, scavenging of oxidants such as hypochlorous 
acid (HClO), reduction of inflammatory cell infiltration, 
and inhibition of matrix metalloproteinase (MMP) activity 
(Bkaily et al., 2020; Kim et al., 2017; Chao de la Barca et al., 2022). 
Animal studies have demonstrated that taurine supplementation 
effectively suppresses angiotensin II (Ang II)-induced AAA 
formation (Brethel et al., 2023). Moreover, its regulatory 
roles in VSMC migration, anti-apoptotic responses, and anti-
calcification suggest its involvement in maintaining vascular wall 
homeostasis (Korshunov et al., 2006). However, clinical data in 
patients with AAA are currently lacking, and its protective effects 
remain to be further validated. 

4.3.4 Glycine
Glycine (Gly) plays an important role in antioxidant and 

anti-inflammatory processes by restoring glutathione synthesis, 
inhibiting reactive oxygen species (ROS) production, and 
suppressing NF-κB activation, thereby alleviating vascular 
inflammation (Ruiz-Ramírez et al., 2014; Chao de la Barca et al., 
2022). Metabolomic analyses have revealed decreased serum 
glycine levels in AAA models, which may diminish its protective 
effects. In addition, glycine has been shown to reduce blood 
lipid levels (Rom et al., 2017), thereby mitigating the adverse impact 
of hyperlipidemia on AAA. However, its protective role has not yet 
been clinically validated. 

4.3.5 Glutamine and glutamate
Glutamine (Gln) serves as a critical substrate for cellular 

proliferation. It is transported into cells via the high-affinity L-
Gln transporter solute carrier family 1 member 5 (SLC1A5), 
where it activates the mTORC1 signaling pathway and promotes 
the proliferation of vascular smooth muscle cells (VSMCs) 
(Osman et al., 2019). Both glutamate and glutamine also contribute 
to nitric oxide (NO) synthesis, with NO exerting protective effects 
by maintaining extracellular matrix homeostasis and promoting 
vasodilation (Zhang et al., 2003; Zhou et al., 2023). However, under 
conditions of metabolic dysregulation, excessive NO may induce 
vascular injury, suggesting a bidirectional role. Clinical studies 
have shown that glutamine supplementation can improve nitrogen 
balance and immune status following aortic surgery; nevertheless, 
its potential role in the prevention or treatment of AAA requires 
further investigation (Brinkmann et al., 2016). 

4.3.6 Branched-chain amino acids
Branched-chain amino acid (BCAA) levels, as well as their 

ratios with Gly and Gln, have been identified through metabolomic 
analyses as potential biomarkers of AAA (Zaric et al., 2020). 
Leucine supplementation has been shown to improve macrophage 
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FIGURE 1
Overview of the mechanism of abdominal aortic aneurysm.

lipid metabolism, enhance mitochondrial function, attenuate 
inflammation, and improve vascular elasticity. Clinical studies 
indicate that leucine-rich diets enhance cardiometabolic health in 
older adults; however, direct evidence supporting a protective role in 
AAA remains lacking (Kirk et al., 2021). All of the above-described 
mechanisms of metabolic reprogramming are summarized in 
Figure 1. Table 1 provides an overview summarizing the main 
metabolic pathways involved in abdominal aortic aneurysm (AAA) 
as well as the key molecules and targets.

Figure 1 provides an overview of metabolic reprogramming in 
abdominal aortic aneurysm (AAA), illustrating glucose, lipid, and 
amino acid metabolism on the basis of M1 and M2 macrophage 

phenotypes. A: M1 macrophage; B: M2 macrophage; FAS: fatty acid 
synthesis; FAO: fatty acid oxidation. 

4.4 Integrative perspective on metabolic 
reprogramming

Metabolic reprogramming represents a dynamic and 
interconnected network that orchestrates cellular adaptation to 
pathological stimuli. Rather than functioning as isolated processes, 
glucose, lipid, and amino acid metabolism are tightly integrated: 
for example, glycolytic intermediates fuel fatty acid synthesis, lipid 
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TABLE 1  Key molecules and targets in the pathway of abdominal aortic aneurysm.

Pathway Key Molecules Cellular Effects Experimental/Clinical 
Evidence

Therapeutic 
Potential

Glycolysis GLUT1, PKM2, PDK4 Proliferation, ROS production, 
M1 polarization

Preclinical (mouse, human 
tissue)

PKM2 inhibitors, 2-DG

Fatty acid oxidation CPT1, SCD1 VSMC remodeling, 
inflammatory regulation

Preclinical CPT1 inhibitors, FAO 
modulators

Amino acid metabolism IDO, α-KG, 5-MTP Epigenetic regulation, 
apoptosis, M2 polarization

Preclinical/limited clinical IDO inhibitors, α-KG 
supplementation

oxidation regulates inflammatory tone and mitochondrial function, 
and amino acid–derived metabolites modulate epigenetic states 
that influence macrophage polarization. This interdependence 
suggests that AAA progression results from the synergistic actions of 
metabolic pathways, highlighting the importance of a systems-level 
view when considering therapeutic interventions. 

