

OPEN ACCESS

EDITED BY Angelo Sparaneo, IRCCS Casa Sollievo della Sofferenza Hospital, Italy

REVIEWED BY Sevgi Marakli, Yıldız Technical University, Türkiye Zixuan Gou. Peking University, China

*CORRESPONDENCE Amin Tamadon, □ amintamaddon@yahoo.com

[†]These authors share first authorship

RECEIVED 05 September 2025 REVISED 17 October 2025 ACCEPTED 29 October 2025 PUBLISHED 25 November 2025

Baspakova A, Zare A, Mussin NM, Tanideh N, Zhilisbayeva KR, Safarzoda Sharoffidin R. Suleimenova R, Yelgondina G, Kaliyeva AE, Umbetova AA, Zinaliyeva A and Tamadon A (2025) In-silico pharmacological insights into the therapeutic potential of microRNAs for microplastic-associated cancers. Front. Cell Dev. Biol. 13:1699693. doi: 10.3389/fcell.2025.1699693

© 2025 Baspakova, Zare, Mussin, Tanideh, Zhilisbayeva, Safarzoda Sharoffidin, Suleimenova, Yelgondina, Kaliyeva, Umbetova, Zinaliyeva and Tamadon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with

In-silico pharmacological insights into the therapeutic potential of microRNAs for microplastic-associated cancers

Akmaral Baspakova^{1†}, Afshin Zare^{2†}, Nadiar M. Mussin³, Nader Tanideh^{4,5}, Kulyash R. Zhilisbayeva⁶, Ramazon Safarzoda Sharoffidin⁷, Roza Suleimenova⁸, Gulden Yelgondina⁹, Akmeiir E. Kaliyeva¹⁰, Aigerim A. Umbetova¹¹, Ainur Zinaliyeva¹² and Amin Tamadon 4,13*

¹Department of Epidemiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ²Drug Discovery and Development Industry, School of Pharmacy, Taipei Medical University, Taipei, Taiwan, ³Department of Surgery No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ⁴Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, ⁵Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran, ⁶Department of Languages, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ⁷Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan, ⁸Department of Public Health and Hygiene, Astana Medical University, Astana, Kazakhstan, ⁹School of General Medicine-2, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan, ¹⁰Department of Microbiology, Virology and Immunology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ¹¹Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ¹²Department of General Medical Practice No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan, ¹³Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Microplastics (MPs) are increasingly implicated in cancer biology through effects on gene expression, stress responses, and treatment susceptibility; however, causal links remain provisional. We systematically screened PubMed and Google Scholar (through September 2025) to identify cancer-related genes reported to be altered by MP exposure and then evaluated microRNAs (miRNAs) with anticancer activity that may target those genes. Mature miRNA sequences were retrieved from RNAcentral and assessed against MP-altered genes using RNAhybrid for target-site prediction and minimum free-energy (mfe) hybridization. MPs were reported to modulate genes across multiple tumor types-including breast, gastric, liver, lung, colorectal, cervical, pancreatic, and skin. In silico analyses identified candidate miRNAs with favorable mfe values for these targets, including miR-483-3p, miR-365, miR-331-3p, miR-138-5p, miR-760, miR-1-3p, miR-665, miR-490-3p, miR-370-3p, miR-520a, miR-638, miR-559, miR-532-3p, miR-593-5p, and miR-29b. These interactions suggest putative avenues to counter MP-associated oncogenic programs and therapy resistance. Because mfe predictions do not establish functional regulation, all findings should be interpreted as hypothesis-generating. Priorities for validation include reporter assays, gene/protein modulation, phenotypic rescue, and in vivo testing in MP-exposed models. Collectively, our results nominate miRNAs as candidate

tools to interrogate and potentially mitigate MP-associated carcinogenic mechanisms.

KEYWORDS

microplastics, microRNAs, cancer, therapy resistance, in silico, RNAhybrid

1 Introduction

Microplastics (MPs) are conventionally defined as plastic particles <5 mm (5,000 μm) in diameter, while nanoplastics (NPs) are generally <1 μm . For the purposes of this review, we focused on the range of 1–5,000 μm , consistent with commonly reported experimental studies (Hale et al., 2020). Among these, human health is one of the most critical concerns. Studies have confirmed the presence of MPs in the human body worldwide, where they can accumulate in various types of cells (Vethaak and Legler, 2021). This accumulation may lead to several adverse health outcomes, including gut microbiota disruption and respiratory disorders (Winiarska et al., 2024).

Microplastics (MPs < 5 mm) have been detected in human tissues and may perturb cancer-related pathways including oxidative stress, lipid metabolism, inflammation, and drug transport. Studies report that MPs can upregulate efflux transporters (ABCB1/ABCG2) and alter chemotherapeutic susceptibility (Rosellini et al., 2023), enhance metastatic features in breast cancer (Park et al., 2023), promote therapy resistance via ASGR2 in gastric cancer (Kim et al., 2022), and aggravate radiation-induced intestinal injury (Chen Y. et al., 2024). Despite these observations, mechanisms remain poorly defined.

One of the most concerning potential health impacts of MPs is cancer. Previous studies have suggested MPs as possible contributors to carcinogenic processes, but the evidence remains preliminary and largely associative (Kumar et al., 2024). In addition to initiating tumorigenesis through mechanisms such as DNA damage (Hu et al., 2022), may also influence the response of cancer cells to anti-cancer therapies, potentially contributing to drug resistance (Kim et al., 2022). These findings underscore the need to explore novel strategies for cancer treatment.

Therefore, scientists have attempted to develop various kinds of anti-cancer therapeutic agents in recent years (Sun et al., 2023). Recent research has focused on developing innovative anticancer strategies, including advanced drug platforms (Kaliyev et al., 2024), stem-cell-based therapies (Kaliyev et al., 2024), and public education initiatives (Barani, 2024). Among these, microRNAs (miRNAs) have emerged as promising anti-cancer agents.

miRNAs are ~22-nucleotide non-coding RNAs that guide Argonaute complexes to complementary mRNA regions, leading to mRNA degradation or translational repression. Each miRNA regulates many targets, allowing broad control of oncogenic networks involving proliferation, apoptosis, invasion, and drug resistance (Szczepanek et al., 2022). These regulatory properties make miRNAs attractive therapeutic candidates for MP-associated cancers. miRNAs possess several advantageous properties, including the ability to regulate cancer-related pathways, modulate drug sensitivity, deliver therapeutic molecules, and enable personalized treatment approaches (Szczepanek et al., 2022), making them strong candidates for treating MP-associated cancers. However, there is

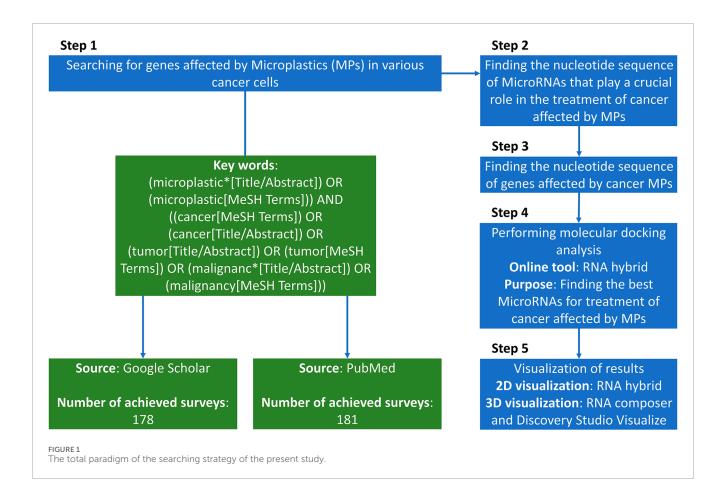
still a lack of comprehensive understanding regarding the potential of miRNAs to treat MP- associated tumors and the molecular mechanisms through which they exert anti-cancer effects. Most previous studies have focused on how MPs alter miRNA expression and function (Chen T. et al., 2024).

Therefore, the present study aims to investigate the therapeutic potential of miRNAs in MP-associated cancers through an *in silico* analysis. Additionally, this review explores possible molecular mechanisms underlying the anti-cancer activity of miRNAs and offers insights for future *in-vivo* and *in-vitro* research to further clarify their role in treating MP-associated malignancies.

2 Materials and methods

2.1 Literature identification and selection

We queried PubMed and Google Scholar from database inception to 30 September 2025 (Figure 1). Example search string (PubMed): (microplastic*OR nanoplastic*OR "plastic-related") AND (cancer OR tumor OR carcinoma OR leukemia) AND (gene OR transcript*OR "drug resistance" OR efflux OR MAPK OR ABCB1 OR ABCG2) and for miRNAs: (microRNA OR miRNA) AND (anticancer OR tumor suppress*OR apoptosis OR chemosensit*) AND (breast OR gastric OR liver OR lung OR colorectal OR cervical OR pancreatic OR melanoma).


Inclusion criteria: (i) primary in vitro/in vivo/clinical studies in human cancer models or human tissues reporting MP exposure (or plastic-related compounds) and gene/protein/pathway changes; (ii) peer-reviewed; (iii) English. Exclusion: reviews, editorials, non-human non-cancer models, studies reporting expression changes without cancer relevance, or miRNAs lacking anticancer functional evidence. Two reviewers independently screened titles/abstracts and full texts; disagreements were resolved by a third reviewer.

2.2 Sequence sources and target selection

Mature miRNA sequences were retrieved from RNAcentral; human gene sequences (mRNA/UTR/coding region where available) were obtained from NCBI Gene/RefSeq. We evaluated genes previously reported as MP-altered in cancer contexts (Tables 1–3). (Chen T. et al., 2024).

2.3 In silico hybridization

We used RNAhybrid to predict target-site hybridization and minimum free energy (mfe). Default parameters were applied unless noted; where possible we scanned 3'UTRs preferentially and

considered coding sequence if 3'UTR data were unavailable. For each gene, we screened multiple miRNAs with anticancer evidence and recorded the lowest mfe site per miRNA-gene pair. Lower (more negative) mfe was interpreted as more stable predicted binding. No single mfe threshold was used for exclusion; instead, candidates were prioritized by relative mfe within gene-specific comparisons (Chen T. et al., 2024; Jain et al., 2021). MFE criteria included: RNAhybrid minimum-free-energy (mfe) values were interpreted as strong (\leq -20 kcal mol⁻¹), suggestive (-15 to -19.9), and borderline (>-15). Pairs above -20 were retained only if supported by prior functional evidence and are flagged as low-priority hypothese.

2.4 Visualization and networks

Two-dimensional pairing diagrams were exported from RNAhybrid. 3D miRNA cartoons were rendered in Discovery Studio Visualizer for illustrative purposes only. Cytoscape was used to depict miRNA-gene-pathway relationships (Figure 2). Representative 2D pairing plots, 3D illustrations, and network diagrams are shown in Figure 3.

2.5 Interpretive caveats

mfe predictions do not prove targeting; they require orthogonal validation (reporter assays with wild-type/mutant sites, miRNA

gain/loss, protein readouts, and phenotypic rescue under MP exposure).

