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Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage 
degeneration and osteophyte formation, with no fundamentally effective 
therapies currently available. Existing treatments are mainly symptomatic (e.g., 
drug injections and joint replacement) and cannot reverse the pathological 
progression, resulting in limited efficacy. A hypoxic microenvironment is a 
significant barrier to OA treatment: increased inflammatory cells in the synovium 
lead to higher oxygen consumption, causing cartilage hypoxia that exacerbates 
inflammation via hypoxia-inducible factors and accelerates cartilage damage. 
In recent years, research on oxygen-generating biomaterials targeting joint 
hypoxia has become a hot topic. Such materials continuously release 
oxygen through mechanisms like peroxide decomposition, enzyme-catalyzed 
reactions, or photosynthetic microbes, thereby increasing local oxygen partial 
pressure, relieving tissue hypoxia, and suppressing oxidative stress, which is 
expected to promote cartilage regeneration. This review systematically explores 
the hypoxia-induced pathogenic mechanisms of OA, innovatively categorizes 
and describes the fabrication strategies of oxygen-releasing biomaterials 
developed in recent years, analyzes their potential molecular mechanisms in OA 
therapy, and highlights current limitations in oxygen-release controllability and 
biosafety, as well as future research directions.
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 1 Introduction

Osteoarthritis (OA) is a common degenerative joint disease whose progression 
is accompanied by changes in the local pathological microenvironment of the joint, 
such as abnormal biomechanical stress, accumulation of inflammatory mediators, 
elevated oxidative stress, and hypoxic conditions (Tang et al., 2025). The hypoxic 
microenvironment within the joint cavity is considered a crucial pathogenic factor, 
particularly in certain forms of OA (Figure 1) (Zhang et al., 2025). Normal cartilage 
tissue is avascular and operates under low oxygen tension, but in OA this balance 
is disrupted, and dysregulated oxygen supply to chondrocytes has profound effects
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FIGURE 1
Schematic diagram of the key pathological processes induced by hypoxic microenvironment in osteoarthritis degeneration.

on joint tissues. Given the beneficial role of oxygen in bone and soft 
tissue repair, various oxygen therapies have been applied clinically, 
including (HBOT), local oxygen-enriched devices, near-infrared 
phototherapy, and wearable photobiomodulation devices such as 
low-intensity lasers (Feng et al., 2025; Zou et al., 2023). These 
interventions have been shown to improve joint function to varying 
degrees by increasing local oxygen supply, but their limited tissue 
penetration, short duration of effect, and reliance on exogenous 
oxygen supply greatly restrict their widespread application and long-
term efficacy.

With the rapid development of tissue engineering, research 
on “oxygen-generating biomaterials” that provide self-oxygen 
supply and modulate the microenvironment in OA treatment has 
flourished in recent years (Lang et al., 2025). These biomaterials 
have been proposed to help overcome these issues, especially in 
advanced or end-stage OA where hypoxia and tissue degeneration 
are pronounced. By providing sustained, localized oxygen delivery, 
these biomaterials alleviate chronic intra-articular hypoxia 
and improve cellular viability and function. This sustained 
oxygenation can modulate hypoxia-related signaling pathways 
(e.g., aberrant HIF-1α activity) that otherwise drive cartilage 
degradation. Moreover, continuous oxygen release supports 
chondrogenesis and integration of repair tissue with subchondral 
bone, leading to enhanced osteochondral regeneration even in 
severe OA cases (Zhang H et al., 2023). This review focuses on 
exploring the latest advances in oxygen-generating materials, 
emphasizing their design, functional characteristics, and biological 
activity. Additionally, the article delves into the critical role of 
hypoxia in OA pathogenesis, highlighting the key pathological 
changes it induces. Finally, by systematically comparing the 
advantages and limitations of different types of oxygen-generating 
materials, this review aims to point out new directions for the 
treatment of this challenging clinical problem in OA. 

2 Hypoxia induced pathological 
changes in joints

2.1 Cartilage degeneration and destruction

Hypoxic conditions exacerbate OA cartilage degeneration and 
destruction through multiple molecular mechanisms. Under mild 
hypoxia, the HIF-1α pathway is activated to maintain chondrocyte 
survival and extracellular matrix (ECM) homeostasis, playing a 
protective role, however, under sustained severe hypoxia, HIF-
1α exhibits a “double-edged sword” effect. Overactivation of HIF-
1α induces expression of cartilage matrix-degrading enzymes 
(such as MMP-13 and ADAMTS-5), accelerating ECM breakdown 
(Figure 1) (Phillips, 2022).

