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 Exonuclease 1 (EXO1) is a critical enzyme in homologous recombination (HR) 
and is implicated in cancer progression, with overexpression linked to poor 
prognosis in multiple tumor types. Yet, the impact of EXO1 overexpression 
on HR efficiency in estrogen receptor (ER)-positive breast cancer remains 
unclear. Here, we investigated this using The Cancer Genome Atlas (TCGA) 
and functional studies in ER-positive T47D cells. High EXO1 expression 
was associated with elevated homologous recombination deficiency (HRD) 
scores in ER-positive tumors, indicating impaired HR activity. In T47D cells, 
EXO1 overexpression reduced HR efficiency, measured by the Advanced 
Homologous Recombination Assay (ASHRA), and increased sensitivity to the 
PARP inhibitor olaparib. Using multi-cohort transcriptomic analysis and machine 
learning interpretability approaches (Random Forest, SHAP, and permutation 
importance), we identified N4BP2L2 as a key modulator of HR under EXO1 
overexpression. Both SHAP and permutation-importance analyses consistently 
highlighted N4BP2L2 as a strong HR-restorative gene, whereas OTUD7B 
showed weaker, context-dependent effects. Validation in an independent 
Korean cohort confirmed N4BP2L2 as a reproducible modulator of HR. Survival 
analyses across three ER-positive breast cancer cohorts (TCGA, E-MTAB-
365, and METABRIC) revealed that high EXO1 expression was associated 
with shorter survival, whereas concurrent high N4BP2L2 expression mitigated 
this adverse prognostic effect, even after multivariate adjustment. Functional 
assays in both T47D and MCF7 cells demonstrated that co-expression of 
N4BP2L2 restored HR activity and reduced olaparib sensitivity in EXO1-
overexpressing cells. These findings suggest EXO1 overexpression serves as a 
marker of functional HR deficiency and a potential predictor of PARP inhibitor
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response, highlighting the EXO1–N4BP2L2 axis as a promising biomarker and 
therapeutic target, especially for guiding PARP inhibitor use beyond BRCA-
mutated tumors.

KEYWORDS

Exo1, homologous recombination, breast cancer, N4BP2L2, PARP inhibitor, therapeutic 
response 

1 Introduction

Breast cancer is a molecularly diverse disease, with its intrinsic 
subtypes classified based on gene expression profiles into basal-
like, luminal A, luminal B, HER2-enriched, and normal-like groups 
(Perou et al., 2000). These subtypes exhibit distinct biological 
behaviors and therapeutic responses, highlighting the necessity of 
subtype-specific treatment strategies (Sorlie et al., 2001; Parker et al., 
2009; Prat and Perou, 2011). The PAM50 assay, a widely used tool 
for breast cancer classification, assesses the expression of 50 genes to 
stratify tumors into these intrinsic subtypes and predict recurrence 
risk (Nielsen et al., 2010). Basal-like breast cancer, often triple-
negative, is frequently associated with high genomic instability and 
homologous recombination (HR) deficiency, which typically results 
from BRCA1 mutations or dysfunctions (Lord and Ashworth, 2016). 
On the other hand, estrogen receptor (ER)-positive breast cancer, 
primarily comprising luminal subtypes, is generally thought to 
maintain proficient DNA repair mechanisms, with HR deficiency 
being a less common feature (Feng et al., 2023).

To investigate the broader role of EXO1 expression across these 
subtypes, we began our analysis by leveraging the PAM50 data. 
While EXO1 overexpression has predominantly been associated 
with basal-like breast cancers, our analysis of the PAM50 data 
revealed that EXO1 is also elevated in a subset of ER-positive 
tumors, suggesting that EXO1’s involvement in HR deficiency might 
extend beyond the basal-like subtype. This observation warranted 
further exploration of EXO1’s potential impact on HR function 
in ER-positive breast cancers, which are traditionally considered 
HR-proficient.

HR is a critical DNA repair pathway that resolves double-
strand breaks (DSBs) by using a homologous DNA template, thus 
ensuring high-fidelity repair (Jasin and Rothstein, 2013). Central to 
HR is BRCA1, which facilitates DNA end resection by displacing 
the 53BP1 complex and recruiting the MRE11–CtIP complex 
(Symington and Gautier, 2011; Chapman et al., 2013). This process 
is further extended by Exonuclease 1 (EXO1), an exonuclease that 
generates single-stranded DNA (ssDNA) tracts (Nimonkar et al., 
2011). These ssDNA regions are initially coated by replication 
protein A (RPA), which is then replaced by RAD51 to initiate strand 
invasion and repair (San Filippo et al., 2008; Heyer et al., 2010). 
Disruption of this pathway—either through genetic mutations or 
altered regulatory mechanisms—can compromise HR efficiency, 
contributing to tumorigenesis and influencing therapeutic responses 
(Lord and Ashworth, 2012; Ceccaldi et al., 2015).

