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Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage
degeneration and osteophyte formation, with no fundamentally effective
therapies currently available. Existing treatments are mainly symptomatic (e.g.,
drug injections and joint replacement) and cannot reverse the pathological
progression, resulting in limited efficacy. A hypoxic microenvironment is a
significant barrier to OA treatment: increased inflammatory cells in the synovium
lead to higher oxygen consumption, causing cartilage hypoxia that exacerbates
inflammation via hypoxia-inducible factors and accelerates cartilage damage.
In recent years, research on oxygen-generating biomaterials targeting joint
hypoxia has become a hot topic. Such materials continuously release
oxygen through mechanisms like peroxide decomposition, enzyme-catalyzed
reactions, or photosynthetic microbes, thereby increasing local oxygen partial
pressure, relieving tissue hypoxia, and suppressing oxidative stress, which is
expected to promote cartilage regeneration. This review systematically explores
the hypoxia-induced pathogenic mechanisms of OA, innovatively categorizes
and describes the fabrication strategies of oxygen-releasing biomaterials
developed in recent years, analyzes their potential molecular mechanisms in OA
therapy, and highlights current limitations in oxygen-release controllability and
biosafety, as well as future research directions.

KEYWORDS
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1 Introduction

Osteoarthritis (OA) is a common degenerative joint disease whose progression
is accompanied by changes in the local pathological microenvironment of the joint,
such as abnormal biomechanical stress, accumulation of inflammatory mediators,
elevated oxidative stress, and hypoxic conditions (Tang et al, 2025). The hypoxic
microenvironment within the joint cavity is considered a crucial pathogenic factor,
particularly in certain forms of OA (Figure 1) (Zhang et al, 2025). Normal cartilage
tissue is avascular and operates under low oxygen tension, but in OA this balance
is disrupted, and dysregulated oxygen supply to chondrocytes has profound effects
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FIGURE 1

Schematic diagram of the key pathological processes induced by hypoxic microenvironment in osteoarthritis degeneration.

on joint tissues. Given the beneficial role of oxygen in bone and soft
tissue repair, various oxygen therapies have been applied clinically,
including (HBOT), local oxygen-enriched devices, near-infrared
phototherapy, and wearable photobiomodulation devices such as
low-intensity lasers (Feng et al.,, 2025; Zou et al., 2023). These
interventions have been shown to improve joint function to varying
degrees by increasing local oxygen supply, but their limited tissue
penetration, short duration of effect, and reliance on exogenous
oxygen supply greatly restrict their widespread application and long-
term efficacy.

With the rapid development of tissue engineering, research
on “oxygen-generating biomaterials” that provide self-oxygen
supply and modulate the microenvironment in OA treatment has
flourished in recent years (Lang et al., 2025). These biomaterials
have been proposed to help overcome these issues, especially in
advanced or end-stage OA where hypoxia and tissue degeneration
are pronounced. By providing sustained, localized oxygen delivery,
these biomaterials alleviate chronic intra-articular hypoxia
and improve cellular viability and function. This sustained
oxygenation can modulate hypoxia-related signaling pathways
(e.g., aberrant HIF-la activity) that otherwise drive cartilage
degradation. Moreover, continuous oxygen release supports
chondrogenesis and integration of repair tissue with subchondral
bone, leading to enhanced osteochondral regeneration even in
severe OA cases (Zhang H et al.,, 2023). This review focuses on
exploring the latest advances in oxygen-generating materials,
emphasizing their design, functional characteristics, and biological
activity. Additionally, the article delves into the critical role of
hypoxia in OA pathogenesis, highlighting the key pathological
changes it induces. Finally, by systematically comparing the
advantages and limitations of different types of oxygen-generating
materials, this review aims to point out new directions for the
treatment of this challenging clinical problem in OA.
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2 Hypoxia induced pathological
changes in joints

2.1 Cartilage degeneration and destruction

Hypoxic conditions exacerbate OA cartilage degeneration and
destruction through multiple molecular mechanisms. Under mild
hypoxia, the HIF-1a pathway is activated to maintain chondrocyte
survival and extracellular matrix (ECM) homeostasis, playing a
protective role, however, under sustained severe hypoxia, HIF-
la exhibits a “double-edged sword” effect. Overactivation of HIF-
la induces expression of cartilage matrix-degrading enzymes
(such as MMP-13 and ADAMTS-5), accelerating ECM breakdown
(Figure 1) (Phillips, 2022).

