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Extracellular vesicles (EVs), serving as promising novel biomarkers for diseases, 
demonstrate extensive potential applications in disease diagnosis, prognosis 
evaluation, and treatment monitoring. Currently, EVs have made substantial 
advancements in the areas of disease diagnosis, prognosis, and treatment. 
Nevertheless, for EVs to be fully integrated into clinical laboratories, ongoing 
efforts are required in multi-omics integration and big data analysis, the 
development of clinically applicable separation and detection technologies, 
the establishment of standardized quality systems, as well as clinical trials and 
regulatory approval processes. This paper reviews the current status of the 
application of extracellular vesicles in disease diagnosis, prognostic assessment, 
and treatment monitoring, analyzes the challenges facing current research, and 
discusses future trends.
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 1 Introduction

Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by various cell 
types, containing a diverse array of biomolecules, including proteins, lipids, and nucleic 
acids (van Niel et al., 2018; Kalluri and LeBleu, 2020). These vesicles play a crucial role in 
intercellular communication, facilitating the exchange of information and materials between 
cells (Boudreau et al., 2014; Liu and Wang, 2023). The past two decades have seen a 
significant surge in research focusing on the biological functions of EVs, particularly in the 
field of diagnostic medicine. As the understanding of EVs’ roles in various physiological 
and pathological processes deepens, their potential applications in clinical diagnostics and 
therapeutics are becoming increasingly evident.

The exploration of EVs has revealed their involvement in numerous biological 
processes, including immune response, tumor progression, and tissue repair (Kalluri, 
2024; Marar et al., 2021; Ding et al., 2021; Zhang and Yu, 2019). Their ability 
to carry specific molecular signatures reflective of their parent cells makes them 
promising biomarkers for various diseases, including cancer, neurodegenerative
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disorders, and cardiovascular diseases (Chen et al., 2024a). For 
instance, small extracellular vesicles (sEVs) have demonstrated 
functional roles akin to their originating cells, minus the risk 
of tumorigenicity, positioning them as viable candidates for 
regenerative medicine and diagnostic applications (Jia et al., 2022). 
The integration of sEVs into clinical practice could revolutionize 
how diseases are diagnosed and monitored, providing non-invasive 
and highly specific means to assess disease states.

Despite the promising potential of EVs in diagnostic 
medicine, several challenges hinder their widespread application. 
One major obstacle is the standardization of isolation and 
characterization methods, which can significantly impact the 
reproducibility and reliability of research findings (Kumari et al., 
2024; Akbar et al., 2022). Variability in techniques used to isolate 
EVs can lead to discrepancies in the yield and purity of vesicles, 
complicating their use as biomarkers (Zhang Q. et al., 2023). 
Furthermore, the molecular heterogeneity of EVs poses challenges 
in identifying specific markers that can be reliably associated with 
particular diseases (Mathieu et al., 2021). Addressing these issues 
will require collaborative efforts among researchers to develop 
standardized protocols and robust analytical methods to ensure 
the consistency and validity of EV-based diagnostics.

Looking ahead, the future of EV research in diagnostic medicine 
appears promising, with several trends emerging. Advances 
in engineering strategies, such as the development of novel 
biomaterials for EV delivery and targeted therapies, are likely to 
enhance the therapeutic applications of EVs (Urabe et al., 2020; 
Liang et al., 2021). Additionally, the exploration of mesenchymal 
stem cell-derived sEVs and their role in cartilage repair highlights a 
growing interest in the regenerative potential of EVs (Ju et al., 2023). 
As researchers continue to investigate the mechanisms underlying 
EV biogenesis and function, it is anticipated that new insights 
will pave the way for innovative diagnostic tools and therapeutic 
strategies, ultimately improving patient outcomes in various medical 
fields. This review provides an overview of the types and features 
of EVs and highlights their applications in diagnosing, predicting 
outcomes, and tracking treatment responses in cancer, autoimmune 
disorders, and infectious diseases. Additionally, we examined the 
obstacles facing EVs in laboratory medicine, highlighted their 
prospective development directions, and provided new perspectives 
to promote research related to EVs. 

2 Classification and characteristics of 
extracellular vesicles

EVs are heterogeneous membrane-bound particles released 
by cells, playing crucial roles in intercellular communication 
and various physiological processes (Kalluri and LeBleu, 2020; 
Cheng et al., 2014). According to the MISEV2018 and MISEV2023 
guidelines, EVs are broadly categorized into two main subtypes: 
small extracellular vesicles (sEVs), defined as having a diameter 
of less than 200 nm, and large extracellular vesicles (including 
microvesicles and apoptotic bodies), characterized by a diameter 
exceeding 200 nm (Thery et al., 2018; Welsh et al., 2024) (Figure 1). 
sEVs are formed through inward budding of the endosomal 
membrane, resulting in the formation of multivesicular bodies. 
These multivesicular bodies subsequently fuse with the plasma 