3 Results

3.1 MPs modulate cancer-relevant genes across tumor types

Across studies, MPs were linked to changes in efflux transporters (ABCB1, ABCG2), stress and survival mediators (TMBIM6, HO-1), immune modulators (TIM4), metabolic regulators (PPARα/γ, LXR-α, FABP1), and ECM/adhesion factors (CD44). In breast cancer models, polypropylene increased AP2M1, PTP4A2, and TMBIM6 while reducing FTH1, a pattern consistent with enhanced trafficking/ER-stress signaling and diminished iron-mediated tumor suppressive functions. In gastric cancer, polystyrene exposure associated with higher CD44 and ASGR2, aligning with stemness/adhesion and glycoprotein handling. In liver cancer, PMMA upregulated HO-1 and downregulated PPARα/FABP1, suggesting oxidative stress and lipid dysregulation. Lung cancer models exposed to PTFE implicated MAPK cascade genes and BCL2, consistent with proliferation and apoptosis evasion. Collectively, these reports converge on MP-associated activation of survival and resistance programs with tumor- and polymerspecific nuances. An overview of MP-altered genes by tumor type is summarized in Figure 3 (Table 1).

TABLE 1 Genes that are affected by microplastics (MPs) in various types of cancer cells.

Microplastic	Type of cancer cell	Cancer type	Affected gene	Effect of microplastics on gene	The final impact on the cancer cell	Reference
	CEM/ADR5000 cells	Leukemia			Increasing cytotoxicity	
MP	MDA-MB-231-		ABCB1 ABCG2	Inhibition	Disruption of detoxification pathways	Rosellini et al. (2023)
	BCRP cells	Breast cancer			Heightening cell susceptibility to xenobiotics	
			но.		Increasing oxidative stress	
			HO-1		Promotion of inflammation	
			PPARγ	Upregulation	Increasing lipid accumulation	
			LXR-α		Disruption of lipid homeostasis	
PMMA	HepG2	Liver cancer			Increasing inflammation	Boran et al. (2024)
					Promoting inflammation	
			FABP1	Downregulation	Promoting lipid accumulation	
					Mitochondrial damage	
			PPARα	Downregulation	Lipid metabolism disruption	
	SCL-1			,	Enhancing proliferation	
Polythene	A431	Skin cancer	NLRP3	Increased expression	Enhancing the inflammatory response	Wang et al. (2023)
			TMBIM6	Increased expression	Enhancing cell cycle progression	
PP	MDA-MB-231	Breast cancer	AP2M1	Increased expression	Increasing secretion of pro-inflammatory cytokine IL-6	Park et al. (2023)
			PTP4A2	Increased expression	Promoting metastatic	
			FTH1	Reduced expression	features	
			CD44	Increased expression	Multidrug resistance	Zhao et al. (2024),
PS	NCI-N87	Gastric cancer		Increased	Enhancing cancer hallmarks	Brynzak- Schreiber et al. (2024), Li et al.
			ASGR2	expression	Enhancing proliferation	(2023), Yan et al. (2020)
					Enhancing migration	

TABLE 1 (Continued) Genes that are affected by microplastics (MPs) in various types of cancer cells.

Microplastic	Type of cancer cell	Cancer type	Affected gene	Effect of microplastics on gene	The final impact on the cancer cell	Reference
					Drug resistance	
					Loss of mucosal barrier protection	
		Colorectal cancer cells	MUC2	Reduced expression	Increasing inflammation-driven carcinogenesis	
					Promotion of colorectal cancer risk	
		Lung cancer cells			Altering the tumor immune microenvironment	
		Cervical cancer cells	TIM4	Potential binding and internalization of PS	Immune suppression and modulation	
		Colorectal cancer cells		microplastics		
		Gastric cancer cells			Tumor progression	
		Pancreatic cancer cells				
					Decreasing cell viability	
	AGS	Gastric cancer cells	Bax	Overexpression	Inducing apoptosis	
					Inducing DNA damage	
			MAPK Family	Activating	Induction of oxidative stress	
PTFE	A549	Lung cancer	NLRP3	Reduced expression	Induction of an inflammatory response	K et al. (2023)
			BCL2	Increased expression	Induction of carcinogenic processes	

A431, human epidermoid carcinoma cell line; ABCB1, ATP-binding cassette sub-family B member 1; ABCG2, ATP-binding cassette sub-family G member 2; AGS, adenocarcinoma gastric cancer cells; AP2M1, adaptor-related protein complex 2 subunit mu 1; ASGR2, asialoglycoprotein receptor 2; A549, human lung carcinoma cell line; Bax, Bcl-2-associated X protein; BCL2, B-cell lymphoma 2; CEM/ADR5000 cells, doxorubicin-resistant human acute lymphoblastic leukemia cells; CD44, cluster of differentiation 44; FABP1, fatty acid-binding protein 1; FTH1, ferritin heavy chain 1; HO-1, heme oxygenase 1; LXR-a, liver X receptor alpha; MAPK, family, mitogen-activated protein kinase family; MDA-MB-231, human breast adenocarcinoma cell line; MDA-MB-231-BCRP, cells, breast cancer resistance protein-overexpressing MDA-MB-231, cells; MP, microplastic; MUC2, mucin 2; NCI-N87, human gastric carcinoma cell line; NACHT, LRR, and PYD, domains-containing protein 3; PMMA, polymethyl methacrylate; PP, polypropylene; PPARa, peroxisome proliferator-activated receptor alpha; PPARy, peroxisome proliferator-activated receptor gamma; PS, polystyrene; PTFE, polytetrafluoroethylene; PTP4A2, protein tyrosine phosphatase type IVA, member 2; SCL-1, squamous cell carcinoma cell line; TMBIM6, transmembrane BAX, inhibitor motif-containing 6; TIM4, T-cell immunoglobulin and mucin domain-containing protein 4.

3.2 Functional roles of MP-altered genes

Table 2 maps each gene to cancer functions and mechanisms. Notable axes include: (i) drug efflux (ABCB1/ABCG2) → reduced intracellular drug levels; (ii) endocytosis/trafficking (AP2M1) → receptor signaling and nutrient uptake; (iii) immune

modulation (TIM4) \rightarrow efferocytosis and immune tolerance; (iv) metabolism/oxidative balance (PPARs, LXR- α , FABP1, HO-1) \rightarrow growth and stress adaptation; (v) MAPK signaling \rightarrow proliferation/migration; and (vi) cell death control (BAX \uparrow , BCL2 \uparrow) \rightarrow apoptosis set-point shifts. These roles provide mechanistic context for potential miRNA interventions (Table 2).

TABLE 2 Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
			Preventing the accumulation of toxic substances inside cells	Actively pumps chemotherapeutic drugs	
			Preventing the accumulation of certain chemotherapeutic drugs	out of cancer cells, thereby reducing intracellular drug accumulation	
			Controlling the transport of substances between blood and tissues	Contributes to MDR by lowering the efficacy of various anticancer drugs	
			Reducing drug penetration into certain tissues	Increased efflux of	
	+ Substance		Impacting pharmacokinetics and limiting drug efficacy in cancer therapy	chemotherapeutic drugs, reducing their cytotoxic effects	
ABCB1	transportation + Role in Vascular Transport + Vascular Processes in the Circulatory System + Ion Channel Interactions	+ Breast cancer + Leukemia	Influencing the selective permeability of blood vessels	Barrier Integrity and Selectivity: By regulating the efflux of molecules, P-gp contributes to maintaining the selective permeability of vascular barriers	Miao et al. (2017), Altamura et al. (2022)
			Affecting drug distribution and clearance	Drug Resistance in Circulatory Tumors: P-gp impacts drug efficacy by limiting the systemic retention of drugs within the vascular environment	
			Regulating apoptosis	P-gp may regulate or interact with ion channels, contributing to cellular responses and influencing apoptosis and drug resistance	
			Regulating proliferation	Facilitating cellular adaptation to stress conditions, such as chemotherapy exposure	

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
	+ Response to the drug		Increasing drug efflux	Reducing intracellular retention of chemotherapeutic agents Transporting a wide range of chemotherapeutic agents and	
ABCG2	+ Substance transportation	+ Breast Cancer + Leukemia		limiting their cytotoxic effects in cancer cells	Wang et al. (2020), Franczyk et al. (2022)
			Acting as a barrier in tissues like the blood-brain barrier, liver, and intestines	Regulating the bioavailability and toxicity of drugs	
			Promoting intracellular trafficking	Coating vesicles during endocytosis	
				Facilitating the recruitment of cargo proteins to clathrin-coated vesicles	
	Vesicle coat		Promoting cancer progression	Maintaining cellular homeostasis	
				Regulating the availability of key signaling molecules	
			Promoting tumor growth and progression	Influencing the internalization and trafficking of cancer-related receptors such as EGFR	
				Modulating cancer cell signaling	
AP2M1		Breast Cancer	Playing a role in	Modulating cancer cell nutrient uptake	Shin et al., 2021; Münz (2020), Xue et al. (2021)
	Antigen Processing		endocytosis	Modulating cancer cell receptor recycling or degradation	
				Curbing oncogenic pathways	
			Internalization of MHC	Regulating the trafficking and recycling of MHC molecules	
			class I molecules	Ensuring proper antigen display to T cells	
			Promoting cancer progression	Increasing receptor endocytosis	
	receptor-mediated endocytosis		Modulating cancer cell	Regulating CME	
			proliferation and survival pathways	Mediating the trafficking of receptors such as EGFR	

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
			Influencing the tumor microenvironment	_	
			Promoting tumor metastasis	+ Targeting glycoproteins with terminal galactose or	
ASGR2	Regulation of immune response	Gastric Cancer	Worsening of tumor prognosis	N-acetylgalactosamine residues for degradation + Glycoprotein recycling	Xue et al. (2021)
			Increasing tumor aggressiveness	+ Immune regulation	
			Increasing tumor survival		
Bax		Gastric cancer	Inducing apoptosis in cancer cells	Collapsing the mitochondrial membrane potential, which results in the release of cytochrome C, which leads to apoptosis	Shabani et al. (2020), Shen et al. (2023)
				Activation caspases 3, 7, and 9	
			Preventing cancer cell death		
			Promoting cancer cell survival	+ Inhibiting the	
			Promoting resistance to chemotherapy and radiation	pro-apoptotic protein Bax + Inhibiting the activation of caspases 3, 7, and 9 + Inhibiting the activation of	
BCL2	Regulation of the extrinsic apoptotic signaling	Lung cancer	Preventing the induction of apoptosis	the cleavage of PARP	Ramkumar et al. (2023), Alam et al. (2022a),
	pathway		Avoiding programmed cell death		Alam et al. (2022b)
			Blocking the activation of downstream caspases		
			Promoting cancer growth	Preventing the release of cytochrome c from	
			Promoting the persistence of cancer cells	mitochondria	
			Enhancing antioxidant defense		
CD44	Cell-matrix adhesion	Gastric cancer	Reducing oxidative stress	Stabilizing the xCT cystine	Jang et al., 2011; Zavros
			Enhancing the antioxidant defense of cancer stem cells	transporter	(2017)