Meanwhile, hypoxia causes abnormal accumulation of reactive
oxygen species (ROS) within chondrocytes and activates the NF-
kB signaling pathway, upregulating pro-inflammatory mediators
and additional matrix metalloproteinases. This amplifies the
local inflammatory response and induces chondrocyte apoptosis.
Hypoxia also inhibits the PI3K/AKT/mTOR survival signaling
pathway, weakening chondrocyte autophagy and proliferation,
such impaired signaling can lead to autophagy dysfunction
and hindered cell renewal, reducing the cells’ capacity to cope
with stress (Wang et al., 2016).

Furthermore, chronic hypoxia causes mitochondrial
dysfunction: it blocks oxidative phosphorylation in chondrocytes,
resulting in decreased ATP production and disturbed energy
metabolism. Excess ROS production together with energy
deficiency induces cellular stress damage. This metabolic imbalance
and ROS burden also diminish the ability of chondrocytes
to synthesize key ECM components like collagen II and
proteoglycans (Zhao Z et al., 2024). Collectively, these hypoxia-

mediated molecular events interact and ultimately promote the
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degeneration and destruction of articular cartilage, accelerating the
progression of OA.

2.2 Synovial inflammation

The synovial tissue in OA is often under low oxygen, and
hypoxia has been proven to be a critical driver of chronic synovial
inflammation. At the molecular level, hypoxia can induce synovial
macrophages to polarize to the pro-inflammatory M1 phenotype: HIF-
la s stabilized under hypoxic conditions and, together with activation
of pathways such as STAT3 and Notchl, drives macrophages to
express an M1 phenotype and secrete high levels of pro-inflammatory
cytokines (e.g., TNF-a, IL-1B), exacerbating synovial inflammation
(Hua and Dias, 2016). Simultaneously, hypoxia causes a large
accumulation of intracellular ROS, and excessive ROS can trigger
NLRP3 inflammasome activation. This promotes the maturation and
release of inflammatory cytokines (especially IL-13 and IL-18) and
induces pyroptotic death of synovial cells, thereby establishing a
sustained chronic inflammatory state.Additionally, hypoxia directly
acts on synovial fibroblasts (FLS), causing their activation and the
production of numerous pro-inflammatory and tissue-destructive
factors. These include cytokines such as TNF-a, IL-6, and IL-8, and
matrix metalloproteinases like MMP-1, MMP-3, and MMP-13. This
leadsto elevatedlevels of inflammatory mediators and cartilage matrix-
degrading enzymesin the synovial microenvironment, accelerating the
degeneration of cartilage and subchondral bone (Kim et al., 2019).

On the other hand, hypoxia also weakens local immune
regulation within the synovium. HIF-la-mediated signaling
can inhibit transcription factors such as FoxP3, impeding
the differentiation and function of regulatory T cells (Treg)
and reducing the production of anti-inflammatory cytokines
(such as IL-10). This results in weaker protective immune
responses and a shift toward a pro-inflammatory imbalance
between Th1l7 and Treg cells. In summary, hypoxia induces
a positive feedback loop of pro-inflammatory factors and
immune dysregulation in synovial tissue, driving and
sustaining chronic synovitis in OA and promoting disease
progression.

2.3 Subchondral bone sclerosis and cystic
changes

Recent studies have confirmed that hypoxia promotes
pathological changes in the (Zhang$S et al, 2023). Hypoxia
continuously stimulates HIF-la and its downstream vascular
endothelial growth factor (VEGF) expression, driving HIF-
1a/VEGF axis-mediated abnormal angiogenesis. This causes
abundant new blood vessels (including CD31, EMCN and H-
type vessels) to invade the normally avascular subchondral
bone region. The formation of these abnormal vascular
networks disrupts the normal osteochondral interface barrier,
leading to disturbed local oxygen tension and inducing
vascular calcification and osteoid matrix deposition. Excessive
angiogenesis is often accompanied by an osteogenic response,

producing excessive bone formation and ultimately leading
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to abnormal thickening (sclerosis) of the subchondral
bone plate.

