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Diabetic encephalopathy (DE) is a serious neurological complication of diabetes 
and is expressed as progressive decline in cognitive function, emotional 
disorders, and changes in brain structure. This review brings together the 
relevant evidence and demonstrates that metabolic reprogramming, the 
adaptive reconfiguration of the core metabolic pathway in response to 
hyperglycemia, is a potential driver of accelerated brain aging in DE. The main 
pathological characteristics are: abnormal brain insulin signaling, resulting in a 
decrease in neuronal glucose intake and a decrease in mitochondrial oxidative 
phosphorylation, oxidative stress and neuroinflammation caused by high blood 
sugar, in which excess reactive oxygen species (ROS), impairs mitochondrial 
integrity and leads to activation of microglia cells. The impaired mitophagy 
and the macrophages remove defects and cause the accumulation and energy 
collapse of the dysfunctional organelles. In addition, it promotes excessive 
glycolytic flux, lipolysis disorder, lactic acid accumulation, and ceramide-
dependent synaptic damage. We further examine shared metabolic mechanisms 
between DE and neurodegenerative diseases such as alzheimer’s disease (AD) 
and treatment strategies for pathological metabolic reprogramming including 
GLP-1 receptor agonists, NAD+ boosters, and AMPK activators. This analysis laid 
the foundation for new intervention measures against the development of DE.
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Introduction

Diabetes mellitus (DM) is one of the most common chronic metabolic diseases in the 
world and poses a serious threat to human health (American Diabetes Association Professional
Practice Committee, 2024; GBD, 2021 Diabetes Collaborators, 2023). Within the scope of 
diabetic complications, DE is a particularly heavy neurological expression, and its adverse 
effects on patient health and the lack of current evidence therapy have led to increased 
interest in research (Chen et al., 2018). Clinically, DE is characterized by progressive cognitive 
impairment, as a result of memory and performance impairment, emotional disorders 
including anxiety and depression, and abnormal brain imaging results such as white quality high
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signal, decreased brain capacity and hippocampal atrophy (Ehtewish 
et al.), (Mogi and Horiuchi, 2011; Duarte, 2015). DE patients show 
distinctive brain changes including vascular lesions, demyelinating 
cranial nerve, and neuronal degeneration, leading to impaired 
cognitive performance (Mijnhout et al., 2006; Wang et al., 
2020). However, the pathogenesis of DE is not fully understood. 
Previous studies have shown that it is associated with a variety 
of pathologic processes, including hyperglycaemia, alterations 
in brain insulin signaling, cerebrovascular disease, excessive 
phosphorylation of tau protein, neuroinflammation, and oxidative 
stress (Nagayach et al., 2024; Rösen et al., 2001). Thus, metabolic 
reprogramming is considered to be a potential core-driven mechanism 
that connects these elements. However, the molecular cascade of driven 
DE is only a partial description, and the generally accepted diagnostic 
criteria have not yet been established. 

Metabolic reprogramming represents the basic cellular process 
in which neurons dynamically adjust the core metabolic pathways, 
including glucose utilization, mitochondrial respiration, and 
biomolecular synthesis, to meet the wavy energy demands and 
challenges of the microenvironment (Wu et al., 2023). Under 
physiological conditions, astrocytes maintain neuronal metabolic 
demand by aerobic glycolysis, and lactic acid is an important energy 
substrate for synaptic function and cognitive expression (Hui et al., 
2017; Xiong et al., 2025). However, chronic hyperglycemia 
leads to inappropriate metabolic recombination. In a mouse 
model of streptoazobin-induced hyperglycemia, elevated glucose 
levels translate the phenotype of astrocytes into a proliferative 
pro-inflammatory state (Zhang et al., 2024). In a model of 
intellectual disability, a parallel mechanism in which SNX 27 
mutations impaired glial glucose intake through glucose transporter 
1 (GLUT1), reduced lactic acid production, and converted 
steady-state glial cells to a reactive state appeared (Lee et al., 
2024). Therefore, mechanisms designed for neuroprotection 
instead accelerate neurodegeneration through self-reinforcing 
metabolic failure (Bizon et al., 2012).

This review brings together existing evidence and systematically 
describes the role of metabolic reprogramming in accelerating 
DE brain aging, including brain insulin signaling dysregulation, 
oxidative stress and neuroinflammation, autophagy and mitophagy 
dysfunction, glycolytic Flux and lipolysis Dysregulation. It focuses 
on abnormal pathways such as disintegration. We also explored 
common metabolic mechanisms between neurodegenerative 
diseases such as DE and AD, and developed therapeutic strategies for 
metabolic reprogramming such as GLP-1 receptor agonists, NAD+

boosters, and AMPK activators. Through this analysis, we provided 
a new theoretical basis and treatment plan for the prevention and 
treatment of DE.

