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Introduction: Keloid formation is a prevalent dermatological condition 
characterized by abnormal dermal connective tissue proliferation. Despite 
ongoing research, the underlying mechanisms of keloid formation remain 
insufficiently understood. The aim of this research is to identify and 
verify molecular biomarkers associated with keloid and to explore potential 
therapeutic targets.
Methods: Transcriptomic data from keloid tissue specimens and normal skin 
controls were retrieved from the Gene Expression Omnibus (GEO) database. 
We performed differential expression and functional enrichment analyses after 
batch effect correction. We performed differential gene analysis, weighted Gene 
Co-expression Network Analysis (WGCNA), and protein-protein interaction 
(PPI) analyses to verify hub genes, explore their functions, and evaluate their 
connection to keloid formation, therapeutic potential, and immune-related 
characteristics. Key genes were validated through experimental assays.
Results: 679 differentially expressed genes (DEGs) were identified. Through 
WGCNA and Venn diagram analysis, 41 DEGs most closely associated with keloid 
were identified. These 41 overlapping DEGs were confirmed to be markedly 
involved in metabolic pathways, nucleotide excision repair, and amino acid 
biosynthesis by functional enrichment analysis. PPI analysis identified CDK7 and 
DDB2 as hub genes, each demonstrating strong diagnostic performance in ROC 
curve analysis (AUC = 0.80), with comparable results in validation datasets (AUC 
= 0.86). Basic experiments confirmed higher expression of CDK7 and DDB2 in 
keloid tissue compared to normal skin.
Conclusion: Our findings demonstrate that CDK7 and DDB2 are promising 
biomarkers for diagnostic and potential therapeutic targets in keloid, providing 
novel insights into its pathogenesis and offering promising druggable targets.
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1 Introduction

Keloid, a frequent skin disorder, originates from prolonged 
dysregulated wound healing. In this condition, the equilibrium 
between collagen production and breakdown is disrupted by 
a combination of external triggers and internal predispositions 
(Pauline et al., 2009). Although benign, keloids exhibit growth 
patterns similar to neoplasms, with aggressive expansion, invasion 
into surrounding normal tissue, and a tendency to protrude above 
the skin surface beyond the original wound site. They often present 
with a hard texture, crab-like appearance, and symptoms like itching 
or pain, impacting aesthetics and, in severe cases, impairing skin and 
joint function (Silvian et al., 2019).

Recent reviews on keloid pathogenesis highlight two primary 
theories: the inflammatory theory and the tumor theory. The 
central immunocytes implicated in keloid pathogenesis comprise 
macrophages, lymphocytes, mast cells, and neutrophils, with earlier 
studies noting increased infiltration of macrophage populations, 
T-cells, and mast cells clusters within keloid lesions compared 
to normal dermal tissue (Gauglitz et al., 2011; Shaker et al., 
2011). Keloid tissue exhibit significant upregulation of multiple pro-
inflammatory mediators, including interleukin-6 (IL-6), IL-8, IL-18, 
and chemokine-like factor-1 (CKLF-1), compared to normal dermal 
tissue. Moreover, the peripheral blood IL-8 levels in keloid patients 
are found to be seven times higher than those in healthy individuals 
(Abdou et al., 2014; Zhang et al., 2016; Tanaka et al., 2019).

In line with the tumor theory, several studies report 
overexpression and secretome emission of growth factors such 
as TGF-β, IGF-I, PDGF, and EGF in keloid tissue, with keloid 
cells demonstrating heightened sensitivity to these factors 
compared to normal cells (Haisa et al., 1994; Younai et al., 
1994; Ohtsuru et al., 2000). Additionally, early keloid studies 
identified abnormal expression of apoptosis-related genes, 
including ASY, PEA 15, AVEN, and ADAM12 (Satish et al., 2006; 
Seifert et al., 2008), alongside inactivation of the tumor suppressor 
gene P53 (De Felice et al., 2004). Compared to normal skin, 
keloids exhibit an enhanced capacity for angiogenesis (Yoo and 
Kim, 2014; Jumper et al., 2015), further supporting their tumor-
like behavior and providing a theoretical basis for their unchecked 
proliferation.

