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The intricate interactions between bone and muscle are central to
musculoskeletal health. It was historically assumed that bone and muscle
interact through mechanical coupling, that is, skeletal muscles attach to bone
and facilitate movement of the bone via muscular contraction. However, recent
studies have recognized bone and muscle as endocrine organs, capable of
producing and releasing osteokines and extracellular vesicles (EVs) that influence
each other’s functions, thereby introducing a novel concept known as “bone-
muscle crosstalk”. The influence of muscle on bone has been extensively
studied, little has reported regarding the muscle regulation by bone. Emerging
studies indicate that the transmission of signaling molecules from bone to
muscle is partially mediated by hemichannels and gap junctions formed
by connexin 43 (Cx43) in osteoblasts and osteocytes. This review aims to
summarize the latest findings on bone-muscle crosstalk, with a particular
emphasis on the roles of osteokines and EVs derived from bone. Furthermore,
it highlights the channel functions of Cx43 in the release of secretory factors
through this crosstalk mechanism. The continued research into bone—muscle
crosstalk is expected to identify new therapeutic targets for the twin diseases of
osteoporosis and sarcopenia.
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1 Introduction

In the musculoskeletal system, bone and muscle are closely correlated across the life
cycle. They share the common mesodermal precursors during embryogenesis. In case
of exercise and disuse, changes in bone and muscle mass are also tightly linked. With
aging, there is a simultaneous decline in both bone and muscle mass. Traditionally,
this relationship has been understood primarily in terms of mechanical coupling, where
bone serve as a scaffold for muscle attachment, and muscle applies load to bone
(Zhao et al.,, 2024). The physical linkage is undoubtedly necessary to support locomotion
and the shape/forms of animals. However, the synergy between bone and muscle goes
beyond mechanical, as evidenced by the discovery of the endocrine functions of these
two tissues (Lee et al, 2007; Kurek et al, 1997; Karsenty and Olson, 2016). Both
bone and muscle can produce soluble factors that exert either positive or negative
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effects on each other (Welc et al., 2025). This intricate reciprocity is
central to maintain musculoskeletal health.

Bone is a highly vascularized organ, with osteocytes residing
in lacunae that are in close proximity to blood vessels via
lacunocanalicular networks. The release of osteokines into the
bloodstream appears to be the most prominent mechanism of
communication between bone and muscle (Lara-Castillo and
Johnson, 2020). Likewise, several myokines produced by muscle
also are known to circulate (Zhao et al., 2024). Recent research
has identified extracellular vesicles (EVs), which are shed cellular
components, as an additional mechanism facilitating crosstalk
between bone and muscle (Ma et al,, 2023). EVs are lipid bilayer-
bound particles that encapsulate various biomolecules, including
mRNAs, miRNAs, and proteins, reflecting the cellular state.
These shed EVs can exert local effects in an autocrine manner
or be transported into circulation to influence distant organs
(He C. etal., 2020). Furthermore, due to their anatomical proximity,
another potential mechanism of bone-muscle communication
involves the diffusion of molecules across the periosteum. An
early study by Lai et al. (2014) demonstrated that the semi-
permeable periosteum permits the diffusion of molecules smaller
than 40 kDa. This suggests that small osteokines can easily reach
the adjacent muscle by passive diffusion, and those molecules with
greater than 40 kDa are likely to be delivered via the circulation or
as EVs cargo.

The adult skeleton predominantly consists of three cell types:
osteoblasts, osteoclasts, and osteocytes. Osteocytes, which account
for over 90% of the total bone cell population, establish an
extensive lacunar-canalicular network facilitating intercellular
communication among these cell types (He et al, 2025). One
mechanism of cell-cell communication is mediated via gap
junctions, which are membrane-spanning channels formed by
the docking of two hemichannels (Zhao et al., 2022). In addition
to direct intercellular communication through gap junctions,
hemichannels facilitate interactions between osteocytes and the
pericellular environment. Both types of connexin-based channels
exhibit selective permeability, allowing the diffusion of molecules
smaller than 1.2 kDa (Zhang et al, 2025). Connexin43 (Cx43) is
the most prevalently expressed connexin subtype in osteoblasts
and osteocytes. Previous research has demonstrated that Cx43
in bone plays a crucial role in skeletal muscle development, as
evidenced by the impaired formation of skeletal muscle in mice
lacking Cx43 in osteoblasts/osteocytes (Shen et al., 2015). Our group
has recently elucidated the distinct functions of Cx43 hemichannels
and gap junctions in osteocytes, which regulate skeletal muscle
function (Li et al., 2021; Li et al., 2022). These findings underscore
the potential roles of Cx43 in mediating signal transmission from
bone to muscle.

Osteoporosis and sarcopenia are major clinical concerns in the
aging population, and these two conditions often occur concurrently
in many patients. However, the current therapeutic approach for
the twin disease mostly targets the one rather than both tissues
simultaneously (Kirk et al., 2020a). A treatment paradigm shift may
be underway with increasing recognition of the close ties between
bone and muscle. Herein, we summarize the latest progress of the
role of bone-derived factors and Cx43 in bone-muscle crosstalk.
Such knowledge is crucial for the discovery of potential therapeutic
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targets that may lead to more integrated treatment strategies for the
musculoskeletal disorders.