membrane, releasing intraluminal vesicles into the extracellular 
space (Shao et al., 2018). Microvesicles, on the other hand, 
are larger (200–1,000 nm) and are generated by direct outward 
budding from the plasma membrane (Gurunathan et al., 2019). 
Apoptotic bodies are even larger (1–5 µm) and are released during 
the process of programmed cell death, containing cellular debris 
and organelles (Akers et al., 2013). The classification of EVs is 
essential for understanding their distinct biogenesis, composition, 
and functional roles in health and disease (Chen et al., 2024b; 
Ren et al., 2024; Martinez-Garcia et al., 2024). Besides EVs, EV-like 
particles are increasingly gaining interest. These EV-like particles 
generally consist of non-vesicular protein aggregates or complexes, 
lipoprotein particles, viral or bacterial particles, and artificial 
substances generated during sample preparation (Wang et al., 2022). 
The process by which EV-like particles form is not completely 
understood and might be linked to the clustering of cellular 
metabolites or particular cellular activities. Certain EV-like particles 
carry specific biomarkers and could play a role in disease diagnosis; 
however, their functions are quite complex and need more research.

sEVs are defined as nanoscale vesicles that originate from 
the endosomal system of cells. Their biogenesis begins with the 
inward budding of the endosomal membrane, forming intraluminal 
vesicles (ILVs) within multivesicular bodies (MVBs). When these 
MVBs fuse with the plasma membrane, sEVs are released into 
the extracellular environment. This process is regulated by various 
proteins, including members of the ESCRT (endosomal sorting 
complexes required for transport) machinery, which facilitate the 
sorting of specific cargo into sEVs (van Niel et al., 2018; Kowal et al., 
2014; Ostrowski et al., 2010). The cargo of sEVs is diverse, which 
can influence the behavior of recipient cells. The unique composition 
of sEVs reflects the physiological state of their parent cells, making 
them valuable biomarkers for various diseases, including cancer 
(Park et al., 2023; Lai et al., 2023).

Microvesicles and apoptotic bodies represent two distinct types 
of extracellular vesicles, each with unique characteristics and 
functions. Microvesicles are formed through the outward budding 
of the plasma membrane and are typically larger than sEVs, ranging 
from 200 to 1,000 nm (Wang et al., 2023). They contain a variety 
of bioactive molecules and are involved in processes such as cell 
signaling, inflammation, and tissue repair. In contrast, apoptotic 
bodies are released during the process of apoptosis, the programmed 
cell death that occurs in response to cellular stress or damage. 
They are larger (1–5 µm) and contain cellular debris, including 
organelles and fragments of the cytoplasm. Unlike microvesicles, 
which can be involved in intercellular communication, apoptotic 
bodies primarily serve as a mechanism for the removal of dying 
cells and their components from the body. The distinct biogenesis, 
size, and contents of these vesicles underscore their different roles in 
cellular processes and disease mechanisms (Zhang et al., 2024).

EVs play a multifaceted and critical role in intercellular 
communication, significantly influencing a wide range of 
physiological and pathological processes. They enable the transfer 
of proteins, lipids, and genetic material between cells, thereby 
modulating signaling pathways that affect cellular behavior, immune 
responses, and tissue regeneration. For example, sEVs derived from 
stem cells have demonstrated potential in facilitating tissue repair 
and regeneration across various injury models (Trubiani et al., 2019). 
Moreover, EVs are involved in disease progression, particularly 
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FIGURE 1
The biogenesis process of extracellular vesicles. Two mechanisms of EVs biogenesis are illustrated. The process of releasing sEVs into the extracellular 
milieu contains three distinct steps: sEVs biogenesis, intracellular trafficking of MVBs, and fusion of MVBs with the plasma membrane. Early endosomes 
are formed by the inward budding of the plasma membrane, or in some cases from the Golgi. Early endosomes mature into late endosomes and finally 
generate MVBs, in which process intraluminal vesicles (ILVs) are formed by inward invagination of the endosome limiting membrane. The fate of MVBs 
can be fusion with the plasma membrane, which results in the release of sEVs. Alternatively, MVBs can fuse with lysosomes/autophagosomes for 
degradation. Microvesicles arise from the direct outward budding and fission of the plasma membrane.

in cancer, where tumor-derived extracellular vesicles can alter 
the tumor microenvironment, promote metastasis, and facilitate 
immune evasion (Liu et al., 2025). The capacity of EVs to transport 
specific molecular cargoes, such as microRNAs and proteins, renders 
them promising candidates as biomarkers for disease diagnosis and 
prognosis (Kumar et al., 2024; De Giorgis et al., 2024; He et al., 
2024). Their pivotal role in mediating cell-to-cell communication 
underscores their potential as therapeutic agents in regenerative 
medicine and targeted drug delivery systems (Ramesh et al., 2023). 

3 Applications of extracellular vesicles 
in disease diagnosis

Liquid biopsy, an advanced technology for analyzing body fluid 
samples, is gaining traction in cancer diagnostics and monitoring. 
Blood-based liquid biopsy, particularly focusing on cell-free DNAs 
(cf-DNAs), circulating tumor cells (CTCs), and EVs, has garnered 
significant attention (Su et al., 2024). The benefits of analyzing 
EVs through liquid biopsy include: (1) EVs are found in higher 
concentrations in bodily fluids compared to circulating tumor 
cells; (2) EVs offer more detailed information about the cells that 
produce them than circulating DNA does; and (3) EVs exhibit 
strong biological stability even within the harsh tumor environment 

(Kalluri and LeBleu, 2020; Yu et al., 2022; Mathew et al., 2020). The 
potential of EVs in clinical diagnostics is vast, spanning across tumor 
detection, autoimmune diseases, and infectious diseases (Figure 2). 
Their non-invasive nature allows for the collection of biological 
fluids such as blood, urine, and saliva, making them ideal candidates 
for liquid biopsies. This section will explore the specific applications 
of EVs in identifying tumor markers, diagnosing autoimmune 
diseases early, and detecting biomarkers for infectious diseases.