Significant progress has been made in keloid research globally; 
however, the precise pathogenesis of keloid remains unclear, 
necessitating further extensive research. This lack of clarity 
complicates efforts to achieve effective clinical outcomes. Current 
treatments include corticosteroid patches (Yoshino et al., 2018), 
hypocrellin (Wu et al., 2024), silicone gel sheets (O'Brien and Jones, 
2013), corticosteroid injections (Zhuang et al., 2021), 5-fluorouracil 
injections (Hietanen et al., 2019; Zhang et al., 2025), cryotherapy 
(O'Boyle et al., 2017), and surgery (Mustoe et al., 2002), with excision 
being the most direct method. Despite these options, recurrence 
remains common, imposing a psychological burden on patients. 
Consequently, there is a critical need for deeper investigation 
into keloid pathogenesis and prevention. Identifying novel keloid 
markers and elucidating their mechanisms are key steps forward.

Bioinformatics has proven invaluable for studying keloid 
formation mechanisms and can be used to identify pathogenesis-
related biomarkers, opening pathways for new diagnostic strategies 
(Yin et al., 2022; Shixin et al., 2024). This study analyzed gene 

expression profiles from the GEO database, utilizing bioinformatics 
methodologies to assess gene expression associated with keloid, 
perform functional analyses, construct PPI networks, and examine 
immune cell infiltration within the keloid tissue environment. 
Ultimately, we identified keloid - associated biomarkers, explored 
their roles in pathogenesis, and provided novel insights into 
potential therapeutic strategies. The overall flow chart for the 
research design is depicted in Figure 1.

2 Materials and methods

2.1 Data collection

Four gene expression datasets from keloid patients were obtained 
from the GEO database. Precisely, dataset GSE44270 includes 18 
keloid and 14 control samples, GSE7890 includes 10 keloid and 
9 control samples, GSE145725 includes 9 keloid and 10 control 
samples, and GSE121618 includes 5 keloid and 6 control samples. 
Datasets GSE44270 and GSE7890 were sequenced on GPL570, while 
GSE145725 and GSE121618 were sequenced on GPL16043. An 
integrated dataset was generated using Empirical Bayes methods 
(Johnson et al., 2007) to remove batch effects, and the batch-
effect-free matrix was visualized with UMAP plots. The R package 
inSilicoMerging (Taminau et al., 2012) was then used to merge datasets 
GSE44270 with GSE7890 and GSE121618 with GSE145725. 

2.2 Identification and analysis of 
keloid-associated differentially expressed 
genes

To authenticate DEGs across keloid and normal specimens 
within the integrated dataset and evaluate their pathological 
contributions, we performed the R package limma (Ritchie et al., 
2015) for differential expression analysis. Genes were deemed 
upregulated if they had a log2FC > 0 and P < 0.01, whereas those 
with log2FC < 0 and P < 0.01 were seen as downregulated. Volcano 
plots and heatmaps were generated to visualize the DEGs and their 
clustering patterns. 

2.3 Functional enrichment analysis

Standardized terms for describing gene functions are provided 
by Gene Ontology (GO), which covers biological processes (BP), 
molecular functions (MF), and cellular components (CC). The 
Kyoto Encyclopedia of Genes and Genomes (KEGG) delivers 
comprehensive data regarding genes and metabolic pathways. 
Functional enrichment profiling of DEGs was conducted through 
GO and KEGG pathway analyses to elucidate statistically significant 
pathways, with analytical outcomes graphically represented via 
bubble plot visualizations (statistical threshold p < 0.05).

We employed Gene Set Enrichment Analysis (GSEA) to 
detect significantly enriched gene sets under specific conditions. 
Gene sets were sourced from the Molecular Signatures Database 
(MSigDB), and GSEA was performed using FDR < 0.25 and p
< 0.05 as thresholds. Computational workflows were executed in 
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FIGURE 1
Research framework and methodological process.

TABLE 1  Basic information of qRT-PCR primers.

Gene Forward primer (5′ to 
3′)

Reverse primer (5′ to 
3′)

ACTIN GTCCACCGCAAATGCTTCTA TGCTGTCACCTTCACCGTTC

CDK7 AAGTGCACCTCTTTGCCCAA GGTCCTCGTAAGGACTCGAT

DDB2 AGGACTACATGACCCTGCGA CCTTCTTCCAGTGCATGCTG

the R statistical environment via the clusterProfiler toolkit for 
comprehensive enrichment profiling (Yu et al., 2012; Wu et al., 2021). 

