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Dendrite glia interactions:
lessons from the C. elegans
amphid sense organ

Katherine C. Varandas*

Department of Biological Sciences, Seton Hall University, South Orange, NJ, United States

Glia are critical components of the nervous system, regulating the development
and function of associated neurons. While much attention has focused
on interactions between glia and axons, growing evidence highlights the
importance of critical and evolutionarily conserved interactions between glia
and dendrites, particularly in organisms with simple nervous systems such as
Caenorhabditis elegans. Glia critically support the structure and function of
associated dendrites through regulation of the ionic microenvironment, uptake
of extracellular vesicles and fragments, and signaling regulation downstream
of direct glial sensation of environmental stimuli in the major C. elegans sense
organs. Glia also elicit beneficial responses upon defects in dendrite structure,
stress, aging, and perhaps exposure to pathogens. Emerging themes are that
a single glial cell can regulate distinct interacting dendrites differently and that
neurons can communicate extra-synaptically via a shared interacting glial cell.
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1 Introduction

The remarkable functions of the nervous system rely on polarization of neurons into
specialized domains for signal reception, dendrites, and signal transmission, axons. Axons and
dendrites have distinct protein repertoires and structures to support their functions. Neurons
interact extensively with glia, which are defined by three criteria: (1) physical association
with neurons, (2) lack of signaling via fast currents or release of neurotransmitter-filled
vesicles, and (3) shared developmental precursor cells with neurons, with the exception of
microglia (Shaham, 2006; Mehl et al., 2022). While attention has focused on interactions
between glia and axons (Hertzler and Rolls, 2024), animals with simple nervous systems,
such as Caenorhabditis elegans, suggest important and conserved interactions between glia
and dendrites (Heiman and Shaham, 2007). Changes in dendrite structure correlate with
learning and memory (Bernardinelli et al., 2014) and dendrite defects occur in many nervous
system diseases (Kulkarni and Firestein, 2012). Therefore, understanding how dendrite
structure and function may be influenced by interacting glia is critical.

The experimental advantages of C. elegans make it a powerful experimental system
(Brenner, 1974), with specific advantages for studying dendrite glia interactions. In addition to
a fully anatomically and molecularly mapped nervous system (Ward et al., 1975; White et al.,
1986; Hall and Russell, 1991; Hammarlund et al., 2018; Cook et al., 2019; Taylor et al., 2021;
Purice et al,, 2025), C. elegans is genetically tractable and optically transparent, enabling gene
discovery and high-resolution imaging of intact organisms, respectively. Despite its simple
nervous system, C. elegans exhibits complex behaviors including sensory discrimination,
locomotion, sleep, mating, decision making, and memory (Bargmann, 2006; Raizen etal., 2008;
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Ardiel and Rankin, 2010; Emmons, 2018; Haspel et al., 2020).
Notably, C. elegans glia do not provide trophic support to neurons
(Shaham, 2005; Barres, 2008), allowing for discovery of non-trophic
glial functions via ablation or other manipulations (Singhvi and
Shaham, 2019). Unlike C. elegans axons which largely regenerate
after breakage, ciliated dendrites show little capacity for regrowth
(Chung et al., 2006; 2016), suggesting dendrite glia interactions may
be critical to maintain dendrite integrity.

Every C. elegans glial cell is part of a sense organ. Caenorhabditis
elegans sense organs share morphological and functional similarities
to mammalian epithelial sense organs such as the olfactory epithelia,
retina, cochlea, and taste buds (Heiman and Biilow, 2024). They
are composed of sensory neurons with ciliated dendrites, which
detect environmental cues including tastes, smells, temperature,
pheromones, oxygen, and some aspects of touch (Bargmann, 2006;
Goodman et al, 2019; Ferkey et al., 2021), and associated glia
(Ward et al,, 1975). Different sensory dendrite cilia contain distinct
receptors and downstream signaling proteins, allowing for diverse
sensory capabilities, and many are morphologically elaborated
(Goodman and Sengupta, 2019; Ferkey et al., 2021; Maurya, 2022).