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
			Tumor cell survival		
			Promoting tumor growth		
			Tumor initiation	Interaction with extracellular matrix components such as hyaluronan	
			Tumor progression	Involvement in signaling pathways like c-Met activation	
			Enhancing tumor progression		
FABP1	Lipid oxidation	Liver cancer	Maintaining the M2 phenotype of TAMs	Interacting with PPARG in TAMs to promote FAO	Tang et al. (2023)
			Immune suppression		
			Iron storage	Activating, binding, and	
			Oxidative damage protection	stabilizing the tumor suppressor p53 under	
			Regulation of angiogenesis	oxidative stress	
FTH1	Iron ion homeostasis	Breast Cancer	Inhibiting ferroptosis		Di Sanzo et al. (2020), Jia et al. (2024)
			Inhibiting chemotherapy resistance	Chelating ferrous iron and reducing ROS accumulation	
			Stabilizing high levels of antioxidant capacity in breast cancer cells	reducing NOO decumulation	
			Reducing oxidative stress	Playing a role in the Nrf2 signaling pathway	
			Creating Cytoprotective Effects	Facilitating the production of biliverdin, CO, and free iron from heme	
HO-1	Heme metabolic process	Liver cancer	Modulating tumor cell proliferation	Anti-apoptotic and antioxidant properties	Alharbi et al. (2022)
			Enhancing cancer cell resistance to treatment	Activation of survival pathways	
			Enhancing tumor progression	Suppression of apoptosis	
			Enhancing metastasis		

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
	Fatty acid biosynthetic process		Lipid accumulation	Modulating downstream	
	Inflammation		Inhibiting Cancer Progression	target genes, such as SREBP-1c, PPARγ, and FAS	
			Inhibiting tumor cell proliferation	77 10 6 11	
LXR-α		Liver cancer	Inducing cell cycle arrest	Upregulation of genes like SOCS3 and suppression of oncogenes like FOXM1	Han et al. (2023)
	Immune responses		Inducing apoptosis		
			Reducing tumor invasiveness	Interacting with the	
			Reducing tumor migration	- Wnt/β-catenin and NF-κB signaling pathways	
			Increasing cancer cell proliferation		
			Increasing cancer cell metastasis	Activation of Ras/Raf/MEK/ERK cascade	
MAPK Family		Lung cancer	Promoting cancer cell resistance to targeted therapies		Jain et al. (2021),
,			Promoting cancer cell proliferation	Activation of receptor α4β1	Zhou et al. (2020a)
			Promoting cancer cell migration	integrin leads to phosphorylation of MAPK components such as JNK and	
			Promoting cancer cell invasion	p38	
			Regulating immune response and inflammation		
	Glycoprotein		Decreasing tumor cell migration	+ Decreasing IL-6 secretion + Inhibiting the STAT3 and Chk2 signaling pathway	
MUC2	biosynthetic process	Colorectal cancer cells	Decreasing EMT	+ Activation of CREB phosphorylation	Hsu et al. (2017)
			Decreasing metastasis	+ Upregulation of E-cadherin	
			Decreasing cancer progression		

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
	Regulation of the inflammatory response		Inducing inflammation Increasing tumor growth		
NLRP3	Regulation of cytokine production is involved in	+ Skin Cancer + Lung cancer	Increasing tumor angiogenesis Increasing tumor immune evasion mechanisms	Activation of NLRP3, ASC, and caspase-1 which leads to Activating IL-1β and IL-18	Ciazyn et al. (2020)
	the inflammatory response		Inducing DNA damage Suppressing apoptosis		
			Creating a tumor-promoting environment		
	Regulation of the inflammatory response			Regulating lipid metabolism	
			+ Increasing tumor cell proliferation	Regulating glucose metabolism	
PPARα	Regulation of cytokine production is involved in	Liver cancer	+ Decreasing tumor cell apoptosis + Increasing tumor cell	Regulating oxidative stress	Pan et al. (2024)
	the inflammatory response		invasiveness	Regulating inflammation Interacting with several signaling pathways like NF-kB	
	Transcription coactivator activity		Inducing the transcription of genes involved in anti-inflammatory, anti-fibrotic, and anti-oxidative responses	Binding with the RXR to specific DNA sequences called PPREs	
	Ligand-activated transcription factor activity		Anti-inflammatory and anti-fibrotic effects	+ Inhibiting the expression of TNF- α , IL-6, IL-1 through inhibiting the NF- κ B	
	Regulation of the inflammatory response		Inhibiting hepatic fibrosis progression and inflammation	signaling pathway + Promoting the expression of anti-inflammatory cytokines like IL-10, TGF-β	
PPARγ		Liver cancer	Suppressing tumor microenvironment remodeling	+ Inducing the expression of antioxidant enzymes such as SOD and catalase	Pan et al. (2024),
			Decreasing cancer cell apoptosis	+ reduces ROS levels + Limiting DNA damage and oxidative stress	Ishtiaq et al. (2022)
	Regulation of cytokine production is involved in		Suppressing ECM deposition in liver fibrosis		
	the inflammatory response		Enhancing glucose consumption	Suppressing the activation of HSCs	
			Enhancing lactate generation	11003	
			Enhancing cancer cell proliferation		

TABLE 2 (Continued) Detailed information about gene function and molecular mechanisms that are affected by MPs, based on previous studies.

Gene	The total function of genes in cancer	Type of cancer	Function of the gene in cancer cells	The molecular mechanism by which genes exert their function in cancer	Reference
			Promoting angiogenesis	Regulation of VEGF-A and DLL-4/Notch-1 signaling pathways	
			Enhancing tumor cell migration	Regulation ERK signaling	
PTP4A2		Breast Cancer	Enhancing tumor cell invasion	pathway	Yu et al. (2023)
			Supporting oncogenesis	Interaction with CNNM3	_
			Enhancing tumor progression and metastasis	Regulating intracellular magnesium concentration	
	Antigen processing and presentation	Lung cancer cells	Tumor progression	Binding to PtdSer on apoptotic cells, mediating their uptake by DCs	
		Lung cancer cells	Tumor cell proliferation		
		Colorectal cancer cells	Enhancing the EMT		
			Enhancing the migration of cancer cells	Interacting with ανβ3 integrin via its Arg-Gly-Asp (RGD) motif	Liu et al. (2020), Wang et al. (2021),
TIM4	Leukocyte migration	Gastric cancer cells	Enhancing the invasion of cancer cells		Astuti et al. (2024), Caronni et al. (2021)
	Ü		Recruitment of tumor-associated macrophages	Activating PI3K/AKT/mTOR	
			Activation of angiogenesis	signaling pathway	
		Pancreatic cancer	Suppressing the immune system	Arg1 upregulation, which	
		cells	Facilitating tumor immune evasion	suppresses CD8 ⁺ T cell activity	
	Regulation of response to endoplasmic reticulum stress		Increasing chemo resistance	Elevating the levels of cytosolic ROS and calcium	
			Increasing cancer metastasis	Inducing paraptosis via ERAD II mechanisms	
			Increasing cancer progression	Activating lysosomal biogenesis	Robinson et al.
TMBIM6	Apoptotic mitochondrial	Breast Cancer	Enhancing migration and invasion	Activating the MAPK/ERK signaling pathway	(2025), Junjappa et al. (2019), Shin et al. (2023)
	changes		Cancer progression		-
			Supporting cellular processes like metastasis	PKC activation enhances Sp1-mediated TMBIM6 transcription	
			Facilitating resistance to apoptosis	_	

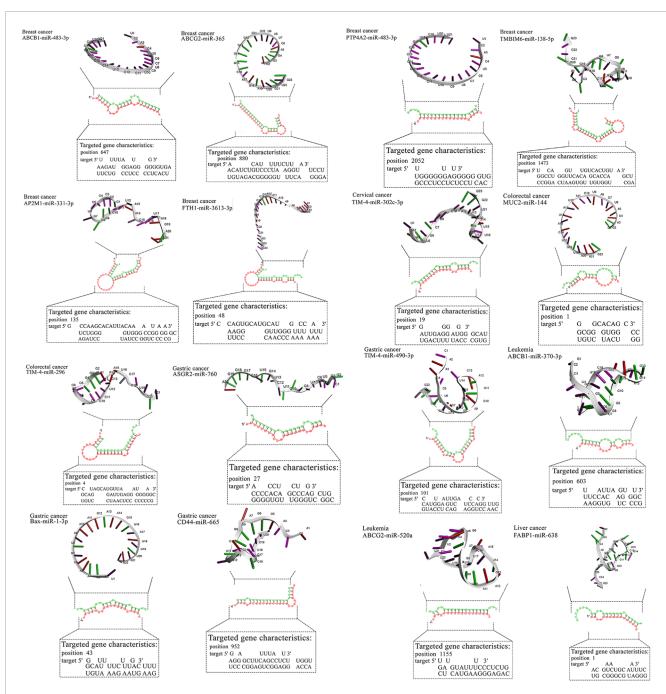
Arg1, Arginase-1; CME, clathrin-mediated endocytosis; CO, carbon monoxide; DCs, dendritic cells; EGFR, epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; ERK, Extracellular signal-Regulated Kinase; FAO, fatty acid oxidation; HSC, hepatic stellate cell; MDR, multidrug resistance; MEK, MAPK/ERK, kinase; MMPs, metalloproteinases; MMP-9, matrix metalloproteinase-9; PARP, poly-ADP, ribose polymerase; P-gp, P-glycoprotein; PKC, Protein kinase-C; PPARG, peroxisome proliferator-activated receptor gamma; PtdSer, phosphatidylserine; Raf, Rapidly Accelerated Fibrosarcoma; Ras, Rat Sarcoma virus; ROS, reactive oxygen species; SOD, superoxide dismutase; TAMs, tumor-associated macrophages.

TABLE 3 Various effects of MPs on the anti-cancer agents and the final effect caused by these impacts on cancer cells.