Brain insulin signaling dysregulation

The brain is an important target for insulin action, and 
most brain insulin comes from circulating pancreatic insulin 
rather than local synthesis. Insulin integrates the functions of 
metabolism, neuronutrition, neuroregulation and neuroendocrine 
regulation in the brain and regulates processes closely related 
to cognitive health. These processes include synaptic plasticity, 
neurogenesis, and memory consolidation, especially in the 

hippocampus (Rask-Madsen and Kahn, 2012; Kleinridders et al., 
2015). These functions are mediated by the insulin receptors 
(IRs), which is widely distributed in presynaptic and postsynaptic 
neurons and neurologlia cells, allowing insulin to modulate 
neurotransmitter release, receptor transport, and neuronal 
excitability (Cai et al., 2018; Scapin et al., 2018).

Insulin signaling in the brain has initiated a series of events 
that are important for neuronal survival and metabolic balance. 
The binding of insulin to IR activates the receptor tyrosine kinase, 
leading to phosphorylation of IRs proteins. This fires two pathways: 
the phosphatidylinositol 3-kinase (PI3K)/Akt cascade and the 
mitogen-activated protein kinase (MAPK) pathway (Lee et al., 
2011). The PI3K/Akt pathway controls glucose intake via glucose 
carriers, protein making, and cell survival. Glucose enters the brain 
barrier via GLUT1. Neurons take glucose via GLUT3; astrocytes 
via GLUT1 (Peng et al., 2021). The MAPK pathway manages 
nerve connections and new brain cells, key for learning and 
memory. Insulin also changes CREB protein action, a factor vital for 
memory fixing (Castrén and Monteggia, 2021). Together, these paths 
keep brain metabolism and function steady. Their failure in T2DM 
breaks this balance, pushing bad metabolic reprogramming.

A sign of T2DM is insulin resistance. Cells respond poorly 
to insulin’s metabolic actions. This reaches the brain as neuron 
insulin resistance (Muscogiur et al., 2022). In cells, neuronal 
insulin resistance impairs glucose uptake mechanisms, cell survival, 
and disrupts the steady state of metabolism. Critically, insulin’s 
cognitive effects may operate through non-metabolic pathways such 
as synaptic receptor trafficking and tau phosphorylation regulation, 
independent of direct glucose uptake (Hamer et al., 2019). 
Neuronal insulin resistance triggers metabolic reprogramming, 
shifting energy metabolism from active phosphorylates to glycolysis. 
This transfer is accompanied by mitochondrial dysfunction and lipid 
and amino acid metabolism. These metabolic changes accelerate 
neuronal and brain aging (Cunnane et al., 2020). Biomarkers 
of brain insulin dysfunction in DE patients reflect the severity 
of metabolic reprogramming and cognitive impairment. These 
include reduced IRS-1 phosphorylation, changes in mitochondrial 
morphology/function, and malfunctioning of downstream insulin 
signaling targets (Martínez Báez et al., 2024). These biomarkers not 
only tested the link between insulin resistance and DE, but also 
emphasized that metabolic reprogramming is a unified mechanism 
by which T2DM accelerates brain aging.

Oxidative stress and 
neuroinflammation

Oxidative stress is defined as the imbalance between the 
production of ROS and the antioxidant defense capacity of an 
organism, and is a central pathological feature of metabolic 
disorders, neurodegeneration and aging (Maciejczyk et al., 
2019). Importantly, it is the result of metabolic reprogramming, 
which acts as an adaptive restructure of metabolic pathways. 
Sustaining accelerated brain aging and cognitive decline of DE. 
Antioxidative systems of the body containing catalase, superoxide 
dismutase, enzymes such as glutathione peroxidase, and non-
enzymatic components such as reduced glutathione and uric acid, 
usually works to neutralize ROS and maintain cell homeostasis 

Frontiers in Cell and Developmental Biology 02 frontiersin.org

https://doi.org/10.3389/fcell.2025.1701406
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Huai et al. 10.3389/fcell.2025.1701406

(Chen et al., 2025). However, in the condition of chronic diabetes, 
oxidative stress can overwhelm these defense mechanisms, 
lead to impaired regulation of metabolic pathways, and cause 
pathological changes in energy metabolism that perpetuate cellular 
dysfunction (Singh et al., 2022).