The clinical success of poly (ADP-ribose) polymerase (PARP) 
inhibitors, which exploit HR deficiency for synthetic lethality, has 
revolutionized the treatment of BRCA-mutant cancers (Bryant et al., 
2005; Farmer et al., 2005). While this strategy is well established 
for BRCA1-deficient tumors, its broader applicability across other 

cancers requires a deeper understanding of HR regulation beyond 
classical gene mutations (Lord and Ashworth, 2017). For example, 
in preclinical models, the loss of 53BP1 has been shown to restore 
HR activity in BRCA1-deficient cells, potentially affecting PARP 
inhibitor sensitivity—though this phenomenon remains rare in 
clinical tumors (Bouwman et al., 2010; Jaspers et al., 2013).

To further understand the complex regulatory network 
governing HR, it is essential to explore genetic interactions that 
modulate HR efficiency. Machine learning approaches, when applied 
to large-scale genomic datasets, can uncover subtle patterns and 
combinatorial effects that traditional methods might overlook, 
offering new insights into the regulation of DNA repair pathways 
and their implications for treatment (Fabris et al., 2017).

EXO1, a key player in DNA end resection, has been shown 
to be overexpressed in several tumor types, including liver 
and lung cancers (Liu et al., 2025). In these cancers, elevated 
EXO1 expression is associated with poor survival outcomes 
(Dai et al., 2018; Zhou et al., 2021). However, the precise 
contribution of EXO1 overexpression to HR efficiency remains 
unclear. Because excessive EXO1 activity has the potential to 
disrupt the delicate balance of DNA repair, its overexpression may 
represent an underexplored mechanism of HR dysregulation. In 
this study, we examined the impact of EXO1 overexpression on 
HR in ER-positive breast cancer. Using bioinformatics analysis 
of The Cancer Genome Atlas (TCGA), in vitro assays with the 
ER-positive T47D cell line, and machine learning approaches 
to identify genetic modifiers of HR, we demonstrate that EXO1 
overexpression exerts a previously unrecognized suppressive 
effect on HR. Furthermore, we identified candidate genes that 
modulate this effect and experimentally validated their roles in 
shaping HR proficiency and therapeutic response. In addition, 
we extended our validation to an independent ER-positive cell 
model (MCF7) and performed multivariate survival analyses 
across multiple cohorts, further strengthening the mechanistic 
and clinical significance of our findings. Together, these findings 
provide new insights into the regulation of HR in breast cancer 
and suggest potential avenues for improving treatment strategies in
ER-positive disease. 

2 Materials and methods

2.1 Data acquisition and preprocessing

Transcriptomic and clinical data for Invasive Breast Carcinoma 
(TCGA, GDC) were obtained from cBioPortal on 27 January 2025. 
Two transcriptomic datasets were downloaded: TPM expression 
values (data_mRNA_seq_tpm.txt) and raw read counts (data_
mRNA_seq_read_counts.txt). Gene identifiers were mapped to 
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gene symbols using the Entrez_GENE_symbol.txt file. TPM 
data were restricted to ER-positive breast cancer patients based 
on IHC status in clinical data and normalized using Z-score 
transformation. Z-score normalization was applied gene-wise 
across samples after TPM normalization, such that each gene’s 
expression distribution was centered to a mean of 0 and a 
standard deviation of one across the cohort. This approach 
allows direct comparison of relative gene expression across 
patients and ensures appropriate scaling for downstream machine 
learning–based HRD classification. Homologous recombination 
deficiency (HRD) scores were obtained from a previous study 
and matched to patients (Zhang et al., 2021). Among ER-positive 
patients, those with EXO1 expression Z-score >0 were stratified 
into HRD-high (HRD ≥42, Group 2) and HRD-low (HRD <42, 
Group 1) groups.

To assess reproducibility of machine learning-identified 
genes from TCGA, an independent dataset of ER-positive breast 
cancers from a multi-omics study of younger Asian patients 
was utilized (Kan et al., 2018). HRD scores in this dataset were 
calculated using expHRD, an individualized transcriptome-based 
prediction model for homologous recombination deficiency 
assessment in cancer, to validate gene reproducibility. 

2.2 Differentially expressed gene analysis

Differential gene expression analysis between HRD-high (G2, 
HRD ≥42) and HRD-low (G1, HRD <42) groups was performed 
using raw read count data derived from RNA-seq experiments. 
Three widely used statistical frameworks were applied: DESeq2, 
edgeR, and EBSeq, each of which is designed for count-based 
transcriptomic data analysis but differs in its underlying statistical 
assumptions and modeling strategies.

DESeq2 models count data using the negative binomial 
distribution and incorporates shrinkage estimators for dispersion 
and fold changes, improving statistical power and interpretability. 
edgeR also employs a negative binomial model but utilizes empirical 
Bayes methods to estimate gene-wise dispersions, which enhances 
performance, particularly in datasets with small sample sizes. 
EBSeq uses an empirical Bayesian hierarchical model to identify 
differentially expressed genes by modeling expression states as 
mixtures across groups.

For downstream analysis, we retained only genes that were 
identified as significantly differentially expressed by both DESeq2 
and edgeR, using a false discovery rate (FDR) threshold of 
0.001. In both tools, FDR correction was performed using the 
Benjamini–Hochberg (BH) procedure. 