The identification of tumor markers via the analysis of EVs 
has transformed cancer diagnostics (Youssef et al., 2025). Tumor-
derived EVs (tEVs) contain a diverse array of biomolecules, 
such as proteins, lipids, and nucleic acids, which offer valuable 
insights into tumor presence and progression. For example, 
research has demonstrated that elevated levels of specific proteins, 
including Glypican-3 (GPC3), in circulating EVs are correlated with 
hepatocellular carcinoma, establishing them as reliable indicators 
for early detection (Qu et al., 2023). Based on microfluidic 
technology with fine microstructures and precise microfluidic 
operations, this dPCR chip enables accurate quantification of tumor-
derived extracellular vesicles (SEVs) across various tumor markers, 
demonstrating exceptional sensitivity (detection limit: 10 copies). 
In clinical sample analysis, the chip effectively distinguishes lung 
cancer patients from healthy controls (P < 0.001, two-tailed t-test). 
Furthermore, in samples with extremely low target concentrations, 
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FIGURE 2
The application process of extracellular vesicles in disease diagnosis. sEVs are isolated from the body’s blood. The contents of proteins, nucleic acids 
and lipids in sEVs can be used for the diagnosis of tumor, autoimmune diseases and infectious diseases.

it exhibits significantly superior quantitative accuracy compared 
to quantitative real-time polymerase chain reaction (qPCR). 
Furthermore, circulating EVs have shown potential in monitoring 
metastasis in breast cancer patients, with significant differences in 
tEV levels observed between metastatic and non-metastatic cases 
(Xu et al., 2024). Pancreatic cancer (PC) is a highly aggressive 
digestive system cancer, with pancreatic ductal adenocarcinoma 
(PDAC) representing about 90% of all PC cases. Xu and colleagues 
created a diagnostic model using a set of biomarkers, including three 
types of miRNAs and CA19-9, which achieved an AUC of 0.97, 
sensitivity of 0.95, and specificity of 0.96 (Nakamura et al., 2022). 
Melo and his team discovered that identifying glypican-1 in EVs 
among pancreatic cancer (PC) patients showed perfect sensitivity 
and specificity (100%) in diagnosing all stages of PC, effectively 
differentiating pancreatic cancer patients from healthy individuals 
or those with chronic pancreatitis (AUC = 1.0) (Melo et al., 
2015). This characteristic positions EVs as promising candidates 
for liquid biopsy applications, offering a non-invasive alternative 
to traditional tissue biopsies and facilitating real-time monitoring 
of tumor dynamics. At present, the application of EVs in clinical 
trials for tumor diagnosis is gradually increasing. LIVER-TRACK 
aims at reliably predicting the outcome of patients with compensated 
cirrhosis through the development of a Tests for Decompensation 
and a Test for HCC. This will be achieved through leveraging 
circulating EVs, an untapped source of biomarkers in liver 
diseases, as prognostic indicators, and combining them with 
existing blood biomarkers and single-nucleotide polymorphisms 
(NCT07185360). A clinical trial currently underway at Centre 
Hospitalier Universitaire de Dijon aims to differentiate normal 
subjects from colorectal cancer patients through the detection and 
characterization of circulating extracellular vesicles (EVs) in blood, 
including parameters such as size, concentration, and molecular 
composition (proteins, lipids, RNA, etc.) (NCT04523389).

EVs play a pivotal role in the pathogenesis and diagnosis of 
autoimmune diseases (Huang et al., 2025). These vesicles modulate 
immune responses through the transfer of bioactive molecules, such 
as cytokines and microRNAs, which can alter the behavior of target 
cells (Makhijani and McGaha, 2022). For instance, research has 
shown that EVs derived from immune cells carry specific miRNAs 
that promote inflammatory processes, thereby contributing to the 
development of autoimmune disorders, including systemic lupus 

erythematosus (SLE) and rheumatoid arthritis (Zhu et al., 2023). A 
study found that phosphatidylserine-negative extracellular vesicles 
were elevated in patients with SLE compared to healthy individuals, 
particularly among women and smokers (Mobarrez et al., 2016). 
Additionally, a prior study found that SLE patients had higher 
levels of CD31+/annexin V+/CD42b- EVs compared to healthy 
individuals, and there was a correlation between these EVs and the 
median overall BILAG-2004 score following treatment (Parker et al., 
2014). Ding et al. found elevated levels of hcmv-miR-UL59, which 
is mainly contained within EVs in the plasma, in patients with 
oral lichen planus (OLP) (Ding et al., 2017). Another study showed 
increased expression of miR-4484 in salivary EVs from OLP 
patients and suggested this miRNA as a potential biomarker for the 
disease (Byun et al., 2015). Additionally, research reported varying 
expression levels of miR-34a-5p, miR-130b-3p, and miR-301b-3p in 
circulating EVs in OLP, with miR-34a-5p levels correlating with the 
severity of the condition (Peng et al., 2018). Moreover, the feasibility 
of isolating and analyzing EVs from readily accessible biofluids 
underscores their clinical utility, providing a promising approach 
for identifying novel diagnostic markers and therapeutic targets in 
autoimmune conditions (Zhang et al., 2020).

