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Extracellular vesicles (EVs), serving as promising novel biomarkers for diseases,
demonstrate extensive potential applications in disease diagnosis, prognosis
evaluation, and treatment monitoring. Currently, EVs have made substantial
advancements in the areas of disease diagnosis, prognosis, and treatment.
Nevertheless, for EVs to be fully integrated into clinical laboratories, ongoing
efforts are required in multi-omics integration and big data analysis, the
development of clinically applicable separation and detection technologies,
the establishment of standardized quality systems, as well as clinical trials and
regulatory approval processes. This paper reviews the current status of the
application of extracellular vesicles in disease diagnosis, prognostic assessment,
and treatment monitoring, analyzes the challenges facing current research, and
discusses future trends.
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1 Introduction

Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by various cell
types, containing a diverse array of biomolecules, including proteins, lipids, and nucleic
acids (van Niel et al., 2018; Kalluri and LeBleu, 2020). These vesicles play a crucial role in
intercellular communication, facilitating the exchange of information and materials between
cells (Boudreau et al,, 2014; Liu and Wang, 2023). The past two decades have seen a
significant surge in research focusing on the biological functions of EVs, particularly in the
field of diagnostic medicine. As the understanding of EVs’ roles in various physiological
and pathological processes deepens, their potential applications in clinical diagnostics and
therapeutics are becoming increasingly evident.

The exploration of EVs has revealed their involvement in numerous biological
processes, including immune response, tumor progression, and tissue repair (Kalluri,
2024; Marar et al, 2021; Ding et al., 2021; Zhang and Yu, 2019). Their ability
to carry specific molecular signatures reflective of their parent cells makes them
promising biomarkers for various diseases, including cancer, neurodegenerative
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disorders, and cardiovascular diseases (Chen et al., 2024a). For
instance, small extracellular vesicles (sEVs) have demonstrated
functional roles akin to their originating cells, minus the risk
of tumorigenicity, positioning them as viable candidates for
regenerative medicine and diagnostic applications (Jia et al., 2022).
The integration of sEVs into clinical practice could revolutionize
how diseases are diagnosed and monitored, providing non-invasive
and highly specific means to assess disease states.

Despite the promising potential of EVs in diagnostic
medicine, several challenges hinder their widespread application.
One major obstacle is the standardization of isolation and
characterization methods, which can significantly impact the
reproducibility and reliability of research findings (Kumari et al.,
2024; Akbar et al., 2022). Variability in techniques used to isolate
EVs can lead to discrepancies in the yield and purity of vesicles,
complicating their use as biomarkers (Zhang Q. et al, 2023).
Furthermore, the molecular heterogeneity of EVs poses challenges
in identifying specific markers that can be reliably associated with
particular diseases (Mathieu et al., 2021). Addressing these issues
will require collaborative efforts among researchers to develop
standardized protocols and robust analytical methods to ensure
the consistency and validity of EV-based diagnostics.

Looking ahead, the future of EV research in diagnostic medicine
appears promising, with several trends emerging. Advances
in engineering strategies, such as the development of novel
biomaterials for EV delivery and targeted therapies, are likely to
enhance the therapeutic applications of EVs (Urabe et al., 2020;
Liang et al.,, 2021). Additionally, the exploration of mesenchymal
stem cell-derived sEVs and their role in cartilage repair highlights a
growing interest in the regenerative potential of EVs (Ju et al., 2023).
As researchers continue to investigate the mechanisms underlying
EV biogenesis and function, it is anticipated that new insights
will pave the way for innovative diagnostic tools and therapeutic
strategies, ultimately improving patient outcomes in various medical
fields. This review provides an overview of the types and features
of EVs and highlights their applications in diagnosing, predicting
outcomes, and tracking treatment responses in cancer, autoimmune
disorders, and infectious diseases. Additionally, we examined the
obstacles facing EVs in laboratory medicine, highlighted their
prospective development directions, and provided new perspectives
to promote research related to EVs.

2 Classification and characteristics of
extracellular vesicles

EVs are heterogeneous membrane-bound particles released
by cells, playing crucial roles in intercellular communication
and various physiological processes (Kalluri and LeBleu, 2020;
Cheng et al,, 2014). According to the MISEV2018 and MISEV2023
guidelines, EVs are broadly categorized into two main subtypes:
small extracellular vesicles (sEVs), defined as having a diameter
of less than 200 nm, and large extracellular vesicles (including
microvesicles and apoptotic bodies), characterized by a diameter
exceeding 200 nm (Thery et al.,, 2018; Welsh et al., 2024) (Figure 1).
sEVs are formed through inward budding of the endosomal
membrane, resulting in the formation of multivesicular bodies.
These multivesicular bodies subsequently fuse with the plasma
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membrane, releasing intraluminal vesicles into the extracellular
space (Shao et al, 2018). Microvesicles, on the other hand,
are larger (200-1,000 nm) and are generated by direct outward
budding from the plasma membrane (Gurunathan et al, 2019).
Apoptotic bodies are even larger (1-5 um) and are released during
the process of programmed cell death, containing cellular debris
and organelles (Akers et al., 2013). The classification of EVs is
essential for understanding their distinct biogenesis, composition,
and functional roles in health and disease (Chen et al., 2024b;
Ren et al., 2024; Martinez-Garcia et al., 2024). Besides EVs, EV-like
particles are increasingly gaining interest. These EV-like particles
generally consist of non-vesicular protein aggregates or complexes,
lipoprotein particles, viral or bacterial particles, and artificial
substances generated during sample preparation (Wang et al., 2022).
The process by which EV-like particles form is not completely
understood and might be linked to the clustering of cellular
metabolites or particular cellular activities. Certain EV-like particles
carry specific biomarkers and could play a role in disease diagnosis;
however, their functions are quite complex and need more research.

