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Introduction: Keloid formation is a prevalent dermatological condition
characterized by abnormal dermal connective tissue proliferation. Despite
ongoing research, the underlying mechanisms of keloid formation remain
insufficiently understood. The aim of this research is to identify and
verify molecular biomarkers associated with keloid and to explore potential
therapeutic targets.

Methods: Transcriptomic data from keloid tissue specimens and normal skin
controls were retrieved from the Gene Expression Omnibus (GEO) database.
We performed differential expression and functional enrichment analyses after
batch effect correction. We performed differential gene analysis, weighted Gene
Co-expression Network Analysis (WGCNA), and protein-protein interaction
(PPI) analyses to verify hub genes, explore their functions, and evaluate their
connection to keloid formation, therapeutic potential, and immune-related
characteristics. Key genes were validated through experimental assays.

Results: 679 differentially expressed genes (DEGs) were identified. Through
WGCNA and Venn diagram analysis, 41 DEGs most closely associated with keloid
were identified. These 41 overlapping DEGs were confirmed to be markedly
involved in metabolic pathways, nucleotide excision repair, and amino acid
biosynthesis by functional enrichment analysis. PPl analysis identified CDK7 and
DDB2 as hub genes, each demonstrating strong diagnostic performance in ROC
curve analysis (AUC = 0.80), with comparable results in validation datasets (AUC
= 0.86). Basic experiments confirmed higher expression of CDK7 and DDB2 in
keloid tissue compared to normal skin.

Conclusion: Our findings demonstrate that CDK7 and DDB2 are promising
biomarkers for diagnostic and potential therapeutic targets in keloid, providing
novel insights into its pathogenesis and offering promising druggable targets.
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1 Introduction

Keloid, a frequent skin disorder, originates from prolonged
dysregulated wound healing. In this condition, the equilibrium
between collagen production and breakdown is disrupted by
a combination of external triggers and internal predispositions
(Pauline et al., 2009). Although benign, keloids exhibit growth
patterns similar to neoplasms, with aggressive expansion, invasion
into surrounding normal tissue, and a tendency to protrude above
the skin surface beyond the original wound site. They often present
with a hard texture, crab-like appearance, and symptoms like itching
or pain, impacting aesthetics and, in severe cases, impairing skin and
joint function (Silvian et al., 2019).

Recent reviews on keloid pathogenesis highlight two primary
theories: the inflammatory theory and the tumor theory. The
central immunocytes implicated in keloid pathogenesis comprise
macrophages, lymphocytes, mast cells, and neutrophils, with earlier
studies noting increased infiltration of macrophage populations,
T-cells, and mast cells clusters within keloid lesions compared
to normal dermal tissue (Gauglitz et al., 2011; Shaker et al,
2011). Keloid tissue exhibit significant upregulation of multiple pro-
inflammatory mediators, including interleukin-6 (IL-6), IL-8, IL-18,
and chemokine-like factor-1 (CKLF-1), compared to normal dermal
tissue. Moreover, the peripheral blood IL-8 levels in keloid patients
are found to be seven times higher than those in healthy individuals
(Abdou et al., 2014; Zhang et al., 2016; Tanaka et al., 2019).

In line with the tumor theory, several studies report
overexpression and secretome emission of growth factors such
as TGF-B, IGF-I, PDGE and EGF in keloid tissue, with keloid
cells demonstrating heightened sensitivity to these factors
compared to normal cells (Haisa et al., 1994; Younai et al,
1994; Ohtsuru et al., 2000). Additionally, early keloid studies
identified abnormal expression of apoptosis-related genes,
including ASY, PEA 15, AVEN, and ADAMI2 (Satish et al., 2006;
Seifert et al., 2008), alongside inactivation of the tumor suppressor
gene P53 (De Felice et al, 2004). Compared to normal skin,
keloids exhibit an enhanced capacity for angiogenesis (Yoo and
Kim, 2014; Jumper et al., 2015), further supporting their tumor-
like behavior and providing a theoretical basis for their unchecked
proliferation.

Significant progress has been made in keloid research globally;
however, the precise pathogenesis of keloid remains unclear,
necessitating further extensive research. This lack of clarity
complicates efforts to achieve effective clinical outcomes. Current
treatments include corticosteroid patches (Yoshino et al., 2018),
hypocrellin (Wu et al., 2024), silicone gel sheets (O'Brien and Jones,
2013), corticosteroid injections (Zhuang et al., 2021), 5-fluorouracil
injections (Hietanen et al., 2019; Zhang et al., 2025), cryotherapy
(O'Boyleetal., 2017), and surgery (Mustoe et al., 2002), with excision
being the most direct method. Despite these options, recurrence
remains common, imposing a psychological burden on patients.
Consequently, there is a critical need for deeper investigation
into keloid pathogenesis and prevention. Identifying novel keloid
markers and elucidating their mechanisms are key steps forward.

