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Abdominal aortic aneurysm (AAA) is often asymptomatic in its early stages, and
rupture poses a life threatening risk. Currently, no effective pharmacological
therapies are available, underscoring the importance of mechanistic research.
Metabolic reprogramming—an adaptive process encompassing glucose, lipid,
and amino acid metabolism—has increasingly gained attention in the context
of AAA. These metabolic shifts, which coordinate cellular energy supply,
biosynthesis, and signaling, critically shape vascular smooth muscle cell (VSMC)
behavior, macrophage polarization, extracellular matrix remodeling, oxidative
stress responses, and immune activation. Importantly, growing evidence
suggests that crosstalk among these metabolic pathways orchestrates complex
pathophysiological networks driving AAA initiation and progression. Exploring
AAA pathogenesis from an integrated metabolic perspective not only helps
elucidate underlying mechanisms but also provides new insights and potential
therapeutic targets.
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1 Introduction

Aneurysms, particularly abdominal aortic aneurysms (AAA), are common
cardiovascular disorders characterized by localized dilation of the aortic wall. When
persistent, they may progress to rupture, posing a life-threatening risk (Wanhainen et al.,
2019). AAAs are typically asymptomatic, yet rupture is frequently fatal if surgical repair
cannot be achieved in time. It has been reported that, in 2017, AAA accounted for
approximately 167,200 deaths worldwide, with an estimated 3 million disability-adjusted
life years (DALYs) lost (Wei et al., 2021). Each year, rupture of AAA leads to about 8,000
deaths in the United Kingdom and approximately 15,000 deaths in the United States. The
disease is more prevalent in men, with an estimated prevalence of 1.3%-8.9%, compared
to 1.0%-2.2% in women. The overall mortality of ruptured AAA ranges from 65% to
85%, with nearly half of the deaths occurring before patients reach the operating room
(Sakalihasan et al., 2005). Most AAAs are nonspecific, with no clearly defined cause
(Johnston et al., 1991). A minority of aneurysms have established etiologies, secondary
to conditions such as atherosclerotic disease, trauma, connective tissue disorders (e.g.,
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Marfan syndrome, Ehlers-Danlos syndrome type IV), infectious
diseases (e.g., tuberculosis, syphilis, bacterial, or fungal infections),
and inflammatory diseases (Sakalihasan et al., 2005). Although the
mechanisms underlying aneurysm formation have been extensively
investigated over the past decades, their exact pathophysiological
processes remain incompletely understood.

Accumulating evidence suggests that metabolic reprogramming
contributes to the onset and progression of cardiovascular diseases
(Chiong et al., 2014; Hall et al., 2001). Metabolic reprogramming
refers to the process by which cells alter their metabolic patterns
to meet bioenergetic and biosynthetic demands, thereby promoting
survival, proliferation, and growth. This encompasses glucose, lipid,
and amino acid metabolism. Intracellular metabolic regulation
of vascular smooth muscle cells (VSMCs) has been implicated
in the pathogenesis of atherosclerosis, systemic hypertension,
diabetes, pulmonary hypertension, vascular calcification, and
aneurysm formation (Shi et al., 2020). In response to distinct stimuli,
macrophages undergo a spectrum of transcriptional and proteomic
changes that correspond to different phenotypic states. Classically
activated macrophages (M1) exhibit a pro-inflammatory phenotype
that accelerates AAA development by inducing inflammatory
responses, secreting matrix metalloproteinases (MMPs) that
promote extracellular matrix (ECM) degradation, upregulating
peroxidase expression, and enhancing oxidative stress (Raffort et al.,
2017). Collectively, emerging studies indicate that these metabolic
alterations, acting through multicellular and multipathway
mechanisms, critically modulate AAA progression. This provides
multiple potential therapeutic targets and novel strategies for clinical
intervention. Accordingly, this review focuses on recent advances
regarding the pathological roles of metabolic reprogramming in the
initiation and progression of AAA.

