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Exonuclease 1 (EXO1) is a critical enzyme in homologous recombination (HR)
and is implicated in cancer progression, with overexpression linked to poor
prognosis in multiple tumor types. Yet, the impact of EXO1 overexpression
on HR efficiency in estrogen receptor (ER)-positive breast cancer remains
unclear. Here, we investigated this using The Cancer Genome Atlas (TCGA)
and functional studies in ER-positive T47D cells. High EXO1l expression
was associated with elevated homologous recombination deficiency (HRD)
scores in ER-positive tumors, indicating impaired HR activity. In T47D cells,
EXO1 overexpression reduced HR efficiency, measured by the Advanced
Homologous Recombination Assay (ASHRA), and increased sensitivity to the
PARP inhibitor olaparib. Using multi-cohort transcriptomic analysis and machine
learning interpretability approaches (Random Forest, SHAP, and permutation
importance), we identified N4BP2L2 as a key modulator of HR under EXO1
overexpression. Both SHAP and permutation-importance analyses consistently
highlighted N4BP2L2 as a strong HR-restorative gene, whereas OTUD7B
showed weaker, context-dependent effects. Validation in an independent
Korean cohort confirmed N4BP2L2 as a reproducible modulator of HR. Survival
analyses across three ER-positive breast cancer cohorts (TCGA, E-MTAB-
365, and METABRIC) revealed that high EXO1l expression was associated
with shorter survival, whereas concurrent high N4BP2L2 expression mitigated
this adverse prognostic effect, even after multivariate adjustment. Functional
assays in both T47D and MCF7 cells demonstrated that co-expression of
N4BP2L2 restored HR activity and reduced olaparib sensitivity in EXO1-
overexpressing cells. These findings suggest EXO1 overexpression serves as a
marker of functional HR deficiency and a potential predictor of PARP inhibitor
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response, highlighting the EXO1-N4BP2L2 axis as a promising biomarker and
therapeutic target, especially for guiding PARP inhibitor use beyond BRCA-

mutated tumors.
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1 Introduction

Breast cancer is a molecularly diverse disease, with its intrinsic
subtypes classified based on gene expression profiles into basal-
like, luminal A, luminal B, HER2-enriched, and normal-like groups
(Perou et al., 2000). These subtypes exhibit distinct biological
behaviors and therapeutic responses, highlighting the necessity of
subtype-specific treatment strategies (Sorlie et al., 2001; Parker et al.,
2009; Prat and Perou, 2011). The PAM50 assay, a widely used tool
for breast cancer classification, assesses the expression of 50 genes to
stratify tumors into these intrinsic subtypes and predict recurrence
risk (Nielsen et al.,, 2010). Basal-like breast cancer, often triple-
negative, is frequently associated with high genomic instability and
homologous recombination (HR) deficiency, which typically results
from BRCA1 mutations or dysfunctions (Lord and Ashworth, 2016).
On the other hand, estrogen receptor (ER)-positive breast cancer,
primarily comprising luminal subtypes, is generally thought to
maintain proficient DNA repair mechanisms, with HR deficiency
being a less common feature (Feng et al., 2023).

To investigate the broader role of EXO1 expression across these
subtypes, we began our analysis by leveraging the PAM50 data.
While EXO1 overexpression has predominantly been associated
with basal-like breast cancers, our analysis of the PAM50 data
revealed that EXO1 is also elevated in a subset of ER-positive
tumors, suggesting that EXO1’s involvement in HR deficiency might
extend beyond the basal-like subtype. This observation warranted
further exploration of EXOLI’s potential impact on HR function
in ER-positive breast cancers, which are traditionally considered
HR-proficient.

HR is a critical DNA repair pathway that resolves double-
strand breaks (DSBs) by using a homologous DNA template, thus
ensuring high-fidelity repair (Jasin and Rothstein, 2013). Central to
HR is BRCA1, which facilitates DNA end resection by displacing
the 53BP1 complex and recruiting the MRE11-CtIP complex
(Symington and Gautier, 2011; Chapman et al., 2013). This process
is further extended by Exonuclease 1 (EXO1), an exonuclease that
generates single-stranded DNA (ssDNA) tracts (Nimonkar et al.,
2011). These ssDNA regions are initially coated by replication
protein A (RPA), which is then replaced by RAD51 to initiate strand
invasion and repair (San Filippo et al., 2008; Heyer et al., 2010).
Disruption of this pathway—either through genetic mutations or
altered regulatory mechanisms—can compromise HR efficiency,
contributing to tumorigenesis and influencing therapeutic responses
(Lord and Ashworth, 2012; Ceccaldi et al., 2015).

