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Diabetic encephalopathy:
metabolic reprogramming as a
potential driver of accelerated
brain aging and cognitive decline
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Diabetic encephalopathy (DE) is a serious neurological complication of diabetes
and is expressed as progressive decline in cognitive function, emotional
disorders, and changes in brain structure. This review brings together the
relevant evidence and demonstrates that metabolic reprogramming, the
adaptive reconfiguration of the core metabolic pathway in response to
hyperglycemia, is a potential driver of accelerated brain aging in DE. The main
pathological characteristics are: abnormal brain insulin signaling, resulting in a
decrease in neuronal glucose intake and a decrease in mitochondrial oxidative
phosphorylation, oxidative stress and neuroinflammation caused by high blood
sugar, in which excess reactive oxygen species (ROS), impairs mitochondrial
integrity and leads to activation of microglia cells. The impaired mitophagy
and the macrophages remove defects and cause the accumulation and energy
collapse of the dysfunctional organelles. In addition, it promotes excessive
glycolytic flux, lipolysis disorder, lactic acid accumulation, and ceramide-
dependent synaptic damage. We further examine shared metabolic mechanisms
between DE and neurodegenerative diseases such as alzheimer's disease (AD)
and treatment strategies for pathological metabolic reprogramming including
GLP-1 receptor agonists, NAD* boosters, and AMPK activators. This analysis laid
the foundation for new intervention measures against the development of DE.

KEYWORDS

diabetic encephalopathy, metabolic reprogramming, brain insulin resistance, oxidative
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Introduction

Diabetes mellitus (DM) is one of the most common chronic metabolic diseases in the
world and poses a serious threat to human health (American Diabetes Association Professional
Practice Committee, 2024; GBD, 2021 Diabetes Collaborators, 2023). Within the scope of
diabetic complications, DE is a particularly heavy neurological expression, and its adverse
effects on patient health and the lack of current evidence therapy have led to increased
interest in research (Chen et al., 2018). Clinically, DE is characterized by progressive cognitive
impairment, as a result of memory and performance impairment, emotional disorders
includinganxiety and depression, and abnormal brain imaging results such as white quality high
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signal, decreased brain capacity and hippocampal atrophy (Ehtewish
etal.), (Mogi and Horiuchi, 2011; Duarte, 2015). DE patients show
distinctive brain changes including vascular lesions, demyelinating
cranial nerve, and neuronal degeneration, leading to impaired
cognitive performance (Mijnhout et al, 2006; Wang et al,
2020). However, the pathogenesis of DE is not fully understood.
Previous studies have shown that it is associated with a variety
of pathologic processes, including hyperglycaemia, alterations
in brain insulin signaling, cerebrovascular disease, excessive
phosphorylation of tau protein, neuroinflammation, and oxidative
stress (Nagayach et al., 2024; Rosen et al., 2001). Thus, metabolic
reprogramming is considered to be a potential core-driven mechanism
that connects these elements. However, the molecular cascade of driven
DE is only a partial description, and the generally accepted diagnostic
criteria have not yet been established.

Metabolic reprogramming represents the basic cellular process
in which neurons dynamically adjust the core metabolic pathways,
including glucose utilization, mitochondrial respiration, and
biomolecular synthesis, to meet the wavy energy demands and
challenges of the microenvironment (Wu et al, 2023). Under
physiological conditions, astrocytes maintain neuronal metabolic
demand by aerobic glycolysis, and lactic acid is an important energy
substrate for synaptic function and cognitive expression (Hui et al.,
2017; Xiong et al, 2025). However, chronic hyperglycemia
leads to inappropriate metabolic recombination. In a mouse
model of streptoazobin-induced hyperglycemia, elevated glucose
levels translate the phenotype of astrocytes into a proliferative
pro-inflammatory state (Zhang et al, 2024). In a model of
intellectual disability, a parallel mechanism in which SNX 27
mutations impaired glial glucose intake through glucose transporter
1 (GLUTI1), reduced lactic acid production, and converted
steady-state glial cells to a reactive state appeared (Lee et al,
2024). Therefore, mechanisms designed for neuroprotection
instead accelerate neurodegeneration through self-reinforcing
metabolic failure (Bizon et al., 2012).

