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The cell cycle is a fundamental process vital for organismal growth and stability. 
Its dysregulation underlies many human diseases, in particular cancers, making 
its monitoring essential in biological research. Genetically encoded fluorescent 
cell cycle reporters have become indispensable tools for studying the cell cycle, 
providing invaluable insights into cell cycle dynamics at single-cell resolution. A 
variety of fluorescent reporters, including FUCCI, kinase translocation reporters, 
and DNA replication foci-based systems, have been developed to track cell cycle 
progression. Each reporter measures distinct cell cycle specific processes to 
determine the cell cycle status, exhibiting distinctive strengths and limitations. In 
this review, we provide an overview on the commonly used cell cycle reporter 
systems. We then highlight the strengths and weaknesses of the various cell 
cycle reporter systems to guide researchers in selecting the most appropriate 
reporters for their specific needs. Finally, we discuss recent approaches where 
various cell cycle reporters are combined to overcome the limitations of each 
system. Collectively, single cell analysis with these reporters are transforming the 
study of cell cycle regulation, advancing our ability to interrogate a fundamental 
process that governs cell fate and function.
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Introduction

The cell cycle is an important biological process that ensures the accurate replication and 
division of genetic material into two daughter cells (Morgan, 2007). This process is essential 
for development, tissue repair, and maintaining stability within organisms. Faults in cell 
cycle regulation are associated with various human diseases, including congenital disorders 
and cancer (Joseph et al., 2020; Matthews et al., 2021). Consequently, monitoring the cell 
cycle is crucial for many biological studies.

Various methods have been developed to perform cell cycle studies. One of 
the most popular is the use of analytical flow cytometry to assess cell cycle phase 
distribution in a heterogeneous cell population. This technique relies on DNA stains, 
sometimes combined with antibody markers of cell cycle proteins, to determine 
the cell cycle status of a population of cells (Darzynkiewicz et al., 2010; Rieger, 
2022). While highly informative, it requires harvesting cells at a single time 
point, offering a static snapshot of the cell cycle and lacking temporal resolution.
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To gather more temporal data on cell cycle dynamics, drug-
based cell cycle synchronisation methods such as the double 
thymidine block (Vogel et al., 1978; Chen and Deng, 2018), or 
with the CDK4/6 inhibitor Palbociclib (Trotter and Hagan, 2020; 
Chan et al., 2025), can be employed. While these techniques 
help track cell populations that progress synchronously through 
the cell cycle, the synchronisation methods themselves cause 
significant disturbances and cellular stress that can complicate 
biological interpretation (Gong et al., 1995; Kurose et al., 2006; 
Matson et al., 2019; Crozier et al., 2022). Additionally, the rapid loss 
of cell synchrony can conceal changes in cell cycle dynamics, further 
reducing the usefulness of these methods.

Consequently, methods capable of monitoring cell cycle status 
in real-time within single living cells have been developed. 
Experimental approaches using time-lapse imaging of actively 
proliferating cells have become increasingly popular for studying cell 
cycle dynamics (Muzzey and Van Oudenaarden, 2009; Skylaki et al., 
2016; Cooper and Bakal, 2017). Advances in computational image 
analysis, especially in automated cell segmentation and lineage 
tracing, are enhancing the accessibility of microscopy-based cell 
cycle studies (Cheng et al., 2021; Midtvedt et al., 2021; Gui et al., 
2022; Maška et al., 2023; Li et al., 2024). These methods frequently 
employ genetically encoded fluorescent cell cycle reporters to track 
cell cycle progression in live cells.

Various fluorescent cell cycle reporters have been developed 
to observe cell cycle progression. Notable examples include the 
Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) 
system (Sakaue-Sawano et al., 2008), kinase translocation 
reporters (Regot et al., 2014), and DNA replication foci–based 
reporters (Zerjatke et al., 2017). While these tools have significantly 
enhanced our ability to study cell cycle dynamics, their different 
mechanisms, readouts, and limitations mean that choosing the most 
appropriate reporter system depends heavily on the experimental 
context. As the number and complexity of available reporters 
grow, a careful assessment of their design principles, advantages, 
and disadvantages becomes increasingly important. This review 
aims to offer a comparative analysis of these fluorescent cell cycle 
reporters to help researchers select the most suitable options for 
their biological question.