2 Pathophysiological basis of
abdominal aortic aneurysm

The development of abdominal aortic aneurysm (AAA) is
closely associated with alterations in the connective tissue of
the aortic wall, in which elastic fibers and fibrillar collagens
are the principal determinants of aortic mechanical properties
(Melrose et al., 1998). Elastin and its associated proteins form an
elastic fiber network that imparts viscoelasticity to the arterial wall;
while intermolecular cross-links maintain structural stability, these
fibers are simultaneously susceptible to degradation by elastolytic
proteases. Elastic fibers are predominantly localized within the
medial layer of the aorta, closely integrated with vascular smooth
muscle cells (VSMCs), whereas collagens are abundantly distributed
in both the medial and adventitial layers. Type I and type III
collagens constitute the major components, conferring tensile
strength and preserving vascular structural integrity. A hallmark
pathological feature of AAA tissue is the fragmentation of elastic
fibers and the depletion of elastin, a process that typically arises
during the early stages of aneurysm expansion and continues up to
rupture (Baxter et al., 1992; Sakalihasan et al., 1993). Loss of elastin
represents an early event in aneurysm formation, while collagen
degradation is a critical factor contributing to rupture. Matrix
metalloproteinases (MMPs) play a central role in AAA progression;
their excessive activation, combined with an imbalance against

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1718220

antiproteases, markedly accelerates vascular wall degradation,
thereby promoting aneurysmal enlargement and rupture (Rao et al.,
1996; Eriksson et al., 2004). In parallel, VSMCs exert dual functions
during vascular remodeling: they not only synthesize various
extracellular matrix proteins but also secrete proteases, thereby
participating in the dynamic regulation of aortic structure (Lopez-
Candales et al., 1997). Moreover, aneurysm progression is closely
linked to intraluminal thrombus (ILT) formation. The processes
of thrombus development and resolution can induce local hypoxia
and trigger inflammatory responses, further driving aneurysm
progression (Wang et al., 2014). Collectively, degradation of elastin
and collagen, alterations in VSMC function, and the formation
and remodeling of intraluminal thrombus represent the core
mechanisms underlying the initiation and progression of abdominal
aortic aneurysm.

3 Overview of metabolic
reprogramming

Metabolic reprogramming refers to the process by which
cells adapt to varying physiological or pathological conditions
by altering their metabolic pathways to meet new demands. For
example, in tumor cells, glucose metabolism is often shifted
toward aerobic glycolysis—known as the Warburg effect—to
support rapid proliferation (Wang et al, 2014). Similarly,
immune cells, endothelial cells, and vascular smooth muscle
cells undergo comparable metabolic reprogramming in response
to different environmental stresses. Metabolic reprogramming
not only influences cellular energy supply but also regulates
cell function. Alterations in fatty acid metabolism, amino
acid metabolism, and redox balance are closely associated
with biological processes such as proliferation, migration,
inflammatory responses, and apoptosis (Chen et al, 2024).
Increasing evidence indicates that metabolic reprogramming plays a
critical role in cardiovascular diseases, including atherosclerosis and
heart failure.

4 Role of metabolic reprogramming in
abdominal aortic aneurysm

4.1 Glucose metabolism

Genomic analyses have revealed that a prominent feature
in patients with abdominal aortic aneurysm (AAA) as well as
in the angiotensin II (Ang II) experimental model is metabolic
reprogramming, characterized by enhanced glycolysis and
suppressed glucose oxidative phosphorylation. Imaging studies
increased GLUT-mediated "18F-
fluorodeoxyglucose ("18F-FDG) uptake in AAA tissues, indicating
elevated glucose metabolic activity within the lesions. Subsequent

have further demonstrated

investigations showed that the glycolytic inhibitor 2-deoxy-D-
glucose (2-DG) attenuates CaCl,-induced aortic dilation and
reduces aneurysm formation in the Ang II model. This metabolic
shift promotes the initiation and progression of AAA primarily by
modulating the physiological and pathological functions of vascular
smooth muscle cells and macrophages (Tsuruda et al., 2012).
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4.1.1 Vascular smooth muscle cells