2 Bone as an endocrine organ

In addition to provide structural support for the internal
organs, bone serves as a substantial reservoir for osteogenic
growth factors, such as insulin-like growth factors (IGFy),
bone morphogenetic proteins (BMPs) and transforming growth
factor B (TGFp), etc (He et al, 2025). These factors play a
critical role in the continuous bone remodeling through bone
formation by osteoblasts and bone resorption by osteoclasts.
Osteocytes, which are embedded within the bone matrix, are also
considered indispensable orchestrators of osteoblast and osteoclast
functions (Zhang et al., 2025). Recent evidence from multiple
research groups supports the notion that bone functions as an
endocrine organ. This is primarily due to its highly vascularized
nature and its ability to secrete osteokines into the bloodstream,
which can influence the function of distant tissues, including
muscle.

Of the major cell types in skeleton, osteoblasts constitute
only 5% of total bone cells compared to 1% of osteoclasts, and
the remaining more than 90% are osteocytes (Zhang and Chen,
2024). Osteocytes, residing within lacunae, extend their dendritic
processes to form a lacunocanalicular system that connects with
the vasculature in the bone matrix. Considering the substantial
mass of osteocytes and their dendritic processes within the skeleton,
these cells likely serve as the primary source of circulating factors
derived from bone. Various imaging techniques have demonstrated
the connectivity between dendritic processes, adjacent osteocytes,
and the vasculature. A study conducted by Beno and colleagues
(Beno et al., 2006) revealed that the injection of small dyes or
molecules, up to 70kDa in size, into the tail vein of a mouse
traverses the lacunocanalicular network within a few minutes.
This observation suggests that canalicular fluid permeates into
the circulation, allowing osteocyte-secreted factors to potentially
influence distant target tissues. To the best of our knowledge, the
initial evidence supporting the role of the osteocyte as an endocrine
cell was the discovery that fibroblast growth factor 23 (FGF23),
which is highly expressed in osteocytes, regulates phosphorus
homeostasis in the kidneys (Feng et al., 2006). The list of bone-
derived factors continues to expand, with significant examples
including osteocalcin, prostaglandin E2 (PGE,), insulin-like growth
factor 1 (IGF1), receptor activator of nuclear factor kappa [
ligand (RANKL), osteoprotegerin (OPG), Wnt proteins, Dickkopf-
1 (DKK1), sclerostin, fibroblast growth factor 23 (FGF23), and
transforming growth factor p (TGF), as elaborated below (Table 1).

3 Bone-muscle crosstalk and
involvement of bone factors

The intricate relationship between bone and muscle is
established during fetal development, as both tissues originate from
common progenitor cells and undergo organogenesis regulated
by a complex gene network (Dong et al., 2024). Historically, the
emphasis on the mechanical coupling between these two tissues
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TABLE 1 Summary of osteokines that regulate muscle physiology.

10.3389/fcell.2025.1715009

Osteokines Regulatory factors Source Effects on muscle (ref.)”
Osteocalcin Vitamin K, exercise-induced IL-6 OB Promote nutrients uptake and catabolism in muscle during exercise (Mera et al., 2016a)

Maintain muscle mass and function in aged mice via protein synthesis pathway (Mera et al., 2016b)
Accelerate C2C12 cell proliferation (PI3K/Akt and P38 pathway) and myogenic differentiation
(GPRC6A-ERK1/2 pathway) (Liu et al., 2017)

IGF1 Vitamin D, protein and calcium OB/OCY Enhance muscle cell proliferation and differentiation (Schiaffino and Mammucari, 2011)
Activation of IGF1/Akt pathway leading to muscle hypertrophy (Blaauw et al., 2009)

PGE, COX, PGES OB/OCY PGE, mimics the effects of primary osteocyte or MLO-Y4 cells on proliferation (Mo et al., 2015)
and differentiation (Mo et al., 2012) of skeletal muscle myoblasts

RANkL/OPG Exercise-induced IL-6 OC/OCY | Fast-twitch muscle atrophy due to OPG deficiency and high RANKL levels (Hamoudi et al., 2020)

RANKL inhibition improves muscle strength in postmenopausal women and Pparb™'~ mice model
(Bonnet et al., 2023)

FGF23 DMP1, Phex and MEPE OB/OCY Induce cardiac hypertrophy but did not alter skeletal muscle function (Faul et al., 2011; Avin et al.,
2018)

TGEFp Tumor-induced osteolysis OB Reduce muscle force production under pathological conditions (Waning et al., 2015)

‘Wnt3a Fluid flow shear stress OCY Promote C2C12 cell differentiation (Huang et al., 2017)

Sclerostin PTH OCY Sclerostin ablation increase lean body mass in aged animals (Kim et al., 2017)
Unknown Fluid flow shear stress OoCY Increase muscle size and contractile force with age in Mbtps1 cKO mouse model (Gorski et al., 2016)

Murine osteocytic cell line (Ocy454) secretome inhibits C2C12 cell differentiation (Wood et al.,
2017)

VEGF Hypoxia BMSC Improve muscle regeneration in pathological conditions (Zhou et al., 2015)

may have stemmed from embryological studies. In the developing
embryo, muscle forces significantly influence skeletal growth and
bone morphology, while skeletal adaptations in early postnatal life
are primarily driven by changes in mechanical stimuli (Deng et al.,
2024). However, a more comprehensive understanding of bone-
muscle interaction beyond mechanical coupling to include a wide
array of signaling factors exchanged between the two tissues. Also,
the consequences of bone-to-muscle signaling mainly include
alterations in skeletal muscle mass and muscle function (Figure 1).