The clinical success of poly (ADP-ribose) polymerase (PARP)
inhibitors, which exploit HR deficiency for synthetic lethality, has
revolutionized the treatment of BRCA-mutant cancers (Bryant et al.,
2005; Farmer et al., 2005). While this strategy is well established
for BRCA1-deficient tumors, its broader applicability across other
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cancers requires a deeper understanding of HR regulation beyond
classical gene mutations (Lord and Ashworth, 2017). For example,
in preclinical models, the loss of 53BP1 has been shown to restore
HR activity in BRCA1-deficient cells, potentially affecting PARP
inhibitor sensitivity—though this phenomenon remains rare in
clinical tumors (Bouwman et al., 2010; Jaspers et al., 2013).

To further understand the complex regulatory network
governing HR, it is essential to explore genetic interactions that
modulate HR efficiency. Machine learning approaches, when applied
to large-scale genomic datasets, can uncover subtle patterns and
combinatorial effects that traditional methods might overlook,
offering new insights into the regulation of DNA repair pathways
and their implications for treatment (Fabris et al., 2017).

EXOI, a key player in DNA end resection, has been shown
to be overexpressed in several tumor types, including liver
and lung cancers (Liu et al, 2025). In these cancers, elevated
EXOL1 expression is associated with poor survival outcomes
(Dai et al, 2018; Zhou et al, 2021). However, the precise
contribution of EXO1 overexpression to HR efliciency remains
unclear. Because excessive EXO1 activity has the potential to
disrupt the delicate balance of DNA repair, its overexpression may
represent an underexplored mechanism of HR dysregulation. In
this study, we examined the impact of EXO1 overexpression on
HR in ER-positive breast cancer. Using bioinformatics analysis
of The Cancer Genome Atlas (TCGA), in vitro assays with the
ER-positive T47D cell line, and machine learning approaches
to identify genetic modifiers of HR, we demonstrate that EXO1
overexpression exerts a previously unrecognized suppressive
effect on HR. Furthermore, we identified candidate genes that
modulate this effect and experimentally validated their roles in
shaping HR proficiency and therapeutic response. In addition,
we extended our validation to an independent ER-positive cell
model (MCF7) and performed multivariate survival analyses
across multiple cohorts, further strengthening the mechanistic
and clinical significance of our findings. Together, these findings
provide new insights into the regulation of HR in breast cancer
and suggest potential avenues for improving treatment strategies in
ER-positive disease.

2 Materials and methods
2.1 Data acquisition and preprocessing

Transcriptomic and clinical data for Invasive Breast Carcinoma
(TCGA, GDC) were obtained from cBioPortal on 27 January 2025.
Two transcriptomic datasets were downloaded: TPM expression
values (data_mRNA_seq_tpm.txt) and raw read counts (data_
mRNA_seq_read_counts.txt). Gene identifiers were mapped to
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gene symbols using the Entrez_ GENE_symbol.txt file. TPM
data were restricted to ER-positive breast cancer patients based
on IHC status in clinical data and normalized using Z-score
transformation. Z-score normalization was applied gene-wise
across samples after TPM normalization, such that each gene’s
expression distribution was centered to a mean of 0 and a
standard deviation of one across the cohort. This approach
allows direct comparison of relative gene expression across
patients and ensures appropriate scaling for downstream machine
learning-based HRD classification. Homologous recombination
deficiency (HRD) scores were obtained from a previous study
and matched to patients (Zhang et al., 2021). Among ER-positive
patients, those with EXO1 expression Z-score >0 were stratified
into HRD-high (HRD 242, Group 2) and HRD-low (HRD <42,
Group 1) groups.

To assess reproducibility of machine learning-identified
genes from TCGA, an independent dataset of ER-positive breast
cancers from a multi-omics study of younger Asian patients
was utilized (Kan et al., 2018). HRD scores in this dataset were
calculated using expHRD, an individualized transcriptome-based
prediction model for homologous recombination deficiency
assessment in cancer, to validate gene reproducibility.

2.2 Differentially expressed gene analysis

Differential gene expression analysis between HRD-high (G2,
HRD >42) and HRD-low (G1, HRD <42) groups was performed
using raw read count data derived from RNA-seq experiments.
Three widely used statistical frameworks were applied: DESeq2,
edgeR, and EBSeq, each of which is designed for count-based
transcriptomic data analysis but differs in its underlying statistical
assumptions and modeling strategies.

DESeq2 models count data using the negative binomial
distribution and incorporates shrinkage estimators for dispersion
and fold changes, improving statistical power and interpretability.
edgeR also employs a negative binomial model but utilizes empirical
Bayes methods to estimate gene-wise dispersions, which enhances
performance, particularly in datasets with small sample sizes.
EBSeq uses an empirical Bayesian hierarchical model to identify
differentially expressed genes by modeling expression states as
mixtures across groups.