DM contributes greatly to excessive ROS production. Chronic 
hyperglycemia in DM accelerates ROS formation, which overcomes 
endogenous antioxidant defenses, through glucose self-oxidation, 
advanced glycemic reactions, and extreme activity of the polyol 
pathway (Khalid et al., 2022). In diabetic rats, weak brain antioxidant 
enzymes match worse memory problems (Ling et al., 2018). 
Specifically, ROS harm to mitochondrial DNA and parts blocks 
energy making (Sun et al., 2023; Watanuki et al., 2024). This forces 
neurons to use inefficient sugar breakdown for energy—a mark of 
metabolic reprogramming. This sugar shift cuts ATP output and 
raises lactate buildup and more ROS. It creates a bad loop that speeds 
neuron aging (Vargas-Soria et al., 2023; Churchward et al., 2018).

High ROS levels also push microglia cells to change. They 
release stuff like TNF-α, IL-1β, IL-6, IFN-γ, iNOS, MCP-1, NO, 
prostaglandin E2, and GRO, increasing brain swelling (Bernier et al., 
2020). Brain samples from diabetic donors show microglia 
activation, like in AD—a zone key for memory (Valente et al., 2010). 
Pre-clinical studies using diabetic/obese db/db mice have shown 
that increases in brain levels of IL-1β, IL-6, and TNF-α are correlated 
with decreases in spatial recognition memory. However, genetic or 
pharmacological inhibition of microglial activation can mitigate 
both inflammation and cognitive impairment (Din et al., 2011).

Oxidative stress activates several stress-responsive signaling 
pathways, including p38 MAPK, NF-κB, AGE/RAGE, JNK/SAPK, 
and protein kinase C, which directly modulate metabolic 
reprogramming (Evans et al., 2002). NF-κB signalling, for example, 
inhibits PGC-1α, the main orchestrator of mitochondrial biological 
development, thereby inhibiting oxidative phosphorylation 
and shunting metabolism to glycolysis (Abu et al., 2023). 
Similarly, the p38 MAPK signaling inhibited Akt-guided glucose 
absorption, thereby exacerbating the imbalance of neuronal 
energy (Entezari et al., 2022). In total, these disorders modify 
proteins, lipids, and DNA oxidatively, leading to caspeze-induced 
apprehensis and persistent neuritis. In particular, protein-
oxidation worsens synaptic plasticity and memory alignment, 
contributing to the cognitive decline directly observed in DE 
(Dong et al., 2023) (Figure 1).

Autophagy and mitophagy 
dysfunction

Autophagy is a cleanup path using lysosomes. It removes bad 
proteins and cell parts, key for cell balance (Dikic and Elazar, 2018; 
Galluzzi et al., 2017). Main control paths for autophagy include 
AMPK/mTOR and PI3K/Akt/mTOR chains. These cross with core 
metabolic reprogramming (Wang et al., 2023; Kim et al., 2002). 
Phage flux is usually measured by LC3 and p62. Persistent high
p62° signals inhibit macrophage flow (Mizushima et al., 2010).

Mitophagy is a specialized form of autophagy that selectively 
target mitochondria for lysosomal degradation and play 
an important role in regulating inflammation, metabolic 
transformation, and cell reprogramming (Gustafsson and Dorn, 

2019). Because neurons are specialized energy consumers, can 
accelerate their death even with light mitochondrial damage and 
force metabolic recombination, that macrophages are central 
tubes that connect metabolic disorders and neurodegenerative 
diseases A growing number of data indicate that this 
is the case (Fang et al., 2019).

Under physiological conditions, instantaneous energy stress 
triggers the AMPK/ULK1 signaling axis and activates a protective 
mitotic food with PINK1 stabilization and Parkin recruitment 
(Iorio et al., 2021). However, chronic metabolic disturbances, such 
as persistent high blood sugar, disrupt this time regulation. When 
AMPK calibration is impaired, the PINK one phosphorylation 
mode is no longer adaptive, resulting in Parkin mistranslation 
and progressive self-feeding failure (Guo et al., 2023). The 
resulting mitochondrial dysfunction led to a vicious cycle of self-
continuation, in which defects in cell removal exacerbated the 
overproduction of ROS, further impair the PINK 1-mediated 
activation mechanism (Lazarou et al., 2015). This leads to irreparable 
mitochondrial rupture, which runs out of ATP reserves and 
accelerates the over-phosphorylation of tau proteins—a sign of 
synaptic degeneration (Toyama et al., 2016).