Thelargestand best-characterized sense organs of C. elegans are the
bilaterally symmetric amphids. Each amphid contains twelve sensory
neurons and two glia (Figure 1). Amphid sensory neurons are bipolar,
with an axon projecting into the brain-like neuropil and a ciliated
dendrite projecting towards the animal surface. The dendrite endings
(DEs) of amphid neurons fall into two classes: 8 possess channel
dendrites, whose simple singlet or doublet cilia extend through a glia-
formed channel for direct environment exposure, and the remaining 4
are embedded in hand-in-glove configurations within the AMsh glia
(Oikonomouand Shaham, 2011). Three of the embedded DEs, those of
AWA, AWB, and AWG, are elaborated cilia exposed the environment,
while the DE of AFD contains thermosensory actin-rich microvilli
and a simple cilium not exposed to the environment (Ward et al,
1975; Doroquez et al,, 2014). The amphid sheath (AMsh) glia form
the base of the tube-shaped sensory channel and are highly secretory
(Wallace et al., 2016). The amphid socket (AMso) glia form the distal
tip of the tube, sculpting an open channel that connects with the
external cuticle (Singhvi et al., 2024).

This minireview focuses on the bidirectional communication
between dendrites and glia in the healthy amphid and upon dendrite
structure defects, stress, aging, and pathogen exposure, focusing
interactions outside of organism development.

2 Dendrite glia interactions in the
healthy amphid

2.1 Glia support distinct interacting
dendrites differently

In the amphid, glia support the structure and function of
distinct interacting dendrites differently (Figure 2a). Ablation of
AMsh glia after amphid formation (in first-stage larvae) causes
structural defects in a subset of the embedded DEs. The elaborated

Abbreviations: AMsh, amphid sheath; AMso, amphid socket; DE, dendrite
ending; EV, extracellular vesicle; KCNQ, voltage-gated K+ channel.
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cilia of AWA and AWC as well as the actin-rich microvilli of
AFD show loss or reduction in structural elaboration, while the
elaborated cilia of AWB remain intact. Ablation-induced dendrite
structural changes correlate with functional deficits; chemosensory
and thermosensory behaviors mediated by the structurally impacted
DEs are disrupted or altered, while behaviors mediated by AWB
remain intact. In contrast, although the structure of channel
neuron DEs and the localization of signaling proteins to them
remains largely unaffected, behaviors mediated by these neurons
are nevertheless impaired (Bacaj et al, 2008). Similar effects
are observed in animals upon loss of pros-1/Prox1, a conserved
homeodomain transcription factor enriched in AMsh glia. PROS-
1 drives expression of many secreted and transmembrane proteins
critical for amphid function. Animals treated post-embryonically
with pros-1 RNAI exhibit defects in the structure of embedded DEs
and their associated behaviors, while channel neuron structures
remain preserved yet associated behaviors are disrupted. pros-1
RNAI causes severe ultrastructural abnormalities in the amphid
channel, which likely underlie the similarity in effects to AMsh
glia ablation (Wallace et al., 2016). Both AMsh glia-ablation and
pros-1 loss illustrate that glia support the structure and function
of distinct interacting dendrites differently and suggest a critical
role for glia secreted and transmembrane proteins in dendrite
support.