3.1 Role of bone-derived osteokines

3.1.1 Osteocalcin

Osteocalcin, also referred to as carboxyglutamic acid or
BGLAP, is a protein secreted by mature osteoblasts and osteocytes.
Osteocalcin undergoes post-translational modification at three
specific glutamate residues (in positions 17, 21, and 24), by y-
glutamyl carboxylase with vitamin K as a cofactor (Kirk et al.,
2025). Due to the high affinity of osteocalcin for hydroxyapatite
crystals following its y-carboxylation, most secreted osteocalcin is
deposited in the mineralized bone matrix (Battafarano et al., 2020).
It can be released into the circulation through decarboxylation
at low pH levels. Osteocalcin has been shown to affect distant
adipocytes and pancreatic P-cells by binding to the Gprcé6a
receptor. Beyond its role in the regulation of energy metabolism
(Lee etal., 2007), glucose metabolism (Kanazawa, 2015), and ectopic
calcification (Bonewald, 2019) in rodent models, osteocalcin also
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affects muscle physiology. The study by Karsenty and colleagues
demonstrated a significant reduction in muscle mass in Gprcéa™/~
mice. Conversely, Esp’~ mice, which lack a phosphatase that
inhibits osteocalcin function, exhibit increased muscle mass.
Furthermore, osteocalcin supplementation enhances exercise
capacity in young mice and mitigates age-related declines in
muscle strength. Aerobic exercise increases circulating osteocalcin
levels and osteocalcin signaling in muscle tissue, leading to the
secretion of the myokine IL-6 (Mera et al.,, 2016a). The mechanism
by which exercise affect osteocalcin and interleukin-6 (IL-6)
involves the exercise-induced release of the myokine IL-6, which
acts on osteoblasts. This interaction results in increased secretion
of receptor activator of nuclear factor kappa-B ligand (RANkL)
by osteoclasts, facilitating the remodeling of the bone matrix.
Consequently, osteocalcin is liberated from the bone matrix into the
circulation, where it reaches muscle tissue and binds to its receptor,
Gprc6a, thereby modulating muscle function (Chowdhury et al.,
2020). These findings provide robust evidence supporting the
beneficial role of osteocalcin in the regulation of muscle mass and
function.

3.1.2 Prostaglandin E2 (PGE,)

Prostaglandin E2 (PGE,) is an eicosanoid compound derived
from arachidonic acid that can be generated by a reaction catalyzed
via cyclooxygenase (COX) and terminal PGE, synthases (PGES)
(Cheng et al., 2021). This soluble factor can be released by bone
cells and participates in the regulation of various physiological
responses, including inflammation, tissue repair, and regeneration.
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FIGURE 1
Schematic overview of bone-derived factors (osteokines and EVs) involved in bone-to-muscle communication (by figdraw.com). Primary factors
released from bone that affect muscle including: osteocalcin, TGFp (Transforming growth factorf), PGE, (Prostaglandin E2), RANkL (Receptor Activator
of Nuclear Factor Kappa f Ligand), OPG (osteoprotegerin), Wnt3a, sclerostin. Emerging evidence also supports the potential role of bone-derived EVs
in signal transmission from bone to muscle. As the key gateway to the passasge of signaling molecules, Cx43-formed GJ and HC in osteocytes can
regulate bone-muscle crosstalk through the release of small molecules such as PGE,. GPRC6a, G protein-coupled receptor; EP4, E-type prostanoid
receptor4; LRP5/6, lipoprotein receptor-related protein 5/6; Cx43, connexin43; GJ, gap junction; HC, hemichannel.

A recent study by Palla etal. demonstrated the beneficial roles
of PGE, signaling in the rejuvenation of aged muscle mass and
strength (Palla et al., 2021). The study found that elevated levels
of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme
responsible for the degradation of PGE,, in aged muscle contribute
to muscle atrophy and decreased muscle strength. Moreover, the
physiological restoration of PGE, levels through the inhibition of
15-PGDH was shown to enhance mitochondrial function, thereby
increasing muscle mass and function. Notably, a comparison with
muscle cells revealed that osteocytes produce PGE, at levels 100 to
1000 times higher (Welc et al., 2025). This substantial production
of PGE, by osteocytes plays a crucial role in supporting muscle
regeneration and the repair of injured muscle tissue (Ho et al., 2017).
Moreover, multiple investigations conducted by Brottos research
group have demonstrated that PGE, serves as a potent stimulator of
myogenesis and enhances primary muscle function in ex vivo studies
(Mo et al., 2015; Mo et al., 2012). An earlier in vivo investigation by
Wang et al. (Wang et al., 2005) revealed that PGE,, released from
mechanically stimulated osteocytes, was detectable in the circulatory
system. These findings suggest that bone, particularly osteocytes,
can modulate muscle function through the secretion of PGE,.
Nonetheless, the mechanism by which PGE, produced by osteocytes
reaches muscle cells remains unclear, given its short half-life in
circulation.