sEVs are defined as nanoscale vesicles that originate from
the endosomal system of cells. Their biogenesis begins with the
inward budding of the endosomal membrane, forming intraluminal
vesicles (ILVs) within multivesicular bodies (MVBs). When these
MVBs fuse with the plasma membrane, sEVs are released into
the extracellular environment. This process is regulated by various
proteins, including members of the ESCRT (endosomal sorting
complexes required for transport) machinery, which facilitate the
sorting of specific cargo into sEVs (van Niel et al., 2018; Kowal et al.,
2014; Ostrowski et al., 2010). The cargo of sEVs is diverse, which
can influence the behavior of recipient cells. The unique composition
of sEVs reflects the physiological state of their parent cells, making
them valuable biomarkers for various diseases, including cancer
(Park et al., 2023; Lai et al., 2023).

Microvesicles and apoptotic bodies represent two distinct types
of extracellular vesicles, each with unique characteristics and
functions. Microvesicles are formed through the outward budding
of the plasma membrane and are typically larger than sEVs, ranging
from 200 to 1,000 nm (Wang et al., 2023). They contain a variety
of bioactive molecules and are involved in processes such as cell
signaling, inflammation, and tissue repair. In contrast, apoptotic
bodies are released during the process of apoptosis, the programmed
cell death that occurs in response to cellular stress or damage.
They are larger (1-5um) and contain cellular debris, including
organelles and fragments of the cytoplasm. Unlike microvesicles,
which can be involved in intercellular communication, apoptotic
bodies primarily serve as a mechanism for the removal of dying
cells and their components from the body. The distinct biogenesis,
size, and contents of these vesicles underscore their different roles in
cellular processes and disease mechanisms (Zhang et al., 2024).

EVs play a multifaceted and critical role in intercellular
communication, significantly influencing a wide range of
physiological and pathological processes. They enable the transfer
of proteins, lipids, and genetic material between cells, thereby
modulating signaling pathways that affect cellular behavior, immune
responses, and tissue regeneration. For example, sSEV's derived from
stem cells have demonstrated potential in facilitating tissue repair
and regeneration across various injury models (Trubiani etal., 2019).
Moreover, EVs are involved in disease progression, particularly
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FIGURE 1
The biogenesis process of extracellular vesicles. Two mechanisms of EVs biogenesis are illustrated. The process of releasing sEVs into the extracellular
milieu contains three distinct steps: sEVs biogenesis, intracellular trafficking of MVBs, and fusion of MVBs with the plasma membrane. Early endosomes
are formed by the inward budding of the plasma membrane, or in some cases from the Golgi. Early endosomes mature into late endosomes and finally
generate MVBs, in which process intraluminal vesicles (ILVs) are formed by inward invagination of the endosome limiting membrane. The fate of MVBs
can be fusion with the plasma membrane, which results in the release of sEVs. Alternatively, MVBs can fuse with lysosomes/autophagosomes for
degradation. Microvesicles arise from the direct outward budding and fission of the plasma membrane.

in cancer, where tumor-derived extracellular vesicles can alter
the tumor microenvironment, promote metastasis, and facilitate
immune evasion (Liu et al., 2025). The capacity of EV's to transport
specific molecular cargoes, such as microRNAs and proteins, renders
them promising candidates as biomarkers for disease diagnosis and
prognosis (Kumar et al.,, 2024; De Giorgis et al., 2024; He et al,,
2024). Their pivotal role in mediating cell-to-cell communication
underscores their potential as therapeutic agents in regenerative
medicine and targeted drug delivery systems (Ramesh et al., 2023).