For downstream analysis, we retained only genes that were
identified as significantly differentially expressed by both DESeq2
and edgeR, using a false discovery rate (FDR) threshold of
0.001. In both tools, FDR correction was performed using the
Benjamini-Hochberg (BH) procedure.

2.3 Machine learning modeling

Four machine learning algorithms—Random Forest, XGBoost,
LightGBM, and Support Vector Machines—were trained on
the 1,405 common differentially expressed genes to classify
HRD status among ER-positive patients with EXO1 Z-score >0.
This aimed to identify genes predictive of HRD. All models
were trained using 5-fold stratified cross-validation to ensure
balanced representation of HRD-high and HRD-low groups across
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folds. Class imbalance was mitigated by balanced subsampling
within each iteration. Model performance was evaluated by the
mean area under the receiver operating characteristic curve
(AUC). Feature importance for the Random Forest model was
ranked using both Gini importance and permutation importance,
and interpretability was further examined by SHAP (Shapley
Additive exPlanations) analysis to quantify the contribution and
directionality of each gene to HRD prediction. All analyses
were performed in Python (v3.10) using scikit-learn (v1.3) and
SHAP (v0.42).

2.4 Cell culture and transfection

T47D (ATCC HTB-133™) and MCF7 (ATCC HTB-22") human
breast cancer cell lines were obtained from the American Type
Culture Collection (ATCC). T47D cells were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum (FBS),
and MCF7 cells were maintained in ATCC-formulated Eagle’s
Minimum Essential Medium (EMEM) containing 10% FBS,
following the vendor’s protocols. Both cell lines were incubated
at 37°C in a humidified atmosphere of 5% CO, and passaged
at a 1:3-1:6 ratio, with medium renewal two to three times per
week. Transient transfection was performed using PEI-MAX
(Polysciences) at a PEI:DNA ratio of 3:1 (w/w) with 6 pg total DNA
per 10-cm dish. Plasmids included pPB-Neo-CAG > ORE-Stuffer
(vector control; VB900131-3591nmk), pPB-Neo-CAG-hEXO1
(VB220411-1024uvw), pPB-Neo-CAG-N4BP2L2  (VB250323-
1300uvw), and the EXO1 + N4BP2L2 co-expression construct
(VectorBuilder). For the Advanced Homologous Recombination
Assay (ASHRA), cells were co-transfected with donor plasmid
pBS-ACTB-2000-GFP-frl  (Addgene) and Cas9/guide RNA
plasmid (LentiCRISPRv2-ACTB-C1, Addgene #169796) at a
2:1 mass ratio. LentiCRISPRv2-scramble (Addgene #169795)
served as a non-targeting control. Cells were harvested 48 h
post-transfection for RNA extraction, HR assays, and colony
formation analysis.

2.5 RNA isolation and cDNA synthesis

Total RNA was extracted from cultured cells (<5 x 10°) using the
ReliaPrep™ RNA Cell Miniprep System (Promega) with on-column
DNase I digestion. RNA was eluted in 30 pL nuclease-free water and
stored at —80 °C. cDNA was synthesized from 500 ng RNA using
PrimeScript RT Master Mix (Takara) in a 10 pL reaction following
the manufacturer’s protocol.

2.6 Quantitative real-time PCR (qPCR)

gPCR was performed using SYBR® Green reagents (Thermo
Fisher) on a StepOne™ Real-Time PCR System (Applied Biosystems).
Reactions (10 pL) included ¢cDNA template, primers, and master
mix. Cycling: 95 °C 10 min; 40 cycles of 95 °C 15 s and 60 °C 1 min;
followed by melt curve analysis. Triplicate technical and biological
replicates were performed. Relative expression was calculated by the
AACt method, normalized to GAPDH.
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2.7 Primers

N4BP21.2: F 5'-CAGACAGGTTTGTGAACCAGCAG-3, R 5'-
GCCATCACGATTCTGACCAAGC-3'

EXOl: F 5'-GCAACTTCTTCGTGAGGG A-3', R 5-
AGGAAGGTATTGTTGGCCCG-3'
GAPDH: F 5'-GGTGAAGGTCGGTGTGAACG-3' R 5'-

CTCGCTCCTGGAAGATGGTG-3'

2.8 Homologous recombination (HR) assay

HR efficiency was determined as previously described (Pae et al.,
2024). GFP transcript levels from the knock-in allele were
normalized to the control allele using triplicate biological
and technical replicates. NTCs were included to verify assay
specificity.

2.9 HR primers

Target Forward Reverse.

Knock-in allele GTCCTGCTGGAGTTCGTGACCG
GTGCAATCAAAGTCCTCGGC.

Control allele AGTTGCGTTACACCCTTTCTTG
GTGCAATCAAAGTCCTCGGC.