2.4 Weighted gene co-expression network 
analysis (WGCNA)

A scale-free co-expression network architecture was 
constructed using the WGCNA R package, enabling systematic 
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FIGURE 2
GEO data batch correction. (A) UMAP plot of the dataset before batch correction. (B) UMAP plot of the dataset after batch correction. (C) Gene 
expression level analysis of the dataset prior to batch correction. (D) Gene expression level analysis of the dataset following batch correction.

investigation of transcriptomic interconnectivity patterns and 
functional genotype-phenotype interrelationships through 
topological analysis (Langfelder and Horvath, 2008). We selected 
an optimal soft threshold and enabled the construction of a 
scale-free co-expression network to validate network modules 
and hub genes linked to keloid development and progression. 
Transcriptomic profiles exhibiting correlated expression dynamics 
were algorithmically partitioned into functional co-expression 
modules through implementation of dynamic tree-cutting 
algorithms. Module eigengenes (MEs) were computed to facilitate 
the merging of modules with a distance of under 0.25. Each 
module's ME, representing its gene expression profile, was used 
to analyze module-phenotype associations. Module membership 
(MM) values reflect the relationship between a gene's expression 
and its module's ME, showing how strongly the gene is linked to 
the module. Gene significance (GS) is the correlation between a 
gene's expression and the phenotype, reflecting the gene's relevance
to the phenotype. 

2.5 Identification and analysis of hub genes 
and PPI network

To validate key genes linked to keloid, we performed the 
R package VennDiagram to find the intersection of DEGs 
and WGCNA-identified genes, followed by GO and KEGG 
pathway enrichment analyses. We utilized the STRING database 
(Szklarczyk et al., 2019) to identify known proteins and forecast 
interactions. We loaded the overlapping genes from the Venn 
diagram into STRING to construct a PPI network. Then we used 
Cytoscape software (Smoot et al., 2011). to visualize the PPI 
network. Based on expression differences, enrichment functions, 
and PPI network analyses, the degree values of all genes were 

calculated, with those having higher values deemed as hub 
genes. Box plots were then utilized to visualize differential 
expression of the key genes in keloid and matched normal
dermal tissues. 

2.6 Receiver operating characteristic (ROC) 
curve for hub genes

Based on gene expression levels and patient survival times, 
we utilized the survival R package to construct ROC curves. 
Gene expression levels were evaluated for their diagnostic value 
in patient survival prediction using the area under the curve 
(AUC). The prognostic predictive capacity of key gene was 
evaluated through Cox proportional hazards regression modeling 
implemented in the survival R package. The pROC package's 
CI function was applied to calculate AUC and confidence 
bounds. Additionally, Kaplan-Meier (KM) curves and prognostic 
heatmaps were generated to assess the correlation of key genes
with keloid. 

2.7 Analysis of hub genes' drug activity, 
transcription factor, and microRNA 
interaction networks

miRNAs associated with CDK7 and DDB2 were identified by 
the miRWalk database (http://mirwalk.umm.uni-heidelberg.de/), 
selecting the top 10 miRNAs based on binding potential and energy 
criteria. Transcription factors (TFs) for CDK7 and DDB2 were 
predicted using the ChEA3 database (https://maayanlab.cloud/
ChEA3/), with the top 30 TFs selected for visualization based 
on scoring criteria. Therapeutic targets associated with central 
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FIGURE 3
Heatmap, Volcano Plot, GO, and KEGG Pathway Analyses of DEGs. (A) Volcano plot of DEGs, with orange nodes indicating upregulated and green 
nodes indicating downregulated DEGs. (B) Heatmap of DEG expression levels, where crimson columns represent keloid specimens and azure columns 
represent control matched control cohorts. (C) Functional enrichment landscape visualization of GO terms, with bubble size correlating with gene 
ratio and chromatic intensity reflecting statistical significance [-log10 (P-value)]. (D) Pathway interaction network analysis through KEGG mapping, 
highlighting enriched biological cascades through scaled circular nodes.

regulatory genes were systematically mined from the Drug-
Gene Interaction Database (DGIdb, https://www.dgidb.org), 
followed by computational mapping and topological visualization 
of pharmacological interaction networks using Cytoscape's 
analytical platform. 

2.8 Immune infiltration analysis

The immune microenvironment is composed of fibroblasts, 
mesenchymal cells, immune cells, and inflammatory cells, as well 
as various cytokines and chemokines. Assessing immune cell 
infiltration is critical for determining the predictive value of disease 
progression and therapeutic outcomes. We used CIBERSORT to 
evaluate immune cell infiltration within the microenvironment and 
to systematically investigate immune cells interactions with key 
genes. Complementary analysis of datasets (GSE44270/GSE7890) 

was performed to resolve 22 distinct immune cell type proportions 
across biological replicates. 