2.3 Machine learning modeling

Four machine learning algorithms—Random Forest, XGBoost, 
LightGBM, and Support Vector Machines—were trained on 
the 1,405 common differentially expressed genes to classify 
HRD status among ER-positive patients with EXO1 Z-score >0. 
This aimed to identify genes predictive of HRD. All models 
were trained using 5-fold stratified cross-validation to ensure 
balanced representation of HRD-high and HRD-low groups across 

folds. Class imbalance was mitigated by balanced subsampling 
within each iteration. Model performance was evaluated by the 
mean area under the receiver operating characteristic curve 
(AUC). Feature importance for the Random Forest model was 
ranked using both Gini importance and permutation importance, 
and interpretability was further examined by SHAP (Shapley 
Additive exPlanations) analysis to quantify the contribution and 
directionality of each gene to HRD prediction. All analyses 
were performed in Python (v3.10) using scikit-learn (v1.3) and 
SHAP (v0.42). 

2.4 Cell culture and transfection

T47D (ATCC HTB-133™) and MCF7 (ATCC HTB-22™) human 
breast cancer cell lines were obtained from the American Type 
Culture Collection (ATCC). T47D cells were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum (FBS), 
and MCF7 cells were maintained in ATCC-formulated Eagle’s 
Minimum Essential Medium (EMEM) containing 10% FBS, 
following the vendor’s protocols. Both cell lines were incubated 
at 37 °C in a humidified atmosphere of 5% CO2 and passaged 
at a 1:3–1:6 ratio, with medium renewal two to three times per 
week. Transient transfection was performed using PEI-MAX 
(Polysciences) at a PEI:DNA ratio of 3:1 (w/w) with 6 µg total DNA 
per 10-cm dish. Plasmids included pPB-Neo-CAG > ORF-Stuffer 
(vector control; VB900131-3591nmk), pPB-Neo-CAG-hEXO1 
(VB220411-1024uvw), pPB-Neo-CAG-N4BP2L2 (VB250323-
1300uvw), and the EXO1 + N4BP2L2 co-expression construct 
(VectorBuilder). For the Advanced Homologous Recombination 
Assay (ASHRA), cells were co-transfected with donor plasmid 
pBS-ACTB-2000-GFP-fr1 (Addgene) and Cas9/guide RNA 
plasmid (LentiCRISPRv2-ACTB-C1, Addgene #169796) at a 
2:1 mass ratio. LentiCRISPRv2-scramble (Addgene #169795) 
served as a non-targeting control. Cells were harvested 48 h 
post-transfection for RNA extraction, HR assays, and colony 
formation analysis. 

2.5 RNA isolation and cDNA synthesis

Total RNA was extracted from cultured cells (≤5 × 106) using the 
ReliaPrep™ RNA Cell Miniprep System (Promega) with on-column 
DNase I digestion. RNA was eluted in 30 µL nuclease-free water and 
stored at −80 °C. cDNA was synthesized from 500 ng RNA using 
PrimeScript RT Master Mix (Takara) in a 10 µL reaction following 
the manufacturer’s protocol. 

2.6 Quantitative real-time PCR (qPCR)

qPCR was performed using SYBR® Green reagents (Thermo 
Fisher) on a StepOne™ Real-Time PCR System (Applied Biosystems). 
Reactions (10 µL) included cDNA template, primers, and master 
mix. Cycling: 95 °C 10 min; 40 cycles of 95 °C 15 s and 60 °C 1 min; 
followed by melt curve analysis. Triplicate technical and biological 
replicates were performed. Relative expression was calculated by the 
ΔΔCt method, normalized to GAPDH. 
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2.7 Primers

N4BP2L2: F 5′-CAGACAGGTTTGTGAACCAGCAG-3, R 5′-
GCCATCACGATTCTGACCAAGC-3′

EXO1: F 5′-GCAACTTCTTCGTGAGGG A-3′, R 5-
AGGAAGGTATTGTTGGCCCG-3′

GAPDH: F 5′-GGTGAAGGTCGGTGTGAACG-3′ R 5′-
CTCGCTCCTGGAAGATGGTG-3′ 

2.8 Homologous recombination (HR) assay

HR efficiency was determined as previously described (Pae et al., 
2024). GFP transcript levels from the knock-in allele were 
normalized to the control allele using triplicate biological 
and technical replicates. NTCs were included to verify assay
specificity. 

2.9 HR primers

Target Forward Reverse.
Knock-in allele GTCCTGCTGGAGTTCGTGACCG 

GTGCAATCAAAGTCCTCGGC.
Control allele AGTTGCGTTACACCCTTTCTTG 

GTGCAATCAAAGTCCTCGGC. 

2.10 Colony formation assay with olaparib

The Colony Formation assay was performed as previously 
described (Nagasawa et al., 2015; Nakagawa et al., 2015). Briefly, 
48 hours after transfection, cells were reseeded in 6-well plates at 
500–1,000 cells/well and treated with Olaparib at concentrations 
of 0, 0.01, 0.1, 1, 10, and 100 µM. After 7 days, colonies 
were fixed, stained with crystal violet, washed, and air-dried. 
Experimental groups included EXO1 overexpression, N4BP2L2 
overexpression, co-expression of EXO1 + N4BP2L2, and vector 
control. Ct values were exported from the instrument software, 
and relative quantification (ΔΔCt) was computed as described. 
Colony counts obtained from ImageQuant were used to calculate 
relative survival across Olaparib doses, with plating efficiency 
correction where applicable. Statistical analyses and graphing 
were performed in Prism or equivalent software as indicated in
figure legends. 