Bioinformatics has proven invaluable for studying keloid
formation mechanisms and can be used to identify pathogenesis-
related biomarkers, opening pathways for new diagnostic strategies
(Yin et al., 2022; Shixin et al, 2024). This study analyzed gene
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expression profiles from the GEO database, utilizing bioinformatics
methodologies to assess gene expression associated with keloid,
perform functional analyses, construct PPI networks, and examine
immune cell infiltration within the keloid tissue environment.
Ultimately, we identified keloid - associated biomarkers, explored
their roles in pathogenesis, and provided novel insights into
potential therapeutic strategies. The overall flow chart for the
research design is depicted in Figure 1.

2 Materials and methods
2.1 Data collection

Four gene expression datasets from keloid patients were obtained
from the GEO database. Precisely, dataset GSE44270 includes 18
keloid and 14 control samples, GSE7890 includes 10 keloid and
9 control samples, GSE145725 includes 9 keloid and 10 control
samples, and GSE121618 includes 5 keloid and 6 control samples.
Datasets GSE44270 and GSE7890 were sequenced on GPL570, while
GSE145725 and GSE121618 were sequenced on GPL16043. An
integrated dataset was generated using Empirical Bayes methods
(Johnson et al., 2007) to remove batch effects, and the batch-
effect-free matrix was visualized with UMAP plots. The R package
inSilicoMerging (Taminau etal., 2012) was then used to merge datasets
GSE44270 with GSE7890 and GSE121618 with GSE145725.

2.2 ldentification and analysis of
keloid-associated differentially expressed
genes

To authenticate DEGs across keloid and normal specimens
within the integrated dataset and evaluate their pathological
contributions, we performed the R package limma (Ritchie et al.,
2015) for differential expression analysis. Genes were deemed
upregulated if they had a log,FC > 0 and P < 0.01, whereas those
with log,FC < 0 and P < 0.01 were seen as downregulated. Volcano
plots and heatmaps were generated to visualize the DEGs and their
clustering patterns.

2.3 Functional enrichment analysis

Standardized terms for describing gene functions are provided
by Gene Ontology (GO), which covers biological processes (BP),
molecular functions (MF), and cellular components (CC). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) delivers
comprehensive data regarding genes and metabolic pathways.
Functional enrichment profiling of DEGs was conducted through
GO and KEGG pathway analyses to elucidate statistically significant
pathways, with analytical outcomes graphically represented via
bubble plot visualizations (statistical threshold p < 0.05).

We employed Gene Set Enrichment Analysis (GSEA) to
detect significantly enriched gene sets under specific conditions.
Gene sets were sourced from the Molecular Signatures Database
(MSigDB), and GSEA was performed using FDR < 0.25 and p
< 0.05 as thresholds. Computational workflows were executed in
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FIGURE 1
Research framework and methodological process.

TABLE 1 Basic information of qRT-PCR primers. the R statistical environment via the clusterProfiler toolkit for

comprehensive enrichment profiling (Yuetal.,2012; Wuetal., 2021).
Forward primer (5’ to  Reverse primer (5’ to P P 8 )

3') 3')

ACTIN = GTCCACCGCAAATGCTTCTA | TGereTcaccrtcaccetre 2.4 Weighted gene co-expression network
analysis (WGCNA)

CDK7 AAGTGCACCTCTTTGCCCAA = GGTCCTCGTAAGGACTCGAT

DDB2 | AGGACTACATGACCCTGCGA =~ CCTTCTTCCAGTGCATGCTG A scale-free  co-expression network architecture  was

constructed using the WGCNA R package, enabling systematic
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FIGURE 2

GEO data batch correction. (A) UMAP plot of the dataset before batch correction. (B) UMAP plot of the dataset after batch correction. (C) Gene
expression level analysis of the dataset prior to batch correction. (D) Gene expression level analysis of the dataset following batch correction.

investigation of transcriptomic interconnectivity patterns and
functional ~ genotype-phenotype
topological analysis (Langfelder and Horvath, 2008). We selected

interrelationships  through
an optimal soft threshold and enabled the construction of a
scale-free co-expression network to validate network modules
and hub genes linked to keloid development and progression.
Transcriptomic profiles exhibiting correlated expression dynamics
were algorithmically partitioned into functional co-expression
modules through implementation of dynamic tree-cutting
algorithms. Module eigengenes (MEs) were computed to facilitate
the merging of modules with a distance of under 0.25. Each
module's ME, representing its gene expression profile, was used
to analyze module-phenotype associations. Module membership
(MM) values reflect the relationship between a gene's expression
and its module's ME, showing how strongly the gene is linked to
the module. Gene significance (GS) is the correlation between a
gene's expression and the phenotype, reflecting the gene's relevance

to the phenotype.