Extracellular vesicles have emerged as significant players in 
the diagnosis of infectious diseases, acting as carriers of pathogen-
derived components and host immune responses (Kaparakis et al., 
2010). They can encapsulate and transport microbial antigens, 
proteins, and nucleic acids, which can be detected in various 
biological fluids during infections (Zhang et al., 2020). For 
instance, EVs released during bacterial infections can carry 
virulence factors that modulate host immune responses, providing 
a mechanism for pathogens to evade detection (Kwaku et al., 2024). 
The analysis of EVs has shown promise in identifying specific 
biomarkers for various infectious diseases, including viral, bacterial, 
and parasitic infections. Recent advancements in EV isolation 
and characterization techniques have enhanced the sensitivity
and specificity of these biomarkers, allowing for the early detection 
and monitoring of infectious diseases (Dominguez Rubio et al., 
2022). Yoon et al. found through research that based 
on metagenomic analysis, five microbial patterns: phyla 
Firmicutes, Actinobacteria, Proteobacteria, phyla Bacteroidetes and 
Verrucomicrobia detected in urine EVs hold promise as potential 
biomarkers for the diagnosis of colorectal cancer (Yoon et al., 2023).
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A study involving children in Malawi found that plasma levels of 
EVs derived from endothelial cells were six times higher in patients 
with cerebral malaria (CM) compared to those with severe malaria 
without CM (Combes et al., 2004). This suggests a strong link 
between increased EV levels and the onset of CM. Additionally, EVs 
originating from red blood cells were shown to rise in proportion 
to the severity of disease in patients infected with Plasmodium 
falciparum and were also elevated, though to a lesser extent, in 
individuals infected with Plasmodium vivax and Plasmodium 
malariae. Importantly, antimalarial treatment led to a decrease in 
circulating EVs levels after 2 weeks in patients with P. vivax and P. 
malariae infections, but not in those with P. falciparum, indicating 
that sustained high EVs levels might be a marker of disease severity 
(Nantakomol et al., 2011). Additionally, the potential of EVs as 
therapeutic delivery vehicles in the context of infectious diseases is 
being explored, highlighting their dual role as both diagnostic and 
therapeutic agents (Vydrar et al., 2023). Overall, the application of 
EVs in infectious disease diagnostics represents a rapidly evolving 
field with significant implications for improving patient outcomes 
and disease management. 

4 The role of extracellular vesicles in 
prognostic assessment

EVs have emerged as significant players in the field of 
prognostic assessment across various diseases, particularly in 
cancer, cardiovascular diseases, and neurodegenerative disorders 
(Hu and De, 2024; Schneider et al., 2024; AuthorAnonymous, 
2024). Their ability to carry bioactive molecules allows them to 
reflect the physiological and pathological states of their parent 
cells (Salunkhe et al., 2020). This characteristic makes EVs a 
promising source of biomarkers for early diagnosis, monitoring 
disease progression, and evaluating treatment responses. The non-
invasive nature of EV isolation from bodily fluids such as blood 
and urine enhances their utility in clinical settings, providing a 
window into the underlying biological processes of diseases without 
the need for invasive procedures (Gyorgy, 2025). The growing body 
of research highlights the potential of EVs to serve as reliable 
prognostic indicators, paving the way for personalized medicine 
approaches that can improve patient outcomes.

In the realm of oncology, extracellular vesicles have been 
identified as valuable tools for assessing cancer prognosis. For 
instance, studies have shown that circulating EVs can carry 
tumor-derived microRNAs and proteins that correlate with disease 
progression and patient outcomes. In melanoma, EVs derived from 
lymphatic drainage have been characterized to contain markers 
indicative of tumor progression and the presence of mutations 
such as BRAF V600E, which are associated with a higher risk of 
relapse (Garcia-Silva et al., 2019). Thus, detection of the BRAFV600E

mutation in ES-derived EV nucleic acids could serve as a minimal 
residual disease/prognostic indicator, with added value over the 
current tissue biopsies being an almost real-time predictor of risk 
right after lymphadenectomy. Similarly, in cholangiocarcinoma, 
EVs facilitate communication between cancer cells and the tumor 
microenvironment, influencing disease progression and offering 
insights into potential therapeutic strategies (Zhang N. et al., 2023). 
Furthermore, in gastric cancer, the presence of specific proteins 

within EVs has been linked to peritoneal metastasis, demonstrating 
their role in predicting disease spread and patient prognosis (Li et al., 
2024a). Zahra et al. demonstrated that in patients with metastatic 
non-small cell lung cancer, CTCs and high concentrations of PD-
L1-positive small extracellular vesicles (sEVs) were significantly 
associated with progression-free survival (PFS) and overall survival 
(OS), whereas ctDNA mutations did not show a similar correlation. 
The integrated analysis of these biomarkers may aid in identifying 
patients at higher risk of poor OS outcomes. The ability to quantify 
these biomarkers in EVs not only enhances prognostic accuracy but 
also aids in the development of targeted therapies, underscoring the 
critical role of EVs in cancer management.