2.2 Glia regulate dendrites by controlling
the ionic microenvironment

Glia regulate the local concentration of extracellular ions, or
ionic microenvironment, of both synapses and sites of sensory
input, which impacts neuron development and activity as well
as circuit dynamics (Ray and Singhvi, 2021). Indeed, several
ion channels and transporters function in AMsh glia to regulate
dendrite structure and function in the amphid (Figure 2b). A
recent systematic study revealed that AMsh glial ion channels and
transporters, specifically those regulating K*, CI~, and nucleosides,
affect distinct neurons differently (Wang et al., 2022). Knockout
of acd-1, a proton-gated Na® channel subunit of the DEG/ENaC
family expressed in AMsh glia, exacerbates sensory deficits caused
by mutations in neuronal sensory signaling machinery, indicating
that glial ACD-1 supports neuron activity (Wang et al., 2008;
Wang et al., 2012). The K*/CI~ co-transporter KCC-3/SLC124A4
is required in AMsh glia for the structural elaboration of AFD
microvilli. KCC-3 regulates local CI™ concentration to control
AFD microvilli shape (Singhvi et al., 2016). AFD is the primary
thermosensory neuron in C. elegans and kcc-3 mutants have defects
in thermotaxis, indicating that KCC-3 is critical for AFD function
(Singhvi et al., 2016; Yoshida et al., 2016). The voltage-gated K*
(KCNQ) channel KQT-2 controls the resting membrane potential of
AMsh glia, which regulates AMsh glia Ca®* influx via EGL-19 and
subsequent GABA release. This consequently controls response of
the channel dendrite neuron ASH to the aversive odorant 1-octanol.
Expression of human KCNQ channels in AMsh glia rescues kqt-2
mutation, indicating conservation. Additionally, expressing KCNQ
with mutations from patients with developmental and epileptic
encephalopathy causes glial, neuronal, and behavioral phenotypes
and treatment of these animals with a KCNQ channel opening
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Schematic representation of the Caenorhabditis elegans amphid sense organ. One of the two bilaterally symmetric amphids is shown for simplicity.
Three amphid sensory neurons have embedded wing dendrites (AWA, AWB, and AWC). Eight amphid sensory neurons have channel dendrites, six of
which have a singlet cilium (ASE, ASG, ASH, ASI, ASJ, and ASK) and two have doublet cilia (ADF and ADL). The AFD neuron has an embedded, actin-rich
microvilli dendrite and simple cilium. All dendrite endings except for AFD are directly exposed to the environment by the channel formed by AMso glia
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drug exerts rescuing effects on 1-octanol sensation (Graziano et al.,
2024). These studies demonstrate that glia impact distinct associated
dendrites differently via their control of the ionic microenvironment
and underscore the value of the C. elegans amphid as a
model for investigating conserved dendrite glia interaction
mechanisms.

2.3 Glia form microdomains surrounding
distinct dendrite endings

AMsh glia create unique microdomains surrounding distinct
dendrite endings. The K*/Cl™ co-transporter KCC-3/SLC124A4
localizes specifically to AMsh glia membranes surrounding the
actin-rich microvilli of AFD dendrites (Figure 2b; Singhvi et al.,
2016). Localization to this microdomain is regulated not by
AFD neurons nor their microvilli, but by restriction to this
microdomain by the dendrite cilia of non-AFD dendrites
(Ray et al,, 2024). A microdomain surrounding the channel DEs
is enriched in the secreted protein VAP-1, the transmembrane
proteins DAF-6/PATHD3 and CHE-14/Dispatched, and actin
cortex-associated kinase LIT-1/NLK (Perens and Shaham, 2005;
Oikonomou et al., 2011; Ray et al, 2024). The microdomain
surrounding the embedded wing DE of AWC is defined as enriched
in neither VAP-1 nor KCC-3/SLC124A4. Regulation of AMsh glia
microdomains by the dendrites of other microdomains indicates
that neurons communicate extra-synaptically through a shared
glial cell (Ray et al., 2024). Determining if there are unique protein
repertoires surrounding the embedded wing DEs that regulate their
elaborated structures and whether ion channels and transporters
other than KCC-3/SLC124A4 exhibit microdomain localization are
interesting avenues for future study.