In a db/db mouse model, a simulation of T2DM due to 
obesity and hyperglycemia, hippocampal self-eating injury was 
demonstrated by a decrease in the LC3-II/I ratio and an increase 
in p62 accumulation (Guan et al., 2017; Li et al., 2017). T1DM 
has recorded a similar mitochondrial phagocytotic protective 
effect that reduces the accumulation of ataxia mitochondria 
in pancreatic beta cells, and a conservative mechanism 
between diabetic subtypes tends to be consistent with ataxia
(Blagov et al., 2023).

Recent breakthroughs have shown that enhancing mitotic 
diet can suppress amyloid-beta plaque accumulation, reduce 
excessive phosphorylation of tau protein, and prevent synaptic 
loss during neurodegeneration. It has been demonstrated that 
pharmacological activation of mitotic food by supplementation 
with drugs such as urolithin A or NAD+ reverses the glycolysis 
dependence of neurons, restores oxidative phosphorylation, and 
improves cognitive function in diabetic models (Fang et al., 2017;
Fang et al., 2014).

Glycolytic flux and lipolysis 
dysregulation

Chronic hyperglycemia leads to pathological changes, 
characterized by “glycolysis overload and unscheduled glycolysis 
associated with hexalose kinases”. Unscheduled glycolysis means 
a state of metabolic disorder in which glycolysis fluxes are 
persistent and are affected by cellular energy demands. This 
process is characterized by too large a bundle of glucose passing 
through hexokinase-2 (HK2), but the downstream yeast degrading 
enzyme does not increase accordingly. This imbalance leads to 
an abnormal accumulation of yeast solution intermediates to 
bypass mitochondrial oxidation and promote the production of 
excessive lactate (Rabbani and Thornalley, 2024a). Lactic acid 
usually acts as the preferred oxidative fuel for neurons during 
acute metabolic stress, but its chronic overproduction exceeds the 
physiological threshold in hyperglycemia (Magistretti and Allaman, 
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FIGURE 1
Brain Metabolic Reprogramming as a Central Hub Linking Peripheral Metabolic Stress to Neurodegenerative Pathologies. Peripheral metabolic stress 
(chronic hyperglycemia/insulin resistance) triggers brain metabolic reprogramming, which in turn drives neuroinflammation and BBB breakdown. 
These pathologies impair synaptic plasticity, promote tau hyperphosphorylation, and reduce cognitive function.

2018). In neurons, this shift appears as a change from oxidative 
phosphorylation to aerobic glycolysis, similar to the Warburg effect. 
This change happens through increased HIF-1α activity, which raises 
levels of pyruvate kinase M2 (PKM2) and lactate dehydrogenase A 
(LDHA) (Traxler et al., 2022; Wei et al., 2023). Lactate changes 
from a useful energy source to a harmful substance: it increases 
the lactate-to-pyruvate ratio in the brain and separates glycolysis 
from mitochondrial oxidation (Tang, 2020). More glucose use 
leads to higher ATP consumption (Rabbani and Thornalley, 2024b; 
Wang et al., 2024). This broken lactate shuttle system prevents proper 
energy production, making neurons lose energy (Lee et al., 2025).

Lipid breakdown problems also speed up brain aging and 
cognitive loss. Research shows these problems cause free fatty 
acids (FFA) and lipoproteins to enter the brain, damaging the 
BBB. Studies found that clusters of Apolipoprotein E epsilon 4 
allele (ApoEε4) turn on the CypA-MMP9 pathway (Banks and 
Rhea, 2021; Shen et al., 2023). This breaks down tight junction 
proteins and lets neurotoxic free fatty acids flood into the brain. 
The resulting lipid overload not only amplizes insulin resistance 
in neurons, but also builds a self-sustaining cycle of metabolic 
dysfunction (Zhao et al., 2017). The high blood sugar induced 

glycolysis flux directly intensified the malfunctions of lipolysis. 
Enhanced glycolysis generates glycerol-3-phosphate, which 
converts FFA esters to triglycerides and releases FFA permeated 
into the brain by elevated adipose triglyceride lipase (ATGL) 
(Pedretti et al., 2025; Byrns et al., 2024). In neurons and star-like 
colloidal cells, insulin resist inhibition of peroxisome proliferator-
activated receptor α (PPARα) activity, inhibits fatty acid oxidation 
(FAO), and promotes lipid accumulation (Scheggi et al., 2022;
Kumar et al., 2025).