This review brings together existing evidence and systematically
describes the role of metabolic reprogramming in accelerating
DE brain aging, including brain insulin signaling dysregulation,
oxidative stress and neuroinflammation, autophagy and mitophagy
dysfunction, glycolytic Flux and lipolysis Dysregulation. It focuses
on abnormal pathways such as disintegration. We also explored
common metabolic mechanisms between neurodegenerative
diseases such as DE and AD, and developed therapeutic strategies for
metabolic reprogramming such as GLP-1 receptor agonists, NAD"
boosters, and AMPK activators. Through this analysis, we provided
a new theoretical basis and treatment plan for the prevention and
treatment of DE.

Brain insulin signaling dysregulation

The brain is an important target for insulin action, and
most brain insulin comes from circulating pancreatic insulin
rather than local synthesis. Insulin integrates the functions of
metabolism, neuronutrition, neuroregulation and neuroendocrine
regulation in the brain and regulates processes closely related
to cognitive health. These processes include synaptic plasticity,
neurogenesis, and memory consolidation, especially in the
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hippocampus (Rask-Madsen and Kahn, 2012; Kleinridders et al.,
2015). These functions are mediated by the insulin receptors
(IRs), which is widely distributed in presynaptic and postsynaptic
neurons and neurologlia cells, allowing insulin to modulate
neurotransmitter release, receptor transport, and neuronal
excitability (Cai et al., 2018; Scapin et al., 2018).

Insulin signaling in the brain has initiated a series of events
that are important for neuronal survival and metabolic balance.
The binding of insulin to IR activates the receptor tyrosine kinase,
leading to phosphorylation of IRs proteins. This fires two pathways:
the phosphatidylinositol 3-kinase (PI3K)/Akt cascade and the
mitogen-activated protein kinase (MAPK) pathway (Lee et al,
2011). The PI3K/Akt pathway controls glucose intake via glucose
carriers, protein making, and cell survival. Glucose enters the brain
barrier via GLUT1. Neurons take glucose via GLUT3; astrocytes
via GLUT1 (Peng et al, 2021). The MAPK pathway manages
nerve connections and new brain cells, key for learning and
memory. Insulin also changes CREB protein action, a factor vital for
memory fixing (Castrén and Monteggia, 2021). Together, these paths
keep brain metabolism and function steady. Their failure in T2DM
breaks this balance, pushing bad metabolic reprogramming.

A sign of T2DM is insulin resistance. Cells respond poorly
to insulin’s metabolic actions. This reaches the brain as neuron
insulin resistance (Muscogiur et al, 2022). In cells, neuronal
insulin resistance impairs glucose uptake mechanisms, cell survival,
and disrupts the steady state of metabolism. Critically, insulin’s
cognitive effects may operate through non-metabolic pathways such
as synaptic receptor trafficking and tau phosphorylation regulation,
independent of direct glucose uptake (Hamer et al, 2019).
Neuronal insulin resistance triggers metabolic reprogramming,
shifting energy metabolism from active phosphorylates to glycolysis.
This transfer is accompanied by mitochondrial dysfunction and lipid
and amino acid metabolism. These metabolic changes accelerate
neuronal and brain aging (Cunnane et al, 2020). Biomarkers
of brain insulin dysfunction in DE patients reflect the severity
of metabolic reprogramming and cognitive impairment. These
include reduced IRS-1 phosphorylation, changes in mitochondrial
morphology/function, and malfunctioning of downstream insulin
signaling targets (Martinez Bdez et al., 2024). These biomarkers not
only tested the link between insulin resistance and DE, but also
emphasized that metabolic reprogramming is a unified mechanism
by which T2DM accelerates brain aging.

Oxidative stress and
neuroinflammation

Oxidative stress is defined as the imbalance between the
production of ROS and the antioxidant defense capacity of an
organism, and is a central pathological feature of metabolic
disorders, neurodegeneration and aging (Maciejczyk et al,
2019). Importantly, it is the result of metabolic reprogramming,
which acts as an adaptive restructure of metabolic pathways.
Sustaining accelerated brain aging and cognitive decline of DE.
Antioxidative systems of the body containing catalase, superoxide
dismutase, enzymes such as glutathione peroxidase, and non-
enzymatic components such as reduced glutathione and uric acid,
usually works to neutralize ROS and maintain cell homeostasis
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(Chen et al., 2025). However, in the condition of chronic diabetes,
oxidative stress can overwhelm these defense mechanisms,
lead to impaired regulation of metabolic pathways, and cause
pathological changes in energy metabolism that perpetuate cellular
dysfunction (Singh et al., 2022).