2.10 Colony formation assay with olaparib

The Colony Formation assay was performed as previously
described (Nagasawa et al., 2015; Nakagawa et al., 2015). Briefly,
48 hours after transfection, cells were reseeded in 6-well plates at
500-1,000 cells/well and treated with Olaparib at concentrations
of 0, 0.01, 0.1, 1, 10, and 100 uM. After 7 days, colonies
were fixed, stained with crystal violet, washed, and air-dried.
Experimental groups included EXO1 overexpression, N4BP2L2
overexpression, co-expression of EXO1 + N4BP2L2, and vector
control. Ct values were exported from the instrument software,
and relative quantification (AACt) was computed as described.
Colony counts obtained from ImageQuant were used to calculate
relative survival across Olaparib doses, with plating efficiency
correction where applicable. Statistical analyses and graphing
were performed in Prism or equivalent software as indicated in
figure legends.

2.11 Survival and Multivariate Cox
regression analyses

Disease-free and overall survival analyses were performed using
the TCGA, E-MTAB-365, and METABRIC cohorts. Survival curves
were estimated by the Kaplan-Meier method and compared using
the log-rank test. Multivariate Cox proportional hazards models
were fitted with age and clinical stage as covariates. For E-MTAB-
365, Scarft-Bloom-Richardson grade was substituted for stage due
to dataset limitations. All analyses were conducted in R (v4.3.2)
using the “survival” and “survminer” packages.
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2.12 Statistical analysis

Statistical significance was assessed using two-tailed t-tests for
comparisons between two groups. For all analyses, a p-value of <0.05
was considered statistically significant. Error bars represent the
standard error of the mean (SEM) from at least three independent
experiments unless otherwise specified.

3 Results

3.1 EXO1 expression across breast cancer
subtypes and its functional impact on
homologous recombination

Analysis of The Cancer Genome Atlas (TCGA) dataset
revealed that EXO1 is highly expressed in basal-like breast cancer
according to the PAM50 classification (Supplementary Figure S1).
While EXO1 is a component gene of the PAM50 panel and is
characteristically overexpressed in basal-like tumors, elevated
expression was also observed in a subset of estrogen receptor
(ER)-positive breast cancers, indicating a broader role for EXO1
beyond basal-like tumors (Supplementary Figure S1) (Nielsen et al.,
2010). Given that homologous recombination (HR) deficiency
is commonly associated with BRCA1 loss and basal-like breast
cancer, we hypothesized that ER-positive breast cancer—where
BRCAL1 is typically intact—would provide a valuable model to study
the effect of EXO1 overexpression on HR (Lord and Ashworth,
2016; Feng et al, 2023). To investigate this, we examined the
relationship between EXO1 expression and HR efficiency. HR
efficiency was inferred using the HRD (homologous recombination
deficiency) score, a composite genomic metric integrating loss of
heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-
scale state transitions (LST) (Telli et al., 2016). Notably, we observed
a significant positive correlation between EXO1 expression and
HRD scores in ER-positive breast cancer (Figure 1A), suggesting
that high EXO1 levels are associated with impaired HR function in
this subtype. To validate the functional consequences of EXO1
overexpression on HR, we used the ER-positive breast cancer
cell line T47D. HR activity was quantified using the Advanced
Homologous Recombination Assay (ASHRA), a CRISPR/Cas9-
based system that measures HR by tracking integration of a
GFP sequence into the endogenous ACTB locus (Yoshino et al.,
2019). Unlike the traditional DR-GFP assay, ASHRA provides
a more reliable correlation between HR activity and cellular
sensitivity to genotoxic stress (Pierce et al., 1999; Yoshino et al.,
2019). We compared HR activity among parental T47D cells,
vector control (VC) cells, and EXOI-overexpressing cells. Both
parental and VC cells successfully integrated GFP into the ACTB
locus following ACTB-specific gRNA targeting, producing a B-
actin-GFP fusion transcript (Figures 1B,C). In contrast, EXO1-
overexpressing cells failed to produce this fusion transcript
regardless of the gRNA used, indicating suppressed HR activity
(Figures 1B,C). Given the known link between HR deficiency and
sensitivity to PARP inhibitors, we further tested whether EXO1
overexpression sensitized T47D cells to PARP inhibitor olaparib
(McCabe et al, 2006). As expected, EXOl-overexpressing cells
exhibited significantly increased sensitivity to olaparib compared
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FIGURE 1