2.5 ldentification and analysis of hub genes
and PPI network

To validate key genes linked to keloid, we performed the
R package VennDiagram to find the intersection of DEGs
and WGCNA-identified genes, followed by GO and KEGG
pathway enrichment analyses. We utilized the STRING database
(Szklarczyk et al., 2019) to identify known proteins and forecast
interactions. We loaded the overlapping genes from the Venn
diagram into STRING to construct a PPI network. Then we used
Cytoscape software (Smoot et al, 2011). to visualize the PPI
network. Based on expression differences, enrichment functions,
and PPI network analyses, the degree values of all genes were
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calculated, with those having higher values deemed as hub
genes.
expression of the key genes in keloid and matched normal

Box plots were then utilized to visualize differential

dermal tissues.

2.6 Receiver operating characteristic (ROC)
curve for hub genes

Based on gene expression levels and patient survival times,
we utilized the survival R package to construct ROC curves.
Gene expression levels were evaluated for their diagnostic value
in patient survival prediction using the area under the curve
(AUC). The prognostic predictive capacity of key gene was
evaluated through Cox proportional hazards regression modeling
implemented in the survival R package. The pROC package's
CI function was applied to calculate AUC and confidence
bounds. Additionally, Kaplan-Meier (KM) curves and prognostic
heatmaps were generated to assess the correlation of key genes
with keloid.

2.7 Analysis of hub genes’ drug activity,
transcription factor, and microRNA
interaction networks

miRNAs associated with CDK7 and DDB2 were identified by
the miRWalk database (http://mirwalk.umm.uni-heidelberg.de/),
selecting the top 10 miRNAs based on binding potential and energy
criteria. Transcription factors (TFs) for CDK7 and DDB2 were
predicted using the ChEA3 database (https://maayanlab.cloud/
ChEA3/), with the top 30 TFs selected for visualization based
on scoring criteria. Therapeutic targets associated with central
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FIGURE 3
Heatmap, Volcano Plot, GO, and KEGG Pathway Analyses of DEGs. (A) Volcano plot of DEGs, with orange nodes indicating upregulated and green
nodes indicating downregulated DEGs. (B) Heatmap of DEG expression levels, where crimson columns represent keloid specimens and azure columns
represent control matched control cohorts. (C) Functional enrichment landscape visualization of GO terms, with bubble size correlating with gene
ratio and chromatic intensity reflecting statistical significance [-log10 (P-value)]. (D) Pathway interaction network analysis through KEGG mapping,
highlighting enriched biological cascades through scaled circular nodes.

regulatory genes were systematically mined from the Drug-
Gene Interaction Database (DGIdb, https://www.dgidb.org),
followed by computational mapping and topological visualization
of pharmacological interaction networks using Cytoscape's
analytical platform.

2.8 Immune infiltration analysis

The immune microenvironment is composed of fibroblasts,
mesenchymal cells, immune cells, and inflammatory cells, as well
as various cytokines and chemokines. Assessing immune cell
infiltration is critical for determining the predictive value of disease
progression and therapeutic outcomes. We used CIBERSORT to
evaluate immune cell infiltration within the microenvironment and
to systematically investigate immune cells interactions with key
genes. Complementary analysis of datasets (GSE44270/GSE7890)
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was performed to resolve 22 distinct immune cell type proportions
across biological replicates.

2.9 Cell culture

In this study, keloid tissue was sourced from Guangzhou
First People's Hospital. Its acquisition followed the Declaration
of Helsinki and was authorized by the hospital's Medical Ethics
Committee. Fibroblasts isolated from keloid patient tissue were
cultured and expanded, with passage 5 cells used in experiments.
The cells were maintained in Dulbecco's Modified Eagle Medium
(DMEM; Gibco, United States) containing 10% fetal bovine serum
(Gibco, United States) and antibiotics (Servicebio, China). Cultures
were incubated at 37 °C in a 5% CO, atmosphere, with the medium
replaced every 48 h, and cells subcultured upon reaching 70%-80%
confluence.
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TABLE 2 GO enrichment analysis results.