DM contributes greatly to excessive ROS production. Chronic
hyperglycemia in DM accelerates ROS formation, which overcomes
endogenous antioxidant defenses, through glucose self-oxidation,
advanced glycemic reactions, and extreme activity of the polyol
pathway (Khalid etal., 2022). In diabetic rats, weak brain antioxidant
enzymes match worse memory problems (Ling et al, 2018).
Specifically, ROS harm to mitochondrial DNA and parts blocks
energy making (Sun et al., 2023; Watanuki et al., 2024). This forces
neurons to use inefficient sugar breakdown for energy—a mark of
metabolic reprogramming. This sugar shift cuts ATP output and
raises lactate buildup and more ROS. It creates a bad loop that speeds
neuron aging (Vargas-Soria et al., 2023; Churchward et al., 2018).

High ROS levels also push microglia cells to change. They
release stuff like TNF-a, IL-1pB, IL-6, IFN-y, iNOS, MCP-1, NO,
prostaglandin E2, and GRO, increasing brain swelling (Bernier et al.,
2020). Brain samples from diabetic donors show microglia
activation, like in AD—a zone key for memory (Valente et al., 2010).
Pre-clinical studies using diabetic/obese db/db mice have shown
that increases in brain levels of IL-1p, IL-6, and TNF-a are correlated
with decreases in spatial recognition memory. However, genetic or
pharmacological inhibition of microglial activation can mitigate
both inflammation and cognitive impairment (Din et al., 2011).

Oxidative stress activates several stress-responsive signaling
pathways, including p38 MAPK, NF-kB, AGE/RAGE, JNK/SAPK,
and protein kinase C, which directly modulate metabolic
reprogramming (Evans et al., 2002). NF-kB signalling, for example,
inhibits PGC-1a, the main orchestrator of mitochondrial biological
development, thereby inhibiting oxidative phosphorylation
and shunting metabolism to glycolysis (Abu et al, 2023).
Similarly, the p38 MAPK signaling inhibited Akt-guided glucose
absorption, thereby exacerbating the imbalance of neuronal
energy (Entezari et al., 2022). In total, these disorders modify
proteins, lipids, and DNA oxidatively, leading to caspeze-induced
apprehensis and persistent neuritis. In particular, protein-
oxidation worsens synaptic plasticity and memory alignment,
contributing to the cognitive decline directly observed in DE
(Dong et al., 2023) (Figure 1).

Autophagy and mitophagy
dysfunction

Autophagy is a cleanup path using lysosomes. It removes bad
proteins and cell parts, key for cell balance (Dikic and Elazar, 2018;
Galluzzi et al, 2017). Main control paths for autophagy include
AMPK/mTOR and PI3K/Akt/mTOR chains. These cross with core
metabolic reprogramming (Wang et al., 2023; Kim et al., 2002).
Phage flux is usually measured by LC3 and p62. Persistent high
p62° signals inhibit macrophage flow (Mizushima et al., 2010).

Mitophagy is a specialized form of autophagy that selectively
target mitochondria for lysosomal

degradation and play

role in metabolic

an important regulating inflammation,

transformation, and cell reprogramming (Gustafsson and Dorn,
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2019). Because neurons are specialized energy consumers, can
accelerate their death even with light mitochondrial damage and
force metabolic recombination, that macrophages are central
tubes that connect metabolic disorders and neurodegenerative
diseases A growing number of data indicate that this
is the case (Fang et al., 2019).

Under physiological conditions, instantaneous energy stress
triggers the AMPK/ULKI1 signaling axis and activates a protective
mitotic food with PINKI stabilization and Parkin recruitment
(Torio et al., 2021). However, chronic metabolic disturbances, such
as persistent high blood sugar, disrupt this time regulation. When
AMPK calibration is impaired, the PINK one phosphorylation
mode is no longer adaptive, resulting in Parkin mistranslation
and progressive self-feeding failure (Guo et al, 2023). The
resulting mitochondrial dysfunction led to a vicious cycle of self-
continuation, in which defects in cell removal exacerbated the
overproduction of ROS, further impair the PINK 1-mediated
activation mechanism (Lazarou etal., 2015). Thisleads to irreparable
mitochondrial rupture, which runs out of ATP reserves and
accelerates the over-phosphorylation of tau proteins—a sign of
synaptic degeneration (Toyama et al., 2016).