Notably, HIF-1a expression is significantly higher in sclerotic
subchondral bone compared to relatively healthy areas, further
supporting the close association between hypoxic signaling and
subchondral bone sclerosis. Simultaneously, hypoxia influences
the differentiation fate of bone marrow mesenchymal stem
cells (BMSCs), promoting their shift toward the osteogenic
lineage rather than the chondrogenic lineage. For example,
hypoxic culture enhances BMSC mineralization and increases the
expression of osteogenic markers (such as bone sialoprotein and
osteocalcin), which may correspondingly weaken their potential for
chondrogenic differentiation (Wang H et al., 2025).

Furthermore, under hypoxic and inflammatory conditions,
osteoclasts in the subchondral bone become over-activated:
early-stage bone resorption is enhanced and trabecular bone
mass is transiently reduced, exacerbating an imbalance in bone
remodeling. As the disease progresses, osteoclast activity gradually
declines, bone resorption is reduced, and osteogenesis dominates,
leading to excessive trabecular thickening and architectural
disruption. Localized abnormal mechanical stress further results
in microfractures and bone marrow edema, forming subchondral
bone cystic lesions. These molecular mechanisms illustrate the key
role of hypoxia in the development and progression of subchondral

bone sclerosis and cystic changes in OA.

3 Classification and research progress
of oxygen-releasing materials

Based on the pathological features of joint hypoxia in OA
and the joints unique anatomy, various “oxygen-generating
materials” have been developed for OA repair. The core idea
is to release oxygen within the joint cavity to improve local
hypoxia while also scavenging excess ROS to protect chondrocytes.
These materials mainly include: nanozymes (artificial enzyme-
mimetic nanomaterials) (Yu et al., 2024), hydrogels (polymer gels
loaded with oxygen sources or carriers) (Wang] et al, 2025),
microspheres/particles (slow-release inorganic peroxide particles)
(Miao et al.,, 2024), and composite systems (integrating oxygen-
generating components with antioxidative/anti-inflammatory
components or scaffolds) (Bordon et al., 2023) (Figure 2).

3.1 Nanozyme-based oxygen-releasing
materials

Nanozymes are nanomaterials with enzyme-like catalytic
activity that can decompose ROS or H,O, in the joint to generate
O,, mimicking natural oxidoreductases (primarily superoxide
dismutase [SOD] and catalase [CAT]). Common nanozymes
include transition metal oxides (e.g, MnO,, CeO,), noble
metal nanoparticles (e.g., Pt, Pd), and their composites. They
efficiently catalyze the conversion of H,O, into O,. Researchers
have developed various strategies to prepare nanozymes: 1)
template methods: creating hollow or porous structures (e.g.,
using sacrificial templates) to increase the material's surface
area. 2) Solvothermal/hydrothermal synthesis: growing metal
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FIGURE 2
Schematic diagram of the main types of oxygen producing
biomaterials in recent years.

oxide nanocrystals under high temperature and pressure.
3) Pyrolysis of precursors: burning metal salts with organic
ligands to form nanozymes. In addition, structural modulation
techniques can significantly enhance catalytic performance,
such as introducing oxygen vacancies (e.g., by doping Ti into
Ce0O,) or surface functionalization with noble metals (e.g.,
loading Pt or Au onto carbonized metal-organic frameworks).
Constructing Janus or layered multi-metal oxide structures
can also endow nanozymes with multi-enzyme activities
(Aldrich et al., 2023; Wang K et al., 2023).

Nanozymes exhibit very high catalytic efficiency and oxygen-
generating capability. For example, Wang et al. reported Mn;0,
nanozymes with high catalase-like activity. These rapidly
decomposed H,0, and released large amounts of dissolved oxygen
in a simulated OA joint environment (pH 6.5), effectively reducing
intracellular ROS levels in chondrocytes (Wang W et al., 2023).
In another study, researchers designed an ionically zwitterionic
“hyaluronan synthase-mimicking” nanozyme (MPMP) that, under
near-infrared excitation, generates a photothermal effect and
releases Mg®* ions. This design synergistically mimics SOD/CAT
activity to scavenge ROS and release substantial O,, significantly
promoting cartilage regeneration under inflammatory conditions
(Yu et al, 2023). In another report, a polymer-coated Prussian
Blue nanozyme (PPBzyme) was stable in physiological buffer and
demonstrated long-term efficient oxygen release along with anti-
inflammatory effects by inhibiting JNK phosphorylation (Cho et al.,
2023). Overall, by finely tuning composition and structure, various
nanozymes can achieve oxygen-release performance comparable to
or even surpassing that of natural enzymes, providing new strategies
for OA therapy.
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3.2 Hydrogel-based oxygen-releasing
materials