2.11 Survival and Multivariate Cox 
regression analyses

Disease-free and overall survival analyses were performed using 
the TCGA, E-MTAB-365, and METABRIC cohorts. Survival curves 
were estimated by the Kaplan-Meier method and compared using 
the log-rank test. Multivariate Cox proportional hazards models 
were fitted with age and clinical stage as covariates. For E-MTAB-
365, Scarff–Bloom–Richardson grade was substituted for stage due 
to dataset limitations. All analyses were conducted in R (v4.3.2) 
using the “survival” and “survminer” packages. 

2.12 Statistical analysis

Statistical significance was assessed using two-tailed t-tests for 
comparisons between two groups. For all analyses, a p-value of <0.05 
was considered statistically significant. Error bars represent the 
standard error of the mean (SEM) from at least three independent 
experiments unless otherwise specified. 

3 Results

3.1 EXO1 expression across breast cancer 
subtypes and its functional impact on 
homologous recombination

Analysis of The Cancer Genome Atlas (TCGA) dataset 
revealed that EXO1 is highly expressed in basal-like breast cancer 
according to the PAM50 classification (Supplementary Figure S1). 
While EXO1 is a component gene of the PAM50 panel and is 
characteristically overexpressed in basal-like tumors, elevated 
expression was also observed in a subset of estrogen receptor 
(ER)-positive breast cancers, indicating a broader role for EXO1 
beyond basal-like tumors (Supplementary Figure S1) (Nielsen et al., 
2010). Given that homologous recombination (HR) deficiency 
is commonly associated with BRCA1 loss and basal-like breast 
cancer, we hypothesized that ER-positive breast cancer—where 
BRCA1 is typically intact—would provide a valuable model to study 
the effect of EXO1 overexpression on HR (Lord and Ashworth, 
2016; Feng et al., 2023). To investigate this, we examined the 
relationship between EXO1 expression and HR efficiency. HR 
efficiency was inferred using the HRD (homologous recombination 
deficiency) score, a composite genomic metric integrating loss of 
heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-
scale state transitions (LST) (Telli et al., 2016). Notably, we observed 
a significant positive correlation between EXO1 expression and 
HRD scores in ER-positive breast cancer (Figure 1A), suggesting 
that high EXO1 levels are associated with impaired HR function in 
this subtype. To validate the functional consequences of EXO1 
overexpression on HR, we used the ER-positive breast cancer 
cell line T47D. HR activity was quantified using the Advanced 
Homologous Recombination Assay (ASHRA), a CRISPR/Cas9-
based system that measures HR by tracking integration of a 
GFP sequence into the endogenous ACTB locus (Yoshino et al., 
2019). Unlike the traditional DR-GFP assay, ASHRA provides 
a more reliable correlation between HR activity and cellular 
sensitivity to genotoxic stress (Pierce et al., 1999; Yoshino et al., 
2019). We compared HR activity among parental T47D cells, 
vector control (VC) cells, and EXO1-overexpressing cells. Both 
parental and VC cells successfully integrated GFP into the ACTB 
locus following ACTB-specific gRNA targeting, producing a β-
actin-GFP fusion transcript (Figures 1B,C). In contrast, EXO1-
overexpressing cells failed to produce this fusion transcript 
regardless of the gRNA used, indicating suppressed HR activity 
(Figures 1B,C). Given the known link between HR deficiency and 
sensitivity to PARP inhibitors, we further tested whether EXO1 
overexpression sensitized T47D cells to PARP inhibitor olaparib 
(McCabe et al., 2006). As expected, EXO1-overexpressing cells 
exhibited significantly increased sensitivity to olaparib compared 
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FIGURE 1
EXO1 overexpression induces homologous recombination deficiency and sensitizes ER-positive breast cancer cells to PARP inhibition (A) Correlation 
between EXO1 mRNA expression and homologous recombination deficiency (HRD) scores in ER-positive breast cancers from the TCGA dataset. The 
red line indicates the linear regression fit. (B) The box plot shows EXO1 expression measured by real-time RT-PCR in parental T47D cells, vector 
control-transfected cells (VC), and EXO1-overexpressing T47D cells (EXO1). Error bars represent the minimum and maximum values. (C) Homologous 
recombination (HR) efficiency, assessed by β-actin-GFP transcript levels using RT-PCR, in parental T47D cells, vector control-transfected cells (VC), 
and EXO1-overexpressing cells (EXO1). Error bars represent the standard error of the mean (SEM) from four independent experiments. (D) Sensitivity to 
the PARP inhibitor olaparib in parental T47D cells, vector control-transfected cells (VC), and EXO1-overexpressing cells (EXO1). Cell viability was 
measured after drug treatment. Error bars represent the standard error of the mean (SEM) from three independent experiments.

to parental and VC cells (Figures 1B,D), supporting the notion 
that EXO1 overexpression induces functional HR deficiency and 
enhances therapeutic vulnerability.