2.9 Cell culture

In this study, keloid tissue was sourced from Guangzhou 
First People's Hospital. Its acquisition followed the Declaration 
of Helsinki and was authorized by the hospital's Medical Ethics 
Committee. Fibroblasts isolated from keloid patient tissue were 
cultured and expanded, with passage 5 cells used in experiments. 
The cells were maintained in Dulbecco's Modified Eagle Medium 
(DMEM; Gibco, United States) containing 10% fetal bovine serum 
(Gibco, United States) and antibiotics (Servicebio, China). Cultures 
were incubated at 37 °C in a 5% CO2 atmosphere, with the medium 
replaced every 48 h, and cells subcultured upon reaching 70%–80% 
confluence. 
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TABLE 2  GO enrichment analysis results.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:0048731 System development 220/614 4,670/17,910 3.63E-08 2.20E-05 1.84E-05

BP GO:0048523 Negative regulation of cellular process 219/614 4,580/17,910 1.09E-08 1.34E-05 1.12E-05

BP GO:0009893 Positive regulation of metabolic process 167/614 3,313/17,910 4.66E-08 2.20E-05 1.84E-05

CC GO:0005829 Cytosol 224/621 4,909/18,675 3.04E-08 1.99E-05 1.61E-05

MF GO:0003824 Catalytic activity 208/604 4,828/16,967 0.000642816 0.086443093 0.078550867

TABLE 3  KEGG enrichment analysis results.

Ontology ID Description GeneRatio BgRatio pvalue p.adjust qvalue

KEGG hsa04142 Lysosome 13/303 123/7,914 0.000816951 0.232831095 0.225306544

KEGG hsa04110 Cell cycle 11/303 124/7,914 0.007793219 0.370177916 0.358214641

KEGG hsa04120 Ubiquitin mediated proteolysis 11/303 136/7,914 0.015005016 0.584453081 0.565564939

KEGG hsa04141 Protein processing in endoplasmic reticulum 12/303 166/7,914 0.025338959 0.584453081 0.565564939

2.10 Quantitative real-time polymerase 
chain reaction (qRT-PCR)

TRIzol was used to extract total RNA, after which cDNA was 
synthesized using the RevertAid Reverse Transcriptase kit (Thermo 
Fisher Scientific, United States). With actin as the internal control, 
we performed quantitative PCR on the synthesized cDNA through 
SYBR Green RT-PCR (Takara Biotechnology Co., Ltd., Japan). 
Then the 2−△△CT method was applied to calculate relative gene 
expression levels (Yu et al., 2024). Primer sequences are provided
in Table 1. 

2.11 Western blotting

Protein extraction from HaCaT cells was conducted using a 
radioimmunoprecipitation assay (RIPA) buffer with a protease 
inhibitor cocktail (Beyotime, China). Protein quantification was 
performed using a BCA assay system (Thermo Fisher Scientific), 
followed by electrophoretic separation of 20 μg protein lysates 
on 10% SDS-PAGE. Resolved proteins were electrophoretically 
transferred to PVDF membranes, blocked with 5% BSA, and 
probed with primary antibodies (4 °C, 16 h). Subsequent incubation 
of secondary antibodies (room temperature, 1 h) preceded 
chemiluminescent detection using an AI800 imaging platform 
(GE, United States). Quantitative densitometric analysis was 
conducted with ImageJ. Antibodies were sourced as follows: 
CDK7 (67889-1-Ig, 1:1000, Proteintech Group), DDB2 (10431-
1-AP, 1:1000, Proteintech Group), and β-Actin (TDYO51, 1:5000,
TDY BIOTECH). 

2.12 Immunofluorescence assay

Immunofluorescence protocols commenced with cellular 
immobilization using 4% paraformaldehyde (30 min), followed 
by triple rinsing in PBS and membrane permeation with 0.1% 
Triton X-100/TBST solution (room temperature, 30 min). Non-
specific binding sites were neutralized with 5% BSA blocking 
buffer (30 min). Primary antibody incubation (16 h, 4 °C) 
preceded application of secondary antibodies linked to horseradish 
peroxidase (goat anti-rabbit, Affinity, 1:500; room temperature, 
1 h) for signal amplification. DAPI was used to stain nuclei for 
10 min (Servicebio, China). Imaging was conducted with a confocal 
microscope (Zeiss, Germany). 

2.13 Statistical analysis

All data processing and analyses were implemented within the 
R statistical environment (v4.0.2), employing Student's t-test for 
parametric inter-group comparisons with a predefined significance 
threshold (p < 0.05) across all analyses. 