EVs have also been implicated in the risk assessment of 
cardiovascular diseases (CVD) (Cochain and Zernecke, 2017). They 
are involved in various pathophysiological processes, including 
inflammation, endothelial dysfunction, and thrombosis, which are 
central to CVD development. Research indicates that increased 
levels of specific EVs have been associated with hypertension 
and acute cardiovascular events, suggesting their potential as 
predictive markers (Tang et al., 2023). Moreover, EVs derived 
from endothelial cells have been shown to reflect the health of 
the vascular system, providing insights into the risk of ischemic 
events (Yu et al., 2025). The identification of EV-associated 
proteins and miRNAs linked to cardiovascular risk factors, such 
as obesity and metabolic syndrome, further emphasizes their role 
in comprehensive risk assessment strategies (Cheng et al., 2021). 
EVs miR-1915-3p, miR-4,507, and miR-3,656 were significantly 
less expressed in AMI compared to stable coronary artery disease 
patients, suggesting that these miRNAs might be predictive for 
acute myocardial infarction at an early stage (Su et al., 2020). 
Elevated levels of CD31+/Annexin V+ EVs are associated with 
an increased risk of coronary revascularization and cardiovascular 
mortality. These levels rise in patients who have impaired coronary 
artery function and cardiovascular risk factors, and they can 
serve as an independent predictor of cardiovascular events in 
individuals with stable coronary artery disease (Sinning et al., 
2011). Additionally, studies have demonstrated that circulating EVs 
expressing CD3+/CD45+ and SMA-α+ are elevated in people with a 
high cardiovascular risk (Chiva-Blanch et al., 2016). By integrating 
EVs analysis into clinical practice, healthcare providers can enhance 
their ability to predict and manage cardiovascular risks effectively.

In neurodegenerative diseases, extracellular vesicles are 
gaining attention as potential biomarkers for monitoring disease 
progression. Conditions such as Alzheimer’s disease (AD) 
and Parkinson’s disease (PD) are characterized by complex 
pathophysiological changes that can be reflected in the cargo of 
EVs (Cai et al., 2024; Li et al., 2024b). For instance, studies have 
demonstrated that neuron-derived EVs contain proteins and RNA 
species that correlate with disease severity and progression in 
AD (Pham et al., 2024). The presence of specific microRNAs in 
plasma EVs has been linked to cognitive decline, highlighting 
their potential as early diagnostic tools (Raineri et al., 2024). 
Additionally, EVs can facilitate intercellular communication in the 
brain, contributing to the spread of pathological proteins associated 
with neurodegeneration (Wiersema et al., 2024). This emerging 
understanding positions EVs as valuable non-invasive biomarkers 
for tracking disease progression and therapeutic responses, offering 
hope for improved management strategies in neurodegenerative 
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FIGURE 3
The application of EVs in disease treatment. Overview of EV roles in disease and therapeutic applications intended to attenuate cancer-related 
processes or to decrease tissue injury and enhance tissue repair in neurodegenerative, infectious, diabetes, cardiovascular, and kidney disease.

disorders. As research continues to elucidate the role of EVs in 
these conditions, their integration into clinical practice could 
revolutionize how we monitor and treat neurodegenerative diseases. 

5 The potential of extracellular 
vesicles in treatment monitoring

EVs are increasingly recognized for their potential in monitoring 
treatment efficacy across various medical fields, for example, 
tumors, neurodegenerative diseases, cardiovascular diseases, etc 
(Optical microscopy and transcriptomics reveal, 2024) (Figure 3). 
These vesicles, which are secreted by all cell types, contain a 
diverse array of biomolecules, making them valuable for real-
time monitoring of therapeutic responses. Their presence in 
various bodily fluids, such as blood and urine, allows for non-
invasive sampling, which is a significant advantage over traditional 
biopsy methods. Recent studies have demonstrated that EVs 
can serve as biomarkers for ongoing monitoring of treatment 
efficacy, particularly in cancer therapies. For instance, the dynamic 
changes in EV composition can reflect the biological status of 
tumors, providing insights into treatment responses and disease 
progression (Stevic et al., 2020). Moreover, the ability to analyze EVs 
can facilitate personalized medicine approaches, tailoring therapies 
based on individual patient responses.

Immunotherapy has revolutionized cancer treatment, yet its 
efficacy can vary significantly among patients (Ktena et al., 2024). 
Monitoring the effectiveness of such therapies is crucial for 
optimizing treatment strategies. For example, studies have shown 
that the presence of specific proteins and nucleic acids within 
EVs correlates with the response to immune checkpoint inhibitors, 
allowing clinicians to assess treatment effectiveness in real time 

(Cheng et al., 2024). The Simona study shows that circulating 
EVs expressing PD1 and PD-L1 predict response and mediate 
resistance to checkpoint inhibitors immunotherapy in metastatic 
melanoma (Serrati et al., 2022). Additionally, the analysis of 
EVs can provide insights into mechanisms of resistance, enabling 
timely adjustments to therapeutic regimens. The potential for EVs 
to serve as non-invasive indicators of immunotherapy response 
highlights their importance in enhancing the precision of cancer 
treatments (Pan et al., 2021).