Meanwhile, hypoxia causes abnormal accumulation of reactive 
oxygen species (ROS) within chondrocytes and activates the NF-
κB signaling pathway, upregulating pro-inflammatory mediators 
and additional matrix metalloproteinases. This amplifies the 
local inflammatory response and induces chondrocyte apoptosis. 
Hypoxia also inhibits the PI3K/AKT/mTOR survival signaling 
pathway, weakening chondrocyte autophagy and proliferation, 
such impaired signaling can lead to autophagy dysfunction 
and hindered cell renewal, reducing the cells’ capacity to cope 
with stress (Wang et al., 2016).

Furthermore, chronic hypoxia causes mitochondrial 
dysfunction: it blocks oxidative phosphorylation in chondrocytes, 
resulting in decreased ATP production and disturbed energy 
metabolism. Excess ROS production together with energy 
deficiency induces cellular stress damage. This metabolic imbalance 
and ROS burden also diminish the ability of chondrocytes 
to synthesize key ECM components like collagen II and 
proteoglycans (Zhao Z et al., 2024). Collectively, these hypoxia-
mediated molecular events interact and ultimately promote the 
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degeneration and destruction of articular cartilage, accelerating the
progression of OA. 

2.2 Synovial inflammation

The synovial tissue in OA is often under low oxygen, and 
hypoxia has been proven to be a critical driver of chronic synovial 
inflammation. At the molecular level, hypoxia can induce synovial 
macrophages to polarize to the pro-inflammatory M1 phenotype: HIF-
1α is stabilized under hypoxic conditions and, together with activation 
of pathways such as STAT3 and Notch1, drives macrophages to 
express an M1 phenotype and secrete high levels of pro-inflammatory 
cytokines (e.g., TNF-α, IL-1β), exacerbating synovial inflammation 
(Hua and Dias, 2016). Simultaneously, hypoxia causes a large 
accumulation of intracellular ROS, and excessive ROS can trigger 
NLRP3 inflammasome activation. This promotes the maturation and 
release of inflammatory cytokines (especially IL-1β and IL-18) and 
induces pyroptotic death of synovial cells, thereby establishing a 
sustained chronic inflammatory state.Additionally, hypoxia directly 
acts on synovial fibroblasts (FLS), causing their activation and the 
production of numerous pro-inflammatory and tissue-destructive 
factors. These include cytokines such as TNF-α, IL-6, and IL-8, and 
matrix metalloproteinases like MMP-1, MMP-3, and MMP-13. This 
leads to elevated levels of inflammatory mediators and cartilage matrix-
degrading enzymes in the synovial microenvironment, accelerating the 
degeneration of cartilage and subchondral bone (Kim et al., 2019). 

On the other hand, hypoxia also weakens local immune 
regulation within the synovium. HIF-1α-mediated signaling 
can inhibit transcription factors such as FoxP3, impeding 
the differentiation and function of regulatory T cells (Treg) 
and reducing the production of anti-inflammatory cytokines 
(such as IL-10). This results in weaker protective immune 
responses and a shift toward a pro-inflammatory imbalance 
between Th17 and Treg cells. In summary, hypoxia induces 
a positive feedback loop of pro-inflammatory factors and 
immune dysregulation in synovial tissue, driving and 
sustaining chronic synovitis in OA and promoting disease
progression. 

2.3 Subchondral bone sclerosis and cystic 
changes

Recent studies have confirmed that hypoxia promotes 
pathological changes in the (Zhang S et al., 2023). Hypoxia 
continuously stimulates HIF-1α and its downstream vascular 
endothelial growth factor (VEGF) expression, driving HIF-
1α/VEGF axis-mediated abnormal angiogenesis. This causes 
abundant new blood vessels (including CD31, EMCN and H-
type vessels) to invade the normally avascular subchondral 
bone region. The formation of these abnormal vascular 
networks disrupts the normal osteochondral interface barrier, 
leading to disturbed local oxygen tension and inducing 
vascular calcification and osteoid matrix deposition. Excessive 
angiogenesis is often accompanied by an osteogenic response, 
producing excessive bone formation and ultimately leading 

to abnormal thickening (sclerosis) of the subchondral
bone plate.