3 Applications of extracellular vesicles
in disease diagnhosis

Liquid biopsy, an advanced technology for analyzing body fluid
samples, is gaining traction in cancer diagnostics and monitoring.
Blood-based liquid biopsy, particularly focusing on cell-free DNAs
(cf-DNAs), circulating tumor cells (CTCs), and EVs, has garnered
significant attention (Su et al., 2024). The benefits of analyzing
EVs through liquid biopsy include: (1) EVs are found in higher
concentrations in bodily fluids compared to circulating tumor
cells; (2) EVs offer more detailed information about the cells that
produce them than circulating DNA does; and (3) EVs exhibit
strong biological stability even within the harsh tumor environment
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(Kalluri and LeBleu, 2020; Yu et al., 2022; Mathew et al., 2020). The
potential of EVs in clinical diagnostics is vast, spanning across tumor
detection, autoimmune diseases, and infectious diseases (Figure 2).
Their non-invasive nature allows for the collection of biological
fluids such as blood, urine, and saliva, making them ideal candidates
for liquid biopsies. This section will explore the specific applications
of EVs in identifying tumor markers, diagnosing autoimmune
diseases early, and detecting biomarkers for infectious diseases.

The identification of tumor markers via the analysis of EVs
has transformed cancer diagnostics (Youssef et al., 2025). Tumor-
derived EVs (tEVs) contain a diverse array of biomolecules,
such as proteins, lipids, and nucleic acids, which offer valuable
insights into tumor presence and progression. For example,
research has demonstrated that elevated levels of specific proteins,
including Glypican-3 (GPC3), in circulating EV's are correlated with
hepatocellular carcinoma, establishing them as reliable indicators
for early detection (Qu et al, 2023). Based on microfluidic
technology with fine microstructures and precise microfluidic
operations, this dPCR chip enables accurate quantification of tumor-
derived extracellular vesicles (SEVs) across various tumor markers,
demonstrating exceptional sensitivity (detection limit: 10 copies).
In clinical sample analysis, the chip effectively distinguishes lung
cancer patients from healthy controls (P < 0.001, two-tailed t-test).
Furthermore, in samples with extremely low target concentrations,
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FIGURE 2
The application process of extracellular vesicles in disease diagnosis. sEVs are isolated from the body's blood. The contents of proteins, nucleic acids
and lipids in sEVs can be used for the diagnosis of tumor, autoimmune diseases and infectious diseases.

it exhibits significantly superior quantitative accuracy compared
to quantitative real-time polymerase chain reaction (qPCR).
Furthermore, circulating EVs have shown potential in monitoring
metastasis in breast cancer patients, with significant differences in
tEV levels observed between metastatic and non-metastatic cases
(Xu et al., 2024). Pancreatic cancer (PC) is a highly aggressive
digestive system cancer, with pancreatic ductal adenocarcinoma
(PDAC) representing about 90% of all PC cases. Xu and colleagues
created a diagnostic model using a set of biomarkers, including three
types of miRNAs and CA19-9, which achieved an AUC of 0.97,
sensitivity of 0.95, and specificity of 0.96 (Nakamura et al., 2022).
Melo and his team discovered that identifying glypican-1 in EVs
among pancreatic cancer (PC) patients showed perfect sensitivity
and specificity (100%) in diagnosing all stages of PC, effectively
differentiating pancreatic cancer patients from healthy individuals
or those with chronic pancreatitis (AUC = 1.0) (Melo et al,
2015). This characteristic positions EVs as promising candidates
for liquid biopsy applications, offering a non-invasive alternative
to traditional tissue biopsies and facilitating real-time monitoring
of tumor dynamics. At present, the application of EVs in clinical
trials for tumor diagnosis is gradually increasing. LIVER-TRACK
aims at reliably predicting the outcome of patients with compensated
cirrhosis through the development of a Tests for Decompensation
and a Test for HCC. This will be achieved through leveraging
circulating EVs, an untapped source of biomarkers in liver
diseases, as prognostic indicators, and combining them with
existing blood biomarkers and single-nucleotide polymorphisms
(NCT07185360). A clinical trial currently underway at Centre
Hospitalier Universitaire de Dijon aims to differentiate normal
subjects from colorectal cancer patients through the detection and
characterization of circulating extracellular vesicles (EVs) in blood,
including parameters such as size, concentration, and molecular
composition (proteins, lipids, RNA, etc.) (NCT04523389).

EVs play a pivotal role in the pathogenesis and diagnosis of
autoimmune diseases (Huang et al., 2025). These vesicles modulate
immune responses through the transfer of bioactive molecules, such
as cytokines and microRNAs, which can alter the behavior of target
cells (Makhijani and McGaha, 2022). For instance, research has
shown that EVs derived from immune cells carry specific miRNAs
that promote inflammatory processes, thereby contributing to the
development of autoimmune disorders, including systemic lupus
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erythematosus (SLE) and rheumatoid arthritis (Zhu et al., 2023). A
study found that phosphatidylserine-negative extracellular vesicles
were elevated in patients with SLE compared to healthy individuals,
particularly among women and smokers (Mobarrez et al., 2016).
Additionally, a prior study found that SLE patients had higher
levels of CD31+/annexin V+/CD42b- EVs compared to healthy
individuals, and there was a correlation between these EVs and the
median overall BILAG-2004 score following treatment (Parker et al.,
2014). Ding et al. found elevated levels of hcmv-miR-UL59, which
is mainly contained within EVs in the plasma, in patients with
oral lichen planus (OLP) (Ding et al., 2017). Another study showed
increased expression of miR-4484 in salivary EVs from OLP
patients and suggested this miRNA as a potential biomarker for the
disease (Byun et al., 2015). Additionally, research reported varying
expression levels of miR-34a-5p, miR-130b-3p, and miR-301b-3p in
circulating EVs in OLP, with miR-34a-5p levels correlating with the
severity of the condition (Peng et al., 2018). Moreover, the feasibility
of isolating and analyzing EVs from readily accessible biofluids
underscores their clinical utility, providing a promising approach
for identifying novel diagnostic markers and therapeutic targets in
autoimmune conditions (Zhang et al., 2020).