Frontiers in Cell and Developmental Biology

2.4 Glia regulate dendrites via uptake of
extracellular vesicles and fragments

Extracellular vesicles (EVs) are released by diverse cell types,
facilitating cellular sculpting and intercellular communication. EVs
are released from the cilia of many, if not all, C. elegans sensory
neurons (Wang et al., 2024). In the amphid, both channel and
embedded dendrite cilia produce EVs that are subsequently released
into the environment or engulfed by AMsh glia (Figure 2¢; Ohkura
and Biirglin, 2011; Razzauti and Laurent, 2021). These EVs are
marked by tetraspanins homologous to mammalian EV markers,
TSP-6/CD9 and TSP-7/CD63. EV uptake by AMsh glia requires ATP,
indicating an active membrane trafficking process. Interestingly,
mutants lacking proper cilia structures accumulate more AMsh glia-
engulfed EVs than wild type. Inhibition of AMsh glia endocytosis
causes misshapen DE cilia and disruption of channel, but not
embedded, dendrite neuron-associated behaviors. Therefore, glial
uptake of ciliary EVs maintains the structure and function of
associated dendrite cilia (Razzauti and Laurent, 2021).

The actin-rich microvilli of embedded AFD dendrites also shed
fragments taken up by AMsh glia (Figure 2¢; Raiders et al,, 2021;
Razzauti and Laurent, 2021). TSP-6/CD9 and TSP-7/CD63 also label
these fragments (Razzauti and Laurent, 2021), indicating that they may
arise via a process shared with ciliary EVs. Raiders et al. found that
glia engulf fewer fragments from active AFD neurons than silenced
neurons, resulting in longer microvilli and altered thermosensation.
Phosphatidyl serine exposure on the AFD membrane outer leaflet
signals engulfment to AMsh glia, which utilize apoptotic engulfment
proteins including CED-10/Racl (Raiders et al., 2021). Razzuati and
Laurent found that upon AMsh glia ablation, AFD microvilli continue
to shed fragments taken up instead by other surrounding cells and that
blocking AMsh glial endocytosis causes misshapen AFD endings, but
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Summary and schematics of dendrite glia interactions in the healthy C. elegans amphid sense organs (a—d) and upon defects in dendrite structure (e),
stress-induced dauer (f), aging (g), and pathogen exposure (h). Proteins involved in each process in parentheses.
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does not affect thermotaxis behavior. These studies provide conflicting
data on the necessity of glial uptake of microvilli-derived fragments
for thermosensation. In contrast to cilia mutants, mutants defective
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in AFD microvilli structure accumulate fewer AMsh glia-engulfed
neuronal fragments (Razzauti and Laurent, 2021). The sculpting of
amphid DEs by glia, both cilia and microvilli, is reminiscent of
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glial synaptic sculpting in Drosophila and vertebrates (Shaham, 2010;
Wilton et al., 2019; Hilu-Dadia and Kurant, 2020; Singhvi et al., 2024).

2.5 Glial sensation of environmental cues
tunes interacting sensory neuron
responses

AMsh glia directly detect environmental cues. AMsh glia sense
aversive odorants (Duan et al., 2020) and nose touch (Ding et al.,
2015; Fernandez-Abascal et al., 2022) and subsequently tune the
responses of associated sensory neurons (Figure 2d), in addition
to responding to stress (Procko et al, 2011) and pathogens
(Wallace et al., 2021), as discussed later. AMsh glia directly respond
to aversive concentrations of the odorant isoamyl alcohol via SRH-
79, a receptor distinct from that in sensory neurons, leading to
Ca?®" transients. This results in GABA release from AMsh glia,
which inhibits the associated ASH neuron thereby suppressing
aversive-odorant triggered avoidance and promoting olfactory
adaptation (Duan et al, 2020). Similarly, in response to nose
touch, AMsh glia exhibit Ca®" transients that require the CI°
channel CLH-1/CIC-2 (Fernandez-Abascal et al.,, 2022), but not
Na* channels (Ding et al., 2015) or PEZO-1/PIEZO1/2 (Fernandez-
Abascal et al, 2025). Cl- ion efflux from AMsh glia via CLH-
1/CIC-2 in response to nose touch is required for glial GABA-
mediated inhibition and regulation of cyclic AMP in associated
touch-sensitive ASH neurons and subsequent touch desensitization
(Fernandez-Abascal et al, 2022). Both olfactory and tactile
stimuli-evoked Ca2+ transients in AMsh glia require the voltage-
gated calcium channel EGL-19, homologous to the vertebrate al
subunit of L-type voltage-gated calcium channels (Chen et al,
2022). In summary, direct glial sensation of environmental
stimuli regulates associated neuron activity and downstream
responses in the C. elegans amphid, as has been previously
demonstrated for glia and glia-like accessory cells of vertebrate
touch receptors and Drosophila olfactory sensilla (Ackerman et al.,
2022).