Given the joints fluidic environment, injectable hydrogel
biomaterials have been extensively developed for OA therapy.
Oxygen-generating hydrogels typically embed oxygen source
particles or catalysts within a three-dimensional polymer network
to achieve sustained oxygen release. Common oxygen sources
include peroxides (such as CaO, and MgO,), oxygen carriers
(such as hydrogen peroxide or perchlorate salts), and nanozymes
that catalyze H,0O, decomposition (Wang et al., 2022). Common
methods to construct such hydrogels include: 1) physical
embedding: directly mixing oxygen source microparticles into
the gel precursor, so that upon gelation the particles are fixed
within the network (Liu et al., 2022). 2) Enzymatic crosslinking:
for example, using tyrosinase to crosslink carboxymethy chitosan
while simultaneously incorporating CaO, particles (Li et al,
2025). 3) Freeze-thaw gelation: using repeated freeze-thaw cycles
of polymers like polyvinyl alcohol (PVA) to form a physically
crosslinked network, trapping oxygen-releasing particles in
its pores (Xu et al., 2025).

These oxygen-generating hydrogels, due to their polymer
matrices, often exhibit prolonged oxygen release profiles. For
example, Wang etal. constructed a responsive gel matrix
encapsulating calcium peroxide (CaO,) in a degradable scaffold,
which can release oxygen gradually according to the inflammatory
environment. In simulated synovial fluid, this hydrogel continuously
released oxygen for over a week, with peak dissolved oxygen levels
reaching or exceeding those of normal tissues (Wang K et al., 2023).
In another study, Zhang etal. developed an injectable hydrogel
for OA using MXene-based nanoenzymes as the active core. In
the presence of H,0,, this hydrogel continuously produces O,
while also providing anti-inflammatory effects (Zhang et al., 2024).
Notably, recent studies often incorporate peroxides with stem cells,
drugs, or growth factors within hydrogels, designing smart carriers
that synergistically combine oxygen release with other therapeutic
functions.

3.3 Microsphere-based oxygen-releasing
materials

Oxygen-generating microspheres typically encapsulate unstable
peroxides (such as CaO, or MgO,) as a core to create a slow oxygen-
release reservoir. These are commonly prepared through methods
such as: emulsion-gelation, spray drying, and solvent evaporation,
to produce oxygen-containing microspheres. To achieve stable and
sustained oxygen release, microspheres are often fabricated with
core-shell structures. For example, the microsphere surface may
be coated with a dense polymer layer (such as PLGA) or an
additional hydrophilic polymer shell to isolate the core from the
surrounding water and control the peroxide reaction. By tuning the
degradation rate and hydrophilicity of the shell, the core gradually
hydrolyzes to generate H,O,, which is then slowly decomposed to
release O,. For instance, one study encapsulated MgO nanoparticles
within PLGA microspheres (MgO&SA@PLGA) and injected them
into the joint cavities of OA rats. These significantly improved
cartilage degeneration, even though the initial design was to release
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Mg?*, because the reaction of MgO with water also produced a
small amount of oxygen, providing an additional oxygen supply
(Zheng L et al., 2024). Similarly, another group loaded CaO,
into gelatin microspheres, which were then embedded in a self-
assembling peptide and PLGA membrane composite scaffold. In
this system, hydrolysis enabled continuous oxygen generation for
approximately 21 days in vitro and 28 days in vivo (Zhang et al.,
2021). Overall, oxygen-generating microspheres, through controlled
chemical release 0.

3.4 Composite oxygen-releasing systems

Composite oxygen-release systems integrate oxygen sources
with other functional components to achieve multi-modal therapy.
In OA repair, oxygen sources are often combined with antioxidants
(e.g., selenium compounds, plant-derived antioxidants), bioactive
agents (e.g., stem cells, exosomes, anti-inflammatory drugs), or
structural scaffolds. Assembly techniques include: 1) multilayer
nano-composites: e.g., stacking layers of oxygen source particles,
growth factors, and polymers. 2) Self-assembly: e.g., liposomes
or nanospheres that co-encapsulate oxygen sources and drugs. 3)
Covalent crosslinking: e.g., chemically attaching oxygen carriers to
a polymer backbone.