10.3389/fcell.2025.1718189

Ontology Description GeneRatio BgRatio pvalue p.-adjust qvalue
BP GO:0048731 System development 220/614 4,670/17,910 3.63E-08 2.20E-05 1.84E-05
BP GO:0048523 Negative regulation of cellular process 219/614 4,580/17,910 1.09E-08 1.34E-05 1.12E-05
BP GO:0009893 Positive regulation of metabolic process 167/614 3,313/17,910 4.66E-08 2.20E-05 1.84E-05
CcC GO:0005829 Cytosol 224/621 4,909/18,675 3.04E-08 1.99E-05 1.61E-05
MEF GO:0003824 Catalytic activity 208/604 4,828/16,967 0.000642816 0.086443093 0.078550867

TABLE 3 KEGG enrichment analysis results.

Ontology ID Description GeneRatio = BgRatio pvalue p.adjust
KEGG hsa04142 Lysosome 13/303 123/7,914 0.000816951 0.232831095 0.225306544
KEGG hsa04110 Cell cycle 11/303 124/7,914 0.007793219 0.370177916 0.358214641
KEGG hsa04120 Ubiquitin mediated proteolysis 11/303 136/7,914 0.015005016 0.584453081 0.565564939
KEGG hsa04141 Protein processing in endoplasmic reticulum 12/303 166/7,914 0.025338959 0.584453081 0.565564939

2.10 Quantitative real-time polymerase
chain reaction (qQRT-PCR)

TRIzol was used to extract total RNA, after which cDNA was
synthesized using the RevertAid Reverse Transcriptase kit (Thermo
Fisher Scientific, United States). With actin as the internal control,
we performed quantitative PCR on the synthesized cDNA through
SYBR Green RT-PCR (Takara Biotechnology Co., Ltd., Japan).
Then the 272*CT method was applied to calculate relative gene
expression levels (Yu et al., 2024). Primer sequences are provided
in Table 1.

2.11 Western blotting

Protein extraction from HaCaT cells was conducted using a
radioimmunoprecipitation assay (RIPA) buffer with a protease
inhibitor cocktail (Beyotime, China). Protein quantification was
performed using a BCA assay system (Thermo Fisher Scientific),
followed by electrophoretic separation of 20 ug protein lysates
on 10% SDS-PAGE. Resolved proteins were electrophoretically
transferred to PVDF membranes, blocked with 5% BSA, and
probed with primary antibodies (4 °C, 16 h). Subsequent incubation
of secondary antibodies (room temperature, 1h) preceded
chemiluminescent detection using an AI800 imaging platform
(GE, United States). Quantitative densitometric analysis was
conducted with Image]. Antibodies were sourced as follows:
CDK7 (67889-1-Ig, 1:1000, Proteintech Group), DDB2 (10431-
1-AP, 1:1000, Proteintech Group), and B-Actin (TDYO51, 1:5000,
TDY BIOTECH).

Frontiers in Cell and Developmental Biology

2.12 Immunofluorescence assay

Immunofluorescence protocols commenced with cellular
immobilization using 4% paraformaldehyde (30 min), followed
by triple rinsing in PBS and membrane permeation with 0.1%
Triton X-100/TBST solution (room temperature, 30 min). Non-
specific binding sites were neutralized with 5% BSA blocking
buffer (30 min). Primary antibody incubation (16h, 4 °C)
preceded application of secondary antibodies linked to horseradish
peroxidase (goat anti-rabbit, Affinity, 1:500; room temperature,
1h) for signal amplification. DAPI was used to stain nuclei for
10 min (Servicebio, China). Imaging was conducted with a confocal
microscope (Zeiss, Germany).

2.13 Statistical analysis

All data processing and analyses were implemented within the
R statistical environment (v4.0.2), employing Student's t-test for
parametric inter-group comparisons with a predefined significance
threshold (p < 0.05) across all analyses.

3 Result

3.1 Expression and analysis of differentially
expressed genes

We first removed the batch effects from datasets GSE7890
and GSE44270 (Figure2), resulting in an integrated dataset
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comprising 28 keloid samples and 23 control samples. Differential
expression analysis on this integrated dataset identified 679
DEGs, including 428 upregulated and 251 downregulated genes,
as visualized in a volcano plot (Figure 3A). A heatmap of the
top 20 DEGs (Figure 3B) highlights distinct expression patterns
between keloid and control samples.
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To delineate the molecular mechanisms underlying keloid
formation, we implemented multidimensional functional profiling
through GO annotation and KEGG pathway topology mapping
of DEGs from the integrated data. GO enrichment indicated
significant associations with biological processes (BP) such as