3 Result

3.1 Expression and analysis of differentially 
expressed genes

We first removed the batch effects from datasets GSE7890 
and GSE44270 (Figure 2), resulting in an integrated dataset 
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FIGURE 4
WGCNA Results. (A) Scale-free network topology fitness metrics across discrete soft-thresholding powers. (B) Scale-free network topology fitness 
metrics across discrete soft-thresholding powers. (C) Hierarchical clustering dendrogram of co-expressed gene ensembles. (D) Eigengene-based 
module clustering architecture with topological annotations. (E) Module-clinical trait interaction mapping, visualizing synergistic associations (red) and 
antagonistic relationships (green). (F) Gene significance-module membership interconnectivity profiling within the pivotal yellow-green 
functional module.

comprising 28 keloid samples and 23 control samples. Differential 
expression analysis on this integrated dataset identified 679 
DEGs, including 428 upregulated and 251 downregulated genes, 
as visualized in a volcano plot (Figure 3A). A heatmap of the 
top 20 DEGs (Figure 3B) highlights distinct expression patterns 
between keloid and control samples.

To delineate the molecular mechanisms underlying keloid 
formation, we implemented multidimensional functional profiling 
through GO annotation and KEGG pathway topology mapping 
of DEGs from the integrated data. GO enrichment indicated 
significant associations with biological processes (BP) such as 
system development, suppression of cellular processes, and 
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FIGURE 5
Identification and GSEA of hub genes. (A) Venn diagram with two colors representing distinct data sources. (B) PPI network of hub genes, with crimson 
nodes indicating hub genes. (C) Bubble plot of GO pathway enrichment analysis for the 41 DEGs. (D) Chord diagram of KEGG pathway enrichment 
analysis for the 41 DEGs. (E) Box plot of CDK7 expression levels. (F) Box plot of DDB2 expression levels. (G) GSEA for hub gene CDK7. (H) GSEA for 
hub gene DDB2.
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TABLE 4  GSEA enrichment analysis results of CDK7.

Term ES NES pvalue FDR FWER

RENIN_ANGIOTENSIN_SYSTEM 0.6601 1.7358 0 0.1468 0.176

STEROID_BIOSYNTHESIS −0.6959 −1.5774 0.0181 0.2037 0.592

O_GLYCAN_BIOSYNTHESIS −0.5423 −1.5978 0.0202 0.2124 0.536

PROXIMAL_TUBULE_BICARBONATE_RECLAMATION −0.6273 −1.5613 0.0294 0.2127 0.639

TERPENOID_BACKBONE_BIOSYNTHESIS −0.6255 −1.5815 0.0185 0.219 0.577

TABLE 5  GSEA enrichment analysis results of DDB2.

Term ES NES pvalue FDR FWER

INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION −0.6693 −2.0642 0 0 0

SYSTEMIC_LUPUS_ERYTHEMATOSUS −0.4655 −1.617 0.0269 0.2403 0.471

AUTOIMMUNE_THYROID_DISEASE −0.4811 −1.6465 0.0378 0.2473 0.376

COMPLEMENT_AND_COAGULATION_CASCADES −0.4656 −1.572 0.0221 0.2837 0.598

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −0.3752 −1.4693 0.0361 0.3261 0.837

enhancement of metabolic processes; cellular components (CC) 
like the cytoplasm; and molecular functions (MF) such as 
catalytic activity (Figure 3C, details in Table 2). KEGG pathway 
analysis revealed enrichments primarily related to lysosomes, 
cell cycle regulation, ubiquitin-mediated protein degradation, 
and protein processing in the endoplasmic reticulum (Figure 3D, 
details in Table 3). These findings suggest that keloid formation 
may be driven by disruptions in cellular proliferation, metabolic 
regulation, and key processes such as lysosomal degradation, 
protein processing, and cell cycle regulation. These abnormalities 
likely contribute to excessive fibrous tissue accumulation 
and atypical wound healing, which may be central to keloid
pathogenesis. 

3.2 WGCNA

We analyzed gene expression profiles from 51 samples 
in the integrated dataset using WGCNA. We achieved scale 
independence at 0.87 and an average connectivity of 34.88 after 
the soft-thresholding power set to 9 (Figures 4A,B). A clustering 
dendrogram was then constructed, followed by dynamic tree 
cutting and merging (Figure 4C), resulting in 23 distinct co-
expression modules. A module eigengene cluster diagram was 
also generated (Figure 4D). The correlation analysis between each 
module and clinical characteristics revealed the yellow-green 
module demonstrated the most robust synergistic interplay with 
keloid pathogenesis, while the medium-purple3 cluster displayed 
pronounced inverse regulatory relationships (Figure 4E). Further 

MM and GS analyses of the yellow-green module indicated a high 
correlation with both the module and the keloid phenotype (r = 
0.64, p = 6.6e-11) (Figure 4F). 