3.2 Identification of genes modulating 
homologous recombination in 
EXO1-overexpressing ER-positive breast 
cancer

BRCA1 dysfunction is a well-established cause of homologous 
recombination deficiency (HRD), yet cells with concurrent 
loss of both BRCA1 and 53BP1 can paradoxically regain HR 
proficiency (Bouwman et al., 2010; Jaspers et al., 2013). Although 
the co-occurrence of BRCA1 and 53BP1 dysfunction in clinical 
tumors remains rare and poorly characterized, understanding 
this compensatory mechanism is vital due to its implications 
for resistance to PARP inhibitors and treatment strategies 
(Bouwman et al., 2010). In this study, we demonstrated that EXO1 
overexpression induces HR deficiency and sensitizes ER-positive 

breast cancer cells to PARP inhibition, highlighting its relevance 
in therapeutic stratification. To further elucidate the genetic 
landscape underlying HR modulation in EXO1-overexpressing 
ER-positive breast cancers, we aimed to identify gene expression 
profiles associated with both HR efficiency and PARP inhibitor 
sensitivity. Using the TCGA breast cancer dataset (n = 282 EXO1-
overexpressing ER-positive cases, ∼20,000 genes per sample), we 
stratified tumors into high- and low-HRD score groups based on 
a widely used cutoff value of 42, which has been established as 
a clinically relevant threshold for defining HR deficiency (Choi 
and Lee, 2022). We then conducted differential expression analysis 
between these two groups. To minimize potential biases due to class 
imbalance, we employed three established methods: DESeq2, edgeR, 
and EBSeq (Soneson and Delorenzi, 2013; Etoh and Nakao, 2023). 
Comparison of results revealed that DESeq2 and edgeR produced 
consistent and biologically plausible volcano plot distributions, 
while EBSeq exhibited an irregular pattern—particularly in the 
non-significant gene range—likely due to its optimization for 
small-sample analyses (Barber et al., 2013) (Figure 2A). Given 
the large sample size and gene set, we excluded EBSeq from 
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further analysis. We identified 1,405 differentially expressed genes 
(DEGs) common to both DESeq2 and edgeR for downstream 
investigation (Figure 2B).

Next, we applied four machine learning models—Hist Gradient 
Boosting Classifier, XGBoost, Support Vector Machine (SVM), 
and Random Forest—to identify genes most predictive of HRD 
status in the EXO1-overexpressing subset (Fumagalli et al., 
2023; Chen and Kabir, 2024; Das et al., 2024; Ghuriani et al., 
2025; Sharda et al., 2025). Among these, the Random Forest 
model achieved the highest performance, as measured by area 
under the curve (AUC) (Table 1), and was selected for further 
analysis. This model revealed a subset of genes whose elevated 
expression either increased or decreased HRD scores (Figure 2C). 
Notably, while the genes associated with elevated HRD scores 
exerted relatively modest effects (up to 1.3-fold increase), those 
linked to reduced HRD had a more pronounced impact. We 
focused on two top candidates—N4BP2L2 and OTUD7B—whose 
overexpression substantially lowered HRD scores, suggesting 
restoration of HR function (Figure 2C). To validate these findings, 
we examined the Korean breast cancer cohort (SMC dataset) 
(Kan et al., 2018). While OTUD7B expression did not correlate 
with HRD in this independent dataset, N4BP2L2 overexpression 
consistently reduced HRD scores, confirming its potential as a 
robust modulator of HR (Figure 2D). Together, these findings 
position N4BP2L2 as a key genetic suppressor of EXO1-induced 
HR deficiency, with potential implications for developing strategies 
to reverse HRD and modulate therapeutic response in ER-positive 
breast cancers.

3.3 Model interpretability identifies 
HR-restorative genes

To better interpret the Random Forest model and visualize 
how individual gene expression levels influenced HRD prediction, 
we incorporated SHAP (Shapley Additive exPlanations) and 
permutation-importance analyses (Figure 3). Both approaches 
provided complementary interpretability to the Random Forest 
classifier. The SHAP summary plot ranked genes by their mean 
absolute SHAP values (Figure 3A; Supplementary Figure S2). 
Both N4BP2L2 and OTUD7B were within the highest-ranked 
features, supporting their potential involvement in HR modulation. 
Permutation-importance analysis independently confirmed 
N4BP2L2 as one of the top contributors, whereas the relative impact 
of OTUD7B was modest (Figure 3B; Supplementary Figure S3). 
SHAP dependence plots further revealed that higher N4BP2L2 
expression was consistently associated with reduced predicted 
HRD probability, supporting its HR-restorative role (Figure 3C). 
In contrast, OTUD7B showed variable directionality in its SHAP 
profile, suggesting a context-dependent effect (Figure 3D). These 
findings align with the lack of reproducibility of OTUD7B’s HRD-
lowering association in the SMC validation cohort (Figure 2D). 
Together, the combined DEG, machine-learning, and model-
interpretability analyses position N4BP2L2 as a key genetic 
suppressor of EXO1-induced HR deficiency, providing both 
statistical and mechanistic evidence for its role in restoring HR 
function and influencing therapeutic response in ER-positive 
breast cancers.