The interaction between glycolysis and lipolysis produces a 
self-amplified pathological circulation in the DE. First, citric acid 
is transferred from the TCA cycle to the abinitio fat production 
mediated by acetyl-CoA carboxylase (ACC) to enhance the 
synthesis of palmitic acid. Palmitates then activate the mini-
colloidal cell Toll-like receptor 4 (TLR4), triggering the release 
of pro-inflammatory cytokines (Kim et al., 2023). At the same 
time, lactate is released through the monocarboxylic acid transport 
protein, which activates neuron G protein-coupled receptor 81 
(GPR81) and inhibits intracellular cAMP levels. This decrease 
in cAMP indirectly inhibits the activity of hormone-sensitive 
lipase (HSL) and captures lipids into the cell (Lee et al., 2025). 
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FIGURE 2
Putative Metabolic Reprogramming in DE: Interconnected Pathways of Glucose Utilization, Mitochondrial Oxidation, and Lipid Dysregulation. (1) 
Glucose Metabolism: Glucose uptake via GLUT (glucose transporter) and glycolysis, with pyruvate diverted to lactate (exported via MCT 
[monocarboxylate transporter]) under chronic hyperglycemia (Warburg effect); (2) Mitochondrial Dysfunction: Impaired oxidative phosphorylation 
(OXPHOS) due to ROS (reactive oxygen species) from the electron transport chain (ETC.), reducing ATP production; (3) Lipid Metabolism: Dysregulated 
fatty acid synthesis (from TCA cycle citrate) and β-oxidation, contributing to lipid accumulation.

Finally, the ROS oxidative low density lipoprotein (LDL) particles 
produced by overloading are glycosylated to form oxidized LDL 
(oxLDL). This in turn raised the sterol regulatory element-binding 
protein 1c (SREBP-1c), accelerating the synthesis of ceramides. The 
resulting increase in hippocampal ceramide levels directly results in 
synaptic damage and cognitive impairment (Goodman et al., 2024; 
Zhou et al., 2025) (Figure 2).

Therapeutic strategies targeting 
metabolic reprogramming

Current evidence supports the targetability of therapy with 
pathological metabolic reprogramming to offset progression 
of DE (Cunnane et al., 2020; Guarente et al., 2024). GLP−1 
receptor agonists (including liraglutide and semaglutide) improve 
neuronal insulin resistance by enhancing insulin-sensitive glucose 
utilization and inhibiting yeast fluke driven by hyperglycemia 
(Drucker et al., 2017). Clinical trials have shown that they reduce 

neuroinflammation and synaptic loss primarily by indirectly 
regulating peripheral intestinal insulin signals and steady glucose 
status (Wei et al., 2023; Li Z. et al., 2021). The exact involvement of 
HIF-1α/PKM2 signaling in neurons is not yet fully understood and 
further research is needed.

NAD+ boosters, exemplified by nicotinamide mononucleotide, 
address hallmark NAD+ depletion through the reactivation of 
sirtuins SIRT1 and SIRT3. This reactivation restores mitochondrial 
oxidative phosphorylation, enhances autophagic clearance of 
damaged organelles, and reduces oxidative damage in hippocampal 
neurons, thereby reversing cognitive deficits associated with 
accelerated brain aging (Fang et al., 2014; Butterfield and Halliwell, 
2019; Zh et al., 2016). Emerging evidence demonstrates that 
supplementation with NAD+ or its biosynthetic precursors 
rescues high-glucose. It impaired keratinocyte proliferation and 
migration, expedites corneal re-epithelialization and sensory 
nerve regrowth in diabetic animals, and coincides with re-
engagement of the SIRT1 pathway (Li Y. et al., 2021). Brain 
NAD+ regulation presents a tissue-specific pathway with different
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enzymatic controls, and these findings indicate that hyperglyceme-
mediated NAD+ biosynthetic damage is a pathogen in diabetic
tissue pathology.

AMPK activators exemplified by metformin operate through 
well-established mechanisms: inhibition of mitochondrial complex 
I activates AMPK, suppressing acetyl-CoA carboxylase-mediated 
lipogenesis and ceramide accumulation. It also activates PPARα 
to promote oxidation of fatty acid beta and relieve lipid-induced 
astrocytes stress (Bharath et al., 2020; Zhang et al., 2023). Clinical 
data have demonstrated the therapeutic effect of metformin in 
improving glucose control and reducing diabetic complications, 
but its direct impact on the specific lipolysis of human astrocytes 
requires testing (Dutta et al., 2023).