The heterogeneity of cancer and individual patient responses 
to treatment necessitate personalized approaches to therapy 
(Lawrence et al., 2024). EVs can suppress tumor progression 
via modifications to the molecules expressed on their surface 
and inside them, independently of their origin. In line with this 
approach, colorectal cancer cells treated with starved tumor-cell-
derived EVs loaded with miR-34a showed the inhibition of both 
proliferation and migration, accompanied by apoptosis, via the 
downregulation of IL-6R, STAT3, PD-L1 and VEGF-A expression 
in vitro, with prolonged survival time and impaired immune evasion 
in a solid tumor (Hosseini et al., 2021; Hosseini et al., 2022). 
Another mechanism associated with the anti-tumor activity of 
EVs is the sensitization to chemotherapy; for example, AT-MSC-
derived EVs have been modified to express miR-122, showing that 
the treatment of hepatocellular carcinoma cells with these EVs 
increases the sensitivity of tumor cells to sorafenib (Lou et al., 
2015), since miR-122 inhibits the expression of the multidrug-
resistance-related genes, such as ATP-binding cassette (ABC) 
transporters (Xiong et al., 2021).

EVs can play a critical role in this individualized assessment by 
providing real-time insights into how a patient’s tumor is responding 
to specific drugs (Kantarci, 2023). By analyzing the molecular 
cargo of EVs, clinicians can gauge the effectiveness of targeted 
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therapies and adjust treatment plans accordingly. For instance, the 
use of advanced technologies to profile EVs has revealed distinct 
signatures associated with drug resistance, enabling healthcare 
providers to identify which patients are likely to benefit from 
particular therapies. This approach not only enhances treatment 
efficacy but also minimizes unnecessary side effects by avoiding 
ineffective treatments (Lee et al., 2023). The integration of EV 
analysis into clinical practice represents a significant advancement 
in the field of personalized medicine.

Monitoring both the efficacy and potential toxicity of cancer 
treatments is essential for optimizing patient outcomes (Cohen et al., 
2021). EVs offer a unique opportunity to achieve this dynamic 
monitoring through the analysis of their molecular content. Changes 
in the composition of EVs can indicate not only how well a 
treatment is working but also whether it is causing adverse effects. 
For example, specific biomarkers found in EVs can signal the 
onset of drug-related toxicities, allowing for timely interventions 
(Liu et al., 2023). Recent studies have demonstrated that the analysis 
of EVs can provide a comprehensive view of a patient’s response 
to therapy, capturing both therapeutic benefits and potential risks. 
This dual monitoring capability is particularly valuable in the 
context of chemotherapeutic agents, where balancing efficacy and 
toxicity is crucial for patient safety and treatment success (Sanchez-
Manas et al., 2024). The ability to utilize EVs for real-time 
monitoring represents a transformative step in cancer care, enabling 
more informed and responsive treatment strategies. 

6 Challenges of EVs in the field of 
laboratory medicine

Techniques for Isolation and Identification of Extracellular 
Vesicles. One of the foremost challenges in EVs research lies in the 
isolation and identification techniques employed. Current methods, 
such as ultracentrifugation and size exclusion chromatography, often 
yield heterogeneous populations of EVs, complicating downstream 
analyses and interpretations (Jia et al., 2022). The characteristics of 
currently widely used EVs separation methods are summarized in 
Table 1. The lack of standardized protocols results in variations in 
yield and purity, which can significantly affect the reproducibility of 
results across different laboratories (Royo et al., 2020). Furthermore, 
existing techniques may co-isolate non-EV components that 
can obscure the biological relevance of the findings. Emerging 
methods, such as microfluidic devices and immunoaffinity capture, 
show promise for enhancing specificity and efficiency in EV 
isolation (Arora et al., 2024). However, these methods are still in 
the developmental phase and require validation to ensure their 
applicability in clinical settings. The need for robust, reproducible, 
and standardized protocols is critical for advancing the field and 
facilitating the transition of EV research from bench to bedside.

Standardization and regulation pose significant hurdles in the 
clinical translation of EV-based therapies. The heterogeneity of 
EVs, stemming from their diverse cellular origins and biogenesis 
pathways, complicates the establishment of universal quality control 
measures (Reithmair et al., 2022). Regulatory bodies currently lack 
clear guidelines for the characterization and quality assessment of 
EVs, which can lead to inconsistencies in clinical trial outcomes and 
hinder the approval of EV-based therapeutics (Wang et al., 2024). 