The FUCCI system

Among live cell reporters for cell cycle analysis, the Fluorescent 
Ubiquitination-based Cell Cycle Indicator (FUCCI) system stands 
out as the first genetically encoded fluorescent reporter used for 
the visualisation of cell cycle transitions. Introduced in 2008, 
FUCCI remains one of the most widely used genetically encoded 
systems for tracking cell cycle dynamics in both in vitro and in 
vivo settings (Sakaue-Sawano et al., 2008).

The FUCCI system relies on the cell cycle-controlled breakdown 
of two essential proteins: Cdt1 and Geminin (Sakaue-Sawano et al., 
2008). Cdt1 is involved in the regulation of DNA replication 
(Nishitani et al., 2000), while Geminin is an inhibitor for 
DNA replication in cells (McGarry and Kirschner, 1998). These 
proteins are targeted for destruction by specific E3 ubiquitin ligase 
complexes, APCCdh1 and SCFSkp2, which become active during G1 
and S/G2/M phases of the cell cycle respectively (Wohlschlegel et al., 

2000; Nishitani et al., 2001; Li et al., 2003; Vodermaier, 2004). To 
act as phase-specific reporters, peptide sequences responsible for 
the cell cycle specific degradation of either Cdt1 or Geminin were 
fused with fluorescent proteins. In the original version of the FUCCI 
system, the reporter mKusabiraOrange2-hCdt1 (30/120) builds up 
in G1, while mAzamiGreen-hGem (1/110) accumulates in S/G2/M 
phases (Sakaue-Sawano et al., 2008). Their distinct degradation 
patterns result in red (G1), green (S/G2/M), or yellow at the G1/S 
transition due to overlapping signals (Figure 1A).

FUCCI depends on highly conserved post-translational 
regulation of the cell cycle through ubiquitin-mediated proteolysis. 
This feature allows FUCCI constructs to be expressed under various 
cell types while maintaining specificity (Sakaue-Sawano et al., 
2008; Zielke and Edgar, 2015). It also facilitates stable and 
widespread expression in transgenic animals, making FUCCI 
suitable for long-term in vivo imaging (Mort et al., 2014; 
Zielke et al., 2014; Shcherbakova et al., 2016; Ford et al., 2018; 
Cura Costa et al., 2021; Hecht et al., 2022).

Since its introduction, FUCCI has been widely adopted to study 
various cell cycle dependent biological responses. Its ability to 
report cell cycle phase in real time and at single-cell resolution, has 
been particularly valuable in developmental biology, where spatial 
and temporal patterns of cell cycling influence organ formation, 
morphogenesis and repair (Sugiyama et al., 2009; Ogura et al., 
2011; Calder et al., 2013; Lavado et al., 2018; Cuitiño et al., 2019; 
Cura Costa et al., 2021; Hecht et al., 2022). FUCCI has also proven 
instrumental in cancer research through the delineation of cell 
cycle dependent responses (Ganem et al., 2014; Krenning et al., 
2014; Ryl et al., 2017; Molinie et al., 2019; Nano et al., 2019; 
Rajal et al., 2021; Wang et al., 2021; Gemble et al., 2022; 
Kozyrska et al., 2022; Zeng et al., 2023).

Apart from timelapse imaging, the FUCCI intensity-based 
fluorescence readout is compatible with fluorescence-activated cell 
sorting (FACS). By setting intensity thresholds to select the co-
occurrence of hCdt1 (30/120) in G1 and hGem (1/110) that 
indicates S/G2/M phases, a highly synchronous G1/S cell population 
can be enriched (Feringa et al., 2016). Similar approaches were 
employed to enable cell cycle synchronised transcriptome and 
proteomes analysis to be performed on either bulk sorted or single-
cells (Boström et al., 2017; Herr et al., 2020; Hsiao et al., 2020; 
Mahdessian et al., 2021; Krenning et al., 2022).