In the pathogenesis and progression of abdominal aortic aneurysm
(AAA), glucose metabolic reprogramming is recognized as one of
the key molecular features. Vascular smooth muscle cells (VSMCs)
represent the principal effector cells of this process, with glucose
uptake primarily dependenton GLUT1 (Hruzand Mueckler,2001) and
regulated by signaling pathways such as Akt/mTOR (Lin et al., 2013).
By promoting glycolysis and the tricarboxylic acid (TCA) cycle, this
reprogramming accelerates glucose flux, thereby enhancing cellular
proliferation and resistance to apoptosis. A phenomenon analogous
to the Warburg effect in cancer cells has also been observed in VSMCs,
wherein aerobic glycolysis is favored even under normoxic conditions
(Warburg, 1956; Chenetal.,2018). Although energeticallyless efficient,
this metabolic mode provides rapid ATP generation and abundant
biosynthetic intermediates, thereby supporting cell proliferation,
migration, and phenotypic switching (Yang et al., 2010; Pfeiffer et al.,
2001). Within this context, key glycolytic enzymes (Jia et al., 2022;
Jain et al., 2021) and lactate metabolism (Perez et al., 2010; Zhao et al.,
2020) play central roles. Enhanced glycolysis mediated by pyruvate
kinase isoform M2 (PKM2), together with lactate accumulation and
altered transport, reshapes the intra- and extracellular metabolic milieu
and further modulates VSMC phenotypic transformation and matrix
remodeling via signaling pathways (Zhou et al., 2019; Zhang et al,
2022). Simultaneously, alterations in the pyruvate dehydrogenase
kinase (PDK)/pyruvate dehydrogenase (PDH) balance redistribute
glucose utilization between oxidative phosphorylation and glycolysis
(Roche et al., 2001). In particular, upregulation of PDK4 has been
linked not only to metabolic dysregulation (Zhu et al., 2018) but also
tovascular calcification and impaired autophagy. Moreover, TCA cycle
intermediates such as a-ketoglutarate (a-KG) have been proposed to
exert protective effects through their antioxidant (Tian et al., 2020)
and anti-inflammatory (Asadi Shahmirzadi et al., 2020) properties,
mitigating AAA progression by reducing reactive oxygen species
generation (Liu et al, 2022). In addition, diversion of glucose
into the pentose phosphate pathway (PPP) supplies NADPH and
nucleotides that support anabolic biosynthesis and antioxidative
defense, thereby contributing to the survival and functional stability
of VSMCs (Alamri et al., 2018; Ruiz-Ramirez et al., 2014; Dong et al.,
2015). Overall, from glucose uptake to glycolysis, lactate metabolism,
PDK/PDH regulation, PPP flux, and TCA cycle intermediates, glucose
metabolic reprogramming shapes the functional state of VSMCs
through multilayered mechanisms. These metabolic alterations not
only drive the pathology of AAA but also highlight new directions for
metabolic interventions and potential therapeutic targets.

4.1.2 Macrophages

In the pathophysiology of abdominal aortic aneurysm (AAA),
macrophage infiltration and polarization are considered pivotal
events (Song et al., 2022; Dale et al., 2016; Batra et al., 2018).
Classically activated M1 macrophages predominantly rely on
glycolytic metabolism (Odegaard and Chawla, 2011). By enhancing
glucose uptake, increasing lactate production, and elevating
reactive oxygen species (ROS) generation (Fukuzumi et al,
1996), they drive inflammatory responses (Freemerman et al,
2014), extracellular matrix degradation, and oxidative stress,
thereby accelerating structural injury of the aortic wall. In
contrast, alternatively activated M2 macrophages preferentially
utilize oxidative metabolism and exhibit anti-inflammatory and