Extracellular vesicles have emerged as significant players in
the diagnosis of infectious diseases, acting as carriers of pathogen-
derived components and host immune responses (Kaparakis et al.,
2010). They can encapsulate and transport microbial antigens,
proteins, and nucleic acids, which can be detected in various
biological fluids during infections (Zhang et al., 2020). For
instance, EVs released during bacterial infections can carry
virulence factors that modulate host immune responses, providing
a mechanism for pathogens to evade detection (Kwaku et al., 2024).
The analysis of EVs has shown promise in identifying specific
biomarkers for various infectious diseases, including viral, bacterial,
and parasitic infections. Recent advancements in EV isolation
and characterization techniques have enhanced the sensitivity
and specificity of these biomarkers, allowing for the early detection
and monitoring of infectious diseases (Dominguez Rubio et al.,
2022). through that based
on metagenomic five patterns:  phyla
Firmicutes, Actinobacteria, Proteobacteria, phyla Bacteroidetes and

Yoon etal. found research

analysis, microbial

Verrucomicrobia detected in urine EVs hold promise as potential
biomarkers for the diagnosis of colorectal cancer (Yoon et al., 2023).
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A study involving children in Malawi found that plasma levels of
EVs derived from endothelial cells were six times higher in patients
with cerebral malaria (CM) compared to those with severe malaria
without CM (Combes et al., 2004). This suggests a strong link
between increased EV levels and the onset of CM. Additionally, EV's
originating from red blood cells were shown to rise in proportion
to the severity of disease in patients infected with Plasmodium
falciparum and were also elevated, though to a lesser extent, in
individuals infected with Plasmodium vivax and Plasmodium
malariae. Importantly, antimalarial treatment led to a decrease in
circulating EVs levels after 2 weeks in patients with P. vivax and P.
malariae infections, but not in those with P. falciparum, indicating
that sustained high EVs levels might be a marker of disease severity
(Nantakomol et al, 2011). Additionally, the potential of EVs as
therapeutic delivery vehicles in the context of infectious diseases is
being explored, highlighting their dual role as both diagnostic and
therapeutic agents (Vydrar et al., 2023). Overall, the application of
EVs in infectious disease diagnostics represents a rapidly evolving
field with significant implications for improving patient outcomes
and disease management.

4 The role of extracellular vesicles in
prognostic assessment

EVs have emerged as significant players in the field of
prognostic assessment across various diseases, particularly in
cancer, cardiovascular diseases, and neurodegenerative disorders
(Hu and De, 2024; Schneider et al., 2024; AuthorAnonymous,
2024). Their ability to carry bioactive molecules allows them to
reflect the physiological and pathological states of their parent
cells (Salunkhe et al, 2020). This characteristic makes EVs a
promising source of biomarkers for early diagnosis, monitoring
disease progression, and evaluating treatment responses. The non-
invasive nature of EV isolation from bodily fluids such as blood
and urine enhances their utility in clinical settings, providing a
window into the underlying biological processes of diseases without
the need for invasive procedures (Gyorgy, 2025). The growing body
of research highlights the potential of EVs to serve as reliable
prognostic indicators, paving the way for personalized medicine
approaches that can improve patient outcomes.

In the realm of oncology, extracellular vesicles have been
identified as valuable tools for assessing cancer prognosis. For
instance, studies have shown that circulating EVs can carry
tumor-derived microRNAs and proteins that correlate with disease
progression and patient outcomes. In melanoma, EVs derived from
lymphatic drainage have been characterized to contain markers
indicative of tumor progression and the presence of mutations
such as BRAF V", which are associated with a higher risk of
relapse (Garcia-Silva et al., 2019). Thus, detection of the BRAFY60°E
mutation in ES-derived EV nucleic acids could serve as a minimal
residual disease/prognostic indicator, with added value over the
current tissue biopsies being an almost real-time predictor of risk
right after lymphadenectomy. Similarly, in cholangiocarcinoma,
EVs facilitate communication between cancer cells and the tumor
microenvironment, influencing disease progression and offering
insights into potential therapeutic strategies (Zhang N. et al., 2023).
Furthermore, in gastric cancer, the presence of specific proteins
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within EVs has been linked to peritoneal metastasis, demonstrating
their role in predicting disease spread and patient prognosis (Li et al.,
2024a). Zahra et al. demonstrated that in patients with metastatic
non-small cell lung cancer, CTCs and high concentrations of PD-
L1-positive small extracellular vesicles (sEVs) were significantly
associated with progression-free survival (PFS) and overall survival
(OS), whereas ctDNA mutations did not show a similar correlation.
The integrated analysis of these biomarkers may aid in identifying
patients at higher risk of poor OS outcomes. The ability to quantify
these biomarkers in EVs not only enhances prognostic accuracy but
also aids in the development of targeted therapies, underscoring the
critical role of EVs in cancer management.