3 Dendrite glia interactions upon
dendrite defects, stress, aging, and
pathogen exposure

3.1 Glia surveil and protect defects in
dendrite structure

Glia detect and respond protectively to defects in the structure
of associated dendrites in the amphid. Electron microscopy revealed
that an electron-dense matrix accumulates in and around the AMsh
glia in animals with sensory dendrite cilia mutations, which cause
defects in cilia structure and impaired sensory function (Lewis and
Hodgkin, 1977; Perkins et al., 1986). Indeed, glia acutely accumulate
secreted matrix and alter their transcription when ensheathing
dendrites with cilia defects (Figure 2e; Varandas et al.,, 2025).
The localization of several AMsh glial proteins is also disrupted
in cilia mutants, including the channel microdomain proteins
DAF-6/PATHD3 and LIT-1/NLK (Perens and Shaham, 2005;
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Oikonomou et al., 2011) and the AFD microdomain protein KCC-
3 (Ray et al.,, 2024), indicating additional responses. A previously
uncharacterized 7-transmembrane domain protein found on a
subset of channel dendrite cilia, DGS-1, signals the presence
of intact dendrite cilia to FIG-1, a thrombospondin domain-
containing transmembrane protein found on AMsh glia membranes
surrounding channel DEs (Varandas et al, 2025). Intriguingly,
DGS-1 and FIG-1 closely resemble the distinct peptides formed
by autoproteolysis of the brain-specific angiogenesis inhibitors,
a subfamily of vertebrate adhesion G protein-coupled receptors
(Stephenson etal., 2014; Varandas et al., 2025). The glial responses to
dendrite structure defects protect dendrites, as the pre-existence of
these responses delays acute cilia disruption (Varandas et al., 2025).
Exploring whether glia detect dendrite defects and protect against
their perturbation in additional contexts, such at synapses and upon
neurodegeneration, is a fascinating area for future studies.

3.2 Stress-induced dendrite and glia
remodeling accelerates recovery

The amphid undergoes remodeling of both dendrites and
glia in dauer, a developmentally arrested protective stage entered
in response to stresses including starvation, crowding, and high
temperature (Cassada and Russell, 1975; Golden and Riddle, 1984).
In a subset of dauer animals, the left and right AMsh glia expand
at the nose tip and fuse, allowing cytoplasmic exchange, and
the embedded DEs of AWC expand within the fused AMsh glia
until the left and right overlap (Figure 2f; Albert and Riddle,
1983; Procko et al, 2011). Interestingly, AMsh glia remodeling
is independent of AWC dendrite remodeling, yet AWC dendrite
remodeling requires AMsh glia and their remodeling (Bacaj et al.,
2008; Procko et al, 2011). AMsh glia remodeling requires the
fusogen AFF-1, the transcription factors TTX-1/Otx and ZTF-
16/Tkaros, the receptor tyrosine kinase VER-1/RTK, and the Srz
type 7-transmembrane domain protein REMO-1 (Procko et al,
20115 Procko et al, 2012; Lee et al, 2021). Interestingly, upon
exposure to favorable conditions, amphid remodeling accelerates
dauer recovery (Lee et al, 2021). How amphid remodeling
accelerates dauer recovery and whether similar stress-induced
beneficial remodeling occurs in other settings are interesting future
questions.