Frontiers in Cell and Developmental Biology

03

10.3389/fcell.2025.1718220

tissue-reparative properties. Their upregulation is regarded as a
compensatory mechanism that helps restrain AAA expansion and
rupture (Rateri et al, 2011). Metabolic reprogramming plays a
central role in macrophage polarization. Upregulation of GLUT1
and regulation of the glycolytic enzyme pyruvate kinase isoform
M2 (PKM2) (Gao et al, 2012) not only fuel proinflammatory
cytokine production but also sustain the M1 phenotype through
signaling pathways such as HIF-1 and STAT3. Conversely,
downregulation of lactate dehydrogenase A (LDHA) can reduce
lactate levels and attenuate inflammatory responses (Song et al.,
2019). Tricarboxylic acid (TCA) cycle intermediates also exert
bidirectional regulatory effects: for instance, succinate promotes
proinflammatory cytokine expression, whereas a-ketoglutarate
(a-KG) supports M2 polarization and anti-inflammatory gene
expression through epigenetic remodeling (Liu et al, 2017).
Although current pharmacological studies targeting glucose
metabolism are primarily focused on oncology (Yang et al., 2021;
Pelicano etal., 2006; Anderson et al., 2018), accumulating preclinical
evidence suggests that targeting glycolysis, the TCA cycle, and
oxidative phosphorylation may represent promising strategies for
AAA intervention. Advancing this area of research will not only
help elucidate the crosstalk between metabolism and immunity but
also provide novel therapeutic avenues and potential targets for the
prevention and treatment of AAA.

Recent studies further emphasize that macrophage polarization
is not solely determined by single metabolic cues but by the
integrated influence of glucose, fatty acid, and amino acid
metabolism. For instance, succinate and a-ketoglutarate jointly
regulate pro- and anti-inflammatory transcriptional programs,
while fatty acid oxidation modulates HIF-la activity and ROS
production, creating a metabolic-immune feedback loop that
sustains inflammatory microenvironments.

4.2 Lipid metabolism

that
polyunsaturated fatty acids (LCPUFAs), particularly w-3 fatty

Recent studies have demonstrated long-chain
acids such as eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), are closely associated with the development and
progression of abdominal aortic aneurysm (AAA) (Meital et al.,
2019). Since humans cannot synthesize polyunsaturated fatty
acids, their levels primarily depend on dietary intake. Clinical and
randomized controlled trials have reported reduced EPA levels
in patients with AAA, with both absolute EPA concentration
and the EPA/arachidonic acid (ARA) ratio showing significant
inverse correlations with aneurysm diameter and growth rate
(Aikawa et al., 2017). Mechanistically, dietary supplementation with
EPA and DHA enriches cell membrane phospholipids with w-3
fatty acids, reduces the generation of ARA and its pro-inflammatory
metabolites (e.g., PGE2, TXA2, LTB4), and suppresses macrophage-
mediated inflammatory responses, thereby exerting protective
effects against AAA progression (Yoshihara et al., 2015). Conversely,
ARA, as an w-6 fatty acid, aggravates disease through its pro-
inflammatory actions (Ricciotti and FitzGerald, 2011; Soto et al.,
2018). Animal studies further show that inhibition of the COX
pathway improves the structural integrity of vascular elastin

and downregulates matrix metalloproteinase (MMP) expression
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(Guo et al, 2013). Observational studies suggest that low-dose
aspirin may slow the growth of medium-sized AAAs; however,
no randomized controlled trials have yet confirmed the efficacy
of any pharmacological agent in stabilizing or halting AAA
expansion (Lindholt et al., 2008). Overall, the anti-inflammatory
and immunomodulatory properties of LCPUFAs provide novel
insights into the prevention and treatment of AAA, though further
high-quality evidence is required to support clinical application.
At present, the role of fatty acid metabolism in AAA pathogenesis
remains incompletely understood. Metabolomic analyses indicate
aberrant lipid metabolism in AAA tissues (Xie et al, 2023;
Zhang et al.,, 2023), and elevated serum platelet-derived growth
factor (PDGF) levels in patients can promote fatty acid oxidation
in vascular smooth muscle cells (VSMCs) by upregulating carnitine
palmitoyl transferase 1 (CPT1). This enhances cell proliferation
and inhibits apoptosis-related pathways, suggesting that fatty acid
oxidation may contribute to vascular remodeling (Yuwen et al.,
2019). In macrophages, however, the role of fatty acid oxidation is
controversial: some studies suggest that it suppresses inflammation
and lipid accumulation (Malandrino et al., 2015; Namgaladze et al.,
2014), while others indicate that CPT deficiency may confer anti-
inflammatory and anti-atherogenic effects (Nomura et al., 2019).
In addition, fatty acid biosynthesis has attracted attention in the
context of VSMC phenotypic switching. In synthetic VSMCs,
fatty acid synthase is upregulated, and altered activity of stearoyl-
CoA desaturase 1 (SCD1) affects lipid composition and vascular
metabolic homeostasis.