Type of MP	Type of MP-affected cancer	Affected anti-cancer agent	Effect of MP on anti-cancer agents	Effect of MP on cancer	Reference
Plastic-related	Breast cancer cells		Altering the uptake and intracellular accumulation of doxorubicin	Increasing the cytotoxicity in cancer cells	
compounds	Leukemia cells	Doxorubicin	Enhancing the intracellular concentration of doxorubicin	Affecting the therapeutic outcome	Rosellini et al. (2023)
	Abdominal and pelvic tumors	Radiotherapy	Aggravating radiation-induced	Enhancing the side effects of the anti-cancer approaches	
	tumors		intestinal injury	Decreasing the efficacy of radiotherapy	
		Bortezomib		Enhancing cancer progression	
		Paclitaxel		Enhancing cancer proliferation	
		Gefitinib		Enhancing cancer migration	
PS		Lapatinib	+ Inducing drug	Enhancing cancer invasion	Chen et al. (2024a), Yan et al. (2020), Zhou et al. (2020b)
	Gastric cancer	Trastuzumab	resistance + Influencing the	Poor survival rates	
			bioavailability and toxicity of Tetracycline	Enhancing the cytotoxicity of cancer cells	
		Tetracycline		Reducing cancer cell viability	
				Increasing oxidative stress in cancer cells	
				Increasing cancer cell apoptosis	

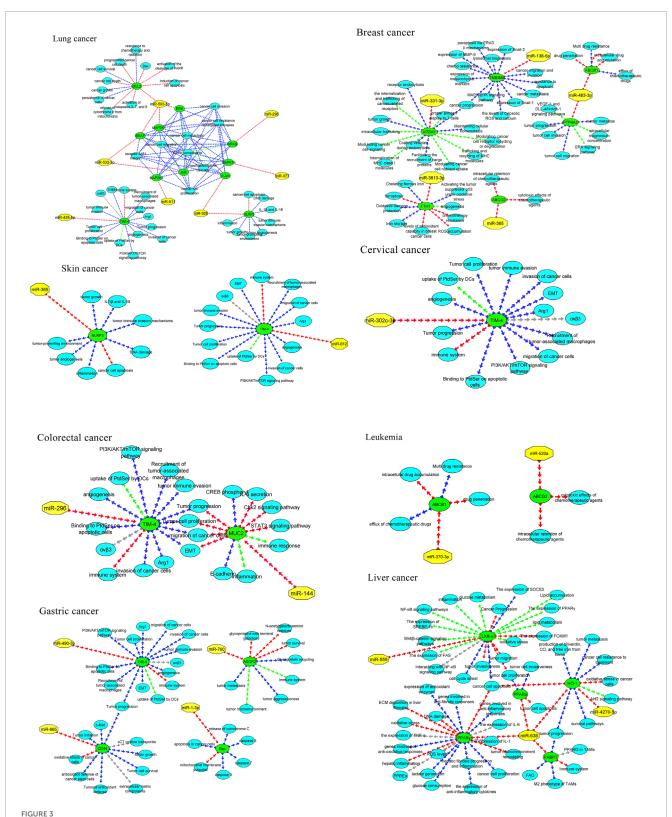
3.3 Impact of MPs on anticancer therapies

Reports indicate both sensitization and resistance, but the weight of evidence suggests attenuation of therapy efficacy in several contexts (e.g., altered uptake/efflux; MAPK-mediated survival; inflammation-mediated radioprotection). The table summarizes polymer/tumor-specific patterns and implicated agents (e.g., doxorubicin, taxanes, HER2/EGFR inhibitors), emphasizing the need to measure MP exposure in preclinical efficacy studies (Table 3).


3.4 miRNAs as therapeutic candidates

We collated anticancer miRNAs with functional evidence (apoptosis, invasion, chemosensitization). This pool served as input

to the *in silico* screen. Where multiple candidates mapped to one target, prioritization was by relative mfe plus prior functional plausibility. Examples of anticancer miRNAs selected for screening are illustrated in Figure 3 (Supplementary Table S1).


3.5 Predicted miRNA-gene interactions

For breast cancer, miR-483-3p and miR-138-5p showed favorable predictions against ABCB1/PTP4A2 and TMBIM6, respectively, while miR-365 and miR-331-3p mapped to ABCG2/AP2M1. In gastric cancer, miR-665 and miR-760 targeted CD44 and ASGR2; in liver cancer, miR-638 showed broad predictions (e.g., HO-1, PPAR α/γ). Lung cancer candidates clustered on MAPK nodes (miR-532-3p, miR-593-5p, miR-29b). These

FIGURE 2

Detailed data about molecular interactions between microRNAs with anti-cancer activity and genes affected by MPs. The 3D structure at the top of the figure represents microRNA with the highest binding affinity toward the gene affected by MPs. The data about the targeted gene is depicted in the lower part of the figure. ABCB1, ATP Binding Cassette Subfamily B Member 1; ABCG2, ATP Binding Cassette Subfamily G Member 2; AP2M1, Adaptor Related Protein Complex 2 Subunit Mu 1; ASGR2, Asialoglycoprotein Receptor 2; Bax, BCL2 Associated X, Apoptosis Regulator; BCL2, B-cell CLL/lymphoma 2; BRAF, B-Raf Proto-Oncogene, Serine/Threonine Kinase; c-jun, Jun Proto-Oncogene, AP-1 Transcription Factor Subunit; CD44, CD44 Molecule (Indian Blood Group); ERK, Extracellular Signal-Regulated Kinase; FABP1, Fatty Acid Binding Protein 1; FTH1, Ferritin Heavy Chain 1; HO-1, Heme Oxygenase 1; JNK, c-Jun N-terminal Kinase; KRAS, KRAS Proto-Oncogene, GTPase; LXR-α, Liver X Receptor Alpha; MAP2K1, Mitogen-Activated Protein Kinase Kinase 1; MAP2K4, Mitogen-Activated Protein Kinase 4; MAPK14, Mitogen-Activated Protein Kinase 14; MUC2, Mucin 2; NLRP3, NLR Family Pyrin Domain Containing 3; PPARα, Peroxisome Proliferator-Activated Receptor Gamma; PTP4A2, Protein Tyrosine Phosphatase Type IVA, Member 2; TMBIM6, Transmembrane BAX Inhibitor Motif Containing 6; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4.

MicroRNAs with the in-silico capability to suppress genes in MPs-based cancers and their possible targeted molecular pathways. The blue, red, green, and gray arrows represent activation (or upregulation), inhibition (or downregulation), regulation, and interaction, respectively. Moreover, yellow hexagons, blue ovals, and green ovals demonstrate microRNAs, targeted genes, and pathways affected by targeted genes, respectively. ABCB1, ATP Binding Cassette Subfamily B Member 1; ABCG2, ATP Binding Cassette Subfamily G Member 2; AP2M1, Adaptor Related Protein Complex 2 Subunit Mu 1; ASGR2, Asialoglycoprotein Receptor 2; Bax, BCL2 Associated X, Apoptosis Regulator; BCL2, B-cell CLL/lymphoma 2; BRAF, B-Raf Proto-Oncogene, Serine/Threonine Kinase; c-jun, Jun Proto-Oncogene, AP-1 Transcription Factor Subunit; CD44, CD44 Molecule (Indian Blood Group); ERK, Extracellular Signal-Regulated Kinase; FABP1, Fatty Acid Binding Protein 1; FTH1, Ferritin Heavy Chain 1; HO-1, Heme Oxygenase 1;

(Continued)

FIGURE 3 (Continued)

JNK, c-Jun N-terminal Kinase; KRAS, KRAS Proto-Oncogene, GTPase; LXR-α, Liver X Receptor Alpha; MAP2K1, Mitogen-Activated Protein Kinase Kinase 1; MAP2K4, Mitogen-Activated Protein Kinase Kinase 4; MAPK14, Mitogen-Activated Protein Kinase 14; MUC2, Mucin 2; NLRP3, NLR Family Pyrin Domain Containing 3; PPARα, Peroxisome Proliferator-Activated Receptor Alpha; PPARγ, Peroxisome Proliferator-Activated Receptor Alpha; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; PTP4A2, Protein Tyrosine Phosphatase Type IVA, Member 2; TMBIM6, Transmembrane BAX Inhibitor Motif Containing 6; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4.

pairings nominate tractable validation sets (reporter assays ± MP exposure, phenotypic readouts). Representative RNAhybrid pairing diagrams and 3D cartoons for top-ranked pairs appear in Figure 3, and the integrated miRNA–gene–pathway network is provided in Figure 3 (Table 4).

Most high-affinity interactions showed mfe $\leq -20 \text{ kcal mol}^{-1}$ (e.g., TMBIM6/miR-138-5p, CD44/miR-665, PPAR α /miR-638, MAP2K4/miR-611). Moderate (-15 to -19.9) values such as FTH1/miR-3613-3p were retained due to prior experimental evidence of anticancer function. Borderline pairs (e.g., BAX/miR-1-3p, -14.1) were listed for transparency but are considered exploratory. Representative hybridization structures are illustrated in Figure 3.

4 Discussion

Our results are consistent with prior evidence that MP exposure modulates canonical cancer pathways. Enhanced efflux and drug resistance observed experimentally (Rosellini et al., 2023) parallel our identification of ABCB1/ABCG2 as MP-responsive genes and their suppression by miR-483-3p and miR-365. Polypropylene-induced metastasis (Park et al., 2023) corresponds to increased AP2M1/PTP4A2/TMBIM6, predicted to be inhibited by miR-331-3p and miR-138-5p. Upregulation of ASGR2 in gastric cancer (Kim et al., 2022) matches our predicted targeting by miR-760. Similarly, activation of MAPK and BCL2 signaling (Jain et al., 2021; Ramkumar et al., 2023; Zhou Z. et al., 2020) is reflected in our miR-532-3p/miR-593-5p predictions. These consistencies strengthen the biological plausibility of our computational findings while emphasizing the need for experimental validation.

Besides, MPs affect some genes in cancer cells and suppress their effects. For instance, Polymethyl methacrylate (PMMA) inhibits liver cancer cells by downregulating FABP1 and PPAR alpha. According to prior surveys, MPs can downregulate specific genes in tumor cells, such as BCAS3, PHF19, and PRKCD, whose expression has been suppressed by microplastics in previous studies (Chen et al., 2025).

Moreover, our study demonstrates that MPs can affect some genes in breast cancer. ABCB1 is one of these genes that encodes P-glycoprotein (P-gp), an ATP-binding cassette (ABC) efflux transporter involved in multidrug resistance (MDR) in breast cancer, which expels chemotherapeutic drugs from cells, reduces drug efficacy, and contributes to treatment failure (Miao et al., 2017). It regulates ion channels, affecting apoptosis, proliferation, and other cancer-related processes (Altamura et al., 2022).

ABCG2 is another gene affected by MPs, and it encodes Breast Cancer Resistance Protein (BCRP), another ABC transporter

involved in MDR by exporting chemotherapeutic agents, such as mitoxantrone and doxorubicin, out of cancer cells, reducing drug efficacy (Zhang et al., 2022). It also influences drug bioavailability and toxicity, acting as a barrier in the blood-brain barrier, liver, and intestines, with alterations linked to treatment failure in cancers with high ABCG2 expression (Wang et al., 2020; Franczyk et al., 2022).

AP2M1, a key component of the clathrin adaptor protein complex, facilitates receptor-mediated endocytosis in cancer cells, enhancing nutrient and growth factor uptake, which supports tumor growth and survival (Shin et al., 2021; Liu et al., 2021; Münz, 2020). Its overexpression is associated with aggressive cancer phenotypes and chemoresistance (Liu et al., 2023). Notably, this gene is also influenced by MPs in breast cancer.