EVs have also been implicated in the risk assessment of
cardiovascular diseases (CVD) (Cochain and Zernecke, 2017). They
are involved in various pathophysiological processes, including
inflammation, endothelial dysfunction, and thrombosis, which are
central to CVD development. Research indicates that increased
levels of specific EVs have been associated with hypertension
and acute cardiovascular events, suggesting their potential as
predictive markers (Tang et al, 2023). Moreover, EVs derived
from endothelial cells have been shown to reflect the health of
the vascular system, providing insights into the risk of ischemic
events (Yu et al, 2025). The identification of EV-associated
proteins and miRNAs linked to cardiovascular risk factors, such
as obesity and metabolic syndrome, further emphasizes their role
in comprehensive risk assessment strategies (Cheng et al., 2021).
EVs miR-1915-3p, miR-4,507, and miR-3,656 were significantly
less expressed in AMI compared to stable coronary artery disease
patients, suggesting that these miRNAs might be predictive for
acute myocardial infarction at an early stage (Su et al, 2020).
Elevated levels of CD31%/Annexin V* EVs are associated with
an increased risk of coronary revascularization and cardiovascular
mortality. These levels rise in patients who have impaired coronary
artery function and cardiovascular risk factors, and they can
serve as an independent predictor of cardiovascular events in
individuals with stable coronary artery disease (Sinning et al.,
2011). Additionally, studies have demonstrated that circulating EV's
expressing CD3%/CD45" and SMA-a" are elevated in people with a
high cardiovascular risk (Chiva-Blanch et al., 2016). By integrating
EVs analysis into clinical practice, healthcare providers can enhance
their ability to predict and manage cardiovascular risks effectively.

In neurodegenerative diseases, extracellular vesicles are
gaining attention as potential biomarkers for monitoring disease
progression. Conditions such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) are characterized by complex
pathophysiological changes that can be reflected in the cargo of
EVs (Cai et al,, 2024; Li et al., 2024b). For instance, studies have
demonstrated that neuron-derived EVs contain proteins and RNA
species that correlate with disease severity and progression in
AD (Pham et al., 2024). The presence of specific microRNAs in
plasma EVs has been linked to cognitive decline, highlighting
their potential as early diagnostic tools (Raineri et al., 2024).
Additionally, EVs can facilitate intercellular communication in the
brain, contributing to the spread of pathological proteins associated
with neurodegeneration (Wiersema et al., 2024). This emerging
understanding positions EVs as valuable non-invasive biomarkers
for tracking disease progression and therapeutic responses, offering
hope for improved management strategies in neurodegenerative
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disorders. As research continues to elucidate the role of EVs in
these conditions, their integration into clinical practice could
revolutionize how we monitor and treat neurodegenerative diseases.

5 The potential of extracellular
vesicles in treatment monitoring

EVsare increasingly recognized for their potential in monitoring
treatment efficacy across various medical fields, for example,
tumors, neurodegenerative diseases, cardiovascular diseases, etc
(Optical microscopy and transcriptomics reveal, 2024) (Figure 3).
These vesicles, which are secreted by all cell types, contain a
diverse array of biomolecules, making them valuable for real-
time monitoring of therapeutic responses. Their presence in
various bodily fluids, such as blood and urine, allows for non-
invasive sampling, which is a significant advantage over traditional
biopsy methods. Recent studies have demonstrated that EVs
can serve as biomarkers for ongoing monitoring of treatment
efficacy, particularly in cancer therapies. For instance, the dynamic
changes in EV composition can reflect the biological status of
tumors, providing insights into treatment responses and disease
progression (Stevic et al., 2020). Moreover, the ability to analyze EV's
can facilitate personalized medicine approaches, tailoring therapies
based on individual patient responses.

Immunotherapy has revolutionized cancer treatment, yet its
efficacy can vary significantly among patients (Ktena et al., 2024).
Monitoring the effectiveness of such therapies is crucial for
optimizing treatment strategies. For example, studies have shown
that the presence of specific proteins and nucleic acids within
EVs correlates with the response to immune checkpoint inhibitors,
allowing clinicians to assess treatment effectiveness in real time
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(Cheng et al,
EVs expressing PD1 and PD-L1 predict response and mediate

2024). The Simona study shows that circulating

resistance to checkpoint inhibitors immunotherapy in metastatic
2022). Additionally, the analysis of
EVs can provide insights into mechanisms of resistance, enabling

melanoma (Serrati et al,

timely adjustments to therapeutic regimens. The potential for EVs
to serve as non-invasive indicators of immunotherapy response
highlights their importance in enhancing the precision of cancer
treatments (Pan et al., 2021).