Limitations of the original FUCCI 
system

Despite its useful capabilities, the FUCCI system does have 
limitations that restrict its use for specific questions. One key 
limitation is its inability to tell the difference between the S phase and 
the G2 phase (Sakaue-Sawano et al., 2008). Since Geminin remains 
stable throughout both phases, cells in S and G2 fluoresce similarly, 
making it difficult to distinguish DNA replication from G2. This 
lack of phase distinction complicates research that requires accurate 
mapping of DNA synthesis, repair, or pre-mitotic surveillance 
mechanisms. Furthermore, FUCCI cannot distinguish between G0 
and G1 phases, as both are characterised by Cdt1 accumulation 
and Geminin degradation. This limitation reduces the system’s 
usefulness in studies focused on cell quiescence, requiring the 
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FIGURE 1
Simplified cartoon summarising the molecular basis of each cell cycle reporter and its fluorescence readout under the microscope. (A) FUCCI (B)
HDHB KTR (C) PCNA based DNA replication foci.
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use of additional reporters to differentiate G0 and G1 populations 
(Henderson et al., 2014; Oki et al., 2014).

Furthermore, the original FUCCI reporters were designed 
based on human degradation motifs and thus depend on SCFSkp2

and APCCdh1 activity (Wohlschlegel et al., 2000; Nishitani et al., 
2001; Li et al., 2003; Vodermaier, 2004). However, in model 
organisms like zebrafish and Drosophila, these degradation pathways 
differ significantly. For example, zebrafish cells primarily utilise 
CUL4Ddb1-mediated degradation of Cdt1, rendering the human-
derived FUCCI constructs ineffective (Sugiyama et al., 2009). 
Likewise, Drosophila requires species-adapted degrons to accurately 
track phases which led to the development of species specific 
FUCCI variants (Zielke et al., 2014).

Another technical limitation stems from the variability caused 
by the method of reporter delivery. Lentiviral transduction, 
often used to generate stable FUCCI-expressing lines, results 
in random genomic integration, which leads to varied 
expression levels (Formas-Oliveira et al., 2025). Although 
this variability can be reduced through single-cell cloning or 
fluorescence-based sorting, these procedures add complexity and 
duration to experimental workflows and may not fully prevent 
expression instability in long-term studies.

Advancements in FUCCI design

To overcome the limitations of the original FUCCI design, 
several improved variants have been developed. FUCCI2 enhances 
the original by incorporating brighter fluorescent proteins such 
as mCherry and mVenus to increase signal strength and enable 
imaging in deep tissues or low expression environments (Abe et al., 
2013). PIP-FUCCI employs the PIP degron of Cdt1 (1–17) to replace 
Cdt1 (30–120), to delineate G1 and G2/M to improve the precision 
of cell cycle phase reporting (Grant et al., 2018). FUCCI4 expands 
the system further by adding fluorescently tagged linker histone 
H1.0 to detect M phase and the SLBP(18–126) to delineate S to G2 
transition (Bajar et al., 2016). In combination with Cdt1 (30–120) 
and Geminin (1–110), all four main cell cycle phases (G1, S, G2, 
and M) can be identified in FUCCI4, allowing for more detailed 
temporal tracking of cell cycle progression (Bajar et al., 2016).

Species-specific adaptations have also broadened the 
application of FUCCI in non-mammalian models. zFUCCI 
incorporates zebrafish-specific degrons, allowing for precise 
phase tracking in zebrafish embryos, while Fly-FUCCI is 
designed to match Drosophila’s unique degradation pathways 
(Sugiyama et al., 2009; Zielke et al., 2014). These adaptations have 
been vital for utilising FUCCI-based analysis in developmental 
biology and tissue regeneration across various organisms.