To provide clinical context for the survival analyses, baseline 
characteristics of patients in the TCGA, E-MTAB-365, and 
METABRIC cohorts were summarized (Supplementary Table S1). 
The SMC cohort was excluded because survival data were not 
available. In the METABRIC cohort, EXO1-high tumors exhibited 
a significantly higher stage distribution compared with EXO1-low 
tumors (p = 0.001), whereas this difference was attenuated when 
N4BP2L2 was co-expressed (p = 0.587). These findings suggest 
that N4BP2L2 may counteract the clinically aggressive features 
associated with EXO1 overexpression. Recurrence status and 
follow-up duration were summarized in Supplementary Table S1 
to provide context for relapse-free survival analyses. The E-
MTAB-365 dataset lacked stage information but included the 
Scarff–Bloom–Richardson grade, which was used as a surrogate 
histologic variable.

Survival analyses were then performed across three independent 
ER-positive breast cancer cohorts—TCGA, E-MTAB-365, 
and METABRIC (Supplementary Figure S4). TCGA represents an 
RNA-seq–based dataset, whereas E-MTAB-365 and METABRIC 
are microarray-based, together covering distinct technological 
platforms and patient populations. In TCGA, no significant 
association between gene expression and disease-free survival 
was observed (log-rank p = 0.7477). In contrast, in the E-MTAB-
365 dataset, high EXO1 expression was associated with inferior 
survival (HR = 1.860, 95% CI 1.196–2.893; p = 0.0076), whereas 
N4BP2L2 alone showed no effect (p = 0.769). Importantly, the 
adverse prognostic impact of EXO1 was attenuated in patients 
with concurrent high N4BP2L2 expression (HR = 1.210, 95% CI 
0.6758–2.166; p = 0.4938). This pattern was reproduced in the larger 
METABRIC dataset, where EXO1-high cases exhibited significantly 
shorter survival (HR = 1.766, 95% CI 1.455–2.143; p < 0.0001), while 
dual EXO1 + N4BP2L2 overexpression mitigated this effect (HR = 
1.056, 95% CI 0.575–1.278; p = 0.575).

Multivariate Cox regression models adjusted for age 
and stage confirmed these results across both E-MTAB-365 
and METABRIC (Supplementary Table S2). In METABRIC, high 
EXO1 expression remained an independent predictor of shorter 
survival (HR = 1.37, 95% CI 1.10–1.70; p = 0.0042), whereas in 
E-MTAB-365 the association was borderline (HR = 1.67, 95% CI 
1.00–2.77; p = 0.0500). Notably, even after multivariate adjustment, 
the hazard associated with EXO1 overexpression was markedly 
diminished in the dual EXO1 + N4BP2L2 high-expression group in 
both cohorts, supporting that the protective influence of N4BP2L2 
is independent of clinical covariates and reflects a true biological 
mitigation of EXO1-induced aggressiveness. 

3.4 Functional interplay between EXO1 and 
N4BP2L2 in ER-positive breast cancer cells

To functionally validate the role of N4BP2L2 in modulating 
homologous recombination (HR), we performed assays in ER-
positive T47D cells. HR activity was assessed using the Advanced 
Homologous Recombination Assay (ASHRA), which measures GFP 
integration at the ACTB locus via CRISPR/Cas9. As expected, 
vector control (VC) cells showed robust GFP integration, while 
EXO1-overexpressing cells failed to produce the β-actin–GFP 
fusion transcript, confirming suppressed HR activity (Figures 4A,B). 
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FIGURE 2
Identification and validation of candidate genes modulating HR efficiency in EXO1-overexpressing ER-positive breast cancer (A) Volcano plots showing 
differentially expressed genes (DEGs) between high-HRD (HRD score ≥42) and low-HRD (HRD score <42) groups in EXO1-overexpressing ER-positive 
breast cancers, analyzed using DESeq2 (left), edgeR (middle), and EBSeq (right). (B) Venn diagram illustrating the overlap of DEGs identified by DESeq2 
and edgeR. A total of 1,405 overlapping genes were selected for downstream analysis. (C) Feature importance ranking of candidate genes based on the 
Random Forest model. N4BP2L2 and OTUD7B were identified as top modulators of HRD, with their relative impact on HRD scores shown. (D)
Validation of candidate gene associations with HRD scores in both the TCGA and Korean breast cancer cohort (SMC dataset). Boxplots show HRD 
scores in EXO1-overexpressing tumors stratified by high vs. low expression of EXO1, OTUD7B, and N4BP2L2. Statistical significance was assessed using 
two-tailed t-tests.
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TABLE 1  Performance of machine learning models.

Model name AUC Accuracy (%) PR-AUC MCC

Random Forest 0.949 0.872 0.823 0.471

XG Boost 0.887 0.865 0.633 0.441

SVM 0.931 0.865 0.794 0.431

HGBC 0.865 0.854 0.484 0.411

Abbreviations: SVM, support vector machine; HGBC, hist gradient boosting classifier.