Other genes affected by MPs in breast cancer include FTH1, PTP4A2, and TMBIM6. FTH1, a tumor suppressor, regulates iron storage and oxidative stress protection in cancer cells and stabilizes p53 under stress conditions. Silencing FTH1 leads to increased tumor growth, migration, and chemoresistance, along with upregulation of oncogenes like c-MYC and G9a (Di Sanzo et al., 2020; Ali et al., 2021). PTP4A2, upregulated in breast cancer, promotes cancer progression through various pathways (Chouleur et al., 2024). TMBIM6, a key regulator of stress responses, is linked to increased chemoresistance, cancer progression, and metastasis in breast cancer, as well as reduced to increased chemoresistance, cancer progression, and metastasis in breast cancer, as well as reduced patient survival (Robinson et al., 2025).

The other effect on MPs on genes in cancer cells is their effect on cervical cancer cells. Based on prior surveys, TIM4, along with TIM3, plays an essential role in the degradation of dying tumor cells via autophagy, reducing antigen presentation and impairing cytotoxic T lymphocyte (CTL) responses, creating immune tolerance, and weakening the antitumor immune response (Junjappa et al., 2019).

Furthermore, the present study demonstrates that two genes in colorectal cancer (CRC) cells are affected by MPs: MUC2 and TIM4. MUC2 is a protective barrier in epithelial cells, playing a role in cell differentiation and maintaining the balance of adhesion. Altered MUC2 expression impacts the progression of CRC by influencing cellular proliferation, apoptosis, and epithelial integrity (Iranmanesh et al., 2021). Notably, the silencing of MUC2 increases IL-6 secretion, which activates the STAT3 signaling pathway, promoting tumor cell migration, epithelial-mesenchymal transition (EMT), and metastasis. MUC2 downregulation leads to the activation of STAT3 and Chk2, suppression of CREB phosphorylation, and loss of E-cadherin, facilitating cancer progression and metastasis (Hsu et al., 2017). Moreover, TIM4 acts as an oncogene through different mechanisms, including supporting tumor cell proliferation, migration, invasion, and immune evasion,

TABLE 4 Detailed information about the binding affinity of microRNAs and genes in cancer affected by MPs.

Type of cancer affected by MPs	The kind of gene affected by MPs in this cancer	MicroRNA with therapeutic <i>in silico</i> effect on the gene affected by MPs	ect on the gene	Sequence of microRNA
		The most proper therapeutic microRNA based on <i>in silico</i> data	Binding affinity	
	ABCB1	miR-483-3p	-28.2	UCACUCCUCCUCCGGUCUU
	ABCG2	miR-365	-31.8	AGGGACUUUUGGGGGCAGAUGUG
F	AP2M1	miR-331-3p	-28.7	GCCCCUGGGCCUAUCCUAGAA
breast cancer	FTH1	miR-3613-3p	-16.7	ACAAAAAAAAAGCCCAACCCUUC
	PTP4A2	miR-483-3p	-31.9	UCACUCCUCCUCCCGUCUU
	TMBIM6	miR-138-5p	-34.4	AGCUGGUGUUGUGAAUCAGGCCG
Cervical cancer	TIM4	miR-302c-3p	-25.1	UAAGUGCUUCCAUGUUUCAGUGG
	MUC2	miR-144	-13.8	GGAUAUCAUCAUAUACUGUAAG
Colorectal cancer	TIM4	miR-296	-31.9	AGGCCCCCCCCCAAUCCUGU
	ASGR2	miR-760	-32	CGGCUCUGGGUCUGUGGGGA
	Вах	miR-1-3p	-14.1	UGGAAUGUAAAGAAGUAUGUAU
Gastric cancer	CD44	miR-665	-35.5	ACCAGGAGGCUGAGGCCCCU
	TIM4	miR-490-3p	-27.9	CAACCUGGAGGACUCCAUGCUG
1	ABCB1	miR-370-3p	-24.7	GCCUGCUGGGUGGAACCUGGU
гепкеппа	ABCG2	miR-520a	-26.6	CUCCAGAGGGAAGUACUUUCU
	FABP1	miR-638	-20	AGGGAUCGCGGGCGGCGGCCU
Liver cancer	· On	miR-638	-37.4	AGGGAUCGCGGGCGGGCGCCU
	1-01	miR-4270-5p	-37.4	UCAGGGAGUCAGGGGGGGGC

(Continued on the following page)

TABLE 4 (Continued) Detailed information about the binding affinity of microRNAs and genes in cancer affected by MPs.

Type of cancer affected by MPs	The kind of gene affected by MPs in this cancer	MicroRNA with therapeutic <i>in silico</i> effect on the gene affected by MPs	ect on the gene	Sequence of microRNA
		The most proper therapeutic microRNA based on <i>in silico</i> data	Binding affinity	
	LXR-a	miR-559	-15.7	UAAAGUAAAUAUGCACCAAAA
	ΡΡΑΚα	miR-638	-39.3	AGGGAUCGCGGGCGGGCGGCCU
	PPARy	miR-638	-29.2	AGGGAUCGCGGGCGGGCGGCCU
	חאתת	miR-532-3p	-31	CCUCCCACACCCAAGGCUUGCA
	DKAF	miR-593-5p	-31	AGGCACCAGGCAUUGCUCAGC
	c-jun	miR-92b	-33.8	AGGGACGGGCGGUGCAGUG
	ERK	miR-593-5p	-34.9	AGGCACCAGCCAGGCAUUGCUCAGC
	JNK	miR-532-3p	-34.9	CCUCCCACACCCAAGGCUUGCA
	MAP2K1	miR-593-5p	-33.9	AGGCACCAGCCAGGCAUUGCUCAGC
Lung cancer	MAP2K4	miR-611	-36.2	GCGAGGACCCCUCGGGGUCUGAC
	MAPK14	miR-377	-30.7	AGAGGUUGCCCUUGGUGAAUUC
	KRAS	miR-29b	-30.8	GCUGGUUUCAUAUGGUGGUUUAGA
	NLRP3	miR-92b	-33.1	AGGGACGGGACGCGGUGCAGUG
	BCL2	miR-593-5p	-37.7	AGGCACCAGCCAGGCAUUGCUCAGC
	TIM4	miR-425-5p	-25.7	AAUGACACGAUCACUCCCGUUGA
Skin cancer	NLRP3	miR-365	-28.9	AGGGACUUUUGGGGGCAGAUGUG
Pancreatic cancer	TIM4	miR-612	-25.4	GCUGGGCAGGGCUUCUGAGCUCCUU

Lower (more negative) mfe = stronger binding. Strong (≤-20), Suggestive (-15 to -19.9), Borderline (>-15). Borderline values are shown for completeness but require experimental validation.

and contributing to tumor immune tolerance by impairing antigen presentation and cytotoxic T cell responses (Liu et al., 2020).

According to our findings, ASGR2, Bax, CD44, and TIM4 are genes impacted by MPs in gastric cancer cells. ASGR2 enhances tumor survival and metastasis, with higher levels linked to poor prognosis in gastric cancer (Xue et al., 2021). CD44 regulates cell adhesion, motility, and survival, promoting gastric cancer progression through tumor growth, invasion, and metastasis (Jang et al., 2011). It also supports tumor survival by enhancing antioxidant defenses and reducing oxidative stress (Zavros, 2017). TIM4 is overexpressed in gastric cancer tissues, correlating with increased angiogenesis, tumor growth, and poorer patient survival outcomes (Wang et al., 2021). In contrast, Bax induces apoptosis in gastric cancer cells through the mitochondrial pathway, promoting pro-apoptotic signaling, mitochondrial membrane collapse, and subsequent caspase activation (Shabani et al., 2020; Shen et al., 2023).

The other genes affected by MPs in cancer cells are ABCB1 and ABCG2 in Leukemia. ABCB1 is an efflux transporter that helps pump chemotherapy drugs out of cells, and its activation contributes to MDR. In AML, overexpression of ABCB1 has been linked to poor treatment outcomes ABCB1 (Sucha et al., 2022). ABCG2 functions as an efflux transporter that can extrude a wide variety of chemotherapy drugs out of the cells, thereby reducing their effectiveness and contributing to drug resistance in leukemia cells. Moreover, the overexpression of ABCG2 in leukemia cells is associated with poor clinical outcomes, including reduced complete remission rates and overall survival (Damiani and Tiribelli, 2023).

In addition, FABP1, HO-1, LXR-α, PPAR-alpha (PPARα), and PPARy have been affected by MPs in liver cancer cells. FABP1 supports tumor progression by maintaining the M2 phenotype of tumor-associated macrophages (TAMs), which is associated with immune suppression and cancer progression. FABP1 deficiency in TAMs reduced tumor growth, invasion, and migration in vitro, highlighting its role in enhancing cancer cell proliferation and aggressiveness (Tang et al., 2023). HO-1 promotes cancer cell survival by suppressing pro-apoptotic pathways, regulating mitochondrial oxidative stress, activating the transcription of antioxidant and detoxifying genes, and enhancing the cell's ability to counteract oxidative damage and resist apoptosis (Alharbi et al., 2022). LXR-α plays a crucial role in regulating lipid metabolism, inflammation, and immune responses in HCC. Its activation inhibits tumor cell proliferation by inducing cell cycle arrest and apoptosis, and reduces tumor invasiveness and migration (Han et al., 2023).

PPAR α plays a significant role in the development and progression of liver cancer by controlling lipid metabolism, glucose regulation, and inflammation in the liver cells (Pan et al., 2024). PPAR γ is a protective factor in liver cancer by some mechanisms, including inhibiting hepatic fibrosis progression and inflammation, suppressing tumor microenvironment remodeling, and promoting apoptosis and senescence in hepatocellular carcinoma (HCC) cells (Ishtiaq et al., 2022).

Additionally, genes involved in the MAPK signaling pathway include BRAF, c-Jun, ERK, JNK, MAP2K1, MAP2K4, MAPK14, and KRAS, which are genes affected by MPs in lung cancer cells. These genes are crucial for cell proliferation and survival, and their activation leads to the uncontrolled growth of cancer cells (Pradhan et al., 2019). Other genes, such as NLRP3, BCL2, and

TIM4, are also affected by MPs in the mentioned cancer. The activation of NLRP3 creates chronic inflammation that promotes tumors by inducing DNA damage, enhancing angiogenesis, and suppressing apoptosis in cancer cells (Tang et al., 2020). The BCL2 gene contributes to the resistance of small cell lung cancer (SCLC) to Aurora kinase B (AURKB) inhibitors. It suppresses apoptosis and DNA damage caused by these inhibitors, allowing cells to avoid programmed cell death even under therapeutic stress (Ramkumar et al., 2023). TIM4 acts as an oncogene by supporting tumor cell proliferation, migration, invasion, and immune evasion, and also contributes to tumor immune tolerance by impairing antigen presentation and cytotoxic T cell responses (Liu et al., 2020).