EXO1 overexpression induces homologous recombination deficiency and sensitizes ER-positive breast cancer cells to PARP inhibition (A) Correlation
between EXO1 mRNA expression and homologous recombination deficiency (HRD) scores in ER-positive breast cancers from the TCGA dataset. The
red line indicates the linear regression fit. (B) The box plot shows EXO1 expression measured by real-time RT-PCR in parental T47D cells, vector
control-transfected cells (VC), and EXO1-overexpressing T47D cells (EXO1). Error bars represent the minimum and maximum values. (C) Homologous
recombination (HR) efficiency, assessed by p-actin-GFP transcript levels using RT-PCR, in parental T47D cells, vector control-transfected cells (VC),
and EXO1-overexpressing cells (EXO1). Error bars represent the standard error of the mean (SEM) from four independent experiments. (D) Sensitivity to
the PARP inhibitor olaparib in parental T47D cells, vector control-transfected cells (VC), and EXO1-overexpressing cells (EXO1). Cell viability was
measured after drug treatment. Error bars represent the standard error of the mean (SEM) from three independent experiments.

to parental and VC cells (Figures 1B,D), supporting the notion
that EXO1 overexpression induces functional HR deficiency and
enhances therapeutic vulnerability.

3.2 Identification of genes modulating
homologous recombination in
EXO1l-overexpressing ER-positive breast
cancer

BRCAI1 dysfunction is a well-established cause of homologous
recombination deficiency (HRD), yet cells with concurrent
loss of both BRCAI and 53BP1 can paradoxically regain HR
proficiency (Bouwman et al., 2010; Jaspers et al., 2013). Although
the co-occurrence of BRCA1 and 53BP1 dysfunction in clinical
tumors remains rare and poorly characterized, understanding
this compensatory mechanism is vital due to its implications
for resistance to PARP inhibitors and treatment strategies
(Bouwman et al,, 2010). In this study, we demonstrated that EXO1
overexpression induces HR deficiency and sensitizes ER-positive
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breast cancer cells to PARP inhibition, highlighting its relevance
in therapeutic stratification. To further elucidate the genetic
landscape underlying HR modulation in EXOI-overexpressing
ER-positive breast cancers, we aimed to identify gene expression
profiles associated with both HR efficiency and PARP inhibitor
sensitivity. Using the TCGA breast cancer dataset (n = 282 EXO1-
overexpressing ER-positive cases, ~20,000 genes per sample), we
stratified tumors into high- and low-HRD score groups based on
a widely used cutoff value of 42, which has been established as
a clinically relevant threshold for defining HR deficiency (Choi
and Lee, 2022). We then conducted differential expression analysis
between these two groups. To minimize potential biases due to class
imbalance, we employed three established methods: DESeq2, edgeR,
and EBSeq (Soneson and Delorenzi, 2013; Etoh and Nakao, 2023).
Comparison of results revealed that DESeq2 and edgeR produced
consistent and biologically plausible volcano plot distributions,
while EBSeq exhibited an irregular pattern—particularly in the
non-significant gene range—likely due to its optimization for
small-sample analyses (Barber et al., 2013) (Figure 2A). Given
the large sample size and gene set, we excluded EBSeq from
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further analysis. We identified 1,405 differentially expressed genes
(DEGs) common to both DESeq2 and edgeR for downstream
investigation (Figure 2B).

Next, we applied four machine learning models—Hist Gradient
Boosting Classifier, XGBoost, Support Vector Machine (SVM),
and Random Forest—to identify genes most predictive of HRD
status in the EXOIl-overexpressing subset (Fumagalli et al,
2023; Chen and Kabir, 2024; Das et al., 2024; Ghuriani et al.,
2025; Sharda et al, 2025). Among these, the Random Forest
model achieved the highest performance, as measured by area
under the curve (AUC) (Table 1), and was selected for further
analysis. This model revealed a subset of genes whose elevated
expression either increased or decreased HRD scores (Figure 2C).
Notably, while the genes associated with elevated HRD scores
exerted relatively modest effects (up to 1.3-fold increase), those
linked to reduced HRD had a more pronounced impact. We
focused on two top candidates—N4BP2L2 and OTUD7B—whose
overexpression substantially lowered HRD scores, suggesting
restoration of HR function (Figure 2C). To validate these findings,
we examined the Korean breast cancer cohort (SMC dataset)
(Kan et al., 2018). While OTUD7B expression did not correlate
with HRD in this independent dataset, N4BP2L2 overexpression
consistently reduced HRD scores, confirming its potential as a
robust modulator of HR (Figure 2D). Together, these findings
position N4BP2L2 as a key genetic suppressor of EXO1-induced
HR deficiency, with potential implications for developing strategies
to reverse HRD and modulate therapeutic response in ER-positive
breast cancers.