Notably, HIF-1α expression is significantly higher in sclerotic 
subchondral bone compared to relatively healthy areas, further 
supporting the close association between hypoxic signaling and 
subchondral bone sclerosis. Simultaneously, hypoxia influences 
the differentiation fate of bone marrow mesenchymal stem 
cells (BMSCs), promoting their shift toward the osteogenic 
lineage rather than the chondrogenic lineage. For example, 
hypoxic culture enhances BMSC mineralization and increases the 
expression of osteogenic markers (such as bone sialoprotein and 
osteocalcin), which may correspondingly weaken their potential for 
chondrogenic differentiation (Wang H et al., 2025).

Furthermore, under hypoxic and inflammatory conditions, 
osteoclasts in the subchondral bone become over-activated: 
early-stage bone resorption is enhanced and trabecular bone 
mass is transiently reduced, exacerbating an imbalance in bone 
remodeling. As the disease progresses, osteoclast activity gradually 
declines, bone resorption is reduced, and osteogenesis dominates, 
leading to excessive trabecular thickening and architectural 
disruption. Localized abnormal mechanical stress further results 
in microfractures and bone marrow edema, forming subchondral 
bone cystic lesions. These molecular mechanisms illustrate the key 
role of hypoxia in the development and progression of subchondral 
bone sclerosis and cystic changes in OA. 

3 Classification and research progress 
of oxygen-releasing materials

Based on the pathological features of joint hypoxia in OA 
and the joint’s unique anatomy, various “oxygen-generating 
materials” have been developed for OA repair. The core idea 
is to release oxygen within the joint cavity to improve local 
hypoxia while also scavenging excess ROS to protect chondrocytes. 
These materials mainly include: nanozymes (artificial enzyme-
mimetic nanomaterials) (Yu et al., 2024), hydrogels (polymer gels 
loaded with oxygen sources or carriers) (Wang J et al., 2025), 
microspheres/particles (slow-release inorganic peroxide particles) 
(Miao et al., 2024), and composite systems (integrating oxygen-
generating components with antioxidative/anti-inflammatory 
components or scaffolds) (Bordon et al., 2023) (Figure 2).

3.1 Nanozyme-based oxygen-releasing 
materials

Nanozymes are nanomaterials with enzyme-like catalytic 
activity that can decompose ROS or H2O2 in the joint to generate 
O2, mimicking natural oxidoreductases (primarily superoxide 
dismutase [SOD] and catalase [CAT]). Common nanozymes 
include transition metal oxides (e.g., MnO2, CeO2), noble 
metal nanoparticles (e.g., Pt, Pd), and their composites. They 
efficiently catalyze the conversion of H2O2 into O2. Researchers 
have developed various strategies to prepare nanozymes: 1) 
template methods: creating hollow or porous structures (e.g., 
using sacrificial templates) to increase the material’s surface 
area. 2) Solvothermal/hydrothermal synthesis: growing metal 
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FIGURE 2
Schematic diagram of the main types of oxygen producing 
biomaterials in recent years.

oxide nanocrystals under high temperature and pressure. 
3) Pyrolysis of precursors: burning metal salts with organic 
ligands to form nanozymes. In addition, structural modulation 
techniques can significantly enhance catalytic performance, 
such as introducing oxygen vacancies (e.g., by doping Ti into 
CeO2) or surface functionalization with noble metals (e.g., 
loading Pt or Au onto carbonized metal-organic frameworks). 
Constructing Janus or layered multi-metal oxide structures 
can also endow nanozymes with multi-enzyme activities 
(Aldrich et al., 2023; Wang K et al., 2023).

Nanozymes exhibit very high catalytic efficiency and oxygen-
generating capability. For example, Wang et al. reported Mn3O4
nanozymes with high catalase-like activity. These rapidly 
decomposed H2O2 and released large amounts of dissolved oxygen 
in a simulated OA joint environment (pH 6.5), effectively reducing 
intracellular ROS levels in chondrocytes (Wang W et al., 2023). 
In another study, researchers designed an ionically zwitterionic 
“hyaluronan synthase-mimicking” nanozyme (MPMP) that, under 
near-infrared excitation, generates a photothermal effect and 
releases Mg2+ ions. This design synergistically mimics SOD/CAT 
activity to scavenge ROS and release substantial O2, significantly 
promoting cartilage regeneration under inflammatory conditions 
(Yu et al., 2023). In another report, a polymer-coated Prussian 
Blue nanozyme (PPBzyme) was stable in physiological buffer and 
demonstrated long-term efficient oxygen release along with anti-
inflammatory effects by inhibiting JNK phosphorylation (Cho et al., 
2023). Overall, by finely tuning composition and structure, various 
nanozymes can achieve oxygen-release performance comparable to 
or even surpassing that of natural enzymes, providing new strategies 
for OA therapy. 