Additionally, MPs affect NLRP3 in skin cancer cells. NLRP3 enhances inflammation, stimulates angiogenesis, and promotes the proliferation and migration of tumor cells (Ciazyn et al., 2020). Additionally, our study revealed that TIM4 is another gene in pancreatic cancer cells that MPs can influence. TIM4 is crucial in creating an immune-suppressive environment, enabling tumor cells to evade immune detection. It also supports tumor progression by reducing the effectiveness of immune cells, such as macrophages and T cells, in targeting cancer cells (Shi et al., 2021).

MPs may also influence the efficacy of cancer therapies. They can alter the metabolism and bioavailability of therapeutic drugs by interfering with their absorption and distribution in the body. This could lead to either reduced or enhanced drug activity, depending on the interactions between the MPs and the drugs (Deng et al., 2025). Interestingly, our study also shows that MPs can reduce and enhance the anti-cancer drug activity. However, according to the prior surveys and our study, MPs can deteriorate the impacts of anticancer drugs (Zhao et al., 2024) and exert this resistance against various anticancer agents.

The present study highlights the potential of certain microRNAs as candidate therapeutics in breast cancer models; however, these predictions are hypothesis-generating and require validation in experimental and clinical contexts (Zhao et al., 2019). Our in silico analysis highlights microRNAs targeting genes influenced by MPs in breast cancer cells, aligning with prior findings on their anti-breast cancer capabilities (Menbari et al., 2020). Specific microRNAs, including miR-483-3p, miR-365, miR-331-3p, and miR-138-5p, demonstrated strong binding affinity for genes such as ABCB1, ABCG2, AP2M1, PTP4A2, and TMBIM6, marking them as promising candidates for microRNA therapy. These microRNAs also target various molecular pathways, enhancing their anti-cancer effects (Liu et al., 2019; Zhao et al., 2020; Rasoolnezhad et al., 2021; Shen et al., 2020). In-silico analysis also revealed miR-3613-3p's potential to target FTH1, a gene involved in iron homeostasis and oxidative stress regulation in cancer cells (Di Sanzo et al., 2020), making it a key therapeutic candidate.

In addition to breast cancer, microRNAs also exhibit anti-cancer effects in cervical cancer (Hasanzadeh et al., 2019; Ding et al., 2021), colorectal cancer (Cheng et al., 2020), gastric cancer (Spitz and Gavathiotis, 2022), leukemia (Gil-Kulik et al., 2024; Xiao et al., 2024), liver cancer (K et al., 2020; Ramalingam et al., 2024), lung cancer (Pradhan et al., 2019; Naeli et al., 2020), pancreatic cancer (Li et al., 2021; Javadrashid et al., 2021), and skin cancer (Mohamm et al., 2021). Our study corroborates these findings, with *in silico* analyses revealing specific microRNAs that interact with key

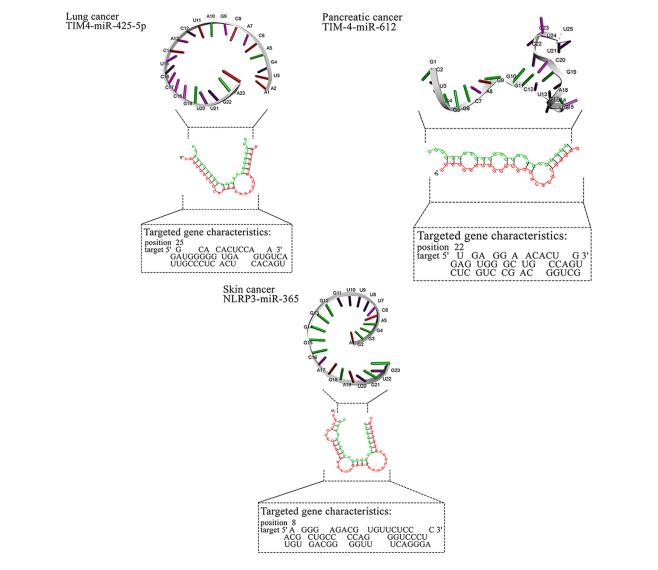


FIGURE 4
MicroRNAs with the *in silico* capability to suppress genes in MPs-based cancers and their possible targeted molecular pathways. The blue, red, green, and gray arrows represent activation (or upregulation), inhibition (or downregulation), regulation, and interaction, respectively. Moreover, yellow hexagons, blue ovals, and green ovals demonstrate microRNAs, targeted genes, and pathways affected by targeted genes, respectively. ABCB1, ATP Binding Cassette Subfamily G Member 2; AP2M1, Adaptor Related Protein Complex 2 Subunit Mu 1; ASGR2, Asialoglycoprotein Receptor 2; Bax, BCL2 Associated X, Apoptosis Regulator; BCL2, B-cell CLL/lymphoma 2; BRAF, B-Raf Proto-Oncogene, Serine/Threonine Kinase; c-jun, Jun Proto-Oncogene, AP-1 Transcription Factor Subunit; CD44, CD44 Molecule (Indian Blood Group); ERK, Extracellular Signal-Regulated Kinase; FABP1, Fatty Acid Binding Protein 1; FTH1, Ferritin Heavy Chain 1; HO-1, Heme Oxygenase 1; JNK, c-Jun N-terminal Kinase; KRAS, KRAS Proto-Oncogene, GTPase; LXR-α, Liver X Receptor Alpha; MAP2K1, Mitogen-Activated Protein Kinase Kinase 4; MAPK14, Mitogen-Activated Protein Kinase 14; MUC2, Mucin 2; NLRP3, NLR Family Pyrin Domain Containing 3; PPARα, Peroxisome Proliferator-Activated Receptor Alpha; PPARγ, Peroxisome Proliferator-Activated Receptor Gamma; PTP4A2, Protein Tyrosine Phosphatase Type IVA, Member 2; TMBIM6, Transmembrane BAX Inhibitor Motif Containing 6; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4; TIM4, T-cell Immunoglobulin and Mucin-domain Containing-4.

genes associated with tumorigenesis in these cancers. For instance, miR-302c-3p targets TIM4 in cervical cancer, miR-144 targets MUC2 in colorectal cancer, miR-706 and miR-665 target ASGR2 and CD44 in gastric cancer, and miR-532-3p and miR-593-5p target MAPK genes in lung cancer. These microRNAs demonstrate their therapeutic potential by influencing various molecular pathways, as shown in Figure 4. Overall, the study reinforces the growing

potential of microRNAs as targeted therapies across multiple malignancies.

4.1 Limitations

First, studies linking MPs to gene changes are heterogeneous in polymer type, size, dose, and exposure model; many use surrogates

(e.g., plastic-related compounds) rather than standardized particles. Second, mfe predictions do not demonstrate binding or regulation; off-targeting and RNA context effects are likely. Third, we did not perform a quantitative meta-analysis due to heterogeneity and incomplete reporting.

4.2 Future work

We propose a tiered pipeline: 1. verify MP-induced gene changes under standardized exposures; 2. validate miRNA targeting (luciferase wild-type/mutant, protein knockdown, rescue); 3. evaluate phenotypes (viability, invasion, efflux, radiosensitization) with and without MPs; 4. test delivery and safety *in vivo*.

5 Conclusion

MP exposure has been reported to perturb cancer-relevant genes and therapy responses across tumor types. Our *in silico* analyses nominate miRNAs that may counter these MP-associated programs. These findings are hypothesis-generating and require rigorous experimental and translational validation.

Author contributions

AB: Writing – review and editing, Visualization, Data curation, Formal Analysis. AZ: Investigation, Conceptualization, Methodology, Visualization, Formal Analysis, Writing – original draft. NM: Investigation, Writing – review and editing, Validation, Data curation. NT: Writing – review and editing, Supervision, Resources, Project administration. KZ: Formal Analysis, Writing – review and editing, Visualization, Data curation. RS: Writing – review and editing, Supervision, Project administration. RS: Writing – review and editing, Data curation. GY: Investigation, Writing – review and editing. AK: Writing – review and editing, Methodology, Validation. AU: Writing – review and editing, Data curation, Project administration. ANZ: Resources, Investigation, Writing – review and editing, Conceptualization, Writing – review and editing, Resources.

References

Alam, S., Mohammad, T., Padder, R. A., Hassan, M. I., and Husain, M. (2022a). Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade. *J. Cell Biochem.* 123 (2), 259–274. doi:10.1002/jcb.30162

Alam, M., Alam, S., Shamsi, A., Adnan, M., Elasbali, A. M., Al-Soud, W. A., et al. (2022b). Bax/Bcl-2 Cascade is regulated by the EGFR pathway: therapeutic targeting of non-small cell lung cancer. *Front. Oncol.* 12, 869672. doi:10.3389/fonc.2022.869672

Alharbi, K. S., Almalki, W. H., Albratty, M., Meraya, A. M., Najmi, A., Vyas, G., et al. (2022). The therapeutic role of nutraceuticals targeting the Nrf2/HO-1 signaling pathway in liver cancer. *J. Food Biochem.* 46 (10), e14357. doi:10.1111/jfbc.14357

Ali, A., Shafarin, J., Abu Jabal, R., Aljabi, N., Hamad, M., Sualeh, M. J., et al. (2021). Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. The study was supported by the grant financing on scientific programs of the Ministry of Science and Higher Education of the Republic of Kazakhstan «Investigation of Microplastic Contamination in Packaged Foods and Water in Kazakhstan and Its Impact on Cancer Cell Proliferation: An *In Vitro* Study» (IRN AP26100885).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2025.1699693/full#supplementary-material

cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 11 (11), 3101–3114. doi:10.1002/2211-5463.13303

Altamura, C., Gavazzo, P., Pusch, M., and Desaphy, J. F. (2022). Ion channel involvement in tumor drug resistance. *J. Pers. Med.* 12 (2), 210. doi:10.3390/jpm12020210

Astuti, Y., Raymant, M., Quaranta, V., Clarke, K., Abudula, M., Smith, O., et al. (2024). Efferocytosis reprograms the tumor microenvironment to promote pancreatic cancer liver metastasis. *Nat. Cancer* 5 (5), 774–790. doi:10.1038/s43018-024-00731-2

Barani, M. (2024). The role of environmental education in improving human health: literature review. West Kazakhstan Med. J. 66 (4), 373–386. doi:10.18502/wkmj.v66i4.17769

Boran, T., Zengin, O. S., Seker, Z., Akyildiz, A. G., Kara, M., Oztas, E., et al. (2024). An evaluation of a hepatotoxicity risk induced by the microplastic polymethyl methacrylate (PMMA) using HepG2/THP-1 co-culture model. *Environ. Sci. Pollut. Res. Int.* 31 (20), 28890–28904. doi:10.1007/s11356-024-33086-3