3.3 Identification and analysis of key genes

We extracted 679 DEGs and 73 genes from the yellow-green 
module, using a Venn diagram to identify an intersection of 41 genes 
(Figure 5A). GO (Figure 5C) and KEGG (Figure 5D) enrichment 
analyses of these 41 genes indicated significant enrichment in 
metabolic pathways, nucleotide excision repair, and amino acid 
biosynthesis processes. Systematic interrogation of 41 candidate 
genes through the STRING platform established a PPI network 
topology containing 21 nodal proteins interconnected via 31 
functional edges (Figure 5B). Based on degree scores, CDK7 
and DDB2 were identified as key genes, with their expression 
levels in keloid and control groups visualized via box plots 
(Figures 5E,F). Based on CDK7 and DBB2, GSEA identified 186 
KEGG pathways, with the top 5 pathways for CDK7 being renin 
angiotensin system, steroid biosynthesis, o-glycan biosynthesis, 
proximal tubule bicarbonate reclamation, and terpenoid backbone 
biosynthesis (Figure 5G). For DDB2, the top 5 pathways 
were intestinal immune network for iga production, systemic 
lupus erythematosus, autoimmune thyroid disease, complement 
and coagulation cascades, and cytokine-cytokine receptor 
interaction (Figure 5H). Detailed pathway information is provided
in Tables 4, 5. 
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FIGURE 6
Diagnostic Evaluation of Hub Genes via ROC Curve Analysis. (A) ROC curves for hub genes. (B) ROC curves for hub genes in the combined datasets 
GSE121618 and GSE145725. (C) KM curve for hub genes. (D) KM curve for hub genes in the integrated datasets GSE121618 and GSE145725. (E)
Prognostic heatmap for hub genes in the combined datasets GSE121618 and GSE145725. (F) Prognostic heatmap for hub genes in the combined 
datasets GSE121618 and GSE145725.

3.4 ROC curve analysis of key genes

ROC analytical frameworks were established to evaluate the 
diagnostic potential of CDK7 and DDB2 as keloid biomarker 
candidates. As shown in Figure 6A, both genes demonstrated strong 
diagnostic performance (AUC = 0.80). Further ROC validation 
analysis in datasets GSE121618 and GSE145725 (Figure 6B) 
confirmed high diagnostic performance (AUC = 0.86). Additionally, 
KM curves, prognostic heatmaps (Figures 6C,D), and their 

respective validation datasets (Figures 6E,F) consistently showed 
a strong association between these key genes and keloid. 

3.5 Construction of drug activity and 
transcription factor regulatory networks 
for hub genes

The DEG-miRNA network analysis shows that DDB2 and CDK7 
are associated with distinct miRNAs (Figure 7A). The transcription 
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FIGURE 7
Interactive network analysis. (A) DDB2–miRNA and CDK7–miRNA networks. (B) DDB2–transcription factor and CDK7–transcription factor networks.
(C) CDK7–drug interaction network.

factor-target gene interaction network for DDB2 and CDK7 
indicates that they share common transcription factors (Figure 7B). 
Additionally, the drug-target gene interaction network (Figure 7C) 
suggests that CDK7 is associated with drugs, including entrectinib 
and alvocidib (both CDK inhibitors), RG-1530, roniciclib, and 
pazopanib. 

3.6 Immune infiltration and 
immune-related factors

This investigation employed the CIBERSORT computational 
framework to quantify 22 immune cell type infiltrations across 
28 keloid lesions and 23 matched healthy cutaneous specimens 
(Figure 8A). Complementarily, we conducted multidimensional 
profiling to delineate the functional interplay between key genes 

and the various immune cell types. Results indicated that resting 
mast cells, activated memory CD4+ T cells, and memory B cells, 
among others, showed strong correlations with the key genes, 
whereas follicular helper T cells, naive CD4+ T cells, γ-δ T cells, 
resting dendritic cells, and eosinophils exhibited no correlation
(Figure 8B). 