3.2 Hydrogel-based oxygen-releasing 
materials

Given the joint’s fluidic environment, injectable hydrogel 
biomaterials have been extensively developed for OA therapy. 
Oxygen-generating hydrogels typically embed oxygen source 
particles or catalysts within a three-dimensional polymer network 
to achieve sustained oxygen release. Common oxygen sources 
include peroxides (such as CaO2 and MgO2), oxygen carriers 
(such as hydrogen peroxide or perchlorate salts), and nanozymes 
that catalyze H2O2 decomposition (Wang et al., 2022). Common 
methods to construct such hydrogels include: 1) physical 
embedding: directly mixing oxygen source microparticles into 
the gel precursor, so that upon gelation the particles are fixed 
within the network (Liu et al., 2022). 2) Enzymatic crosslinking: 
for example, using tyrosinase to crosslink carboxymethy chitosan 
while simultaneously incorporating CaO2 particles (Li et al., 
2025). 3) Freeze-thaw gelation: using repeated freeze-thaw cycles 
of polymers like polyvinyl alcohol (PVA) to form a physically 
crosslinked network, trapping oxygen-releasing particles in 
its pores (Xu et al., 2025).

These oxygen-generating hydrogels, due to their polymer 
matrices, often exhibit prolonged oxygen release profiles. For 
example, Wang et al. constructed a responsive gel matrix 
encapsulating calcium peroxide (CaO2) in a degradable scaffold, 
which can release oxygen gradually according to the inflammatory 
environment. In simulated synovial fluid, this hydrogel continuously 
released oxygen for over a week, with peak dissolved oxygen levels 
reaching or exceeding those of normal tissues (Wang K et al., 2023). 
In another study, Zhang et al. developed an injectable hydrogel 
for OA using MXene-based nanoenzymes as the active core. In 
the presence of H2O2, this hydrogel continuously produces O2
while also providing anti-inflammatory effects (Zhang et al., 2024). 
Notably, recent studies often incorporate peroxides with stem cells, 
drugs, or growth factors within hydrogels, designing smart carriers 
that synergistically combine oxygen release with other therapeutic 
functions. 

3.3 Microsphere-based oxygen-releasing 
materials

Oxygen-generating microspheres typically encapsulate unstable 
peroxides (such as CaO2 or MgO2) as a core to create a slow oxygen-
release reservoir. These are commonly prepared through methods 
such as: emulsion–gelation, spray drying, and solvent evaporation, 
to produce oxygen-containing microspheres. To achieve stable and 
sustained oxygen release, microspheres are often fabricated with 
core-shell structures. For example, the microsphere surface may 
be coated with a dense polymer layer (such as PLGA) or an 
additional hydrophilic polymer shell to isolate the core from the 
surrounding water and control the peroxide reaction. By tuning the 
degradation rate and hydrophilicity of the shell, the core gradually 
hydrolyzes to generate H2O2, which is then slowly decomposed to 
release O2. For instance, one study encapsulated MgO nanoparticles 
within PLGA microspheres (MgO&SA@PLGA) and injected them 
into the joint cavities of OA rats. These significantly improved 
cartilage degeneration, even though the initial design was to release 
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Mg2+, because the reaction of MgO with water also produced a 
small amount of oxygen, providing an additional oxygen supply 
(Zheng L et al., 2024). Similarly, another group loaded CaO2
into gelatin microspheres, which were then embedded in a self-
assembling peptide and PLGA membrane composite scaffold. In 
this system, hydrolysis enabled continuous oxygen generation for 
approximately 21 days in vitro and 28 days in vivo (Zhang et al., 
2021). Overall, oxygen-generating microspheres, through controlled 
chemical release 0. 

3.4 Composite oxygen-releasing systems

Composite oxygen-release systems integrate oxygen sources 
with other functional components to achieve multi-modal therapy. 
In OA repair, oxygen sources are often combined with antioxidants 
(e.g., selenium compounds, plant-derived antioxidants), bioactive 
agents (e.g., stem cells, exosomes, anti-inflammatory drugs), or 
structural scaffolds. Assembly techniques include: 1) multilayer 
nano-composites: e.g., stacking layers of oxygen source particles, 
growth factors, and polymers. 2) Self-assembly: e.g., liposomes 
or nanospheres that co-encapsulate oxygen sources and drugs. 3) 
Covalent crosslinking: e.g., chemically attaching oxygen carriers to 
a polymer backbone.