Frontiers in Cell and Developmental Biology

3.1.3 Insulin-like growth factor 1 (IGF1)

Insulin-like Growth Factor 1 (IGF-1) is recognized as a crucial
anabolic factor in both embryonic and postnatal skeletal muscle
development. IGF-1, produced by osteoblasts, may be either secreted
freely or deposited into the bone matrix, from which it is released
through osteoclast-mediated bone resorption (Wildemann et al.,
2007). Osteocyte-derived IGF-1 signaling serves as a critical
component of mechanotransduction in bone. The upregulation
of IGF-1 expression in osteocytes represents one of the earliest
responses of bone to mechanical loading. In addition, nutritional
factors including vitamin D, protein and calcium can also upregulate
IGF-1 to synergistically regulate the muscle anabolism (Kirk et al.,
2020b). As a key regulator of muscle mass during development,
IGF-1 has been demonstrated to enhance both the proliferation
and differentiation of myogenic cells (Schiaffino and Mammucari,
2011). In adult skeletal muscle, the activation of Akt, a downstream
effector of IGF-1 signaling, induces a significant hypertrophic
response, characterized by an increase in absolute force without
alterations in specific force (Blaauw et al., 2009; Regan et al.,
2017). Similarly, Bone Morphogenetic Protein 2 (BMP2) signaling
has been shown to sustain and promote adult muscle mass.
Notably, BMP2-induced muscle hypertrophy is largely reflected by
an increase in absolute muscle force, with specific muscle force
remaining unchanged or slightly reduced compared to control mice

04 frontiersin.org


https://doi.org/10.3389/fcell.2025.1715009
http://figdraw.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Li et al.

(Winbanks et al., 2013; Sartori et al., 2014). However, the role of IGF-
1 in bone-muscle communication warrants further investigation.

3.1.4 Receptor activator of nuclear factor kappa 3
ligand (RANkL)

Osteocytes are the primary source of RANL, an osteokine that
plays a crucial role in osteoclast activity and formation. The deletion
of RANKL results in significant bone loss, including tooth loss and
the absence of osteoclasts in mice (Kong et al., 1999). The receptor
for RANkL, known as RANk, is expressed in both osteoclasts
and fully differentiated myotubes. The interaction between RANkL
and RANk induces osteoclast activation and osteoclastogenesis
via NF-kB signaling. Activation of RANk can inhibit myogenic
differentiation and activate the ubiquitin—proteasome system,
ultimately leading to muscle atrophy (Kirk et al., 2025; Langen et al.,
2001). Osteoprotegerin (OPG), a decoy receptor for RANKL,
exerts an inhibitory effect on osteoclast differentiation. A study
on glucocorticoid-induced osteoporotic rats showed that treadmill
training significantly decreased RANKL expression and increased
OPG levels, suggesting that the RANk/RANkL/OPG signaling is
modulated by exercise (Pichler et al., 2013). In addition, elevated
circulating IL-6 levels during exercise can also signal to osteoblasts
to produce RANkL. Recent evidence suggests a role for RANkL
in bone-muscle crosstalk. The OPG knockout mouse exhibits
reduced bone mass and fast-twitch muscle atrophy due to elevated
RANKL levels (Hamoudi et al., 2020). Furthermore, improvements
in bone biomechanical properties and fast-twitch muscle mass
have been observed with the administration of an anti-RANkL
antibody. In 2024, Gostage and colleagues (Gostage et al., 2024)
demonstrated that the ablation of RANkL (RANkL™") or OPG
(Opg™") in mice resulted in deleterious effects on both bone and
muscle. Conversely, beneficial effects were observed when these
mice were treated with anti-RANkL or OPG-Fc. Clinical data
further suggest that a three-year treatment regimen with the anti-
RANKL antibody denosumab can enhance lean muscle mass and
strength in women (Bonnet et al., 2023). Notably, the effects of anti-
RANKL therapy appear to be specifically targeted towards fast-twitch
skeletal muscle. Consequently, the RANk-RAN«kL-OPG pathway is
regarded as a therapeutic target for osteoporosis and sarcopenia.

3.1.5 Regulators of Wnt/p-catenin pathway

The Wnt/f-catenin signaling pathway plays an essential role in
regulating the differentiation of bone marrow mesenchymal stem
cells into osteoblasts during embryonic development, maintaining
bone homeostasis during postnatal growth, and facilitating bone
accrual in response to mechanical loading (Huang et al., 2017).
Various components of this pathway serve as key regulators,
enabling osteocytes to transmit mechanical loading signals to cells
on the bone surface. Mechanical loading can activate the Wnt/f-
catenin pathway through its interaction with the prostaglandin
pathway, resulting in an increase in positive regulators of bone
formation, such as Wnt proteins, and a decrease in negative
regulators, including Dkk-1 and sclerostin (Kitase et al., 2010).
Although these factors primarily originate from bone and exert
local effects, such as Wnt 3a and sclerostin, are also detectable
in serum, suggesting their potential role in bone-muscle crosstalk
regulation. Wnt 3a is secreted by osteocytes, and its expression level
is significantly elevated in MLO-Y4 cells subjected to fluid flow shear
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stress (Huang et al., 2017). Research conducted by Brotto’s group has
demonstrated that osteocyte-derived Wnt3a promotes the myogenic
differentiation of C2C12 mouse myoblasts and human muscle cells
by upregulating myogenin and MyoD. Conversely, sclerostin acts as
an inhibitor of Wnt 3a, thereby hindering myoblast differentiation
(Huang et al, 2017; Jdhn et al, 2012). Despite the current
understanding of the roles of Wnt proteins and sclerostin in bone-
muscle crosstalk, in vivo evidence remains insufficient. In addition
to the skeleton, sclerostin is also found in serum and its circulating
levels associated with whole-body metabolism, are affected by sex
hormones, and respond to intermittent parathyroid hormone (PTH)
(Chen et al., 2022). Notably, a study utilizing a breast cancer mouse
model demonstrated that the administration of an anti-sclerostin
antibody effectively prevented bone destruction and enhanced
skeletal muscle function, in contrast to the outcomes observed in
vehicle-treated mice (Hesse et al., 2019). It has been established
that Dkk-1 in bone is predominantly secreted by osteoblasts rather
than osteocytes (Ke et al., 2012). Mice deficient in Dkk-1 exhibit
high bone mass despite elevated levels of circulating sclerostin.
However, the potential impact of Dkk-1 on muscle remains unclear.
These findings prompt several unresolved questions, such as the
mechanism by which osteocyte-derived Wnt3a affects muscle
function—whether through an endocrine pathway, via extracellular
vesicles, or through an alternative mechanism.