4.3 Amino acid metabolism

4.3.1 Sulfur-containing amino acids

Cysteine (Cys), methionine (Met), and their metabolic
derivative homocysteine (Hcy) play important roles in the
context of abdominal aortic aneurysm (AAA) (Zaric et al,, 2019).
Hyperhomocysteinemia accelerates vascular wall degradation
and aneurysmal expansion by increasing reactive oxygen species
(ROS) generation, depleting nitric oxide (NO), upregulating
matrix metalloproteinase (MMP) activity, and promoting the
phenotypic transition of vascular smooth muscle cells (VSMCs)
from a contractile to a synthetic state (Steed and Tyagi, 2011).
Clinically, folate, vitamins B6/B12, and methionine-restricted diets
have been shown to reduce Hey levels, suggesting their potential for
therapeutic intervention (Warsi et al., 2004). In addition, novel
agents such as cystathionine B-synthase (CBS) modifiers (e.g.,
OT-58) hold promise as future targeted strategies (Bublil and
Majtan, 2020).

4.3.2 Tryptophan

Tryptophan (Trp) metabolism through the kynurenine
pathway (KP) is upregulated in abdominal aortic aneurysm
(AAA) tissues, with increased expression of key enzymes and
metabolites (Nishimura et al., 2021). Indoleamine 2,3-dioxygenase
(IDO)-mediated Trp metabolism promotes inflammation, matrix
metalloproteinase (MMP) expression (Wang et al., 2017), and
apoptosis, whereas its metabolite 5-methoxytryptophan (5-MTP)
exhibits vasoprotective and anti-inflammatory effects (Wu et al.,

2020; Yang et al,, 2015). Animal studies have demonstrated that
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inhibition of the KP can delay AAA formation, and IDO inhibitors
have already been applied in other diseases (Watanabe et al., 2018);
however, clinical validation in vascular disorders remains lacking
(Song et al., 2017; Ramprasath et al., 2021). Notably, KP metabolism
is closely associated with the aging process, which aligns with
the strong age dependence of AAA, underscoring its potential
significance for future research.

4.3.3 Taurine

Taurine (Tau) exerts significant vasoprotective effects through
its antioxidant activity, scavenging of oxidants such as hypochlorous
(HCIO), infiltration,
and inhibition of matrix metalloproteinase (MMP) activity
(Bkaily et al., 2020; Kim et al., 2017; Chao de la Barca et al., 2022).
Animal studies have demonstrated that taurine supplementation

acid reduction of inflammatory cell

effectively suppresses angiotensin II (Ang II)-induced AAA
formation (Brethel et al, 2023). Moreover, its regulatory
roles in VSMC migration, anti-apoptotic responses, and anti-
calcification suggest its involvement in maintaining vascular wall
homeostasis (Korshunov et al., 2006). However, clinical data in
patients with AAA are currently lacking, and its protective effects
remain to be further validated.

4.3.4 Glycine

Glycine (Gly) plays an important role in antioxidant and
anti-inflammatory processes by restoring glutathione synthesis,
inhibiting reactive oxygen species (ROS) production, and
suppressing NF-kB activation, thereby alleviating vascular
inflammation (Ruiz-Ramirez et al., 2014; Chao de la Barca et al,,
2022). Metabolomic analyses have revealed decreased serum
glycine levels in AAA models, which may diminish its protective
effects. In addition, glycine has been shown to reduce blood
lipid levels (Rom et al., 2017), thereby mitigating the adverse impact
of hyperlipidemia on AAA. However, its protective role has not yet

been clinically validated.