system development, suppression of cellular processes, and
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TABLE 4 GSEA enrichment analysis results of CDK7.
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Term ‘ ES NES ’ pvalue FDR FWER
RENIN_ANGIOTENSIN_SYSTEM 0.6601 1.7358 0 0.1468 0.176
STEROID_BIOSYNTHESIS —-0.6959 -1.5774 0.0181 0.2037 0.592
O_GLYCAN_BIOSYNTHESIS —-0.5423 -1.5978 0.0202 0.2124 0.536
PROXIMAL_TUBULE_BICARBONATE_RECLAMATION -0.6273 -1.5613 0.0294 0.2127 0.639
TERPENOID_BACKBONE_BIOSYNTHESIS —-0.6255 —-1.5815 0.0185 0.219 0.577
TABLE 5 GSEA enrichment analysis results of DDB2.
Term ’ ES NES ‘ pvalue ’ FDR FWER
INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION —-0.6693 -2.0642 0 0 0
SYSTEMIC_LUPUS_ERYTHEMATOSUS —0.4655 -1.617 0.0269 0.2403 0.471
AUTOIMMUNE_THYROID_DISEASE —0.4811 —-1.6465 0.0378 0.2473 0.376
COMPLEMENT_AND_COAGULATION_CASCADES -0.4656 -1.572 0.0221 0.2837 0.598
CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION —-0.3752 —-1.4693 0.0361 0.3261 0.837

enhancement of metabolic processes; cellular components (CC)
like the cytoplasm; and molecular functions (MF) such as
catalytic activity (Figure 3C, details in Table 2). KEGG pathway
analysis revealed enrichments primarily related to lysosomes,
cell cycle regulation, ubiquitin-mediated protein degradation,
and protein processing in the endoplasmic reticulum (Figure 3D,
details in Table 3). These findings suggest that keloid formation
may be driven by disruptions in cellular proliferation, metabolic
regulation, and key processes such as lysosomal degradation,
protein processing, and cell cycle regulation. These abnormalities
likely contribute to excessive fibrous tissue accumulation
and atypical wound healing, which may be central to keloid
pathogenesis.

3.2 WGCNA

We analyzed gene expression profiles from 51 samples
in the integrated dataset using WGCNA. We achieved scale
independence at 0.87 and an average connectivity of 34.88 after
the soft-thresholding power set to 9 (Figures 4A,B). A clustering
dendrogram was then constructed, followed by dynamic tree
cutting and merging (Figure 4C), resulting in 23 distinct co-
expression modules. A module eigengene cluster diagram was
also generated (Figure 4D). The correlation analysis between each
module and clinical characteristics revealed the yellow-green
module demonstrated the most robust synergistic interplay with
keloid pathogenesis, while the medium-purple3 cluster displayed
pronounced inverse regulatory relationships (Figure 4E). Further
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MM and GS analyses of the yellow-green module indicated a high
correlation with both the module and the keloid phenotype (r =
0.64, p = 6.6e-11) (Figure 4F).

3.3 Identification and analysis of key genes

We extracted 679 DEGs and 73 genes from the yellow-green
module, using a Venn diagram to identify an intersection of 41 genes
(Figure 5A). GO (Figure 5C) and KEGG (Figure 5D) enrichment
analyses of these 41 genes indicated significant enrichment in
metabolic pathways, nucleotide excision repair, and amino acid
biosynthesis processes. Systematic interrogation of 41 candidate
genes through the STRING platform established a PPI network
topology containing 21 nodal proteins interconnected via 31
functional edges (Figure 5B). Based on degree scores, CDK7
and DDB2 were identified as key genes, with their expression
levels in keloid and control groups visualized via box plots
(Figures 5E,F). Based on CDK7 and DBB2, GSEA identified 186
KEGG pathways, with the top 5 pathways for CDK7 being renin
angiotensin system, steroid biosynthesis, o-glycan biosynthesis,
proximal tubule bicarbonate reclamation, and terpenoid backbone
biosynthesis (Figure 5G). For DDB2, the top 5 pathways
were intestinal immune network for iga production, systemic
lupus erythematosus, autoimmune thyroid disease, complement
and cytokine-cytokine
interaction (Figure 5H). Detailed pathway information is provided
in Tables 4, 5.

and coagulation cascades, receptor
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Diagnostic Evaluation of Hub Genes via ROC Curve Analysis. (A) ROC curves for hub genes. (B) ROC curves for hub genes in the combined datasets
GSE121618 and GSE145725. (C) KM curve for hub genes. (D) KM curve for hub genes in the integrated datasets GSE121618 and GSE145725. (E)
Prognostic heatmap for hub genes in the combined datasets GSE121618 and GSE145725. (F) Prognostic heatmap for hub genes in the combined

3.4 ROC curve analysis of key genes

ROC analytical frameworks were established to evaluate the
diagnostic potential of CDK7 and DDB2 as keloid biomarker
candidates. As shown in Figure 6A, both genes demonstrated strong
diagnostic performance (AUC = 0.80). Further ROC validation
analysis in datasets GSE121618 and GSE145725 (Figure 6B)
confirmed high diagnostic performance (AUC = 0.86). Additionally,
KM curves, prognostic heatmaps (Figures 6C,D), and their
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respective validation datasets (Figures 6E,F) consistently showed
a strong association between these key genes and keloid.