5 Therapy

Given the complex interplay between metabolism and 
inflammation, targeting immune metabolism holds significant 
therapeutic potential, though relevant strategies remain in their 
early stages. The metabolic reprogramming of artery-resident 
macrophages provides a promising avenue for further investigation, 
opening new strategies for cardiovascular disease treatment. We 
propose that inhibiting glycolysis and the fatty acid synthesis (FAS) 
pathway in M1 macrophages, or enhancing fatty acid oxidation 
(FAO) in M2 macrophages, may effectively reduce foam cell 
formation, mitigate inflammation, and slow the progression of 
atherosclerosis (Liu et al., 2021; Hou et al., 2023). Future studies 
should further elucidate the mechanisms of macrophage metabolic 
reprogramming in atherosclerosis, as they may yield highly specific 
therapeutic targets capable of improving plaque stability, reducing 
inflammation, and significantly enhancing clinical outcomes. This 
approach also provides a solid theoretical and practical foundation 
for the treatment of abdominal aortic aneurysm (An et al., 
2025). In addition, dimethyl fumarate (DMF), a derivative of the 
tricarboxylic acid cycle, suppresses aerobic glycolysis in immune 
cells by modifying cysteine residues (e.g., GAPDH), thereby 
inducing macrophage polarization toward an anti-inflammatory 
phenotype. This results in improved ventricular remodeling, 
reduced collagen deposition, and enhanced angiogenesis following 
myocardial infarction, while also alleviating myocardial injury 
in diabetic models, demonstrating cardiovascular protective 
effects (Mouton et al., 2021; Bresciani et al., 2023). Similarly, the 
immunometabolite itaconate, generated from cis-aconitate via CAD 
(encoded by IRG), competitively inhibits succinate dehydrogenase 
(SDH), decreases mitochondrial ROS and pro-inflammatory gene 
expression (downregulating IL-1β and IL-6; upregulating IL-1RA 
and IL-10), and modifies glycolytic enzymes such as GAPDH, 
ALDOA, and LDHA to inhibit glycolysis, thereby exerting protective 
effects in murine models of myocardial infarction and doxorubicin-
induced cardiotoxicity. Moreover, rapamycin inhibits mTORC1, 

thereby reducing glycolysis and inflammatory polarization, 
limiting post-MI macrophage infiltration, and improving outcomes 
(Shan et al., 2024; Shan et al., 2019; Sciarretta et al., 2014). 
Collectively, these findings indicate that multiple metabolism-
targeting agents hold promise for the treatment and prevention of 
cardiovascular diseases, yet further studies are needed to elucidate 
underlying mechanisms, identify precise targets, and advance 
innovative therapeutic strategies into clinical practice. 

6 Clinical translation and therapeutic 
perspectives

While numerous metabolic targets (e.g., PKM2, PDK4, IDO, 
CPT1) and modulators (e.g., DMF, itaconate, rapamycin) show 
promise in preclinical models, significant barriers remain in 
translating these findings into clinical therapies. Challenges include 
metabolic heterogeneity across patient populations, off-target effects 
of systemic metabolic modulators, and a lack of reliable biomarkers 
to monitor metabolic changes in vivo. To bridge this gap, future 
studies should: (1) develop cell-specific metabolic interventions, 
(2) integrate metabolomics with single-cell and spatial omics 
to stratify patients by metabolic phenotype, and (3) conduct 
prospective clinical trials assessing safety, efficacy, and biomarker-
guided treatment responses. 

7 Future directions

Despite major advances, several critical questions remain 
unresolved. Future research should: Characterize metabolic 
heterogeneity across VSMC subpopulations and macrophage 
subsets using spatial transcriptomics and metabolomics. Investigate 
how aging reshapes metabolic networks, given the age dependence 
of AAA. Explore metabolic–immune crosstalk in the context 
of systemic comorbidities (e.g., diabetes, dyslipidemia). Design 
combinatorial therapies targeting multiple metabolic pathways 
simultaneously to maximize therapeutic efficacy. 

8 Conclusion

Abdominal aortic aneurysm (AAA) is associated with extremely 
high mortality due to its insidious onset and the lack of
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effective interventions. Metabolic reprogramming plays a pivotal 
role in AAA initiation and progression, influencing vascular 
wall homeostasis through intertwined metabolic networks that 
regulate inflammation, oxidative stress, apoptosis, and phenotypic 
switching. Integrating these insights into clinical strategies 
requires deeper mechanistic understanding, robust biomarker 
development, and innovative therapeutic design. Ultimately, 
viewing AAA through the lens of metabolic systems biology may 
unlock transformative avenues for individualized prevention and
treatment.
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