4.3.5 Glutamine and glutamate

Glutamine (Gln) serves as a critical substrate for cellular
proliferation. It is transported into cells via the high-affinity L-
Gln transporter solute carrier family 1 member 5 (SLC1A5),
where it activates the mTORCI signaling pathway and promotes
the proliferation of vascular smooth muscle cells (VSMCs)
(Osman et al., 2019). Both glutamate and glutamine also contribute
to nitric oxide (NO) synthesis, with NO exerting protective effects
by maintaining extracellular matrix homeostasis and promoting
vasodilation (Zhang et al., 2003; Zhou et al., 2023). However, under
conditions of metabolic dysregulation, excessive NO may induce
vascular injury, suggesting a bidirectional role. Clinical studies
have shown that glutamine supplementation can improve nitrogen
balance and immune status following aortic surgery; nevertheless,
its potential role in the prevention or treatment of AAA requires
further investigation (Brinkmann et al., 2016).

4.3.6 Branched-chain amino acids

Branched-chain amino acid (BCAA) levels, as well as their
ratios with Gly and Gln, have been identified through metabolomic
analyses as potential biomarkers of AAA (Zaric et al, 2020).
Leucine supplementation has been shown to improve macrophage
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lipid metabolism, enhance mitochondrial function, attenuate
inflammation, and improve vascular elasticity. Clinical studies
indicate that leucine-rich diets enhance cardiometabolic health in
older adults; however, direct evidence supporting a protective role in
AAA remains lacking (Kirk et al., 2021). All of the above-described
mechanisms of metabolic reprogramming are summarized in
Figure 1. Table 1 provides an overview summarizing the main
metabolic pathways involved in abdominal aortic aneurysm (AAA)
as well as the key molecules and targets.

Figure 1 provides an overview of metabolic reprogramming in
abdominal aortic aneurysm (AAA), illustrating glucose, lipid, and
amino acid metabolism on the basis of M1 and M2 macrophage
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phenotypes. A: M1 macrophage; B: M2 macrophage; FAS: fatty acid
synthesis; FAO: fatty acid oxidation.

4.4 Integrative perspective on metabolic
reprogramming
and

Metabolic represents a dynamic

interconnected network that orchestrates cellular adaptation to

reprogramming
pathological stimuli. Rather than functioning as isolated processes,

glucose, lipid, and amino acid metabolism are tightly integrated:
for example, glycolytic intermediates fuel fatty acid synthesis, lipid
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TABLE 1 Key molecules and targets in the pathway of abdominal aortic aneurysm.

Pathway

Key Molecules

Cellular Effects

Experimental/Clinical
Evidence

Therapeutic
Potential

Glycolysis GLUT1, PKM2, PDK4 Proliferation, ROS production, Preclinical (mouse, human PKM?2 inhibitors, 2-DG
M1 polarization tissue)
Fatty acid oxidation CPT1, SCD1 VSMC remodeling, Preclinical CPT1 inhibitors, FAO

inflammatory regulation

modulators

Amino acid metabolism IDO, a-KG, 5-MTP Epigenetic regulation,

apoptosis, M2 polarization

IDO inhibitors, a-KG
supplementation

Preclinical/limited clinical

oxidation regulates inflammatory tone and mitochondrial function,
and amino acid-derived metabolites modulate epigenetic states
that influence macrophage polarization. This interdependence
suggests that AAA progression results from the synergistic actions of
metabolic pathways, highlighting the importance of a systems-level
view when considering therapeutic interventions.