The heterogeneity of cancer and individual patient responses
to treatment necessitate personalized approaches to therapy
(Lawrence et al,, 2024). EVs can suppress tumor progression
via modifications to the molecules expressed on their surface
and inside them, independently of their origin. In line with this
approach, colorectal cancer cells treated with starved tumor-cell-
derived EVs loaded with miR-34a showed the inhibition of both
proliferation and migration, accompanied by apoptosis, via the
downregulation of IL-6R, STAT3, PD-L1 and VEGF-A expression
in vitro, with prolonged survival time and impaired immune evasion
2021; Hosseini et al., 2022).
Another mechanism associated with the anti-tumor activity of

in a solid tumor (Hosseini et al.,

EVs is the sensitization to chemotherapy; for example, AT-MSC-
derived EV's have been modified to express miR-122, showing that
the treatment of hepatocellular carcinoma cells with these EVs
increases the sensitivity of tumor cells to sorafenib (Lou et al,
2015), since miR-122 inhibits the expression of the multidrug-
resistance-related genes, such as ATP-binding cassette (ABC)
transporters (Xiong et al., 2021).

EVs can play a critical role in this individualized assessment by
providing real-time insights into how a patient’s tumor is responding
to specific drugs (Kantarci, 2023). By analyzing the molecular
cargo of EVs, clinicians can gauge the effectiveness of targeted
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therapies and adjust treatment plans accordingly. For instance, the
use of advanced technologies to profile EVs has revealed distinct
signatures associated with drug resistance, enabling healthcare
providers to identify which patients are likely to benefit from
particular therapies. This approach not only enhances treatment
efficacy but also minimizes unnecessary side effects by avoiding
ineffective treatments (Lee et al, 2023). The integration of EV
analysis into clinical practice represents a significant advancement
in the field of personalized medicine.

Monitoring both the efficacy and potential toxicity of cancer
treatments is essential for optimizing patient outcomes (Cohen et al.,
2021). EVs offer a unique opportunity to achieve this dynamic
monitoring through the analysis of their molecular content. Changes
in the composition of EVs can indicate not only how well a
treatment is working but also whether it is causing adverse effects.
For example, specific biomarkers found in EVs can signal the
onset of drug-related toxicities, allowing for timely interventions
(Liu et al,, 2023). Recent studies have demonstrated that the analysis
of EVs can provide a comprehensive view of a patient’s response
to therapy, capturing both therapeutic benefits and potential risks.
This dual monitoring capability is particularly valuable in the
context of chemotherapeutic agents, where balancing efficacy and
toxicity is crucial for patient safety and treatment success (Sanchez-
Manas et al, 2024). The ability to utilize EVs for real-time
monitoring represents a transformative step in cancer care, enabling
more informed and responsive treatment strategies.

6 Challenges of EVs in the field of
laboratory medicine

Techniques for Isolation and Identification of Extracellular
Vesicles. One of the foremost challenges in EVs research lies in the
isolation and identification techniques employed. Current methods,
such as ultracentrifugation and size exclusion chromatography, often
yield heterogeneous populations of EVs, complicating downstream
analyses and interpretations (Jia et al., 2022). The characteristics of
currently widely used EVs separation methods are summarized in
Table 1. The lack of standardized protocols results in variations in
yield and purity, which can significantly affect the reproducibility of
results across different laboratories (Royo et al., 2020). Furthermore,
existing techniques may co-isolate non-EV components that
can obscure the biological relevance of the findings. Emerging
methods, such as microfluidic devices and immunoaffinity capture,
show promise for enhancing specificity and efficiency in EV
isolation (Arora et al., 2024). However, these methods are still in
the developmental phase and require validation to ensure their
applicability in clinical settings. The need for robust, reproducible,
and standardized protocols is critical for advancing the field and
facilitating the transition of EV research from bench to bedside.