Strikingly, co-overexpression of N4BP2L2 with EXO1 restored GFP 
integration, indicating rescue of HR proficiency (Figures 4A,B). 
We extended these analyses to include MCF7 cells, another ER-
positive breast cancer model, to assess whether the EXO1–N4BP2L2 
interaction is cell-line specific. In MCF7 cells, EXO1 overexpression 
similarly suppressed HR activity, whereas co-overexpression 
of N4BP2L2 restored GFP integration to near-baseline levels 
(Figures 4C,D). Consistent with these HR assay results, EXO1-
overexpressing cells were hypersensitive to the PARP inhibitor 
olaparib, and this effect was reversed by N4BP2L2 co-expression, 
restoring resistance to levels comparable with VC cells in both 
T47D and MCF7 lines (Figures 4E,F). Together with Random 
Forest analysis and validation in an independent breast cancer 
cohort, these results identify N4BP2L2 as a robust suppressor 
of EXO1-induced HR deficiency. These findings demonstrate 
that the HR-restorative effect of N4BP2L2 is reproducible across 
multiple ER-positive breast cancer backgrounds, reinforcing its role 
in counteracting EXO1-induced HR deficiency. This functional 
interplay highlights the EXO1–N4BP2L2 axis as a potential target 
for modulating HR capacity and therapeutic response in ER-positive
breast cancer.

4 Discussion

In this study, we identified EXO1 overexpression as a key 
modulator of homologous recombination deficiency and a 
potential predictor of PARP inhibitor sensitivity in ER-positive 
breast cancer. Through an integrated approach combining 
bioinformatics analysis, functional validation, and machine 
learning, we provide compelling evidence that EXO1 overexpression 
can impair HR and sensitizes ER-positive breast cancer cells to 
therapeutic intervention with PARP inhibitors. These findings offer 
novel insights into the molecular mechanisms that contribute 
to HRD in breast cancer and highlight the translational 
potential of EXO1 as a biomarker for personalized treatment 
strategies.

Our analysis of The Cancer Genome Atlas (TCGA) dataset 
revealed a significant correlation between EXO1 overexpression 
and elevated HRD scores in ER-positive breast cancer, a subtype 
that is typically associated with proficient HR repair mechanisms 
(Feng et al., 2023). This finding contrasts with the established 
understanding of basal-like breast cancers, which are more 
commonly linked to defective HR due to BRCA1 mutations 
(Lord and Ashworth, 2016). Elevated EXO1 expression may 

therefore represent an alternative mechanism driving HRD in ER-
positive tumors. Although EXO1 normally promotes DNA-end 
resection, its overexpression may lead to uncontrolled (“hyper-“) 
resection, reduced RPA recycling efficiency and replication-fork 
instability, collectively impairing RAD51 loading and functional 
HR capacity (Zhao et al., 2020). These results suggest that EXO1 
expression could complement BRCA1/2 genotyping as a functional 
biomarker for HRD, expanding therapeutic eligibility for PARP-
inhibitor–based regimens beyond BRCA-mutated cases.

We further demonstrated the functional consequences of EXO1 
overexpression using the ER-positive T47D cell line. Employing 
the ASHRA, we showed that EXO1 overexpression significantly 
impairs HR activity, corroborating the bioinformatics data. This 
impairment of HR activity was accompanied by increased sensitivity 
to the PARP inhibitor Olaparib, a widely used therapeutic in HR-
deficient cancers. Importantly, we extended these analyses to a 
second ER-positive cell line, MCF7, which reproduced the same 
pattern: EXO1 overexpression impaired HR and co-expression of 
N4BP2L2 restored HR proficiency. These results support the concept 
of EXO1-driven HRD serving as a predictive biomarker for PARP 
inhibitor sensitivity in ER-positive breast cancer, with potential 
clinical implications for treatment selection. Collectively, these 
data demonstrate that the EXO1–N4BP2L2 axis is a reproducible 
regulator of HR capacity across multiple ER-positive contexts.

To gain deeper insights into the genetic factors influencing 
HR in EXO1-overexpressing tumors, we applied machine learning 
to identify potential modulators of HR efficiency. Among the 
1,405 DEGs identified, N4BP2L2 and OTUD7B emerged as 
significant candidates. To interpret the Random-Forest classifier, we 
applied SHAP (SHapley Additive exPlanations) and permutation-
importance analyses. These complementary approaches consistently 
identified N4BP2L2 as one of the most influential features 
predicting HRD probability, while OTUD7B exhibited weaker 
and inconsistent contributions across datasets. SHAP dependence 
plots indicated that high N4BP2L2 expression lowers predicted 
HRD probability, supporting its HR-restorative role, whereas 
OTUD7B’s context-dependent effects likely reflect background-
specific regulatory interactions. Consistent with this, validation 
in the independent SMC cohort confirmed the reproducibility of 
N4BP2L2, but not OTUD7B, as an HR-suppressive gene. Functional 
assays further confirmed these computational findings: in EXO1-
overexpressing T47D and MCF7 cells, co-expression of N4BP2L2 
restored β-actin–GFP integration and normalized HR activity, 
while also reversing olaparib hypersensitivity. This highlights the 
complexity of HR regulation in cancer and the necessity of further 
investigation into the broader genetic landscape of HR modulation. 
Mechanistically, little is currently known about the biochemical 
function of N4BP2L2 or its molecular partners. While it shares 
sequence similarity with NEDD4-binding proteins (Salipante et al., 
2009), its precise role remains uncharacterized, and no direct 
interactions with EXO1 or other homologous recombination factors 
have been reported. Accordingly, we interpret its HR-restorative 
function as likely indirect, possibly mediated through regulatory 
stabilization or modulation of HR-associated processes that warrant 
future investigation.