- Brynzak-Schreiber, E., Schogl, E., Bapp, C., Cseh, K., Kopatz, V., Jakupec, M. A., et al. (2024). Microplastics role in cell migration and distribution during cancer cell division. *Chemosphere* 353, 141463. doi:10.1016/j.chemosphere.2024.141463
- Caronni, N., Piperno, G. M., Simoncello, F., Romano, O., Vodret, S., Yanagihashi, Y., et al. (2021). TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. *Nat. Commun.* 12 (1), 2237. doi:10.1038/s41467-021-22535-z
- Chen, Y., Zeng, Q., Luo, Y., Song, M., He, X., Sheng, H., et al. (2024a). Polystyrene microplastics aggravate radiation-induced intestinal injury in mice. *Ecotoxicol. Environ. Saf.* 283, 116834. doi:10.1016/j.ecoenv.2024.116834
- Chen, T., Lin, Q., Gong, C., Zhao, H., and Peng, R. (2024b). Research progress on micro (nano)Plastics exposure-induced miRNA-Mediated biotoxicity. *Toxics* 12 (7), 475. doi:10.3390/toxics12070475
- Chen, Y., Zhang, Z., Ji, K., Zhang, Q., Qian, L., and Yang, C. (2025). Role of microplastics in the tumor microenvironment (review). *Oncol. Lett.* 29 (4), 193. doi:10.3892/ol.2025.14939
- Cheng, B., Zhang, Y., Wu, Z. W., Cui, Z. C., and Li, W. L. (2020). MiR-144 inhibits colorectal cancer cell migration and invasion by regulating PBX3. *Eur. Rev. Med. Pharmacol. Sci.* 24 (18), 9361–9369. doi:10.26355/eurrev_202009_23019
- Chouleur, T., Emanuelli, A., Souleyreau, W., Derieppe, M. A., Leboucq, T., Hardy, S., et al. (2024). PTP4A2 promotes glioblastoma progression and macrophage polarization under microenvironmental pressure. *Cancer Res. Commun.* 4 (7), 1702–1714. doi:10.1158/2767-9764.CRC-23-0334
- Ciazynska, M., Bednarski, I. A., Wodz, K., Narbutt, J., and Lesiak, A. (2020). NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis. *Oncol. Lett.* 19 (3), 1649–1656. doi:10.3892/ol.2020.11284
- Damiani, D., and Tiribelli, M. (2023). ABCG2 in acute myeloid leukemia: old and new perspectives. *Int. J. Mol. Sci.* 24 (8), 7147. doi:10.3390/ijms24087147
- Deng, X., Gui, Y., and Zhao, L. (2025). The micro(nano) plastics perspective: exploring cancer development and therapy. *Mol. Cancer* 24 (1), 30. doi:10.1186/s12943-025-02230-7
- Di Sanzo, M., Quaresima, B., Biamonte, F., Palmieri, C., and Faniello, M. C. (2020). FTH1 pseudogenes in cancer and cell metabolism. *Cells* 9 (12), 2554. doi:10.3390/cells9122554
- Ding, H. M., Zhang, H., Wang, J., Zhou, J. H., Shen, F. R., Ji, R. N., et al. (2021). miR-302c-3p and miR-520a-3p suppress the proliferation of cervical carcinoma cells by targeting CXCL8. *Mol. Med. Rep.* 23 (5), 322–10. doi:10.3892/mmr.2021.11961
- Franczyk, B., Rysz, J., and Gluba-Brzozka, A. (2022). Pharmacogenetics of drugs used in the treatment of cancers. *Genes (Basel)* 13 (2), 311. doi:10.3390/genes13020311
- Gil-Kulik, P., Kluz, N., Przywara, D., Petniak, A., Wasilewska, M., Fraczek-Chudzik, N., et al. (2024). Potential use of exosomal non-coding MicroRNAs in leukemia therapy: a systematic review. *Cancers (Basel)* 16 (23), 3948. doi:10.3390/cancers16233948
- Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., and Zeng, E. Y. (2020). A global perspective on microplastics. *J. Geophys. Research-Oceans* 125 (1), e2018JC014719. doi:10.1029/2018JC014719
- Han, N., Yuan, M., Yan, L., and Tang, H. (2023). Emerging insights into liver X receptor alpha in the tumorigenesis and therapeutics of human cancers. *Biomolecules* 13 (8), 1184. doi:10.3390/biom13081184
- Hasanzadeh, M., Movahedi, M., Rejali, M., Maleki, F., Moetamani-Ahmadi, M., Seifi, S., et al. (2019). The potential prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer. *J. Cell Physiol.* 234 (2), 1289–1294. doi:10.1002/jcp.27160
- Hsu, H. P., Lai, M. D., Lee, J. C., Yen, M. C., Weng, T. Y., Chen, W. C., et al. (2017). Mucin 2 silencing promotes colon cancer metastasis through interleukin-6 signaling. *Sci. Rep.* 7 (1), 5823. doi:10.1038/s41598-017-04952-7
- Hu, X., Yu, Q., Gatheru Waigi, M., Ling, W., Qin, C., Wang, J., et al. (2022). Microplastics-sorbed phenanthrene and its derivatives are highly bioaccessible and may induce human cancer risks. *Environ. Int.* 168, 107459. doi:10.1016/j.envint. 2022.107459
- Iranmanesh, H., Majd, A., Mojarad, E. N., Zali, M. R., and Hashemi, M. (2021). Investigating the relationship between the expression level of mucin gene cluster (MUC2, MUC5A, and MUC5B) and clinicopathological characterization of colorectal cancer. *Galen. Med. J.* 10, e2030. doi:10.31661/gmj.v10i0.2030
- Ishtiaq, S. M., Arshad, M. I., and Khan, J. A. (2022). PPAR γ signaling in hepatocarcinogenesis: mechanistic insights for cellular reprogramming and therapeutic implications. *Pharmacol. Ther.* 240, 108298. doi:10.1016/j.pharmthera.2022.108298
- Jain, A. S., Prasad, A., Pradeep, S., Dharmashekar, C., Achar, R. R., Ekaterina, S., et al. (2021). Everything old is new again: drug repurposing approach for non-small cell lung cancer targeting MAPK signaling pathway. *Front. Oncol.* 11, 741326. doi:10.3389/fonc.2021.741326

Jang, B. I., Li, Y., Graham, D. Y., and Cen, P. (2011). The role of CD44 in the pathogenesis, diagnosis, and therapy of gastric cancer. *Gut Liver* 5 (4), 397–405. doi:10.5009/gnl.2011.5.4.397

- Javadrashid, D., Mohammadzadeh, R., Baghbanzadeh, A., Safaee, S., Amini, M., Lotfi, Z., et al. (2021). Simultaneous microRNA-612 restoration and 5-FU treatment inhibit the growth and migration of human PANC-1 pancreatic cancer cells. *EXCLI J.* 20, 160–173. doi:10.17179/excli2020-2900
- Jia, S., Yang, Y., Zhu, Y., Yang, W., Ling, L., Wei, Y., et al. (2024). Association of FTH1-Expressing circulating tumor cells with efficacy of neoadjuvant chemotherapy for patients with breast cancer: a prospective cohort study. *Oncologist* 29 (1), e25–e37. doi:10.1093/oncolo/oyad195
- Junjappa, R. P., Kim, H. K., Park, S. Y., Bhattarai, K. R., Kim, K. W., Soh, J. W., et al. (2019). Expression of TMBIM6 in cancers: the involvement of Sp1 and PKC. *Cancers (Basel)* 11 (7), 974. doi:10.3390/cancers11070974
- Karbasforooshan, H., Hayes, A. W., Mohammadzadeh, N., Zirak, M. R., and Karimi, G. (2020). The possible role of sirtuins and microRNAs in hepatocellular carcinoma therapy. *Cell Cycle* 19 (23), 3209–3221. doi:10.1080/15384101.2020.1843813
- K, C. P., Maharjan, A., Acharya, M., Lee, D., Kusma, S., Gautam, R., et al. (2023). Polytetrafluorethylene microplastic particles mediated oxidative stress, inflammation, and intracellular signaling pathway alteration in human derived cell lines. *Sci. Total Environ.* 897, 165295. doi:10.1016/j.scitotenv.2023.165295
- Kaliyev, A. A., Mussin, N. M., and Tamadon, A. (2024). The importance of mesenchymal stromal/stem cell therapy for cancer. *West Kazakhstan Med. J.*, 106–110. doi:10.18502/wkmj.v66i2.16452
- Kim, H., Zaheer, J., Choi, E. J., and Kim, J. S. (2022). Enhanced ASGR2 by microplastic exposure leads to resistance to therapy in gastric cancer. *Theranostics* 12 (7), 3217–3236. doi:10.7150/thno.73226
- Kumar, N., Lamba, M., Pachar, A. K., Yadav, S., and Acharya, A. (2024). Microplastics a growing concern as carcinogens in cancer etiology: emphasis on biochemical and molecular mechanisms. *Cell Biochem. Biophysics* 82 (4), 3109–3121. doi:10.1007/s12013-024-01436-0
- Li, X., Jiang, W., Gan, Y., and Zhou, W. (2021). The application of exosomal MicroRNAs in the treatment of pancreatic cancer and its research progress. *Pancreas* 50 (1), 12–16. doi:10.1097/MPA.000000000001713
- Li, S., Keenan, J. I., Shaw, I. C., and Frizelle, F. A. (2023). Could microplastics be a driver for early onset colorectal cancer? *Cancers (Basel)* 15 (13), 3323. doi:10.3390/cancers15133323
- Liu, F., Zhuang, L., Wu, R. X., and Li, D. Y. (2019). miR-365 inhibits cell invasion and migration of triple negative breast cancer through ADAM10. $\it J. Buon~24~(5), 1905-1912.$
- Liu, W., Xu, L., Liang, X., Liu, X., Zhao, Y., Ma, C., et al. (2020). Tim-4 in health and disease: friend or foe? *Front. Immunol.* 11, 537. doi:10.3389/fimmu.2020.00537
- Liu, Q., Bautista-Gomez, J., Higgins, D. A., Yu, J., and Xiong, Y. (2021). Dysregulation of the AP2M1 phosphorylation cycle by LRRK2 impairs endocytosis and leads to dopaminergic neurodegeneration. *Sci. Signal* 14 (693), eabg3555. doi:10.1126/scisignal.abg3555
- Liu, X., Zhao, X., Yang, J., Wang, H., Piao, Y., and Wang, L. (2023). High expression of AP2M1 correlates with worse prognosis by regulating immune microenvironment and drug resistance to R-CHOP in diffuse large B cell lymphoma. *Eur. J. Haematol.* 110 (2), 198–208. doi:10.1111/ejh.13895
- Menbari, M. N., Rahimi, K., Ahmadi, A., Mohammadi-Yeganeh, S., Elyasi, A., Darvishi, N., et al. (2020). miR-483-3p suppresses the proliferation and progression of human triple negative breast cancer cells by targeting the HDAC8>oncogene. *J. Cell Physiol.* 235 (3), 2631–2642. doi:10.1002/jcp.29167
- Miao, L., Guo, S., Lin, C. M., Liu, Q., and Huang, L. (2017). Nanoformulations for combination or cascade anticancer therapy. $Adv.\ Drug\ Deliv.\ Rev.\ 115,\ 3-22.$ doi:10.1016/j.addr.2017.06.003
- Mohammadi, M., Spotin, A., Mahami-Oskouei, M., Shanehbandi, D., Ahmadpour, E., Casulli, A., et al. (2021). MicroRNA-365 promotes apoptosis in human melanoma cell A375 treated with hydatid cyst fluid of Echinococcus granulosus sensu stricto. *Microb. Pathog.* 153, 104804. doi:10.1016/j.micpath.2021.104804
- Münz, C. (2020). Autophagy proteins influence endocytosis for MHC restricted antigen presentation (Elsevier).
- Naeli, P., Yousefi, F., Ghasemi, Y., Savardashtaki, A., and Mirzaei, H. (2020). The role of MicroRNAs in lung cancer: implications for diagnosis and therapy. *Curr. Mol. Med.* 20 (2), 90–101. doi:10.2174/1566524019666191001113511
- Pan, Y., Li, Y., Fan, H., Cui, H., Chen, Z., Wang, Y., et al. (2024). Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of hepatocellular carcinoma (HCC). *Biomed. Pharmacother.* 177, 117089. doi:10.1016/j.biopha.2024.117089
- Park, J. H., Hong, S., Kim, O. H., Kim, C. H., Kim, J., Kim, J. W., et al. (2023). Polypropylene microplastics promote metastatic features in human breast cancer. *Sci. Rep.* 13 (1), 6252. doi:10.1038/s41598-023-33393-8
- Pradhan, R., Singhvi, G., Dubey, S. K., Gupta, G., and Dua, K. (2019). MAPK pathway: a potential target for the treatment of non-small-cell lung carcinoma. *Future Med. Chem.* 11 (8), 793–795. doi:10.4155/fmc-2018-0468