3.5 Construction of drug activity and
transcription factor regulatory networks
for hub genes

The DEG-miRNA network analysis shows that DDB2 and CDK7
are associated with distinct miRNAs (Figure 7A). The transcription
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factor-target gene interaction network for DDB2 and CDK7
indicates that they share common transcription factors (Figure 7B).
Additionally, the drug-target gene interaction network (Figure 7C)
suggests that CDK7 is associated with drugs, including entrectinib
and alvocidib (both CDK inhibitors), RG-1530, roniciclib, and
pazopanib.

3.6 Immune infiltration and
immune-related factors

This investigation employed the CIBERSORT computational
framework to quantify 22 immune cell type infiltrations across
28 keloid lesions and 23 matched healthy cutaneous specimens
(Figure 8A). Complementarily, we conducted multidimensional
profiling to delineate the functional interplay between key genes
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and the various immune cell types. Results indicated that resting
mast cells, activated memory CD4" T cells, and memory B cells,
among others, showed strong correlations with the key genes,
whereas follicular helper T cells, naive CD4" T cells, y-8 T cells,
resting dendritic cells, and eosinophils exhibited no correlation
(Figure 8B).

3.7 Experimental validation

Finally, we validated our bioinformatics findings by assessing
CDK7 and DDB2 expression levels in tissues from six keloid
patients and six normal subjects using qRT-PCR, western
blotting, and immunofluorescence. These experiments verified
that CDK7 and DDB2 expression in keloid tissue cells was

markedly elevated compared to normal tissues (Figure9),

frontiersin.org


https://doi.org/10.3389/fcell.2025.1718189
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Zhang et al. 10.3389/fcell.2025.1718189

100 Group

@ Neutrophils CIBERSORT

O Eosinophils_ CIBERSORT

L Mast_cells_activated_CIBERSORT

o Mast _cells_resting. CIBERSORT

O Dendritic_cells_activated CIBERSORT
Dendritic_cells_resting CIBERSORT

L Macrophages M2_CIBERSORT

@ Macrophages M1_CIBERSORT

@ Macrophages MO _CIBERSORT

@ Monocytes CIBERSORT

o NK_cells_activated CIBERSORT

O NK_cells_resting CIBERSORT

@T cells gamma delta CIBERSORT

L 4 T_cells_regulatory_(Tregs) CIBERSORT

® T cells_follicular_helper CIBERSORT

O T_cells_CD4_memory_activated CIBERSORT

| T cells. CD4 memory_resting CIBERSORT

L 4 T cells_CD4 naive CIBERSORT

@ T cclls CDS_CIBERSORT

o Plasma_cells_ CIBERSORT

@B cells memory CIBERSORT

@B cells_naive CIBERSORT

80

60

40

Estiamted Proportion(%)

20

B cells_naive CIBERSORT |@ ° |correlation coefficient|
B cells memory CIBERSORT | |® L J B r
Plasma_cells CIBERSORT 7*% . |@ [ J hd e Loz
T cells_ CD8_CIBERSORT |- |-##*i@®| |® ° :
T cells CD4 naive CIBERSORT |-|-|-|- o |-04
T_cells_CD4_memory_resting CIBERSORT #% @ | @ [ J ole
T cells CD4_memory_activated CIBERSORT | =@ | _ || . |@ OB ® 06
T_cells_follicular_helper CIBERSORT |- |-|-|-|-|-|- olos
T cells regulatory (Tregs) CIBERSORT ##puipts | 4@ | |@ :
T cells gamma delta CIBERSORT |- |-|-|-|-|-|-|-|- eL10
NK_cells_resting CIBERSORT |- [#*| (|- |- |- _|-|.|@®
NK_cells activated CIBERSORT [* | |- [=|-[*[ |- |*| ®#@® o ° corrflﬁtion coefficient
Monocytes CIBERSORT |- | - i sionie | _ ok || @ |o|® ° 08
Macrophages MO _CIBERSORT |- |-|-|-|-|=|-|-|-|-|-| |-|® 0.6
Macrophages M1 CIBERSORT |- |- | pspe g | |*|_ |- |- 3%5_|@ 0'4
Macrophages M2 CIBERSORT | - [##| - | % | _ #doks_ x| _ | _ ot 4+ @ 0'2
Dendritic_cells_resting CIBERSORT |- |- |-|-|-|-|-|-|-|-|-|-|-|-|-|- .
Dendritic_cells_activated CIBERSORT | ¥t | || o | o ||| [#|*|_|*|_ |@||® T2
Mast_cells_resting CIBERSORT | =@ [ - | | 4@ | | o] |- | |- pig @) © _0'4
Mast_cells_activated CIBERSORT F*po| * | - | - | p#s_ Pk | x5 || _|_|. @ —0.6
Eosinophils CIBERSORT |-|-|-|-|-|-|-|-|-|-|-J-|-|-|-|-|-1-1-|- —0'8
Neutrophils CIBERSORT | = |- - o[- |-[-[-Jof-pers]| |- |- |-|-].]-|@ :