A particularly notable advancement is FUCCI(CA), which 
incorporates CUL4Ddb1 sensitive degrons into the Cdt1 reporter and 
the replacement of the conserved RRL motif to AAA to prevent 
SCFSkp2 dependent degradation (Sakaue-Sawano et al., 2017). This 
variant allows for better resolution of G1, S, and G2 phases in 
mammalian systems since the mutant hCdt1 peptide is only actively 
degraded by Cul4Ddb1 in S-phase. FUCCI(CA) has proven especially 
useful in analysing interphase regulation, providing insights into 
phase-specific DNA damage responses and checkpoint control 
mechanisms (Knoblochova et al., 2023; Szmyd et al., 2025).

In summary, the FUCCI reporter system is a versatile cell cycle 
reporter which is easily employed in a variety of biological systems. 
However, since FUCCI relies on cell cycle-specific degradation 
of either Cdt1 or Geminin to infer cell cycle phase, it does not 
directly monitor functional processes such as DNA synthesis in 
S phase. Due to this limitation, alternative cell cycle reporter 
systems were subsequently developed and will be discussed in the 
following sections.

Kinase translocation reporters (KTRs)

Kinase translocation reporters (KTRs) are genetically encoded 
biosensors that can detect kinase activity in real time by converting 
phosphorylation events into spatial changes in subcellular 
localisation (Hahn et al., 2009; Regot et al., 2014; Kudo et al., 
2017). Unlike phase-specific reporters such as FUCCI that infer 
cell cycle phase by detecting cell cycle specific protein degradation, 
KTRs infer cell cycle status indirectly by measuring the kinase 
activities of cell cycle regulators such as Cyclin Dependent Kinases 
(CDKs). As kinase activities of CDKs are known to drive cell cycle 
transitions, the oscillations in the kinase activity provides a useful 
indicator of upstream signalling events that promote cell cycle phase 
transitions (Coudreuse and Nurse, 2010).

A typical KTR consists of a kinase-specific substrate motif 
flanked by a nuclear localisation signal (NLS), a nuclear export 
signal (NES), and a fluorescent reporter protein (Gu et al., 
2004; Regot et al., 2014; Maryu et al., 2016). In the absence 
of phosphorylation, the reporter localises to the nucleus due 
to dominant NLS activity. Upon phosphorylation by a specific 
kinase, the negative charge introduced disrupts nuclear import and 
enhances NES-mediated export, causing the reporter to accumulate 
in the cytoplasm. This process is reversible as dephosphorylation 
restores its nuclear localisation. By measuring the ratio of 
fluorescence intensity between the cytoplasm and nucleus, the 
dynamics of kinase activity can be inferred with high temporal 
resolution.

The Human DNA Helicase B (HDHB)-based CDK2 reporter is 
a widely used examples of KTRs in cell cycle research (Figure 1B). 
HDHB is regulated by phosphorylation at multiple CDK target sites, 
most notably serine 967 in its C-terminal region, which causes 
the shuttling of the HDHB fragment between the nucleus and 
cytoplasm in response to CDK2 activity (Gu et al., 2004; Hahn et al., 
2009). The HDHB biosensor was originally created by fusing the C-
terminal peptide of HDHB to a red fluorescent protein (tdimer2) and 
expressing it under a CMV promoter (Hahn et al., 2009). Since then, 
several variants have been developed by fusing the HDHB fragment 
to brighter fluorescent markers such as mVenus and mTurquoise2 
(Spencer et al., 2013; Hoffman et al., 2025).

KTRs have proven especially useful in visualising kinase 
dynamics related to cell cycle regulation, commitment, and 
checkpoint control. The HDHB-based CDK2 reporter has provided 
critical insight into the mechanism through which CDK2 activity 
at mitotic exit determines whether a cell resumes proliferation 
or transitions into a transient G0-like state (Cappell et al., 2016; 
Cappell et al., 2018; Yang et al., 2017; Min et al., 2020). Additionally, 
the translocation of the HDHB-based CKD2 KTR is highly 
responsive to rapid changes in CDK activity, with measurable 
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changes in the cytoplasm/nucleus ratio within minutes of CDK2 
inhibition (Spencer et al., 2013).