5 Therapy

Given the complex interplay between metabolism and
inflammation, targeting immune metabolism holds significant
therapeutic potential, though relevant strategies remain in their
early stages. The metabolic reprogramming of artery-resident
macrophages provides a promising avenue for further investigation,
opening new strategies for cardiovascular disease treatment. We
propose that inhibiting glycolysis and the fatty acid synthesis (FAS)
pathway in M1 macrophages, or enhancing fatty acid oxidation
(FAO) in M2 macrophages, may effectively reduce foam cell
formation, mitigate inflammation, and slow the progression of
atherosclerosis (Liu et al.,, 2021; Hou et al., 2023). Future studies
should further elucidate the mechanisms of macrophage metabolic
reprogramming in atherosclerosis, as they may yield highly specific
therapeutic targets capable of improving plaque stability, reducing
inflammation, and significantly enhancing clinical outcomes. This
approach also provides a solid theoretical and practical foundation
for the treatment of abdominal aortic aneurysm (An et al,
2025). In addition, dimethyl fumarate (DMF), a derivative of the
tricarboxylic acid cycle, suppresses aerobic glycolysis in immune
cells by modifying cysteine residues (e.g, GAPDH), thereby
inducing macrophage polarization toward an anti-inflammatory
phenotype. This results in improved ventricular remodeling,
reduced collagen deposition, and enhanced angiogenesis following
myocardial infarction, while also alleviating myocardial injury
in diabetic models, demonstrating cardiovascular protective
effects (Mouton et al., 2021; Bresciani et al., 2023). Similarly, the
immunometabolite itaconate, generated from cis-aconitate via CAD
(encoded by IRG), competitively inhibits succinate dehydrogenase
(SDH), decreases mitochondrial ROS and pro-inflammatory gene
expression (downregulating IL-13 and IL-6; upregulating IL-1RA
and IL-10), and modifies glycolytic enzymes such as GAPDH,
ALDOA, and LDHA to inhibit glycolysis, thereby exerting protective
effects in murine models of myocardial infarction and doxorubicin-
induced cardiotoxicity. Moreover, rapamycin inhibits mTORCI,
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thereby reducing glycolysis and inflammatory polarization,
limiting post-MI macrophage infiltration, and improving outcomes
(Shan et al, 2024; Shan et al, 2019; Sciarretta et al., 2014).
Collectively, these findings indicate that multiple metabolism-
targeting agents hold promise for the treatment and prevention of
cardiovascular diseases, yet further studies are needed to elucidate
underlying mechanisms, identify precise targets, and advance
innovative therapeutic strategies into clinical practice.

6 Clinical translation and therapeutic
perspectives

While numerous metabolic targets (e.g., PKM2, PDK4, IDO,
CPT1) and modulators (e.g., DME itaconate, rapamycin) show
promise in preclinical models, significant barriers remain in
translating these findings into clinical therapies. Challenges include
metabolic heterogeneity across patient populations, off-target effects
of systemic metabolic modulators, and a lack of reliable biomarkers
to monitor metabolic changes in vivo. To bridge this gap, future
studies should: (1) develop cell-specific metabolic interventions,
(2) integrate metabolomics with single-cell and spatial omics
to stratify patients by metabolic phenotype, and (3) conduct
prospective clinical trials assessing safety, efficacy, and biomarker-
guided treatment responses.

7 Future directions

Despite major advances, several critical questions remain
unresolved. Future research should: Characterize metabolic
heterogeneity across VSMC subpopulations and macrophage
subsets using spatial transcriptomics and metabolomics. Investigate
how aging reshapes metabolic networks, given the age dependence
of AAA. Explore metabolic-immune crosstalk in the context
of systemic comorbidities (e.g., diabetes, dyslipidemia). Design
combinatorial therapies targeting multiple metabolic pathways
simultaneously to maximize therapeutic efficacy.

8 Conclusion

Abdominal aortic aneurysm (AAA) is associated with extremely
high mortality due to its insidious onset and the lack of
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effective interventions. Metabolic reprogramming plays a pivotal
role in AAA initiation and progression, influencing vascular
wall homeostasis through intertwined metabolic networks that
regulate inflammation, oxidative stress, apoptosis, and phenotypic
switching. Integrating these insights into clinical strategies
requires deeper mechanistic understanding, robust biomarker
development, and innovative therapeutic design. Ultimately,
viewing AAA through the lens of metabolic systems biology may
unlock transformative avenues for individualized prevention and
treatment.
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