New evidence suggests that combinatorial targets of key 
metabolic nodes may enhance neural protection for age-related 
neurodegenerative diseases (Zhang et al., 2021). To restore brain 
metabolic stability and slow brain aging, a synergy of GLP-
1 receptor agonists, NAD+ precursors and AMPK activators 
was proposed. The resulting metabolic recombination reverses 
the transformation of Warburg-like glycolytic shifts in senescent 
neurons, enhances macrophage lysosome function, and may reduce 
oxidative stress. It should be noted that the therapeutic potential of 
this combination must be balanced with clinical risk. Hypoglycemia 
due to combination of GLP-1RA and metformin and uncertain 
central nervous system interactions under tissue-specific NAD+

regulation (Xie et al., 2023; Gong et al., 2022). Targeted validation 
in diabetic encephalopathy models remains a necessary condition 
to assess the safety tradeoff of treatment efficacy (Na et al., 2025).

Conclusion

This review identifies metabolic reprogramming as an important 
driver of DE cognitive decline and linked the major pathologic 
processes: brain insulin resistance, oxidative stress, defective 
autophagy, and dysregulated glycolysis/lipolysis, all of which 
contribute to accelerated brain aging. Novel treatments for metabolic 
reprogramming, such as GLP-1 receptor agonists, NAD+ boosters 
and AMPK activators, have shown hope in preclinical studies, 
but the specific mechanisms in terms of DE and clinical efficacy 
are unknown. Importantly, direct research into DE metabolic 
reprogramming is not yet sufficient and there are significant 
differences in our understanding of its causal effects and therapeutic 
potential. Future research should focus on the validation of these 
mechanisms and conduct clinical trials to develop effective methods 
for treating DE related dementia.
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Glossary

ACC Acetyl-CoA carboxylase

AD Alzheimer’s disease

AGE/RAGE Advanced Glycation Endproducts/Receptor for AGEs

Akt Protein kinase B (PKB)

AMPK AMP-activated protein kinase

Apaf-1 Apoptotic protease-activating factor 1
ApoEε4 Apolipoprotein E epsilon 4 allele

ATGL Adipose triglyceride lipase

ATP Adenosine triphosphate

BBB Blood-brain barrier

CaMKK2 Calcium/calmodulin-dependent protein kinase kinase 2
CREB cAMP-response element-binding protein

CypA-MMP9 Cyclophilin A- Matrix metallopeptidase 9
DE Diabetic encephalopathy

DM Diabetes mellitus

FAO Fatty acid oxidation

FFA Free fatty acid

GLP-1 Glucagon-like peptide-1

GLP-1RA GLP-1 receptor agonist

GLUT4 Glucose transporter type 4
GPR81 G protein-coupled receptor 81/Hydroxycarboxylic 

acid receptor 1
GRO Growth-regulated oncogene (chemokine)

HK2 Hexokinase 2
HIF-1α Hypoxia-inducible factor 1-alpha

HSL Hormone-sensitive lipase

IFN-γ Interferon gamma

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

iNOS Inducible nitric oxide synthase

IR Insulin receptor

IRS Insulin receptor substrate

JNK/SAPK c-Jun N-terminal kinase/Stress-activated protein kinase

LDHA Lactate dehydrogenase A
LDL Low-density lipoprotein

LPS Lipopolysaccharide

MAP1LC3/LC3 Microtubule-associated protein 1A/1B-light chain 3
MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemoattractant protein-1 (CCL2)

MMP Matrix metallopeptidase

mTOR Mechanistic target of rapamycin

NAD+ Nicotinamide adenine dinucleotide (oxidized form)

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NO Nitric oxide

Nrf2 Nuclear factor erythroid 2-related factor 2
oxLDL Oxidized low-density lipoprotein

p62/SQSTM1 Sequestosome 1
PGC-1α Peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha

PI3K Phosphatidylinositol 3-kinase

PKM2 Pyruvate kinase isoform M2

PPARα Peroxisome proliferator-activated receptor alpha

RAGE Receptor for Advanced Glycation Endproducts

ROS Reactive oxygen species

SDHAF1 Succinate dehydrogenase complex assembly factor 1
SIRT Sirtuin (Silent mating type information regulation 2 homolog)

SREBP-1c Sterol regulatory element-binding protein 1c

T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus

TCA cycle Tricarboxylic acid cycle (Krebs cycle)

TLR4 Toll-like receptor 4
TNF-α Tumor necrosis factor-alpha

TXNIP Thioredoxin-interacting protein
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