These strategies can achieve concurrent oxygen release 
and other therapeutic functions. For example, co-loading an 
anti-inflammatory drug into an oxygen-releasing hydrogel 
can restore oxygen supply while simultaneously modulating 
inflammation. Alternatively, modifying the surface of oxygen-
releasing microspheres with targeting ligands can enhance their 
retention and release efficiency within the joint. Chen et al. 
designed a biomimetic nanocapsule coated with an M2 macrophage 
membrane, carrying both uricase and a catalase-mimetic nanozyme. 
In this system, uricase degrades uric acid and the nanozyme 
catalytically converts the resulting H2O2 into O2. This dual-enzyme 
approach simultaneously provides oxygen supplementation and 
inflammation relief, demonstrating combined anti-inflammatory 
and oxygen-delivery effects (Chen et al., 2023). Similarly, some 
studies have also assembled CaO2 nanoparticles, antioxidant 
molecules (such as selenium nanoparticles) and scaffold materials to 
construct bone repair scaffolds with dual functions of oxygen release 
and oxidation resistance (García et al., 2024). The performance of 
such composite systems is evaluated not only by their O2 release 
profile but also by their antioxidant capacity (ROS scavenging 
efficiency), biocompatibility, and their ability to promote cell 
proliferation and differentiation. Overall, through multifunctional 
integrated design, composite oxygen-releasing systems achieve 
synergistic effects combining oxygen supply with drug therapy, 
anti-inflammation, or tissue support, providing new strategies for 
modulating the OA joint microenvironment and promoting tissue 
regeneration. 

4 Oxygen supply, microenvironment 
modulation, and OA repair

Articular cartilage is an avascular tissue that exists in a 
chronically low-oxygen environment, disruption of its oxygen 

balance leads to increased oxidative stress, dysregulated HIF-1α 
signaling, and elevated inflammatory mediators, which accelerate 
cartilage degeneration (Lang et al., 2025). Lang et al. noted that 
by using strategies such as oxygen-generating nanomaterials to 
modulate joint oxygen levels, oxygen-related signaling pathways 
can be selectively activated to support cartilage repair (Lang et al., 
2025). In line with this concept, recent studies have designed 
oxygen-releasing materials and confirmed that they can improve OA 
pathology through various molecular mechanisms. For example, 
Xiong et al. designed a pH-responsive degradable nanozyme 
(HMPBzyme) to mimic the OA microenvironment. This nanozyme 
suppresses the hypoxia-induced overexpression of HIF-1α and 
reduces intracellular ROS. In vitro and in vivo, HMPBzyme 
cooperatively protected mitochondrial function and downregulated 
HIF-1α, which shifted macrophages from a pro-inflammatory 
M1 phenotype toward an anti-inflammatory M2 phenotype, 
thereby remodeling the joint immune microenvironment. As a 
result, this nanozyme inhibited oxidative damage and hypoxia, 
significantly suppressing inflammation and promoting cartilage 
matrix synthesis, which improved cartilage degeneration in 
an OA rat model (Xiong et al., 2022). Zhao et al. developed 
an injectable oxygen-releasing hydrogel (L-MNS-CMDA) that 
continuously releases oxygen by decomposing endogenous or 
exogenous H2O2. This hydrogel promptly alleviated hypoxia-
induced cellular oxidative stress and, by inhibiting macrophage 
M1 polarization, promoted M2 polarization and restored an anti-
inflammatory immune microenvironment. In a knee cartilage defect 
model, implantation of this hydrogel modulated early inflammatory 
responses and significantly promoted the differentiation of bone 
marrow mesenchymal stem cells (BMSCs) into chondrocytes. 
This was evidenced by enhanced glycosaminoglycan and type 
II collagen expression, leading to effective cartilage tissue 
regeneration and functional recovery (Zhao et al., 2025). Zhou 
et al. reported a hyaluronic acid-based hydrogel microsphere 
(HAM-SA@HCQ) responsive to hypoxia and MMP-13, which 
rapidly degrades in OA lesions and releases the anti-inflammatory 
drug hydroxychloroquine (HCQ). The microsphere also contains 
ROS-scavenging structural components that synergistically 
eliminate free radicals and oxidative stress. Under hypoxic 
inflammatory conditions, degradation of the microspheres and 
release of HCQ significantly downregulated HIF-1α and various 
inflammatory factors in the joint and inhibited macrophage 
inflammatory activity. This system substantially lowered oxidative 
stress in the joint, prevented cartilage degradation, and thereby 
slowed OA progression (Zhou et al., 2024). Additionally, Wong 
et al. constructed a dual-crosslinked tyramine-alginate hydrogel 
containing CaO2 for sustained oxygen release. They found 
that the continuous generation of oxygen by CaO2 markedly 
maintained the viability of embedded cells and improved the 
gel’s mechanical strength and adhesiveness, thereby enhancing 
support for chondrocytes (Wong et al., 2022). This material 
promoted the chondrogenic differentiation of mesenchymal stem 
cells and the production of cartilage matrix, improving the efficiency
of cartilage repair.