In a db/db mouse model, a simulation of T2DM due to
obesity and hyperglycemia, hippocampal self-eating injury was
demonstrated by a decrease in the LC3-II/I ratio and an increase
in p62 accumulation (Guan et al., 2017; Li et al, 2017). TIDM
has recorded a similar mitochondrial phagocytotic protective
effect that reduces the accumulation of ataxia mitochondria
in pancreatic beta cells, and a conservative mechanism
between diabetic subtypes tends to be consistent with ataxia
(Blagov et al., 2023).

Recent breakthroughs have shown that enhancing mitotic
diet can suppress amyloid-beta plaque accumulation, reduce
excessive phosphorylation of tau protein, and prevent synaptic
loss during neurodegeneration. It has been demonstrated that
pharmacological activation of mitotic food by supplementation
with drugs such as urolithin A or NAD" reverses the glycolysis
dependence of neurons, restores oxidative phosphorylation, and
improves cognitive function in diabetic models (Fang et al., 2017;
Fang et al., 2014).

Glycolytic flux and lipolysis
dysregulation

Chronic  hyperglycemia leads to pathological changes,
characterized by “glycolysis overload and unscheduled glycolysis
associated with hexalose kinases” Unscheduled glycolysis means
a state of metabolic disorder in which glycolysis fluxes are
persistent and are affected by cellular energy demands. This
process is characterized by too large a bundle of glucose passing
through hexokinase-2 (HK2), but the downstream yeast degrading
enzyme does not increase accordingly. This imbalance leads to
an abnormal accumulation of yeast solution intermediates to
bypass mitochondrial oxidation and promote the production of
excessive lactate (Rabbani and Thornalley, 2024a). Lactic acid
usually acts as the preferred oxidative fuel for neurons during
acute metabolic stress, but its chronic overproduction exceeds the

physiological threshold in hyperglycemia (Magistretti and Allaman,
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Brain Metabolic Reprogramming as a Central Hub Linking Peripheral Metabolic Stress to Neurodegenerative Pathologies. Peripheral metabolic stress
(chronic hyperglycemia/insulin resistance) triggers brain metabolic reprogramming, which in turn drives neuroinflammation and BBB breakdown.
These pathologies impair synaptic plasticity, promote tau hyperphosphorylation, and reduce cognitive function.

2018). In neurons, this shift appears as a change from oxidative
phosphorylation to aerobic glycolysis, similar to the Warburg effect.
This change happens through increased HIF-1a activity, which raises
levels of pyruvate kinase M2 (PKM2) and lactate dehydrogenase A
(LDHA) (Traxler et al., 2022; Wei et al.,, 2023). Lactate changes
from a useful energy source to a harmful substance: it increases
the lactate-to-pyruvate ratio in the brain and separates glycolysis
from mitochondrial oxidation (Tang, 2020). More glucose use
leads to higher ATP consumption (Rabbani and Thornalley, 2024b;
Wang et al., 2024). This broken lactate shuttle system prevents proper
energy production, making neurons lose energy (Lee et al., 2025).
Lipid breakdown problems also speed up brain aging and
cognitive loss. Research shows these problems cause free fatty
acids (FFA) and lipoproteins to enter the brain, damaging the
BBB. Studies found that clusters of Apolipoprotein E epsilon 4
allele (ApoEe4) turn on the CypA-MMP9 pathway (Banks and
Rhea, 2021; Shen et al, 2023). This breaks down tight junction
proteins and lets neurotoxic free fatty acids flood into the brain.
The resulting lipid overload not only amplizes insulin resistance
in neurons, but also builds a self-sustaining cycle of metabolic
dysfunction (Zhao et al,, 2017). The high blood sugar induced
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glycolysis flux directly intensified the malfunctions of lipolysis.
glycerol-3-phosphate, which
converts FFA esters to triglycerides and releases FFA permeated

Enhanced glycolysis generates
into the brain by elevated adipose triglyceride lipase (ATGL)
(Pedretti et al., 2025; Byrns et al., 2024). In neurons and star-like
colloidal cells, insulin resist inhibition of peroxisome proliferator-
activated receptor a (PPARa) activity, inhibits fatty acid oxidation
(FAO), and promotes lipid accumulation (Scheggi et al., 2022;
Kumar et al., 2025).