Beyond CDK2, several KTRs have been developed for other 
key cell cycle-regulating kinases. Among them is a CDK4/6-
specific reporter used to study the sequential activation cascade 
between both CDK4/6 and CDK2 in governing the G1/S transition 
(Kim et al., 2022). Using kinase-specific KTRs, it was demonstrated 
that CDK4/6 activity is sufficient to initiate Rb phosphorylation 
and E2F activation, but CDK2 activity is necessary for S phase 
commitment (Kim et al., 2022).

KTRs provide highly quantitative and sensitive readouts of 
kinase activities, and pair well with single cell fluorescent imaging 
studies. By measuring kinase activities and computationally aligning 
these signalling events to cellular dynamics, we can accurately 
associate cellular events to changes in kinase activities in vivo. 
This approach have been used extensively to study multifunctional 
kinases that are influenced by the cell cycle to regulate proliferative 
or cell differentiative responses (Regot et al., 2014; Pokrass et al., 
2020; Hanson and Batchelor, 2022; Kim et al., 2023). For example, 
using ERK KTRs researchers were able to demonstrate that low 
ERK activity after mitotic exit correlates with NANOG stabilisation 
and maintenance of stem cell pluripotency (Pokrass et al., 2020). 
Similar results were obtained in C. elegans, where ERK KTRs 
were employed to demonstrate the role of ERK in cell fate 
specification (de la Cova et al., 2017). These studies demonstrate the 
versatility of KTRs in studying signalling events in the cell cycle that 
influences cell differentiation.

Another major advantage of KTRs is their modularity. 
Fluorescent tags can be easily swapped to enable multiplexed 
imaging with minimal spectral overlap (Kudo et al., 2017). 
Multiplexed KTR systems for ERK, JNK, and p38 have been used 
to simultaneously monitor cellular responses to stress and DNA 
damage in real time (Hanson and Batchelor, 2022). More recently, 
p38 and JNK KTRs were used to measure activation kinetics in 
response to ultraviolet light at single-cell level (Sinha et al., 2024). 
These studies demonstrate the feasibility of combining multiple 
KTRs to reveal insights on multiple signalling pathways that the cell 
cycle responds to during cellular stress.

Limitations and considerations of KTRs

Although KTRs provide valuable dynamic readouts, several 
limitations may restrict their application. Accurate signal 
quantification depends on clear separation of nuclear and 
cytoplasmic regions, requiring high-resolution imaging and reliable 
nuclear markers. In cell types with irregular shapes, tracking 
nucleocytoplasmic translocation precisely becomes difficult. 
Additionally, nuclear envelope ruptures, occurring in some cancer 
cells, senescent cells, or following mitotic errors, permit passive 
diffusion of KTRs, which interferes with localisation-based signal 
analysis (Maciejowski and Hatch, 2020; Kamikawa et al., 2023). 
Furthermore, since the nuclear transport of KTRs depends on 
the nuclear transport machinery of the cell, it is possible that 
KTRs developed from mammalian systems may not function in 
evolutionary divergent organisms due to differences in the nuclear 
transport machinery. Therefore, choosing suitable cell models with 
stable nuclear structures is crucial for dependable KTR imaging.

KTR specificity can also be affected by kinase crosstalk. It was 
recently reported that CDK2 can phosphorylate ERK and p38 KTRs, 
leading to false-positive translocation events (Hoffman et al., 2025). 
This emphasises the importance of carefully selecting KTR peptide 
sequences and including suitable experimental controls to verify 
reporter specificity. If crosstalk is identified, alternative peptide 
sequences or mutating nonspecific phosphorylation sites to enhance 
target specificity should be considered (Creixell et al., 2015; Miller 
and Turk, 2018). Alternatively, employing appropriate drug controls 
that block kinase crosstalk to demonstrate reporter specificity can be 
implemented (Hoffman et al., 2025).

Furthermore, while KTRs provide a real-time readout of 
kinase activity, these signals are generally presented across a 
continuous spectrum. For instance, CDK2 activity gradually 
increases during S and G2, making it difficult to accurately 
differentiate between these phases based solely on the KTR signal 
(Spencer et al., 2013; Cappell et al., 2016). This requires an additional 
fluorescent reporter to accurately indicate the entry into S-phase cell 
cycle phase (Cappell et al., 2016).