Moreover, the absence of well-defined reference materials for EVs 
complicates the validation of methodologies used in their isolation 
and analysis (Wang et al., 2025). To address these challenges, it is 
essential to develop comprehensive guidelines that encompass the 
entire workflow of EV research, from isolation to characterization, 
to ensure that EV-based products meet the necessary safety and 
efficacy standards for clinical use. The quality control framework for 
EVs outlined in MISEV2023 can be broken down into four main 
steps, with a strong emphasis on creating standardized procedures 
and acceptance criteria for each stage: (1) Starting materials—such 
as cell lines and sources of biological fluids—must undergo thorough 
cell identity verification before EV production. Detailed records 
of culture conditions, including medium composition (e.g., serum 
presence or absence, batch numbers), cultivation environment (2D 
vs. 3D, use of bioreactors), and other relevant factors should 
be kept, as these significantly affect EV yield and molecular 
makeup. (2) During isolation, all key parameters related to the 
separation technique used must be carefully documented and 
reported. The entire production process should be carried out under 
controlled conditions that meet established quality standards. (3) 
Characterizing the final EV product is crucial; for clinical use, 
purity-measured by contaminant levels-is vital for ensuring safety 
and effectiveness. Adequate proof must be provided to show that 
contaminants have been sufficiently removed or minimized to 
acceptable levels. (4) Functional testing and stability monitoring: 
Functional assays, either in vitro or in vivo, should be designed 
based on the intended therapeutic use of the EVs (such as immune 
modulation, tissue repair, or drug delivery). Moreover, the physical 
integrity, surface marker profiles, and biological activity of EVs 
should be regularly checked during storage to guarantee consistent 
performance.

The clinical translation of EVs as therapeutic agents faces 
several barriers, including technical, biological, and regulatory 
challenges. Despite the promising therapeutic potential of EVs, 
particularly in areas such as cancer and neurodegenerative diseases, 
their clinical application is often impeded by issues related to 
scalability, reproducibility, and the complexity of their biological 
effects (Li et al., 2025). Furthermore, the intricate mechanisms by 
which EVs exert their effects are not yet fully understood, which 
complicates the development of targeted therapies (Song et al., 
2024). However, ongoing research is exploring innovative strategies 
to enhance the therapeutic efficacy of EVs, such as engineering 
modifications to improve targeting and cargo delivery (Wang et al., 
2024). The integration of EVs into existing treatment paradigms, 
combined with advancements in nanotechnology and drug delivery 
systems, holds promise for overcoming these barriers. As the field 
matures, collaborative efforts among researchers, clinicians, and 
regulatory agencies will be pivotal in realizing the full potential of 
EVs in clinical practice. 

7 The development trend of EVs in the 
field of laboratory medicine

Multi-omics integration and big data analysis. As a marker 
carrier at the subcellular scale, EVs carry a variety of biomolecules 
such as proteins, RNA, DNA, and metabolites, etc (Yokoi et al., 

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1709461
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wang et al. 10.3389/fcell.2025.1709461

TABLE 1  Comparison of EVs features separated by different methods.

Separation 
method

Principle Yield Purity Repeatability Clinical 
scalability

Ultracentrifuge method 
(UC)

Separate based on size 
and density

Medium It is relatively low and 
easy to co-separate 
contaminants such as 
proteins

It’s okay, but it’s greatly 
influenced by the 
operator

Low, expensive 
equipment, and limited 
throughput

Density gradient 
centrifugation method

Separation based on EVs 
density

Low Moderate, easily affected 
by proteins and lipids

Moderate, 
time-consuming

Low, not suitable for 
large-scale specimens

Size exclusion 
chromatography (SEC)

Separation is carried out 
based on fluid dynamics 
volume

Medium Moderate, still disturbed 
by lipoproteins and the 
like

High, standardized 
processes

Medium, there is a risk 
of clogging of the 
chromatography column

Immunoaffinity capture 
method

Separation is based on 
surface-specific antigens

Low High and highly specific Moderate, affected by the 
batch of antibodies

Low, high cost and low 
throughput

Precipitation method Polymer co-precipitates 
with EVs

High It is low and easily 
affected by lipids and 
proteins

Medium, not conducive 
to high-precision 
analysis

High, low cost and high 
output

Target-type 
multi-chamber 
electrophoresis

Separation is carried out 
based on differences in 
size and charge ratio

High Moderate, affected by the 
batch of antibodies

High potential, 
automated continuous 
separation

High, capable of 
high-throughput 
preparation

Improved 
chromatography

SEC binds core beads to 
remove soluble proteins

High High purity, more than 
three times that of UC

High, standardized 
processes

High, suitable for 
large-scale clinical 
samples

2025). Bollard and colleagues discovered that analyzing plasma-
derived extracellular vesicles using both proteomics and 
metabolomics can be an effective diagnostic tool for melanoma, 
achieving a classification accuracy of 85.11% when distinguishing 
melanoma patients from healthy individuals (Bollard et al., 2024). 
For instance, researchers recently showed that measuring both α-
synuclein and clusterin together in serum L1CAM-positive EVs was 
very effective (AUC = 0.98) at distinguishing Parkinson’s disease 
from atypical parkinsonism. This finding was based on 735 samples 
from four separate groups and outperformed the accuracy of each 
individual marker alone, which had AUC values around 0.82 to 
0.86 (Jiang et al., 2020). Using multi-omics integration for the joint 
analysis of different types of markers, and solving the technical 
problems of complex data analysis with the help of the big data 
accumulated from basic research and clinical practice, and artificial 
intelligence to construct a multi-dimensional disease prediction 
and diagnostic model, we can not only mine potential markers of 
EVs in the high-throughput multi-dimensional genomic data to 
predict their diagnostic value in different disease groups, but also 
reveal biological features that are difficult to be found by traditional 
methods, thus significantly improving the diagnostic specificity and 
sensitivity of EVs markers (Miceli et al., 2024). It can not only mine 
potential markers in EVs from high-throughput multidimensional 
histological data and predict their diagnostic value in different 
disease groups, but also reveal biological features that are difficult 
to be found by traditional methods, thus significantly improving 
the diagnostic specificity and sensitivity of EVs markers, which is 
the future direction of the development of EVs and its application 
prospects (Yin et al., 2024).