The interaction between glycolysis and lipolysis produces a
self-amplified pathological circulation in the DE. First, citric acid
is transferred from the TCA cycle to the abinitio fat production
mediated by acetyl-CoA carboxylase (ACC) to enhance the
synthesis of palmitic acid. Palmitates then activate the mini-
colloidal cell Toll-like receptor 4 (TLR4), triggering the release
of pro-inflammatory cytokines (Kim et al,, 2023). At the same
time, lactate is released through the monocarboxylic acid transport
protein, which activates neuron G protein-coupled receptor 81
(GPR81) and inhibits intracellular cAMP levels. This decrease
in cAMP indirectly inhibits the activity of hormone-sensitive
lipase (HSL) and captures lipids into the cell (Lee et al., 2025).
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Finally, the ROS oxidative low density lipoprotein (LDL) particles
produced by overloading are glycosylated to form oxidized LDL
(oxLDL). This in turn raised the sterol regulatory element-binding
protein 1c (SREBP-1c), accelerating the synthesis of ceramides. The
resulting increase in hippocampal ceramide levels directly results in
synaptic damage and cognitive impairment (Goodman et al., 2024;
Zhou et al., 2025) (Figure 2).

Therapeutic strategies targeting
metabolic reprogramming

Current evidence supports the targetability of therapy with
pathological metabolic reprogramming to offset progression
of DE (Cunnane et al, 2020; Guarente et al., 2024). GLP-1
receptor agonists (including liraglutide and semaglutide) improve
neuronal insulin resistance by enhancing insulin-sensitive glucose
utilization and inhibiting yeast fluke driven by hyperglycemia
(Drucker et al., 2017). Clinical trials have shown that they reduce
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neuroinflammation and synaptic loss primarily by indirectly
regulating peripheral intestinal insulin signals and steady glucose
status (Wei et al., 2023; Li Z. et al., 2021). The exact involvement of
HIF-1a/PKM2 signaling in neurons is not yet fully understood and
further research is needed.

NAD™ boosters, exemplified by nicotinamide mononucleotide,
address hallmark NAD" depletion through the reactivation of
sirtuins SIRT1 and SIRT3. This reactivation restores mitochondrial
oxidative phosphorylation, enhances autophagic clearance of
damaged organelles, and reduces oxidative damage in hippocampal
neurons, thereby reversing cognitive deficits associated with
accelerated brain aging (Fang et al., 2014; Butterfield and Halliwell,
2019; Zh et al,
supplementation with NAD* or its biosynthetic precursors

2016). Emerging evidence demonstrates that

rescues high-glucose. It impaired keratinocyte proliferation and
migration, expedites corneal re-epithelialization and sensory
nerve regrowth in diabetic animals, and coincides with re-
2021). Brain
NAD" regulation presents a tissue-specific pathway with different

engagement of the SIRT1 pathway (LiY. et al,
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enzymatic controls, and these findings indicate that hyperglyceme-
mediated NAD" biosynthetic damage is a pathogen in diabetic
tissue pathology.

AMPK activators exemplified by metformin operate through
well-established mechanisms: inhibition of mitochondrial complex
I activates AMPK, suppressing acetyl-CoA carboxylase-mediated
lipogenesis and ceramide accumulation. It also activates PPARa
to promote oxidation of fatty acid beta and relieve lipid-induced
astrocytes stress (Bharath et al., 2020; Zhang et al., 2023). Clinical
data have demonstrated the therapeutic effect of metformin in
improving glucose control and reducing diabetic complications,
but its direct impact on the specific lipolysis of human astrocytes
requires testing (Dutta et al., 2023).

New evidence suggests that combinatorial targets of key
metabolic nodes may enhance neural protection for age-related
neurodegenerative diseases (Zhang et al., 2021). To restore brain
metabolic stability and slow brain aging, a synergy of GLP-
1 receptor agonists, NAD" precursors and AMPK activators
was proposed. The resulting metabolic recombination reverses
the transformation of Warburg-like glycolytic shifts in senescent
neurons, enhances macrophage lysosome function, and may reduce
oxidative stress. It should be noted that the therapeutic potential of
this combination must be balanced with clinical risk. Hypoglycemia
due to combination of GLP-1RA and metformin and uncertain
central nervous system interactions under tissue-specific NAD*
regulation (Xie et al., 2023; Gong et al., 2022). Targeted validation
in diabetic encephalopathy models remains a necessary condition
to assess the safety tradeoff of treatment efficacy (Na et al., 2025).