3.1.6 Fibroblast growth factor 23(FGF23)

Contrary to the hypertrophic response induced by bone-derived
factors, certain osteokines have been demonstrated to adversely
affect muscle mass and function. Since its identification in 2000,
fibroblast growth factor 23 (FGF23) has been recognized as an
osteocyte-produced hormone that plays a crucial role in renal
phosphate handling and the synthesis of 1,25-dihydroxyvitamin
D (1,25D), the most biologically active form of vitamin D
(Shimada et al, 2004; Riminucci et al, 2003). The secretion
of FGF23 is co-regulated by other osteocyte-derived factors,
including dentin matrix protein 1 (Dmpl), phosphate-regulating
neutral endopeptidase X-linked (Phex), and matrix extracellular
phosphoglycoprotein (MEPE) (Delgado-Calle and Bellido, 2022).
In the absence of Phex or Dmpl, an increase in systemic FGF23
levels in osteocytes results in enhanced phosphate excretion by the
kidneys, leading to conditions such as rickets and osteomalacia.
Recent studies suggest that FGF23 plays a critical role in regulating
phosphate homeostasis in response to exercise, with osteocyte
responsiveness to the exercise-induced myokine -aminoisobutyric
acid (BAIBA) influencing this process during aging, as reviewed by
Welc and colleagues (Welc et al., 2025).

The activation of canonical FGF23 signaling necessitates
interaction with the essential co-receptor a-klotho, whereas
non-canonical FGF23 signaling operates independently of a-
klotho (Kirk et al, 2025). Both FGF23 and a-klotho have
been demonstrated to inhibit the myogenic differentiation of
cultured human skeletal muscle cells by downregulating IGF1
signaling. Furthermore, FGF23 induces premature senescence in
mesenchymal stem cells (MSCs) derived from human skeletal
muscle via the p53-p21 pathway, independently of a-klotho,
without impacting satellite cell function (Sato et al, 2016).
In a rickets/osteomalacia model, administration of an FGF23
neutralizing antibody in mice resulted in elevated serum phosphate
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levels and enhanced muscle function (Regan et al., 2017; Waning and
Guise, 2014). Additionally, skeletal muscle function was impaired in
Dmp]1-deficient mice, although cardiac force production remained
unaffected (Wacker et al, 2016). These findings suggest that
osteocyte-derived FGF23 may serve as a potential mediator in bone-
to-muscle communication, warranting further investigation into its
precise role.

3.1.7 Transforming growth factorp (TGF)

Transforming Growth Factor Beta (TGFP) is produced by a
variety of tissues throughout the body, with the skeletal system
serving as the predominant source. This cytokine is primarily
synthesized by bone-forming osteoblasts and is stored in the
mineralized matrix in a latent form. The activation and release of
TGFP occur in response to low pH conditions during osteoclast-
mediated bone resorption or mechanical stretching (Wang et al.,
2022). Beyond its interactions with osteoclasts and osteoblasts,
TGFp also plays a critical role in remodeling the osteocyte
lacunocanalicular network. The deletion of TGFp in osteocytes has
been associated with increased bone fragility (Schurman et al.,
2021). A study by Waning and colleagues (Waning et al., 2015) has
demonstrated that TGFp is integral to bone-muscle communication.
Specifically, bone degradation resulting from cancer metastasis leads
to elevated TGF release from the bone matrix, which subsequently
contributes to muscle weakness by impairing calcium-induced
muscle force production. Interventions utilizing the bone-targeting
bisphosphonate zoledronic acid or the TGFp receptor I kinase
inhibitor SD-208, aimed at inhibiting TGFp signaling, have shown
promise in ameliorating skeletal muscle wasting and weakness.
These findings underscore the detrimental effects of osteoclast-
mediated TGFp release on skeletal muscle health.