In summary, kinase translocation reporters occupy a unique 
niche among fluorescent cell cycle indicators. Their principal 
advantage lies in providing a functional readout of kinase signalling 
dynamics that drive or accompany cell cycle progression. In contrast 
to systems like FUCCI, which report on degradation-based phase 
transitions, which reflect gene expression dynamics, KTRs measure 
the activity of key upstream regulators in real time. This makes 
KTRs particularly powerful for studying rapid signalling responses, 
phase bifurcation events, and stress-induced alterations in cell 
cycle control.

DNA replication foci based cell cycle 
reporters

DNA replication foci–based reporters utilise the spatial and 
temporal organisation of DNA replication machinery to monitor 
S-phase progression. These systems typically employ fluorescently 
tagged proteins that associate with replication forks, such as 
proliferating cell nuclear antigen (PCNA) (Figure 1C). PCNA is a 
conserved protein that forms a ring-like structure around DNA 
at replication forks, bringing together proteins necessary for DNA 
synthesis (Moldovan et al., 2007; Mailand et al., 2013). Because 
PCNA displays distinct subnuclear localisation patterns during 
the cell cycle, it has been adopted as a fluorescent reporter for 
monitoring DNA replication dynamics in live cells (Zerjatke et al., 
2017). By tracking the formation and dissolution of replication foci 
in live cells, researchers can delineate the onset, progression, and 
completion of DNA replication in real time (Leonhardt et al., 2000). 
These reporters offer unparalleled resolution of S-phase dynamics 
and have become essential tools in studies of replication timing, 
genome stability, and the cellular response to replication stress 
(Essers et al., 2005; Chagin et al., 2016; Chao et al., 2017).

Early fluorescent PCNA reporters involved fusing PCNA 
to green fluorescent protein (GFP) (Leonhardt et al., 2000). 
When expressed under a CMV promoter in C2C12 cells, GFP-
PCNA formed characteristic replication foci during S phase, 
enabling direct visualisation of DNA synthesis. Building upon 
this, a dual-reporter cell line stably expressing EGFP-PCNA 
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and histone H2B-mCherry in HeLa cells was developed, which 
allowed simultaneous observation of replication foci and chromatin 
condensation (Piwko et al., 2010). Additionally, other exogenous 
promoters such as the PGK promoter (Chao et al., 2017) and 
endogenous knock-in strategies, where native PCNA was fused with 
mRuby in hTERT RPE-1 cells (Zerjatke et al., 2017), were created. 
These approaches provided reliable cell cycle phase classification by 
faithfully recapitulating PCNA dynamics, demonstrating versatility 
in reporter design and expression strategies for accurate live-cell cell 
cycle monitoring.

The use of PCNA-based reporters provides several key benefits. 
The quick and reversible shift of PCNA between a diffuse nuclear 
presence and replication foci offers a highly sensitive and precisely 
timed marker of S phase progression. As the determination of S 
phase entry is dependent on the spatial redistribution of PCNA 
from a diffused state into a punctate state, changes in fluorescent 
intensity due to photobleaching would have a limited impact 
on the reliability of PCNA-based reporters in determining the 
cell cycle stage. This feature provides a distinct advantage over 
other fluorescent reporters that depend on changes in expression 
levels, such as FUCCI, since photobleaching is a common problem 
in long term imaging experiments. Furthermore, cell-permeable 
fluorescently labelled nanobodies that recognise endogenous PCNA 
have been developed, allowing the visualisation of PCNA dynamics 
in live cells, bypassing the need to generate stable fluorescent 
cell lines (Schneider et al., 2021).