3.3 Model interpretability identifies
HR-restorative genes

To better interpret the Random Forest model and visualize
how individual gene expression levels influenced HRD prediction,
we incorporated SHAP (Shapley Additive exPlanations) and
permutation-importance analyses (Figure 3). Both approaches
provided complementary interpretability to the Random Forest
classifier. The SHAP summary plot ranked genes by their mean
absolute SHAP values (Figure 3A; Supplementary Figure S2).
Both N4BP2L2 and OTUD7B were within the highest-ranked
features, supporting their potential involvement in HR modulation.
Permutation-importance  analysis independently = confirmed
N4BP2L2 as one of the top contributors, whereas the relative impact
of OTUD7B was modest (Figure 3B; Supplementary Figure S3).
SHAP dependence plots further revealed that higher N4BP2L2
expression was consistently associated with reduced predicted
HRD probability, supporting its HR-restorative role (Figure 3C).
In contrast, OTUD7B showed variable directionality in its SHAP
profile, suggesting a context-dependent effect (Figure 3D). These
findings align with the lack of reproducibility of OTUD7B’s HRD-
lowering association in the SMC validation cohort (Figure 2D).
Together, the combined DEG, machine-learning, and model-
interpretability analyses position N4BP2L2 as a key genetic
suppressor of EXOl-induced HR deficiency, providing both
statistical and mechanistic evidence for its role in restoring HR
function and influencing therapeutic response in ER-positive
breast cancers.
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To provide clinical context for the survival analyses, baseline
characteristics of patients in the TCGA, E-MTAB-365, and
METABRIC cohorts were summarized (Supplementary Table S1).
The SMC cohort was excluded because survival data were not
available. In the METABRIC cohort, EXO1-high tumors exhibited
a significantly higher stage distribution compared with EXO1-low
tumors (p = 0.001), whereas this difference was attenuated when
N4BP2L2 was co-expressed (p = 0.587). These findings suggest
that N4BP2L2 may counteract the clinically aggressive features
associated with EXO1 overexpression. Recurrence status and
follow-up duration were summarized in Supplementary Table S1
to provide context for relapse-free survival analyses. The E-
MTAB-365 dataset lacked stage information but included the
Scarff-Bloom-Richardson grade, which was used as a surrogate
histologic variable.

Survival analyses were then performed across three independent
ER-positive  breast cancer cohorts—TCGA, E-MTAB-365,
and METABRIC (Supplementary Figure S4). TCGA represents an
RNA-seq-based dataset, whereas E-MTAB-365 and METABRIC
are microarray-based, together covering distinct technological
platforms and patient populations. In TCGA, no significant
association between gene expression and disease-free survival
was observed (log-rank p = 0.7477). In contrast, in the E-MTAB-
365 dataset, high EXO1 expression was associated with inferior
survival (HR = 1.860, 95% CI 1.196-2.893; p = 0.0076), whereas
N4BP2L2 alone showed no effect (p = 0.769). Importantly, the
adverse prognostic impact of EXO1 was attenuated in patients
with concurrent high N4BP2L2 expression (HR = 1.210, 95% CI
0.6758-2.166; p = 0.4938). This pattern was reproduced in the larger
METABRIC dataset, where EXO1-high cases exhibited significantly
shorter survival (HR = 1.766, 95% CI 1.455-2.143; p < 0.0001), while
dual EXO1 + N4BP2L2 overexpression mitigated this effect (HR =
1.056, 95% CI 0.575-1.278; p = 0.575).

Multivariate Cox regression models adjusted for age
and stage confirmed these results across both E-MTAB-365
and METABRIC (Supplementary Table S2). In METABRIC, high
EXOL1 expression remained an independent predictor of shorter
survival (HR = 1.37, 95% CI 1.10-1.70; p = 0.0042), whereas in
E-MTAB-365 the association was borderline (HR = 1.67, 95% CI
1.00-2.77; p = 0.0500). Notably, even after multivariate adjustment,
the hazard associated with EXO1 overexpression was markedly
diminished in the dual EXO1 + N4BP2L2 high-expression group in
both cohorts, supporting that the protective influence of N4BP2L2
is independent of clinical covariates and reflects a true biological
mitigation of EXO1-induced aggressiveness.