3.7 Experimental validation

Finally, we validated our bioinformatics findings by assessing 
CDK7 and DDB2 expression levels in tissues from six keloid 
patients and six normal subjects using qRT-PCR, western 
blotting, and immunofluorescence. These experiments verified 
that CDK7 and DDB2 expression in keloid tissue cells was 
markedly elevated compared to normal tissues (Figure 9), 
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FIGURE 8
Immune infiltration analysis. (A) The relative percentage of 22 immune cells in each sample. (B) Relevant bubble diagram of 22 immune cells.

further supporting the reliability and research value of our
analysis. 

4 Discussion

Keloid pathogenesis arises from dysregulated hyperproliferation 
and hyaline matrix deposition in dermal fibroblasts, manifesting 

transgressive expansion beyond initial wound boundaries through 
invasive tissue remodeling (Fong et al., 2014). Although research 
has advanced, the exact etiology of keloid is still unknown. 
Existing evidence associates keloid formation with multiple factors, 
such as growth factors, apoptosis - related genes, the immune 
microenvironment, and inflammation. However, despite multiple 
treatment options, high recurrence rates remain a significant challenge 
for both surgical and conservative approaches (Brown et al., 2008), 
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FIGURE 9
The result of the basic experiment of CDK7 and DDB2. (A,B) The plots showed the results of qRT-PCR. (C–E) The result of the expression levels of 
CDK7 and DDB2 proteins in normal skin and keloid. (F,G) The result of the total expression levels of CDK7 and DDB2 proteins in normal skin and keloid.
(H,I) Observation of intracellular localization and expression patterns of CDK7 and DDB2 proteins in normal skin and keloid.The results are presented as 
mean ± SD. ∗∗,∗∗∗,∗∗∗∗respectively represent P values of t-test < 0.01, < 0.001, < 0.0001.

often resulting in dissatisfaction with cosmetic outcomes, increased 
treatment costs, and reduced quality of life. These challenges 
highlight the need for novel molecular markers to prevent keloid 
progression and improve prognosis. 

This study sought to elucidate molecular biomarkers implicated 
in keloid formation and progression, as well as potential 
therapeutic targets. Using an integrated dataset of 28 keloid and 
23 control samples, we identified 679 DEGs. KEGG and GO 
enrichment analyses of these DEGs revealed primary enrichment 
in biological processes such as system development, suppression 
of cellular processes, and enhancement of cellular metabolic 
processes; cellular components including the cytoplasm; and 
molecular functions like catalytic activity. KEGG analysis identified 
significant pathway enrichment in lysosomes, cell cycle, ubiquitin-
mediated protein degradation, and protein processing in the
endoplasmic reticulum.

Through WGCNA and PPI network analyses, we identified 
two key genes, CDK7 and DDB2, associated with keloid. ROC 

curve analysis demonstrated that in validation datasets GSE121618 
and GSE145725, the diagnostic accuracy of these two genes 
was high, with an AUC >0.9. Further validation via qRT-
PCR, western blotting, and immunofluorescence confirmed 
significantly elevated expression of CDK7 and DDB2 in keloid 
specimens relative to normal specimens. These findings suggest 
that CDK7 and DDB2 may serve as valuable diagnostic markers
for keloid.

The cyclin-dependent kinase (CDK) superfamily comprises 
evolutionarily conserved serine/threonine protein kinases 
functionally dedicated to orchestrating critical checkpoints in 
mitotic progression and transcriptional machinery activation. 
CDK7 emerges as a central regulatory component within this 
enzymatic hierarchy, exhibiting dual functionality in coordinating 
both cell cycle phase transitions and RNA polymerase II-mediated 
transcriptional initiation (Stephin J et al., 2021; Markéta et al., 
2023). Studies show that reducing CDK7 activity in cancer cells, 
either genetically or pharmacologically, decreases cell proliferation, 

Frontiers in Cell and Developmental Biology 13 frontiersin.org

https://doi.org/10.3389/fcell.2025.1718189
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1718189

making CDK7 a promising therapeutic target in oncology 
(Zhang et al., 2024; Han et al., 2025). Given the pathological 
classification of keloid as benign fibroproliferative neoplasms, 
CDK7 might also function as a possible treatment target for keloid
therapy.