FIGURE 8
Immune infiltration analysis. (A) The relative percentage of 22 immune cells in each sample. (B) Relevant bubble diagram of 22 immune cells.

further supporting the reliability and research value of our  transgressive expansion beyond initial wound boundaries through
analysis. invasive tissue remodeling (Fong et al.,, 2014). Although research
has advanced, the exact etiology of keloid is still unknown.

Existing evidence associates keloid formation with multiple factors,

4 Discussion such as growth factors, apoptosis - related genes, the immune
microenvironment, and inflammation. However, despite multiple

Keloid pathogenesis arises from dysregulated hyperproliferation ~ treatment options, high recurrence rates remain a significant challenge
and hyaline matrix deposition in dermal fibroblasts, manifesting  for both surgical and conservative approaches (Brown et al., 2008),
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often resulting in dissatisfaction with cosmetic outcomes, increased
treatment costs, and reduced quality of life. These challenges
highlight the need for novel molecular markers to prevent keloid
progression and improve prognosis.

This study sought to elucidate molecular biomarkers implicated
in keloid formation and progression, as well as potential
therapeutic targets. Using an integrated dataset of 28 keloid and
23 control samples, we identified 679 DEGs. KEGG and GO
enrichment analyses of these DEGs revealed primary enrichment
in biological processes such as system development, suppression
of cellular processes, and enhancement of cellular metabolic
processes; cellular components including the cytoplasm; and
molecular functions like catalytic activity. KEGG analysis identified
significant pathway enrichment in lysosomes, cell cycle, ubiquitin-
mediated protein degradation, and protein processing in the
endoplasmic reticulum.

Through WGCNA and PPI network analyses, we identified
two key genes, CDK7 and DDB2, associated with keloid. ROC
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“respectively represent P values of t-test < 0.01, < 0.001, < 0.0001.

curve analysis demonstrated that in validation datasets GSE121618
and GSE145725, the diagnostic accuracy of these two genes
was high, with an AUC >0.9. Further validation via qRT-
PCR, western blotting, and immunofluorescence confirmed
significantly elevated expression of CDK7 and DDB2 in keloid
specimens relative to normal specimens. These findings suggest
that CDK7 and DDB2 may serve as valuable diagnostic markers
for keloid.

The cyclin-dependent kinase (CDK) superfamily comprises

evolutionarily kinases

conserved  serine/threonine  protein
functionally dedicated to orchestrating critical checkpoints in
mitotic progression and transcriptional machinery activation.
CDK7 emerges as a central regulatory component within this
enzymatic hierarchy, exhibiting dual functionality in coordinating
both cell cycle phase transitions and RNA polymerase II-mediated
transcriptional initiation (Stephin] et al, 2021; Markéta et al,
2023). Studies show that reducing CDK7 activity in cancer cells,

either genetically or pharmacologically, decreases cell proliferation,
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making CDK7 a promising therapeutic target in oncology
(Zhang et al, 2024; Han et al, 2025). Given the pathological
classification of keloid as benign fibroproliferative neoplasms,
CDK?7 might also function as a possible treatment target for keloid
therapy.