3.4 Functional interplay between EXO1 and
N4BP2L2 in ER-positive breast cancer cells

To functionally validate the role of N4BP2L2 in modulating
homologous recombination (HR), we performed assays in ER-
positive T47D cells. HR activity was assessed using the Advanced
Homologous Recombination Assay (ASHRA), which measures GFP
integration at the ACTB locus via CRISPR/Cas9. As expected,
vector control (VC) cells showed robust GFP integration, while
EXO1-overexpressing cells failed to produce the p-actin-GFP
fusion transcript, confirming suppressed HR activity (Figures 4A,B).
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FIGURE 2
Identification and validation of candidate genes modulating HR efficiency in EXO1-overexpressing ER-positive breast cancer (A) Volcano plots showing
differentially expressed genes (DEGs) between high-HRD (HRD score >42) and low-HRD (HRD score <42) groups in EXO1-overexpressing ER-positive
breast cancers, analyzed using DESeq2 (left), edgeR (middle), and EBSeq (right). (B) Venn diagram illustrating the overlap of DEGs identified by DESeq2
and edgeR. A total of 1,405 overlapping genes were selected for downstream analysis. (C) Feature importance ranking of candidate genes based on the
Random Forest model. N4BP2L.2 and OTUD7B were identified as top modulators of HRD, with their relative impact on HRD scores shown. (D)
Validation of candidate gene associations with HRD scores in both the TCGA and Korean breast cancer cohort (SMC dataset). Boxplots show HRD
scores in EXO1-overexpressing tumors stratified by high vs. low expression of EXO1, OTUD7B, and N4BP2L2. Statistical significance was assessed using
two-tailed t-tests.
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TABLE 1 Performance of machine learning models.

Model nhame | AUC | Accuracy (%) | PR-AUC MCC

Random Forest 0.949 0.872 0.823 0.471
XG Boost 0.887 0.865 0.633 0.441
SVM 0.931 0.865 0.794 0.431
HGBC 0.865 0.854 0.484 0.411

Abbreviations: SVM, support vector machine; HGBC, hist gradient boosting classifier.

Strikingly, co-overexpression of N4BP2L2 with EXO1 restored GFP
integration, indicating rescue of HR proficiency (Figures 4A,B).
We extended these analyses to include MCF7 cells, another ER-
positive breast cancer model, to assess whether the EXO1-N4BP212
interaction is cell-line specific. In MCF7 cells, EXO1 overexpression
similarly suppressed HR activity, whereas co-overexpression
of N4BP2L2 restored GFP integration to near-baseline levels
(Figures 4C,D). Consistent with these HR assay results, EXO1-
overexpressing cells were hypersensitive to the PARP inhibitor
olaparib, and this effect was reversed by N4BP2L2 co-expression,
restoring resistance to levels comparable with VC cells in both
T47D and MCEF7 lines (Figures 4E,F). Together with Random
Forest analysis and validation in an independent breast cancer
cohort, these results identify N4BP2L2 as a robust suppressor
of EXOl-induced HR deficiency. These findings demonstrate
that the HR-restorative effect of N4BP2L2 is reproducible across
multiple ER-positive breast cancer backgrounds, reinforcing its role
in counteracting EXOl-induced HR deficiency. This functional
interplay highlights the EXO1-N4BP2L2 axis as a potential target
for modulating HR capacity and therapeutic response in ER-positive
breast cancer.

4 Discussion

In this study, we identified EXO1 overexpression as a key
modulator of homologous recombination deficiency and a
potential predictor of PARP inhibitor sensitivity in ER-positive
breast cancer. Through an integrated approach combining
bioinformatics analysis, functional validation, and machine
learning, we provide compelling evidence that EXO1 overexpression
can impair HR and sensitizes ER-positive breast cancer cells to
therapeutic intervention with PARP inhibitors. These findings offer
novel insights into the molecular mechanisms that contribute
to HRD in breast cancer and highlight the translational
potential of EXO1 as a biomarker for personalized treatment
strategies.

Our analysis of The Cancer Genome Atlas (TCGA) dataset
revealed a significant correlation between EXO1 overexpression
and elevated HRD scores in ER-positive breast cancer, a subtype
that is typically associated with proficient HR repair mechanisms
(Feng et al,, 2023). This finding contrasts with the established
understanding of basal-like breast cancers, which are more
commonly linked to defective HR due to BRCAI mutations
(Lord and Ashworth, 2016). Elevated EXO1 expression may
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therefore represent an alternative mechanism driving HRD in ER-
positive tumors. Although EXO1 normally promotes DNA-end
resection, its overexpression may lead to uncontrolled (“hyper-“)
resection, reduced RPA recycling efficiency and replication-fork
instability, collectively impairing RAD51 loading and functional
HR capacity (Zhao et al., 2020). These results suggest that EXO1
expression could complement BRCA1/2 genotyping as a functional
biomarker for HRD, expanding therapeutic eligibility for PARP-
inhibitor-based regimens beyond BRCA-mutated cases.

We further demonstrated the functional consequences of EXO1
overexpression using the ER-positive T47D cell line. Employing
the ASHRA, we showed that EXO1 overexpression significantly
impairs HR activity, corroborating the bioinformatics data. This
impairment of HR activity was accompanied by increased sensitivity
to the PARP inhibitor Olaparib, a widely used therapeutic in HR-
deficient cancers. Importantly, we extended these analyses to a
second ER-positive cell line, MCF7, which reproduced the same
pattern: EXO1 overexpression impaired HR and co-expression of
N4BP2L2 restored HR proficiency. These results support the concept
of EXO1-driven HRD serving as a predictive biomarker for PARP
inhibitor sensitivity in ER-positive breast cancer, with potential
clinical implications for treatment selection. Collectively, these
data demonstrate that the EXO1-N4BP2L2 axis is a reproducible
regulator of HR capacity across multiple ER-positive contexts.