These strategies can achieve concurrent oxygen release
and other therapeutic functions. For example, co-loading an
anti-inflammatory drug into an oxygen-releasing hydrogel
can restore oxygen supply while simultaneously modulating
inflammation. Alternatively, modifying the surface of oxygen-
releasing microspheres with targeting ligands can enhance their
retention and release efficiency within the joint. Chen etal
designed a biomimetic nanocapsule coated with an M2 macrophage
membrane, carrying both uricase and a catalase-mimetic nanozyme.
In this system, uricase degrades uric acid and the nanozyme
catalytically converts the resulting H,O, into O,. This dual-enzyme
approach simultaneously provides oxygen supplementation and
inflammation relief, demonstrating combined anti-inflammatory
and oxygen-delivery effects (Chen et al., 2023). Similarly, some
studies have also assembled CaO, nanoparticles, antioxidant
molecules (such as selenium nanoparticles) and scaffold materials to
construct bone repair scaffolds with dual functions of oxygen release
and oxidation resistance (Garcia et al., 2024). The performance of
such composite systems is evaluated not only by their O, release
profile but also by their antioxidant capacity (ROS scavenging
efficiency), biocompatibility, and their ability to promote cell
proliferation and differentiation. Overall, through multifunctional
integrated design, composite oxygen-releasing systems achieve
synergistic effects combining oxygen supply with drug therapy,
anti-inflammation, or tissue support, providing new strategies for
modulating the OA joint microenvironment and promoting tissue
regeneration.

4 Oxygen supply, microenvironment
modulation, and OA repair

Articular cartilage is an avascular tissue that exists in a
chronically low-oxygen environment, disruption of its oxygen
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balance leads to increased oxidative stress, dysregulated HIF-1a
signaling, and elevated inflammatory mediators, which accelerate
cartilage degeneration (Lang et al., 2025). Lang et al. noted that
by using strategies such as oxygen-generating nanomaterials to
modulate joint oxygen levels, oxygen-related signaling pathways
can be selectively activated to support cartilage repair (Lang et al.,
2025). In line with this concept, recent studies have designed
oxygen-releasing materials and confirmed that they can improve OA
pathology through various molecular mechanisms. For example,
Xiong etal. designed a pH-responsive degradable nanozyme
(HMPBzyme) to mimic the OA microenvironment. This nanozyme
suppresses the hypoxia-induced overexpression of HIF-la and
reduces intracellular ROS. In vitro and in vivo, HMPBzyme
cooperatively protected mitochondrial function and downregulated
HIF-1a, which shifted macrophages from a pro-inflammatory
M1 phenotype toward an anti-inflammatory M2 phenotype,
thereby remodeling the joint immune microenvironment. As a
result, this nanozyme inhibited oxidative damage and hypoxia,
significantly suppressing inflammation and promoting cartilage
matrix synthesis, which improved cartilage degeneration in
an OA rat model (Xiong et al, 2022). Zhao etal. developed
an injectable oxygen-releasing hydrogel (L-MNS-CMDA) that
continuously releases oxygen by decomposing endogenous or
exogenous H,0,. This hydrogel promptly alleviated hypoxia-
induced cellular oxidative stress and, by inhibiting macrophage
M1 polarization, promoted M2 polarization and restored an anti-
inflammatory immune microenvironment. In a knee cartilage defect
model, implantation of this hydrogel modulated early inflammatory
responses and significantly promoted the differentiation of bone
marrow mesenchymal stem cells (BMSCs) into chondrocytes.
This was evidenced by enhanced glycosaminoglycan and type
II collagen expression, leading to effective cartilage tissue
regeneration and functional recovery (Zhao et al., 2025). Zhou
etal. reported a hyaluronic acid-based hydrogel microsphere
(HAM-SA@HCQ) responsive to hypoxia and MMP-13, which
rapidly degrades in OA lesions and releases the anti-inflammatory
drug hydroxychloroquine (HCQ). The microsphere also contains
ROS-scavenging components that synergistically
eliminate free radicals and oxidative stress. Under hypoxic