Damage-specific DNA binding protein 2 (DDB2) functions
as a UV-responsive genomic surveillance factor, specializing in
detecting photolesions induced by ultraviolet radiation. Functioning
as a genomic surveillance factor, the 48 kDa polypeptide encoded
by the DDB2 gene orchestrates the detection of UV-induced
DNA photolesions and initiates the mobilization of nucleotide
excision repair (NER) complexes through phosphorylation-
dependent signaling cascades (Scrima et al, 2008). Beyond its
role in DNA repair, DDB2 acts as a multifunctional protein in
cancer progression, serving as a modulator with dual functions
that exhibit both tumor-promoting and tumor-suppressing
activities (Roy et al., 2013). Experimental evidence demonstrates
that DDB2 deficiency elevates oncogenic vulnerability in UV-
irradiated murine models, with knockout murine systems
exhibiting = significantly enhanced spontaneous tumorigenesis
rates (Itoh et al., 2004; Yoon et al, 2005). Research by Itoh T,
Roy N, and Yang Z, among others, suggests a protective role
for DDB2 in preventing skin tumor formation (Itoh et al., 2004;
Roy et al, 2010; Yang et al, 2021). The elevated expression of
DDB2, a key DNA damage recognition protein, in keloid—a
benign fibroproliferative lesion—raises an intriguing question.
It may suggest the presence of sustained, low-level genotoxic
stress within the keloid microenvironment, potentially driven by
chronic inflammation or oxidative stress. Alternatively, DDB2 might
play a non-canonical role in keloid fibroblasts, independent of
nucleotide excision repair, such as participating in the regulation
of gene transcription or modulating key signaling pathways
like TGF-p.

The TGF-B/Smad signaling pathway is a central pathway
in the pathogenesis of keloid. It drives scar formation and
progression by continuously activating keloid fibroblasts, leading
to excessive deposition of extracellular matrix (ECM) (Hyun Jee
and Yeong Ho, 2024). Previous studies have shown that the CDK7
inhibitor THZ1 blocks the activation of the TGFp/Smad signaling
pathway by inhibiting the phosphorylation of Smad2 (Jie et al,
2019). CDK7 is a key kinase in transcriptional regulation and
may indirectly regulate the phosphorylation state of Smad2 by
affecting the transcription of certain kinases or phosphatases.
However, this effect has not been verified in keloid cell models.
Future studies should further confirm this by treating primary
keloid fibroblasts with THZ1 and detecting Smad2 C-terminal
phosphorylation levels. In addition, Gaigai W etal. found that
DDB?2 is an upstream positive regulator of the TGF-B pathway,
stabilizing p-SMAD?2 by inhibiting NEDDA4L, thereby enhancing
the tumor suppression function of TGF-p (Gaigai et al., 2024).
Currently, research has not clearly found whether CDK7 and DDB2
can affect the pathogenesis of keloid through the TGF-p/Smad
signaling pathway. Although the specific molecular mechanism
still needs further research, this provides a new perspective for
understanding the role of CDK7 and DDB2 in the pathogenesis
of keloid.

Frontiers in Cell and Developmental Biology

14

10.3389/fcell.2025.1718189

In summary, we identified two novel keloid-associated genes,
CDK7 and DDB2, through bioinformatics analysis. We validated
their functions and diagnostic efficacy through expression profiling,
enrichment analysis, and ROC analysis. Further validation
using qRT-PCR, western blotting, and immunofluorescence
confirmed the reliability of our data analysis. Furthermore, we
identified candidate therapeutic agents and regulatory transcription
factors associated with these genes, which could represent novel
therapeutic targets for keloid treatment. Based on the high
expression characteristics of CDK7 and DDB2, targeted therapeutic
strategies can be developed in the future: For example, combining
CDK?7 inhibitors (THZ1, alvocidib) with local drug delivery
systems (nanogels) for precise local injection into keloid lesions
to reduce systemic toxicity. Additionally, DDB2-specific small
interfering RNA (siDDB2) can be designed and transfected
into keloid fibroblasts via liposomal carriers to inhibit excessive
collagen synthesis, providing a new non-surgical treatment option
for keloids.

However, our study has several limitations. First, despite using
four datasets, a potential limitation is the relatively small sample size
of both the integrated GEO dataset and wet-lab validation. Future
studies should validate CDK7/DDB2 expression in a multicenter
cohort (n > 50 per group) to confirm their diagnostic utility across
diverse patient populations. Second, the specific roles of CDK7
and DDB2 in keloid pathogenesis are not fully understood and
require molecular biology experiments and rigorously designed
multicenter studies for validation. Lastly, although CDK7 and DDB2
are recognized in oncology research, keloids are not classified as
true tumors, necessitating further experimentation to substantiate
our findings.

5 Conclusion

Integrated bioinformatics and basic experimental approaches
were used in this study to detect and confirm two biomarkers, CDK7
and DDB2, associated with keloid. These markers hold potential
as future targets for diagnosing and managing inflammation
in keloid.
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