Standardization and regulation pose significant hurdles in the
clinical translation of EV-based therapies. The heterogeneity of
EVs, stemming from their diverse cellular origins and biogenesis
pathways, complicates the establishment of universal quality control
measures (Reithmair et al., 2022). Regulatory bodies currently lack
clear guidelines for the characterization and quality assessment of
EVs, which can lead to inconsistencies in clinical trial outcomes and
hinder the approval of EV-based therapeutics (Wang et al., 2024).
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Moreover, the absence of well-defined reference materials for EVs
complicates the validation of methodologies used in their isolation
and analysis (Wang et al., 2025). To address these challenges, it is
essential to develop comprehensive guidelines that encompass the
entire workflow of EV research, from isolation to characterization,
to ensure that EV-based products meet the necessary safety and
efficacy standards for clinical use. The quality control framework for
EVs outlined in MISEV2023 can be broken down into four main
steps, with a strong emphasis on creating standardized procedures
and acceptance criteria for each stage: (1) Starting materials—such
as cell lines and sources of biological fluids—must undergo thorough
cell identity verification before EV production. Detailed records
of culture conditions, including medium composition (e.g., serum
presence or absence, batch numbers), cultivation environment (2D
vs. 3D, use of bioreactors), and other relevant factors should
be kept, as these significantly affect EV yield and molecular
makeup. (2) During isolation, all key parameters related to the
separation technique used must be carefully documented and
reported. The entire production process should be carried out under
controlled conditions that meet established quality standards. (3)
Characterizing the final EV product is crucial; for clinical use,
purity-measured by contaminant levels-is vital for ensuring safety
and effectiveness. Adequate proof must be provided to show that
contaminants have been sufficiently removed or minimized to
acceptable levels. (4) Functional testing and stability monitoring:
Functional assays, either in vitro or in vivo, should be designed
based on the intended therapeutic use of the EVs (such as immune
modulation, tissue repair, or drug delivery). Moreover, the physical
integrity, surface marker profiles, and biological activity of EVs
should be regularly checked during storage to guarantee consistent
performance.

The clinical translation of EVs as therapeutic agents faces
several barriers, including technical, biological, and regulatory
challenges. Despite the promising therapeutic potential of EVs,
particularly in areas such as cancer and neurodegenerative diseases,
their clinical application is often impeded by issues related to
scalability, reproducibility, and the complexity of their biological
effects (Li et al., 2025). Furthermore, the intricate mechanisms by
which EVs exert their effects are not yet fully understood, which
complicates the development of targeted therapies (Song et al,
2024). However, ongoing research is exploring innovative strategies
to enhance the therapeutic efficacy of EVs, such as engineering
modifications to improve targeting and cargo delivery (Wang et al.,
2024). The integration of EVs into existing treatment paradigms,
combined with advancements in nanotechnology and drug delivery
systems, holds promise for overcoming these barriers. As the field
matures, collaborative efforts among researchers, clinicians, and
regulatory agencies will be pivotal in realizing the full potential of
EVs in clinical practice.

7 The development trend of EVs in the
field of laboratory medicine

Multi-omics integration and big data analysis. As a marker
carrier at the subcellular scale, EVs carry a variety of biomolecules
such as proteins, RNA, DNA, and metabolites, etc (Yokoi et al.,
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TABLE 1 Comparison of EVs features separated by different methods.

10.3389/fcell.2025.1709461

Separation Principle Repeatability Clinical
method scalability
Ultracentrifuge method Separate based on size Medium It is relatively low and It’s okay, but it’s greatly Low, expensive
(UC) and density easy to co-separate influenced by the equipment, and limited

contaminants such as operator throughput

proteins
Density gradient Separation based on EVs Low Moderate, easily affected Moderate, Low, not suitable for
centrifugation method density by proteins and lipids time-consuming large-scale specimens
Size exclusion Separation is carried out Medium Moderate, still disturbed High, standardized Medium, there is a risk
chromatography (SEC) based on fluid dynamics by lipoproteins and the processes of clogging of the

volume like chromatography column
Immunoaffinity capture Separation is based on Low High and highly specific Moderate, affected by the Low, high cost and low
method surface-specific antigens batch of antibodies throughput
Precipitation method Polymer co-precipitates High It is low and easily Medium, not conducive High, low cost and high
with EVs affected by lipids and to high-precision output

proteins analysis
Target-type Separation is carried out High Moderate, affected by the High potential, High, capable of
multi-chamber based on differences in batch of antibodies automated continuous high-throughput
electrophoresis size and charge ratio separation preparation
Improved SEC binds core beads to High High purity, more than High, standardized High, suitable for
chromatography remove soluble proteins three times that of UC processes large-scale clinical

samples

2025). Bollard and colleagues discovered that analyzing plasma-
derived extracellular vesicles using both proteomics and
metabolomics can be an effective diagnostic tool for melanoma,
achieving a classification accuracy of 85.11% when distinguishing
melanoma patients from healthy individuals (Bollard et al., 2024).
For instance, researchers recently showed that measuring both a-
synuclein and clusterin together in serum L1CAM-positive EVs was
very effective (AUC = 0.98) at distinguishing Parkinson’s disease
from atypical parkinsonism. This finding was based on 735 samples
from four separate groups and outperformed the accuracy of each
individual marker alone, which had AUC values around 0.82 to
0.86 (Jiang et al., 2020). Using multi-omics integration for the joint
analysis of different types of markers, and solving the technical
problems of complex data analysis with the help of the big data
accumulated from basic research and clinical practice, and artificial
intelligence to construct a multi-dimensional disease prediction
and diagnostic model, we can not only mine potential markers of
EVs in the high-throughput multi-dimensional genomic data to
predict their diagnostic value in different disease groups, but also
reveal biological features that are difficult to be found by traditional
methods, thus significantly improving the diagnostic specificity and
sensitivity of EVs markers (Miceli et al., 2024). It can not only mine
potential markers in EVs from high-throughput multidimensional
histological data and predict their diagnostic value in different
disease groups, but also reveal biological features that are difficult
to be found by traditional methods, thus significantly improving
the diagnostic specificity and sensitivity of EVs markers, which is
the future direction of the development of EVs and its application
prospects (Yin et al., 2024).
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Development of clinically appropriate technology for the
isolation and detection of EVs. With the rapid advancement
of cross-disciplinary medicine, emerging technologies such as
microfluidics,