3.3 Aging induces both dendrite and glia
decline and protective signaling

Cognition and behavior deteriorate upon aging. Indeed,
amphid-mediated sensory behaviors deteriorate, accompanied by
changes in sensory neurons and glia in aged C. elegans (Figure 2g).
AFD  microvilli
guanylyl cyclases aggregate, accompanied by cryophilic behavior
(Huang et al., 2020). Amphid neuron-mediated behaviors decline,

reduce in abundance and thermosensory

accompanied by cilia alterations and intraflagellar transport slowing
(Cornils et al., 2016; Zhang et al., 2021; Wu et al., 2025). AMsh
glia accumulate vacuole structures marked with late endosome
and lysosomal markers, correlating with decline in embedded
neuron function (Wu et al., 2025).
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Protective dendrite-glia signaling via EVs during aging was
recently discovered in the amphid (Figure 2g). Sensation by both
channel and embedded dendrite neurons declines in aging and,
interestingly, animals with early decline in channel dendrite neuron-
mediated sensation have improved embedded dendrite neuron
function. Aging of neurons with channel dendrites induces the
release of EVs containing the heat shock protein HSP-4/BiP, which
are taken up by surrounding AMsh glia. HSP-4/BiP is part of the
endoplasmic reticulum unfolded protein response and when taken
up by AMsh glia, activates the IRE1-XBP1 transcriptional pathway
increasing the expression of chondroitin synthesis proteins. The
result is protection of both AMsh glia and embedded dendrite
neuron functional decline (Wu et al.,, 2025). Interestingly, exogenous
activation of both the endoplasmic reticulum and cytosolic unfolded
protein responses in another C. elegans glia cell type extends lifespan
(Frakes et al., 2020; Gildea et al., 2022), highlighting the importance
of glial protein quality for healthy aging. Exploring whether dendrite
to glia signaling via EVs is employed upon aging and whether
exogenous activation of the glial unfolded protein response, perhaps
via EVs, elicits protective effects in other settings are exciting
questions for future study.

3.4 Dendrite and glia responses to
pathogen exposure

Sense organs connect the nervous system to the environment
and are therefore sites where neurons and glia are directly
exposed to microbes including pathogens. Upon exposure to the
pathogenic bacteria Pseudomonas aeruginosa, sensory function of
ASE neurons becomes impaired and both embedded and channel
dendrites exhibit beading, bending, and branching suggestive of
neurodegeneration (Figure 2h; Wu et al., 2015). The pathogenic
mold Penicillium brevicompactum and the bacteria Serratia
marcescens induce transcriptional changes including expression
of xenobiotic-metabolizing enzymes in AMsh glia (Figure 2h)
and the intestine. Neuronal cilia are not required for the glial
response to these microbes, indicating that glia directly sense them.
If xenobiotic-metabolizing enzyme expression cannot be induced
in the intestine, the previously tolerable Penicillium brevicompactum
becomes toxic (Wallace et al., 2021). Future studies of how pathogen
responses in neurons, glia, and distal tissues like the intestine are
interrelated and how responses in sense organs impact organism
health are warranted.

4 Concluding remarks

Studies in the C. elegans amphid sense organs reveal that
glia critically support the structure and function of associated
dendrites in the healthy amphid through regulation of the ionic
microenvironment, uptake of extracellular vesicles and fragments,
and activity regulation downstream of direct glial sensation of
environmental stimuli. Glia also elicit beneficial responses upon
defects in dendrite structure, stress, aging, and perhaps exposure to
pathogens. An emerging theme is how a single glial cell, the AMsh
glia, impacts distinct interacting dendrites differently. The formation
of glial microdomains surrounding distinct dendrites as well as the
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unique protein repertoires of interacting dendrites likely contribute
to glia’s different effects on these dendrites. AMsh glia also facilitate
communication between neurons that do not connect via synapses,
both by the control of microdomain composition and by signaling
downstream of EV uptake upon aging. The mechanisms described
here all occur between a single glial cell, the AMsh, and its twelve
associated dendrites. Therefore, an interesting future question is
whether the other amphid glial cell, AMso, also impacts associated
dendrites. While the conservation of several mechanisms have
been described, exploring whether similar dendrite glia interaction
mechanisms occur at synapses, which have structural and molecular
similarities to sense organs (Shaham, 2010), or in additional
organisms present exciting areas for future study.
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