Damage-specific DNA binding protein 2 (DDB2) functions 
as a UV-responsive genomic surveillance factor, specializing in 
detecting photolesions induced by ultraviolet radiation. Functioning 
as a genomic surveillance factor, the 48 kDa polypeptide encoded 
by the DDB2 gene orchestrates the detection of UV-induced 
DNA photolesions and initiates the mobilization of nucleotide 
excision repair (NER) complexes through phosphorylation-
dependent signaling cascades (Scrima et al., 2008). Beyond its 
role in DNA repair, DDB2 acts as a multifunctional protein in 
cancer progression, serving as a modulator with dual functions 
that exhibit both tumor-promoting and tumor-suppressing 
activities (Roy et al., 2013). Experimental evidence demonstrates 
that DDB2 deficiency elevates oncogenic vulnerability in UV-
irradiated murine models, with knockout murine systems 
exhibiting significantly enhanced spontaneous tumorigenesis 
rates (Itoh et al., 2004; Yoon et al., 2005). Research by Itoh T, 
Roy N, and Yang Z, among others, suggests a protective role 
for DDB2 in preventing skin tumor formation (Itoh et al., 2004; 
Roy et al., 2010; Yang et al., 2021). The elevated expression of 
DDB2, a key DNA damage recognition protein, in keloid—a 
benign fibroproliferative lesion—raises an intriguing question. 
It may suggest the presence of sustained, low-level genotoxic 
stress within the keloid microenvironment, potentially driven by 
chronic inflammation or oxidative stress. Alternatively, DDB2 might 
play a non-canonical role in keloid fibroblasts, independent of 
nucleotide excision repair, such as participating in the regulation 
of gene transcription or modulating key signaling pathways
like TGF-β.

The TGF-β/Smad signaling pathway is a central pathway 
in the pathogenesis of keloid. It drives scar formation and 
progression by continuously activating keloid fibroblasts, leading 
to excessive deposition of extracellular matrix (ECM) (Hyun Jee 
and Yeong Ho, 2024). Previous studies have shown that the CDK7 
inhibitor THZ1 blocks the activation of the TGFβ/Smad signaling 
pathway by inhibiting the phosphorylation of Smad2 (Jie et al., 
2019). CDK7 is a key kinase in transcriptional regulation and 
may indirectly regulate the phosphorylation state of Smad2 by 
affecting the transcription of certain kinases or phosphatases. 
However, this effect has not been verified in keloid cell models. 
Future studies should further confirm this by treating primary 
keloid fibroblasts with THZ1 and detecting Smad2 C-terminal 
phosphorylation levels. In addition, Gaigai W et al. found that 
DDB2 is an upstream positive regulator of the TGF-β pathway, 
stabilizing p-SMAD2 by inhibiting NEDD4L, thereby enhancing 
the tumor suppression function of TGF-β (Gaigai et al., 2024). 
Currently, research has not clearly found whether CDK7 and DDB2 
can affect the pathogenesis of keloid through the TGF-β/Smad 
signaling pathway. Although the specific molecular mechanism 
still needs further research, this provides a new perspective for 
understanding the role of CDK7 and DDB2 in the pathogenesis
of keloid.

In summary, we identified two novel keloid-associated genes, 
CDK7 and DDB2, through bioinformatics analysis. We validated 
their functions and diagnostic efficacy through expression profiling, 
enrichment analysis, and ROC analysis. Further validation 
using qRT-PCR, western blotting, and immunofluorescence 
confirmed the reliability of our data analysis. Furthermore, we 
identified candidate therapeutic agents and regulatory transcription 
factors associated with these genes, which could represent novel 
therapeutic targets for keloid treatment. Based on the high 
expression characteristics of CDK7 and DDB2, targeted therapeutic 
strategies can be developed in the future: For example, combining 
CDK7 inhibitors (THZ1, alvocidib) with local drug delivery 
systems (nanogels) for precise local injection into keloid lesions 
to reduce systemic toxicity. Additionally, DDB2-specific small 
interfering RNA (siDDB2) can be designed and transfected 
into keloid fibroblasts via liposomal carriers to inhibit excessive 
collagen synthesis, providing a new non-surgical treatment option
for keloids.

However, our study has several limitations. First, despite using 
four datasets, a potential limitation is the relatively small sample size 
of both the integrated GEO dataset and wet-lab validation. Future 
studies should validate CDK7/DDB2 expression in a multicenter 
cohort (n > 50 per group) to confirm their diagnostic utility across 
diverse patient populations. Second, the specific roles of CDK7 
and DDB2 in keloid pathogenesis are not fully understood and 
require molecular biology experiments and rigorously designed 
multicenter studies for validation. Lastly, although CDK7 and DDB2 
are recognized in oncology research, keloids are not classified as 
true tumors, necessitating further experimentation to substantiate
our findings. 

5 Conclusion

Integrated bioinformatics and basic experimental approaches 
were used in this study to detect and confirm two biomarkers, CDK7 
and DDB2, associated with keloid. These markers hold potential 
as future targets for diagnosing and managing inflammation
in keloid.
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