To evaluate the clinical relevance of these findings, we analyzed 
disease-free survival across three independent ER-positive cohorts, 
TCGA, E-MTAB-365, and METABRIC. Within ER-positive breast 
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FIGURE 3
Model interpretability analysis of genes associated with HRD status in EXO1-overexpressing ER-positive breast cancer. (A) Bar graph showing the top 10 
genes ranked by mean |SHAP| values derived from the Random Forest model. (B) Bar graph showing permutation-importance scores for the same top 
10 genes. (C,D) SHAP dependence plots for N4BP2L2 (C) and OTUD7B (D), showing relationships between scaled gene-expression values and SHAP 
impact on predicted HRD probability.

cancer, high EXO1 expression correlated with shorter survival in 
the E-MTAB-365 and METABRIC cohorts, whereas N4BP2L2 alone 
showed no prognostic impact. Notably, patients with concurrent 

high EXO1 and N4BP2L2 expression no longer exhibited poor 
outcomes, indicating that N4BP2L2 expression mitigates the adverse 
prognostic effect of EXO1 overexpression. This interaction remained 
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FIGURE 4
Functional impact of N4BP2L2 on HR efficiency and PARP inhibitor sensitivity in EXO1-overexpressing ER-positive breast cancer cells (A) Box plots 
show EXO1 (left) and N4BP2L2 (right) expression measured by real-time RT-PCR in vector control-transfected (VC), EXO1-overexpressing (EXO1), 
N4BP2L2-overexpressing (N4BP2L2) and EXO1 + N4BP2L2 co-expressing (EXO1 + N4) T47D cells. Error bars indicate minimum and maximum values.
(B) Homologous recombination (HR) efficiency, assessed by β-actin-GFP transcript levels using RT-PCR in the same T47D cell groups. Error bars 
represent the standard error of the mean (SEM) from four independent experiments. “EXO1+N4” denotes co-expression of EXO1 and N4BP2L2. (C) Box 
plots showing EXO1 (left) and N4BP2L2 (right) mRNA expression levels measured by real-time RT-PCR in vector control (VC), EXO1-overexpressing 
(EXO1), N4BP2L2-overexpressing (N4BP2L2) and EXO1 + N4BP2L2 co-expressing (EXO1 + N4) MCF7 cells. Error bars indicate minimum and maximum 
values. (D) HR efficiency in the same MCF7 groups, assessed by β-actin–GFP transcript levels using ASHRA. Error bars represent the SEM from three 
independent experiments. (E,F) Colony formation assay assessing sensitivity to the PARP inhibitor olaparib in T47D (E) and MCF7 (F) cells. Cell viability 
(%) was measured after 7 days of drug exposure. Error bars represent the standard error of the mean (SEM) from three independent experiments.

significant in multivariate Cox models adjusted for age and stage, 
underscoring the translational relevance of the EXO1–N4BP2L2 axis 
in patient prognosis.

While our study provides significant advances in understanding 
HR regulation in breast cancer, several limitations warrant 
consideration. First, although our bioinformatics analyses 

and machine learning models were validated across large, 
independent datasets, the functional roles of other candidate 
genes identified in these analyses remain unexplored. Second, 
mechanistic experiments such as RAD51 foci formation or 
EXO1–N4BP2L2 interaction assays will be necessary to delineate 
the precise molecular pathways involved. Third, although

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1695627
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Sugiyama et al. 10.3389/fcell.2025.1695627

the T47D and MCF7 cell lines provided valuable insights, additional 
in vivo validation, such as patient-derived xenografts or organoids, 
will be required to confirm the translational relevance of our 
findings. Finally, the clinical utility of EXO1 and N4BP2L2 as 
biomarkers or therapeutic targets will require validation in clinical 
trials, which will be essential for determining their potential for 
patient stratification and treatment personalization.

In conclusion, our study establishes EXO1 overexpression as 
a key driver of HRD in ER-positive breast cancer and identifies 
it as a potential predictive marker for PARP inhibitor sensitivity. 
The discovery of N4BP2L2 as a modulator capable of restoring HR 
proficiency and mitigating the poor clinical outcomes associated with 
EXO1 hyperactivity expands the biological and translational relevance 
of our findings. Integrating machine learning, functional assays, and 
survival analyses, this study provides mechanistic and clinical insight 
into the EXO1–N4BP2L2 axis and its role in shaping HRD-related 
therapeutic vulnerabilities. These findings enhance our understanding 
of HR regulation in breast cancer and pave the way for the development 
of personalized treatment strategies aimed at exploiting HRD-related 
vulnerabilities. Moving forward, further exploration of HR modulators 
and their clinical applications will be critical for optimizing therapeutic 
outcomes in breast cancer patients. 
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