To gain deeper insights into the genetic factors influencing
HR in EXO1-overexpressing tumors, we applied machine learning
to identify potential modulators of HR efficiency. Among the
1,405 DEGs identified, N4BP2L2 and OTUD7B emerged as
significant candidates. To interpret the Random-Forest classifier, we
applied SHAP (SHapley Additive exPlanations) and permutation-
importance analyses. These complementary approaches consistently
identified N4BP2L2 as one of the most influential features
predicting HRD probability, while OTUD7B exhibited weaker
and inconsistent contributions across datasets. SHAP dependence
plots indicated that high N4BP2L2 expression lowers predicted
HRD probability, supporting its HR-restorative role, whereas
OTUD7B’s context-dependent effects likely reflect background-
specific regulatory interactions. Consistent with this, validation
in the independent SMC cohort confirmed the reproducibility of
N4BP2L2, but not OTUD7B, as an HR-suppressive gene. Functional
assays further confirmed these computational findings: in EXO1-
overexpressing T47D and MCF?7 cells, co-expression of N4BP2L2
restored P-actin-GFP integration and normalized HR activity,
while also reversing olaparib hypersensitivity. This highlights the
complexity of HR regulation in cancer and the necessity of further
investigation into the broader genetic landscape of HR modulation.
Mechanistically, little is currently known about the biochemical
function of N4BP2L2 or its molecular partners. While it shares
sequence similarity with NEDD4-binding proteins (Salipante et al.,
2009), its precise role remains uncharacterized, and no direct
interactions with EXO1 or other homologous recombination factors
have been reported. Accordingly, we interpret its HR-restorative
function as likely indirect, possibly mediated through regulatory
stabilization or modulation of HR-associated processes that warrant
future investigation.

To evaluate the clinical relevance of these findings, we analyzed
disease-free survival across three independent ER-positive cohorts,
TCGA, E-MTAB-365, and METABRIC. Within ER-positive breast
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cancer, high EXO1 expression correlated with shorter survival in ~ high EXO1 and N4BP2L2 expression no longer exhibited poor
the E-MTAB-365 and METABRIC cohorts, whereas N4BP2L2 alone ~ outcomes, indicating that N4BP2L2 expression mitigates the adverse
showed no prognostic impact. Notably, patients with concurrent  prognostic effect of EXO1 overexpression. This interaction remained
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(%) was measured after 7 days of drug exposure. Error bars represent the standard error of the mean (SEM) from three independent experiments.

significant in multivariate Cox models adjusted for age and stage,
underscoring the translational relevance of the EXO1-N4BP2L2 axis
in patient prognosis.

While our study provides significant advances in understanding
HR regulation in breast cancer, several limitations warrant
consideration.  First, bioinformatics

although our analyses
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and machine learning models were validated across large,
independent datasets, the functional roles of other candidate
genes identified in these analyses remain unexplored. Second,
mechanistic experiments such as RADS51 foci formation or
EXO1-N4BP2L2 interaction assays will be necessary to delineate

the precise molecular pathways involved. Third, although
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the T47D and MCF7 cell lines provided valuable insights, additional
in vivo validation, such as patient-derived xenografts or organoids,
will be required to confirm the translational relevance of our
findings. Finally, the clinical utility of EXO1 and N4BP2L2 as
biomarkers or therapeutic targets will require validation in clinical
trials, which will be essential for determining their potential for
patient stratification and treatment personalization.

In conclusion, our study establishes EXO1 overexpression as
a key driver of HRD in ER-positive breast cancer and identifies
it as a potential predictive marker for PARP inhibitor sensitivity.
The discovery of N4BP2L2 as a modulator capable of restoring HR
proficiency and mitigating the poor clinical outcomes associated with
EXO1 hyperactivity expands the biological and translational relevance
of our findings. Integrating machine learning, functional assays, and
survival analyses, this study provides mechanistic and clinical insight
into the EXO1-N4BP2L2 axis and its role in shaping HRD-related
therapeutic vulnerabilities. These findings enhance our understanding
of HR regulation in breast cancer and pave the way for the development
of personalized treatment strategies aimed at exploiting HRD-related
vulnerabilities. Moving forward, further exploration of HR modulators
and their clinical applications will be critical for optimizing therapeutic
outcomes in breast cancer patients.
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