structural

inflammatory conditions, degradation of the microspheres and
release of HCQ significantly downregulated HIF-1a and various
inflammatory factors in the joint and inhibited macrophage
inflammatory activity. This system substantially lowered oxidative
stress in the joint, prevented cartilage degradation, and thereby
slowed OA progression (Zhou et al., 2024). Additionally, Wong
etal. constructed a dual-crosslinked tyramine-alginate hydrogel
containing CaO, for sustained oxygen release. They found
that the continuous generation of oxygen by CaO, markedly
maintained the viability of embedded cells and improved the
gel's mechanical strength and adhesiveness, thereby enhancing
support for chondrocytes (Wong et al., 2022). This material
promoted the chondrogenic differentiation of mesenchymal stem
cells and the production of cartilage matrix, improving the efficiency
of cartilage repair.

In summary, oxygen-releasing materials synergistically
ameliorate the pathological state of OA through multiple
mechanisms, including alleviating oxidative stress, modulating
HIF-la  signaling, the

remodeling immune-inflammatory
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microenvironment, and promoting chondrocyte differentiation and
extracellular matrix synthesis.

5 Conclusion and perspectives

Oxygen-generating materials, by actively releasing oxygen and
improving the local joint microenvironment, have shown significant
promise for OA therapy. However, key limitations remain. First,
limited oxygen release duration is a primary challenge. Most
inorganic peroxides react rapidly under physiological conditions,
making sustained release difficult, while excessively fast oxygen
release can lead to hydrogen peroxide accumulation and hyperoxia
toxicity, damaging cells (Montesdeoca et al., 2022). An ideal
oxygen-generating system must precisely control the reaction rate
within a safe range while providing oxygen for at least several
weeks. Some studies have achieved over 2 weeks of continuous
release by embedding oxygen sources in polymer microparticles
or multilayer structures to slow hydrolysis (Jiang et al., 2024).
For example, calcium peroxide-alginate microcapsules released
oxygen continuously for 19 days in a rabbit model, significantly
reducing local cell apoptosis. Nevertheless, further extending the
release period and preventing burst release remain challenging
(Wong et al, 2022). Second, local delivery efliciency and
targeting are also critical issues. Materials injected into the joint
cavity often disperse or are cleared rapidly, making long-term
retention difficult. Therefore, developing carriers with controllable
degradation and stimuli-responsiveness (such as hypoxia-triggered
release) is necessary to ensure that oxygen is released locally at
the lesion site rather than diffusing systemically. Additionally,
safety evaluation is still inadequate: excessive oxygen or reactive
oxygen species can inhibit angiogenesis or induce apoptosis.
Thus, when designing oxygen-generating materials, combining
them with antioxidants or enzymes (e.g., catalase) should be
considered to balance oxygen release with peroxide removal
(Zhao J et al., 2024).

Future research should focus on optimizing the preparation
and functionality of oxygen-generating materials to better
meet the needs of OA therapy. Directions include: 1)
exploring novel oxygen sources and carriers: for example, using
microbial photosynthesis, catalytic peroxide/H,O, systems, or
multifunctional nanocomposites to achieve controllable oxygen
supply. 2) Developing smart responsive systems: materials that
initiate oxygen release under hypoxic conditions or accelerate
delivery during high oxygen demand could minimize wasted
oxygen and side effects. 3) Investigating material-biology interfaces:
evaluating how oxygen-generating materials affect immune cells
(e.g., macrophage M1/M2 polarization) and studying the long-
term biomechanical and biochemical feedback on chondrocytes
and osteoblasts. 4) Strengthening in vivo and preclinical studies:
establishing more complex OA animal models to evaluate joint
structure repair, pain relief, and functional recovery, while
conducting thorough biocompatibility assessments (histopathology,
systemic toxicity, and immune responses). 5) Addressing scalability
and formulation: developing cost-effective, scalable manufacturing
methods and delivery systems for oxygen-generating materials to
facilitate clinical translation and application (Jiang et al., 2024).
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By addressing these challenges and research directions, the field
can advance toward clinically viable oxygen-releasing therapies to
improve the hypoxic microenvironment and repair mechanisms in
osteoarthritic joints.
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