3.1.8 Vascular endothelial growth factor (VEGF)

Vascular endothelial growth factor (VEGF), produced by bone,
is an endothelial cell survival factor that coordinates the processes
of angiogenesis and osteogenesis. It plays a central role in bone
homeostasis, repair, and the pathobiological processes affecting
these functions (Chen et al., 2023). Bone marrow mesenchymal
stem cells (BMSCs) function as progenitor cells within the bone
marrow niche and have the capacity to differentiate into various
cell types, including osteoblasts and myoblasts (Han et al., 2025;
Zhu et al, 2021). The unique ability of BMSCs to modulate the
immune system and facilitate tissue repair distinguishes them from
other stem cell types, indicating that BMSCs may be ideal candidates
for use in tissue engineering and regenerative medicine. Notably,
BMSCs derived from patients with amyotrophic lateral sclerosis
(ALS) exhibit reduced stem cell capacity and produce fewer trophic
factors, with these deficiencies correlating with disease progression
(Zhou et al,, 2015). Research has demonstrated that the paracrine
release of vascular endothelial growth factor (VEGF) by BMSCs in
the bone marrow enhances muscle regeneration (Sassoli etal., 2012).
These findings suggest a potential role for BMSC-derived VEGF
in bone-muscle crosstalk. However, the molecular mechanisms
underlying this potential interaction between muscle and bone
remain largely unexplored.
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3.2 Role of bone-derived extracellular
vesicles

In addition to the conventional factors previously discussed,
extracellular vesicles (EVs) are increasingly recognized as novel
contributors to bone-muscle crosstalk (Figure 1). EVs, a class
of membrane-bound particles released by nearly all cell types,
convey information in the form of proteins, mRNAs, and miRNAs
(Kirk et al, 2025; Van Niel et al., 2018). These vesicles can
be categorized based on their size, synthesis, and secretion
mechanisms. Currently, the most extensively characterized
EVs are exosomes (20-140 nm) and microvesicles (100 nm-
1um) (Huang et al, 2022). EVs, along with their molecular
cargo, traverse the circulatory system and interact with distant
target cells, influencing their differentiation and/or function.
The interactions between EVs and their target cells primarily
occur through mechanisms such as endocytosis, receptor-
ligand binding, fusion with the plasma membrane, and antigen
presentation (Kirk et al, 2025). In the context of bone-muscle
crosstalk, EVs may play a role by facilitating the exchange of
myokines, osteokines, and organelles (Ma et al., 2023; Murray and
Krasnodembskaya, 2019).

At present, specific cell surface markers for the identification or
enrichment of extracellular vesicles (EVs) derived from bone cells,
such as osteoblasts, osteoclasts, and osteocytes, remain unidentified.
While E11/gp38 and Phex have been proposed as potential markers
for osteocyte-derived EVs, they lack specificity. The use of DMP1
and sclerostin as surface markers for osteocyte-derived EVs is
contentious, despite their expression in early-stage and mature
osteocytes, respectively. Alkaline phosphatase (ALP) may serve as
an identifier for osteoblast-derived EVs, whereas potential surface
markers for osteoclast-derived EVs include DC-STAMP, OSCAR,
and the calcitonin receptor. Further research is necessary to
delineate the markers that can effectively distinguish subpopulations
of circulating EV's originating from various bone cell types (Qin and
Dallas, 2019).

Previous research has identified a subset of differentially
expressed extracellular vesicle microRNAs (EV-miRNAs) between
young and aging BMSCs. Among these, muscle-targeting
miRNAs such as miR-24, miR-328-3p, miR-365, and miR-374
are downregulated, whereas miR-15b, miR-17, miR-20a, miR-186,
miR-221, miR-31a-5p, and miR-99b are upregulated (He C. et al,,
2020). Sun et al. (2008) demonstrated that the absence of miR-
24 inhibits myogenic differentiation in C2C12 cells, while its
ectopic expression counteracts the anti-myogenic effects induced
by TGFP1. Additionally, the pro-osteogenic miRNAs miR-365 and
miR-374 have been reported to promote cardiomyocyte hypertrophy
by inhibiting autophagy through the Skp-2-mTOR (Wu et al,
2017) and VEGF (Lee et al,, 2017) pathways, respectively. A study
involving 93 elderly patients clinically diagnosed with sarcopenia
found that the circulating levels of miR-328 were significantly
lower in individuals with sarcopenia compared to those without
the condition (He N. et al., 2020), potentially due to miR-328's
activation of the Wnt/B-catenin pathway via targeting axin-1
(Liu D. et al,, 2018). Moreover, miR-328 is highly expressed in
apoptotic bodies derived from BMSCs, which exhibit impaired
osteogenic differentiation and self-renewal in an apoptotic-deficient
mouse model (MRL/lpr—CaspEF/’) (LiuD. et al, 2018). These
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findings suggest that miR-328 may play a role in mediating
bone-muscle crosstalk during aging.