Ramalingam, P. S., Elangovan, S., Mekala, J. R., and Arumugam, S. (2024). Liver X receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities. *Front. Cell Dev. Biol.* 12, 1386102. doi:10.3389/fcell.2024.1386102

Ramkumar, K., Tanimoto, A., Della Corte, C. M., Stewart, C. A., Wang, Q., Shen, L., et al. (2023). Targeting BCL2 overcomes resistance and augments response to Aurora kinase B inhibition by AZD2811 in small cell lung cancer. *Clin. Cancer Res.* 29 (16), 3237–3249. doi:10.1158/1078-0432.CCR-23-0375

Rasoolnezhad, M., Safaralizadeh, R., Hosseinpourfeizi, M. A., Banan-Khojasteh, S. M., and Baradaran, B. (2021). MiRNA-138-5p: a strong tumor suppressor targeting PD-L-1 inhibits proliferation and motility of breast cancer cells and induces apoptosis. *Eur. J. Pharmacol.* 896, 173933. doi:10.1016/j.ejphar. 2021.173933

Robinson, K. S., Sennhenn, P., Yuan, D. S., Liu, H., Taddei, D., Qian, Y., et al. (2025). TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 44 (8), 494–512. doi:10.1038/s41388-024-03222-x

Rosellini, M., Turunen, P., and Efferth, T. (2023). Impact of plastic-related compounds on P-Glycoprotein and breast cancer resistance protein *in vitro*. *Molecules* 28 (6), 2710. doi:10.3390/molecules28062710

Shabani, F., Mahdavi, M., Imani, M., Hosseinpour-Feizi, M. A., and Gheibi, N. (2020). Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: alteration in expression levels of Bax, Bcl-2, and ERK2. *Hum. Exp. Toxicol.* 39 (8), 1031–1045. doi:10.1177/0960327120909530

Shen, S., Zhang, S., Liu, P., Wang, J., and Du, H. (2020). Potential role of microRNAs in the treatment and diagnosis of cervical cancer. *Cancer Genet.* 248-249, 25–30. doi:10.1016/j.cancergen.2020.09.003

Shen, J., Yang, H., Qiao, X., Chen, Y., Zheng, L., Lin, J., et al. (2023). The E3 ubiquitin ligase TRIM17 promotes gastric cancer survival and progression *via* controlling BAX stability and antagonizing apoptosis. *Cell Death Differ.* 30 (10), 2322–2335. doi:10.1038/s41418-023-01221-1

Shi, B., Chu, J., Huang, T., Wang, X., Li, Q., Gao, Q., et al. (2021). The scavenger receptor MARCO expressed by tumor-associated macrophages are highly associated with poor pancreatic cancer prognosis. *Front. Oncol.* 11, 771488. doi:10.3389/fonc.2021.771488

Shin, J., Nile, A., and Oh, J. W. (2021). Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. *Bioengineered* 12 (1), 8259–8278. doi:10.1080/21655979.2021.1982846

Shin, Y., Choi, H. Y., Kwak, Y., Yang, G. M., Jeong, Y., Jeon, T. I., et al. (2023). TMBIM6-mediated miR-181a expression regulates breast cancer cell migration and invasion *via* the MAPK/ERK signaling pathway. *J. Cancer* 14 (4), 554–572. doi:10.7150/jca.81600

Spitz, A. Z., and Gavathiotis, E. (2022). Physiological and pharmacological modulation of BAX. *Trends Pharmacol. Sci.* 43 (3), 206–220. doi:10.1016/j.tips.2021.11.001

Sucha, S., Sorf, A., Svoren, M., Vagiannis, D., Ahmed, F., Visek, B., et al. (2022). ABCB1 as a potential beneficial target of midostaurin in acute myeloid leukemia. *Biomed. Pharmacother.* 150, 112962. doi:10.1016/j.biopha.2022.112962

Sun, L., Liu, H., Ye, Y., Lei, Y., Islam, R., Tan, S., et al. (2023). Smart nanoparticles for cancer therapy. Signal Transduct. Target Ther. 8 (1), 418. doi:10.1038/s41392-023-01642-x

Szczepanek, J., Skorupa, M., and Tretyn, A. (2022). MicroRNA as a potential therapeutic molecule in cancer. *Cells* 11 (6), 1008. doi:10.3390/cells11061008

Tang, D., Liu, H., Zhao, Y., Qian, D., Luo, S., Patz, E. F., Jr., et al. (2020). Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival. *Am. J. Cancer Res.* 10 (8), 2582–2595.

Tang, W., Sun, G., Ji, G. W., Feng, T., Zhang, Q., Cao, H., et al. (2023). Single-cell RNA-sequencing atlas reveals an FABP1-dependent immunosuppressive environment in hepatocellular carcinoma. *J. Immunother. Cancer* 11 (11), e007030. doi:10.1136/jitc-2023-007030

Vethaak, A. D., and Legler, J. (2021). Microplastics and human health. Science. 371 (6530), 672–674. doi:10.1126/science.abe5041

Wang, Y., Fang, Z., Hong, M., Yang, D., and Xie, W. (2020). Long-noncoding RNAs (IncRNAs) in drug metabolism and disposition, implications in cancer chemoresistance. *Acta Pharm. Sin. B* 10 (1), 105–112. doi:10.1016/j.apsb.2019.09.011

Wang, W., Min, K., Chen, G., Zhang, H., Deng, J., Lv, M., et al. (2021). Use of bioinformatic database analysis and specimen verification to identify novel biomarkers predicting gastric cancer metastasis. *J. Cancer* 12 (19), 5967–5976. doi:10.7150/jca.58768

Wang, Y., Xu, X., and Jiang, G. (2023). Microplastics exposure promotes the proliferation of skin cancer cells but inhibits the growth of normal skin cells by regulating the inflammatory process. *Ecotoxicol. Environ. Saf.* 267, 115636. doi:10.1016/j.ecoenv.2023.115636

Winiarska, E., Jutel, M., and Zemelka-Wiacek, M. (2024). The potential impact of nano- and microplastics on human health: understanding human health risks. *Environ. Res.* 251 (Pt 2), 118535. doi:10.1016/j.envres.2024.118535

Xiao, J., Wan, F., Tian, L., and Li, Y. (2024). Tumor suppressor miR-520a inhibits cell growth by negatively regulating PI3K/AKT signaling pathway in acute myeloid leukemia. *Adv. Clin. Exp. Med.* 33 (7), 729–738. doi:10.17219/acem/171299

Xue, S., Ma, M., Bei, S., Li, F., Wu, C., Li, H., et al. (2021). Identification and validation of the immune regulator CXCR4 as a novel promising target for gastric cancer. *Front. Immunol.* 12, 702615. doi:10.3389/fimmu.2021.702615

Yan, X., Zhang, Y., Lu, Y., He, L., Qu, J., Zhou, C., et al. (2020). The complex toxicity of tetracycline with polystyrene spheres on gastric cancer cells. *Int. J. Environ. Res. Public Health* 17 (8), 2808. doi:10.3390/ijerph17082808

Yu, M., Lin, C., and Wei, M. (2023). A pan-cancer analysis of oncogenic protein tyrosine phosphatase subfamily PTP4As. *J. Holist. Integr. Pharm.* 4 (2), 185–198. doi:10.1016/j.jhip.2023.07.001

Zavros, Y. (2017). Initiation and maintenance of gastric cancer: a focus on CD44 variant isoforms and cancer stem cells. *Cell Mol. Gastroenterol. Hepatol.* 4 (1), 55–63. doi:10.1016/j.jcmgh.2017.03.003

Zhang, Y. S., Yang, C., Han, L., Liu, L., and Liu, Y. J. (2022). Expression of BCRP/ABCG2 protein in invasive breast cancer and response to neoadjuvant chemotherapy. *Oncol. Res. Treat.* 45 (3), 94–101. doi:10.1159/000520871

Zhao, J., Li, D., and Fang, L. (2019). MiR-128-3p suppresses breast cancer cellular progression *via* targeting LIMK1. *Biomed. Pharmacother.* 115, 108947. doi:10.1016/j.biopha.2019.108947

Zhao, M., Zhang, M., Tao, Z., Cao, J., Wang, L., and Hu, X. (2020). miR-331-3p suppresses cell proliferation in TNBC cells by downregulating NRP2. *Technol. Cancer Res. Treat.* 19, 1533033820905824. doi:10.1177/1533033820905824

Zhao, J., Zhang, H., Shi, L., Jia, Y., and Sheng, H. (2024). Detection and quantification of microplastics in various types of human tumor tissues. *Ecotoxicol. Environ. Saf.* 283, 116818. doi:10.1016/j.ecoenv.2024.116818

Zhou, Z., Zhou, Q., Wu, X., Xu, S., Hu, X., Tao, X., et al. (2020a). VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. *Cancer Lett.* 473, 62–73. doi:10.1016/j.canlet.2019.12.039

Zhou, Z. G., Xu, C., Dong, Z., Wang, Y. P., Duan, J. Y., and Yan, C. Q. (2020b). MiR-497 inhibits cell proliferation and invasion ability by targeting HMGA2 in pancreatic ductal adenocarcinoma. *Eur. Rev. Med. Pharmacol. Sci.* 24 (1), 122–129. doi:10.26355/eurrev_202001_19901