nanotechnology, super-resolution microscopy,

functional materials, and artificial intelligence have been
progressively integrated into the experimental platforms for EVs.
These innovations have substantially enhanced the separation
efficiency, detection sensitivity, and specificity of EVs (Chen et al.,
2021). For instance, ultrasonic nanofiltration technology leverages
the synergistic advantages of ultrasound and nanofiltration
membranes to efficiently purify EVs within a short timeframe,
making it suitable for large-scale clinical samples (Chen et al,
2021). Ultrasensitive flow cytometry and droplet microfluidics
enable highly sensitive detection of EVs (Khanna et al, 2023;
Meng et al., 2023), while super-resolution microscopy is utilized for
characterizing EV subpopulations and analyzing their interactions
with cells (Zhang 7. et al., 2023). Given the complexity of body fluid
samples and the diversity and high heterogeneity of EV markers,
further efforts are required in three key areas: automated analysis
of EV isolation and detection platforms, high-precision detection
platforms for individual EVs, and high-throughput multi-marker
detection platforms (Feng et al., 2025). Such advancements are
essential for translating EV research into clinical applications.
Continuous innovation and optimization of EV isolation and
detection technologies are necessary to improve detection sensitivity
and specificity, reduce detection time, lower costs, and facilitate
large-scale clinical screening and research on EVs (Ma et al., 2019).
Ultimately, these improvements aim to establish EV isolation and
detection as a practical and reliable technology, providing advanced
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tools for health management, disease prediction, early diagnosis,
condition assessment, treatment guidance, and therapeutic efficacy
monitoring.

Standardized and normalized quality system construction. A
robust quality control system is critical for ensuring the reliability
and consistency of test results. Establishing a reference material
production, research, and quality assurance system constitutes
the core of this endeavor. First, EV reference materials must
achieve standardization and reproducibility, stable physicochemical
properties, well-defined biological characteristics, quantifiability,
and ease of acquisition-these are also the primary objectives
of EV research (Vogel et al, 2021). Second, the EV testing
process encompasses multiple steps, from sample collection and
processing to EV isolation, testing, and data analysis. Each step
may introduce errors and variations that could compromise result
accuracy. To address these challenges, ISEV and the Committee
on Extracellular Vesicle Research and Application (CSEV) of the
Chinese Society of Research Hospitals have developed a series of
position papers and quality control procedures aimed at monitoring
and mitigating errors and variability in EV testing. For instance,
MISEV2023, the latest guideline for EV research issued by ISEV,
provides detailed specifications for experimental practices and data
reporting based on cutting-edge scientific advancements and expert
consensus (Author Anonymous, 2024). Additionally, the MIBlood-
EV Quality Control Reporting Framework was established to
encompass pre-analytical variables and quality control methods for
blood samples, thereby promoting standardization and enabling
cross-laboratory comparisons (Lucien et al., 2023). For instance,
the U.S. Food and Drug Administration (FDA) has issued a
series of guidance documents on liquid biopsy and extracellular
vesicle (EV) markers, outlining specific requirements for clinical
trial design, data submission, and approval processes. In 2016,
ExoDx Prostate received regulatory clearance from the U.S. FDA,
becoming the first prostate cancer risk assessment tool based
on EVs’s RNA (McKiernan et al., 2016).

8 Future perspectives

The 2013 Nobel Prize in Physiology or Medicine was awarded
to American scientists James E. Rothman and Randy W. Schekman,
along with German scientist Thomas C. Siidhof, in recognition
of their discovery of the regulatory mechanisms governing
intracellular vesicle transport. This breakthrough also ignited a
global surge of research into EVs. As a promising biomarker,
EVs show vast potential for development within laboratory
medicine. However, for EVs to be fully integrated into clinical
practice as diagnostic and therapeutic tools, ongoing efforts are
required in areas such as multi-omics integration and big data
analysis, the creation of clinically suitable separation and detection
technologies, the establishment of standardized quality control
systems, as well as clinical trials and regulatory approvals. Given
the unique advantages of EVs and the rapid advancement of related
technologies, through the dedicated work of scientists, clinicians,
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and laboratory professionals, EV's are expected to play a significant
role in clinical diagnosis and treatment in the future, ultimately
enhancing human health.
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