Limitations and considerations of 
employing fluorescent PCNA 
reporters

Despite their strengths, PCNA reporters also have limitations 
that warrant careful consideration. Early overexpression 
experiments of full-length PCNA have reported that PCNA 
overexpression impacts cell cycle progression. Studies have shown 
that increases in PCNA expression lead to increased replication 
stress, disruption of growth control and could contribute to 
malignant cell transformation (Fukami-Kobayashi and Mitsui, 
1999; Johnson et al., 2016). Mechanistically, this could be due to 
the sequestration of proteins from their regular sites of action, 
as PCNA is an important binding partner for many cell cycle 
proteins, including p21 (Prives and Gottifredi, 2008; Boehm et al., 
2016). Thus, it is important to use less disruptive methods like 
endogenous fluorescently tagged PCNA or fluorescently labelled 
PCNA nanobodies to visualise the DNA replication foci as they are 
less likely to perturb the natural dynamics of cell cycle progression.

The functional role of PCNA is not limited to DNA replication. 
It also functions in DNA repair processes. In response to genotoxic 
stress, PCNA can form foci outside of S phase to facilitate 
DNA repair (Balajee and Geard, 2001). Conversely, events that 
stall the progression of the DNA replication machinery, such as 
exposure to aphidicolin, would limit the formation of PCNA foci 
(Chen et al., 2025). These issues can complicate the interpretation 
of replication-specific signals. Therefore, when using fluorescent 
PCNA, it's important to avoid using PCNA-based reporters in cell 
lines experiencing elevated replication stress and set reasonable 
thresholds for the number of PCNA foci used to identify S-phase, 

since DNA repair can also cause foci to form outside of S-phase 
(Chao et al., 2017). Furthermore, the changes in fluorescent PCNA 
intensity as cells progress from G1 to G2 are a poor indicator 
of cell cycle progression (Zerjatke et al., 2017). This necessitates 
generating single-cell lineages of fluorescently tagged PCNA cell 
lines from time-lapse images before accurate cell cycle boundaries 
can be determined.

In addition, PCNA’s dynamic localisation patterns from diffuse 
to punctate foci pose challenges for foci detection and nuclear 
segmentation in image analysis. To reliably detect PCNA foci, 
confocal microscopes, such as spinning disk-based microscopes, 
are preferred. This is because widefield microscopes at lower 
magnifications (below 20x) may lack the necessary resolution to 
reliably detect the formation of DNA replication foci, especially 
during early S phase. When PCNA fluorescence is used as the sole 
nuclear marker, accurate delineation of nuclear boundaries can be 
difficult using conventional segmentation approaches (Piwko et al., 
2010). This necessitates the use of an additional fluorescent marker 
for the nucleus to enable the reliable segmentation and tracking of 
cells (Piwko et al., 2010; Zerjatke et al., 2017). The need to include 
a fluorescently tagged nuclear marker may be a disadvantage in 
multiplex experiments since adding additional fluorescent channels 
may increase phototoxicity. However, recent advances in deep 
learning based image analysis have overcome this limitation, 
providing improved segmentation accuracies to recognise PCNA’s 
characteristic fluorescence patterns, enabling the automated 
segmentation, cell cycle classification and single cell lineage tracking 
without the need for a fluorescent nuclear marker (Gui et al., 2022).

In summary, PCNA-based reporters occupy a vital role 
within the fluorescent cell cycle reporter toolkit, particularly 
for detailed and dynamic studies of DNA replication during S 
phase. Their physiological relevance and temporal sensitivity make 
PCNA reporters valuable for investigating replication timing and 
replication stress responses.

Future perspectives

In this review, we have summarised the commonly used classes 
of fluorescent cell cycle reporters, each capturing distinct but 
complementary aspects of cell cycle progression (Table 1; Figure 1). 
Despite their usefulness, individual cell cycle reporters may be 
insufficient in capturing the full complexity of cell cycle dynamics, 
especially during conditions of cellular stress.