In summary, oxygen-releasing materials synergistically 
ameliorate the pathological state of OA through multiple 
mechanisms, including alleviating oxidative stress, modulating 
HIF-1α signaling, remodeling the immune-inflammatory 
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microenvironment, and promoting chondrocyte differentiation and 
extracellular matrix synthesis. 

5 Conclusion and perspectives

Oxygen-generating materials, by actively releasing oxygen and 
improving the local joint microenvironment, have shown significant 
promise for OA therapy. However, key limitations remain. First, 
limited oxygen release duration is a primary challenge. Most 
inorganic peroxides react rapidly under physiological conditions, 
making sustained release difficult, while excessively fast oxygen 
release can lead to hydrogen peroxide accumulation and hyperoxia 
toxicity, damaging cells (Montesdeoca et al., 2022). An ideal 
oxygen-generating system must precisely control the reaction rate 
within a safe range while providing oxygen for at least several 
weeks. Some studies have achieved over 2 weeks of continuous 
release by embedding oxygen sources in polymer microparticles 
or multilayer structures to slow hydrolysis (Jiang et al., 2024). 
For example, calcium peroxide-alginate microcapsules released 
oxygen continuously for 19 days in a rabbit model, significantly 
reducing local cell apoptosis. Nevertheless, further extending the 
release period and preventing burst release remain challenging 
(Wong et al., 2022). Second, local delivery efficiency and 
targeting are also critical issues. Materials injected into the joint 
cavity often disperse or are cleared rapidly, making long-term 
retention difficult. Therefore, developing carriers with controllable 
degradation and stimuli-responsiveness (such as hypoxia-triggered 
release) is necessary to ensure that oxygen is released locally at 
the lesion site rather than diffusing systemically. Additionally, 
safety evaluation is still inadequate: excessive oxygen or reactive 
oxygen species can inhibit angiogenesis or induce apoptosis. 
Thus, when designing oxygen-generating materials, combining 
them with antioxidants or enzymes (e.g., catalase) should be 
considered to balance oxygen release with peroxide removal
(Zhao J et al., 2024).

Future research should focus on optimizing the preparation 
and functionality of oxygen-generating materials to better 
meet the needs of OA therapy. Directions include: 1) 
exploring novel oxygen sources and carriers: for example, using 
microbial photosynthesis, catalytic peroxide/H2O2 systems, or 
multifunctional nanocomposites to achieve controllable oxygen 
supply. 2) Developing smart responsive systems: materials that 
initiate oxygen release under hypoxic conditions or accelerate 
delivery during high oxygen demand could minimize wasted 
oxygen and side effects. 3) Investigating material-biology interfaces: 
evaluating how oxygen-generating materials affect immune cells 
(e.g., macrophage M1/M2 polarization) and studying the long-
term biomechanical and biochemical feedback on chondrocytes 
and osteoblasts. 4) Strengthening in vivo and preclinical studies: 
establishing more complex OA animal models to evaluate joint 
structure repair, pain relief, and functional recovery, while 
conducting thorough biocompatibility assessments (histopathology, 
systemic toxicity, and immune responses). 5) Addressing scalability 
and formulation: developing cost-effective, scalable manufacturing 
methods and delivery systems for oxygen-generating materials to 
facilitate clinical translation and application (Jiang et al., 2024).

By addressing these challenges and research directions, the field 
can advance toward clinically viable oxygen-releasing therapies to 
improve the hypoxic microenvironment and repair mechanisms in 
osteoarthritic joints.
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