The overexpression of miR-15b has been documented to inhibit
myoblast differentiation via SET-domain containing 3 (SETD3),
a methyltransferase implicated in the regulation of myogenesis
(Zhao et al., 2019). Research has indicated that members of
the miR-17-92 cluster, specifically miR-17 and miR-20a, can
enhance the proliferation of C2C12 myoblasts while concurrently
inhibiting myogenic differentiation (Qiu et al., 2016). Additionally,
the knockdown of miR-17 has been shown to positively affect the
microstructure of trabecular bone (Fang et al., 2016). However,
it remains unclear whether miR-17 and miR-20a function as
a cluster encapsulated within extracellular vesicles (EVs) to
impact the phenotypes of bone and muscle during aging. As a
negative regulator of bone formation, the ectopic overexpression
of miR-221 has been demonstrated to impede myotube formation
(Gan et al, 2020; LiuB. et al., 2018). In vitro studies have
revealed that miR-186 exerts an inhibitory effect on myogenin-
dependent differentiation (Antoniou et al., 2014). miR-31a-5p is
upregulated in extracellular vesicles derived from aged bone marrow
stromal cells (BMSCs), promoting osteoclastogenesis, adipogenesis,
and bone resorption (Xu et al, 2018). Additionally, the age-
related increase in miR-31a-5p inhibits the dystrophin response
to mechanical loading, thereby heightening muscle susceptibility
to disuse-induced injury (Hughes et al., 2018). In primary human
myotubes, the overexpression of miR-99b results in decreased
protein synthesis by inhibiting the regulatory-associated protein
of mTOR (RPTOR) (Zacharewicz et al, 2020). As for bone,
Franceschetti et al. (Franceschetti et al.,, 2014) demonstrated that
the inhibition of miR-99b reduces both the size and number of
osteoclasts during osteoclastogenesis. These findings suggest that
miR-99b may serve as a novel therapeutic target for addressing
osteo-sarcopenia in the elderly.

4 The channel functions of Cx43 in
bone-muscle communication

Connexins (Cx) are expressed in bone and skeletal muscle,
with Cx43 being the most prevalent connexin in these tissues
(Deng et al,, 2022). Structurally, Cx43 consists of four transmembrane
domains, two extracellular loops, one intracellular loop, and cytosolic
amino-terminal and carboxy-terminal regions (Plotkin et al., 2017).
Connexons are formed through the oligomerization of six connexin
proteins. These structures, also known as hemichannels, facilitate
communication between bone cells and the extracellular environment.
When two hemichannels from adjacent cells dock together, they
form gap junction channels that enable intercellular communication.
These connexin-based channels are selectively permeable to molecules
smaller than 1.2 kDa due to their relatively low substrate selectivity.
Substantial evidence highlights the critical roles of Cx43 in the
development and maintenance of bone and skeletal muscle.

Since the proposal in 2006 that bone functions as an endocrine
organ, there has been a growing interest in elucidating the crosstalk
between bone and muscle. In this context, a seminal study by
Shen etal. (Shen et al, 2015) was the first to employ in vivo
experiments to elucidate the pivotal role of connexin 43 (Cx43)
in modulating bone-muscle communication. Mice with a targeted
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deletion of Cx43, achieved through the expression of Cre recombinase
in osteoblast progenitors (Col al-Cre; Cx43 ﬂ), exhibited impaired
muscle development, characterized by a significant reduction in
both muscle mass and grip strength. This reduction in muscle mass
contributes to alower overall body weight,a phenomenon not observed
in Cx43-deficient mice with deletions in mature osteoblasts/osteocytes
or in osteocytes alone (Plotkin et al., 2008; Bivi et al., 2012). Notably,
the administration of the bone-derived factor undercarboxylated
osteocalcin (glu-OC) partially ameliorates the compromised muscle
function. The observed phenotypes in mice suggest that Cx43
expression in osteoblast precursors is crucial for optimal skeletal
muscle development and underscores the significant role of osteocalcin
in bone-muscle communication. Similar to connexins, pannexins in
bone cells also form hemichannels within the cell membrane; however,
there is currently no evidence supporting their ability to form gap
junction channels that connect adjacent cells (Plotkin et al., 2017;
Luo et al.,, 2024). Pannexinl (Panx1) is the predominant pannexin
subtype expressed across all bone cells, and female mice with osteocytic
Panx1 deletion (PanxlAot) exhibit increased muscle mass without
alterations in muscle strength (Aguilar-Perez et al., 2019). However,
the roles of pannexin channels in bone-muscle crosstalk remain
insufficiently explored.

The knockout of Cx43 in osteoblasts and osteocytes results in
impaired muscle development; however, Cx43 deficiency concurrently
disrupts the function of both gap junctions and hemichannels.
Consequently, it remains unclear which of these channel types is
responsible for the observed muscle phenotypes. To address this, our
research group has previously developed two transgenic mouse models
toinvestigate the distinct roles of Cx43 hemichannels and gap junctions
specifically in osteocytes. Utilizing a 10 kb-DMP1 promoter, the
transgenic mice, R76W and A130-136, overexpress dominant-negative
Cx43 mutants in osteocytes (Xu et al,, 2015). In the R76W point
mutant model, where the amino acid arginine-76 (R) is substituted
with tyrosine (W), Cx43 is able to form functional hemichannels but
not gap junctions. Conversely, in the A130-136 mutant, characterized
by the deletion of amino acids at positions 130-136, Cx43 is unable
to form either hemichannels or gap junctions. The fast-twitch muscle
phenotypes observed in A130-136 mice are analogous to those in
osteoblast/osteocyte-specific Cx43 conditional knockout (cKO) mice
driven by the 2.3-kb Collal promoter (Shen et al., 2015), indicating
that Cx43 deficiency in osteocytes impairs hemichannel function,
thereby affecting muscle development. In contrast, the obstruction
of Cx43 gap junctions results in diminished muscle contractile force
and myogenesis. Relative to wild-type (WT) mice, these two transgenic
mouse models exhibited reduced levels of prostaglandin E2 (PGE,)
in both the circulatory system and primary osteocyte-conditioned
media (Li et al,, 2021). As previously discussed, PGE, released by
osteocytes via Cx43 hemichannels has been demonstrated to facilitate
myogenic differentiation and enhance muscle function. In alignment
with these observations, our recent investigation has shown that
the intraperitoneal administration of PGE, partially ameliorates the
deficits in muscle mass and function observed in Cx43 transgenic mice.
Furthermore, the diminished PGE, levels in osteocytes, resulting from
compromised Cx43 hemichannels, contribute to increased collagen
deposition in aged skeletal muscle, a process mediated by the activation
of the TGFp/Smad2/3 signaling pathway (Li et al., 2022). In summary,
Cx43 hemichannels and PGE, in osteocytes are likely to play a pivotal
role in the communication between bone and muscle (Figure 1).
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5 Conclusion and future directions