It has also been pointed out in several studies that, depending 
on the biological properties measured, different reporters can 
give conflicting results of cell cycle phases. For instance, the 
DNA replication foci-based PCNA and CDK2 KTR-specific HDHB 
reporters may yield inconsistent outcomes during replication stress 
or DNA damage induction (Essers et al., 2005; Daigh et al., 
2018). Under such conditions, PCNA foci formation might be 
disrupted in S phase (Essers et al., 2005), and cytoplasmic HDHB 
localisation may decrease transiently during S phase (Daigh et al., 
2018), leading to possible misclassification of cell cycle phases 
when relying on only one reporter. This highlights the limitations 
of single-reporter methods, especially in genomically unstable 
cancer cell models experiencing high levels of replication stress 
(Burrell et al., 2013; Hanahan, 2022).
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TABLE 1  Brief summary of the different of cell cycle reporters.

Reporter system Mechanistic basis Strengths Weaknesses

FUCCI (Original and variants) Detects the change in cell cycle specific 
ubiquitin-mediated proteolysis of 
proteins

Simple phase resolution; applicable 
across organisms; suitable for long-term 
and in vivo imaging; compatible with 
FACS.

Original FUCCI cannot distinguish S 
from G2; cannot separate G0 from G1; 
species-specific adaptations often 
required; expression variability

Kinase Translocation Reporters (KTRs) Detects the nuclear and cytoplasmic 
presence of phosphorylated peptide 
sequences to read out kinase activities

Direct functional readout of kinase 
activity; high temporal resolution; 
modular and multiplexable; reveals 
regulatory transitions

Requires clear nuclear/cytoplasmic 
segmentation; sensitive to nuclear 
envelope integrity; kinase crosstalk can 
cause false signals

DNA Replication Foci (PCNA-based) Detects the dynamic relocalisation of 
fluorescently tagged PCNA to form 
replication foci during DNA synthesis, 
reflecting S-phase dynamics

High sensitivity and precision for 
S-phase entry/progression; reversible 
and robust readout; less affected by 
expression fluctuations

PCNA also marks DNA repair, 
complicating S-phase identification; 
nuclear markers should be employed to 
help segment the nucleus

Combining multiple fluorescent reporters offers an advantage in 
understanding complex regulatory mechanisms that single reporters 
cannot fully resolve. For example, integrating CDK2 activity sensor 
with components of either Cdt1 or Geminin fragments in the 
FUCCI reporter enables the accurate determination of the G1/S 
transition (Cappell et al., 2016; Ratnayeke et al., 2023). This 
multi-reporter combination was instrumental in determining the 
molecular roles of various cell cycle regulators in mediating 
G1/S transition (Spencer et al., 2013; Cappell et al., 2016; 
Cappell et al., 2018; Daigh et al., 2018; Chung et al., 2019; Liu et al., 
2020; Nathans et al., 2021; Ratnayeke et al., 2023). The multi-
reporter approach can also be used to investigate how intercellular 
signalling by various kinases impacts cell cycle transitions using a 
combination of KTR based reporters. In a recent study, an array 
of reporters, including a novel G2-specific kinase translocation 
reporter (KTR), was used to identify a p53-independent mechanism 
of stress-induced G2 exit, mediated by SAPK signalling and early 
activation of APC/C-Cdh1 (McKenney et al., 2024). These findings 
underline that using multi-reporter strategies not only improves 
temporal and spatial resolution of cell cycle transitions but also 
reduces misinterpretations caused by changes in marker behaviour. 
Furthermore, these studies highlight the advantages of combining 
different cell cycle biosensors as they can help dissect cell cycle 
transitions and stress responses with unprecedented detail.

Conclusion

Genetically encoded fluorescent cell cycle reporters offer a 
powerful toolkit for accurately studying cell cycle dynamics in live 
cells. However, as discussed in this review, careful consideration must 
be given to selecting the appropriate reporter. The choice of reporter 
should depend on the biological experiment as some of the reporters 
may be suboptimal or unsuitable. Recent demonstrations of multi-
reporter strategies expand the utility of these cell cycle reporters. By 
carefully selecting the best reporter and employing multi-reporter 
strategies that detect distinct and complementary aspects of cell 
cycle progression, researchers can overcome the limitations of single 
reporters. Together, these reporters are not only transforming the 
way we study the cell cycle but also unlocking new insights into the 
fundamental processes that govern cell fate and function. 
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