Conclusion

This review identifies metabolic reprogramming as an important
driver of DE cognitive decline and linked the major pathologic
processes: brain insulin resistance, oxidative stress, defective
autophagy, and dysregulated glycolysis/lipolysis, all of which
contribute to accelerated brain aging. Novel treatments for metabolic
reprogramming, such as GLP-1 receptor agonists, NAD" boosters
and AMPK activators, have shown hope in preclinical studies,
but the specific mechanisms in terms of DE and clinical efficacy
are unknown. Importantly, direct research into DE metabolic
reprogramming is not yet sufficient and there are significant
differences in our understanding of its causal effects and therapeutic
potential. Future research should focus on the validation of these
mechanisms and conduct clinical trials to develop effective methods
for treating DE related dementia.
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Glossary

ACC

AD
AGE/RAGE
Akt

AMPK
Apaf-1
ApoEe4
ATGL

ATP

BBB
CaMKK2
CREB
CypA-MMP9
DE

DM

FAO

FFA

GLP-1
GLP-1RA
GLUT4

GPR81

GRO

HK2
HIF-1a
HSL

IFN-y
IL-1B

IL-6

iNOS

IR

IRS
JNK/SAPK
LDHA
LDL

LPS
MAPILC3/LC3
MAPK
MCP-1
MMP
mTOR

NAD*

Acetyl-CoA carboxylase
Alzheimer’s disease
Advanced Glycation Endproducts/Receptor for AGEs
Protein kinase B (PKB)

AMP-activated protein kinase

Apoptotic protease-activating factor 1

Apolipoprotein E epsilon 4 allele

Adipose triglyceride lipase

Adenosine triphosphate

Blood-brain barrier

Calcium/calmodulin-dependent protein kinase kinase 2
cAMP-response element-binding protein

Cyclophilin A- Matrix metallopeptidase 9

Diabetic encephalopathy
Diabetes mellitus

Fatty acid oxidation

Free fatty acid
Glucagon-like peptide-1
GLP-1 receptor agonist
Glucose transporter type 4
G protein-coupled

receptor 81/Hydroxycarboxylic

acid receptor 1

Growth-regulated oncogene (chemokine)
Hexokinase 2

Hypoxia-inducible factor 1-alpha
Hormone-sensitive lipase

Interferon gamma

Interleukin-1 beta

Interleukin-6

Inducible nitric oxide synthase

Insulin receptor

Insulin receptor substrate

c-Jun N-terminal kinase/Stress-activated protein kinase
Lactate dehydrogenase A

Low-density lipoprotein

Lipopolysaccharide

Microtubule-associated protein 1A/1B-light chain 3
Mitogen-activated protein kinase

Monocyte chemoattractant protein-1 (CCL2)
Matrix metallopeptidase

Mechanistic target of rapamycin

Nicotinamide adenine dinucleotide (oxidized form)
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NF-xB
NO

Nrf2

oxLDL
P62/SQSTMI

PGC-1a

PI3K
PKM2
PPARa
RAGE
ROS
SDHAF1
SIRT
SREBP-1¢
T1DM
T2DM
TCA cycle
TLR4
TNF-a

TXNIP
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Nuclear factor kappa-light-chain-enhancer of activated B cells
Nitric oxide

Nuclear factor erythroid 2-related factor 2

Oxidized low-density lipoprotein

Sequestosome 1
Peroxisome proliferator-activated

receptor gamma

coactivator 1-alpha

Phosphatidylinositol 3-kinase

Pyruvate kinase isoform M2

Peroxisome proliferator-activated receptor alpha
Receptor for Advanced Glycation Endproducts
Reactive oxygen species

Succinate dehydrogenase complex assembly factor 1
Sirtuin (Silent mating type information regulation 2 homolog)
Sterol regulatory element-binding protein 1c

Type 1 diabetes mellitus

Type 2 diabetes mellitus

Tricarboxylic acid cycle (Krebs cycle)

Toll-like receptor 4

Tumor necrosis factor-alpha

Thioredoxin-interacting protein
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