Recent advances in our understanding of bone-muscle crosstalk
have been significant. This progress can be attributed to the
identification of bone as an endocrine organ and the discovery of
osteokines, cytokines released by bone that facilitate communication
with skeletal muscle. In this review, we examine the roles of bone-
derived factors and the potential mechanisms underlying Cx43-
mediated crosstalk between bone and muscle. However, there are
still many unanswered questions in the field.

Firstly, more unknown bone factors remain to be further
identified. An example is that mice with osteocyte-specific deletion
of Mbtpsl, a membrane-bound transcription factor, exhibit an
age-related increase in muscle mass and contractile force in
the slow-twitch soleus muscle (SOL) (Gorski et al., 2016). This
indicates that osteocytes are likely to produce an unidentified
muscle factor that is negatively regulated with aging, which is
associated with the production of other negative factors such as
RANkL and sclerostin. Furthermore, Connexin 43 (Cx43), as a
fundamental component of functionally specific gap junctions
and hemichannels, facilitates cellular communication through
the release of small molecules. Recently, Cx43 has also garnered
attention for its channel-independent cellular regulatory and
signaling functions mediated through its specialized C-terminus.
Several studies have demonstrated that Cx43 acts as a scaffold
protein, and its interactions with cytoskeletal proteins play a crucial
role in regulating cell growth, differentiation, and migration (Strauss
and Gourdie, 2020; Casanellas et al., 2022). Nevertheless, the extent
to which the non-channel functions of Cx43 regulate bone-muscle
crosstalk remains largely unclear, presenting potential avenues
for future research. Additionally, the burgeoning interest in the
roles of extracellular vesicles (EVs) in cellular communication has
gained significant attention. EVs encapsulate a diverse array of
bioactive molecules, such as proteins, lipids, and nucleic acids, which
facilitate the exchange of information between both local and distant
organs. Notably, the presence of Cx43 in EVs has been documented,
where it enhances EV-cell communication (Xiong et al., 2024).
The relationship between Cx43 and extracellular vesicles (EVs) in
bone-muscle crosstalk warrants further investigation. Elucidating
the complex regulatory networks that mediate the interaction
between bone and muscle is crucial to develop small molecule
drugs that target Cx43 hemichannels or EVs preparations loaded
with bone-derived miR-328 for the combined treatment of
osteosarcopenia.
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EVs
Cx43
IGFS
BMPs
TGFf
FGF23
IGF1
RANkL
OPG
Dkk1
OB
OoCYy
oC
BGLAP
GPRC6a
IL-6
15-PGDH
BMP2
RANk
MyoD
DMP1
PHEX
MEPE
BAIBA
MSCs
DC-STAMP
OSCAR
BMSCs
miRNA
SKP2
mTOR
VEGF
SETD3
RPTOR
GJ

HC
EP4
LRP5/6
glu-0OC
Panx1
WT

cKO

Extracellular Vesicles

Connexin43

Insulin-like Growth Factors

Bone Morphogenetic Proteins
Transforming Growth Factor

Fibroblast Growth Factor 23

Insulin-like Growth Factor 1

Receptor Activator of Nuclear Factor kappa p Ligand
Osteoprotegerin

Dickkopf-1

Oteoblast

Osteocyte

Osteoclast

Bone y -Carboxyglutamic Acid Protein

G Protein-Coupled Receptor 6a
Interleukin-6

15-Hydroxyprostaglandin Dehydrogenase
Bone Morphogenetic Protein2

Receptor Activator of Nuclear Factor Kappa
Myogenic Differentiation

Dentin Matrix Protein 1
Phosphate-regulating neutral Endopeptidase X-linked
Matrix Extracellular Phosphoglycoprotein
B-aminoisobutyric Acid

Mesenchymal Stem Cells

Dendritic cell-specific transmembrane protei
Osteoclast Associated Receptor

Bone Mesenchymal Stem Cells

Micro RNA

S-phase Kinase-associated Protein 2
Mammalian Target of Rapamycin
Vascular Endothelial Growth Factor
SET-domain containing 3
Regulatory-associated protein of mTOR
Gap Junction

Hemichannel

E-type Prostanoid Receptor 4

Lipoprotein Receptor-related Protein 5/6
Undercarboxylated Osteocalcin
Pannexinl

Wild type

Conditional knockout
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a-Klotho Protein

Bone marrow mesenchymal stem cells
Cyclooxygenase

PGE synthases

Parathyroid hormone

Vascular endothelial growth factor.
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