Development of clinically appropriate technology for the 
isolation and detection of EVs. With the rapid advancement 
of cross-disciplinary medicine, emerging technologies such as 
nanotechnology, microfluidics, super-resolution microscopy, 
functional materials, and artificial intelligence have been 
progressively integrated into the experimental platforms for EVs. 
These innovations have substantially enhanced the separation 
efficiency, detection sensitivity, and specificity of EVs (Chen et al., 
2021). For instance, ultrasonic nanofiltration technology leverages 
the synergistic advantages of ultrasound and nanofiltration 
membranes to efficiently purify EVs within a short timeframe, 
making it suitable for large-scale clinical samples (Chen et al., 
2021). Ultrasensitive flow cytometry and droplet microfluidics 
enable highly sensitive detection of EVs (Khanna et al., 2023; 
Meng et al., 2023), while super-resolution microscopy is utilized for 
characterizing EV subpopulations and analyzing their interactions 
with cells (Zhang Z. et al., 2023). Given the complexity of body fluid 
samples and the diversity and high heterogeneity of EV markers, 
further efforts are required in three key areas: automated analysis 
of EV isolation and detection platforms, high-precision detection 
platforms for individual EVs, and high-throughput multi-marker 
detection platforms (Feng et al., 2025). Such advancements are 
essential for translating EV research into clinical applications. 
Continuous innovation and optimization of EV isolation and 
detection technologies are necessary to improve detection sensitivity 
and specificity, reduce detection time, lower costs, and facilitate 
large-scale clinical screening and research on EVs (Ma et al., 2019). 
Ultimately, these improvements aim to establish EV isolation and 
detection as a practical and reliable technology, providing advanced 
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tools for health management, disease prediction, early diagnosis, 
condition assessment, treatment guidance, and therapeutic efficacy 
monitoring.

Standardized and normalized quality system construction. A 
robust quality control system is critical for ensuring the reliability 
and consistency of test results. Establishing a reference material 
production, research, and quality assurance system constitutes 
the core of this endeavor. First, EV reference materials must 
achieve standardization and reproducibility, stable physicochemical 
properties, well-defined biological characteristics, quantifiability, 
and ease of acquisition-these are also the primary objectives 
of EV research (Vogel et al., 2021). Second, the EV testing 
process encompasses multiple steps, from sample collection and 
processing to EV isolation, testing, and data analysis. Each step 
may introduce errors and variations that could compromise result 
accuracy. To address these challenges, ISEV and the Committee 
on Extracellular Vesicle Research and Application (CSEV) of the 
Chinese Society of Research Hospitals have developed a series of 
position papers and quality control procedures aimed at monitoring 
and mitigating errors and variability in EV testing. For instance, 
MISEV2023, the latest guideline for EV research issued by ISEV, 
provides detailed specifications for experimental practices and data 
reporting based on cutting-edge scientific advancements and expert 
consensus (Author Anonymous, 2024). Additionally, the MIBlood-
EV Quality Control Reporting Framework was established to 
encompass pre-analytical variables and quality control methods for 
blood samples, thereby promoting standardization and enabling 
cross-laboratory comparisons (Lucien et al., 2023). For instance, 
the U.S. Food and Drug Administration (FDA) has issued a 
series of guidance documents on liquid biopsy and extracellular 
vesicle (EV) markers, outlining specific requirements for clinical 
trial design, data submission, and approval processes. In 2016, 
ExoDx Prostate received regulatory clearance from the U.S. FDA, 
becoming the first prostate cancer risk assessment tool based 
on EVs’s RNA (McKiernan et al., 2016). 

8 Future perspectives

The 2013 Nobel Prize in Physiology or Medicine was awarded 
to American scientists James E. Rothman and Randy W. Schekman, 
along with German scientist Thomas C. Südhof, in recognition 
of their discovery of the regulatory mechanisms governing 
intracellular vesicle transport. This breakthrough also ignited a 
global surge of research into EVs. As a promising biomarker, 
EVs show vast potential for development within laboratory 
medicine. However, for EVs to be fully integrated into clinical 
practice as diagnostic and therapeutic tools, ongoing efforts are 
required in areas such as multi-omics integration and big data 
analysis, the creation of clinically suitable separation and detection 
technologies, the establishment of standardized quality control 
systems, as well as clinical trials and regulatory approvals. Given 
the unique advantages of EVs and the rapid advancement of related 
technologies, through the dedicated work of scientists, clinicians, 

and laboratory professionals, EVs are expected to play a significant 
role in clinical diagnosis and treatment in the future, ultimately 
enhancing human health.
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